Kontakt

Leitung

Prof. Dr. Dr. Birger Kollmeier

/ -

W30 3-313

Sekretariat

Katja Warnken

+49 (0)441 798-3902

W30 3-312

Kirsten Scheel

+49 (0)441 798-3813

+49 (0)441 798-3902

W30 3-312

Anschrift (Postanschrift)

Medizinische Physik, Fakultät VI
Universität Oldenburg
26111 Oldenburg

Standort / Anreise

Für spezifische Fragen bezüglich eines unserer Forschungsthemen kontaktieren Sie bitte die entsprechenden Personen direkt (siehe Liste der Mitarbeiter)

Auditory neurosensory science

This group gathers several research projects and PIs in noninvasive auditory neuroscience. Our research aims at finding neural correlates of psychoacoustic performance in human listeners. Our goal is to understand how sound pressure entering the ears leads to a representation of what we hear, and how sound is represented along the ascending auditory pathway and cortex.

Our research covers topics on sound localisation, loudness, modulation, pitch perception, and sound representation in normal, hearing impaired, and cochlear implant listeners. Our methods include psychophysics, otoacoustic emssions (OAE), electroencephalography (EEG), and functional MR imaging (fMRI) of the human auditory system.

Principal Investigators

Publications

JOURNAL ARTICLES (since 2015)

Behler O, S Uppenkamp (2021) "Contextual effects on loudness judgments for sounds with continuous changes of intensity are reflected in non-auditory areas,” Human Brain Mapping 42(6), 1742-1757. DOI: 10.1002/hbm.25325

Uppenkamp S (2021) "Functional neuroimaging in hearing research and audiology,” Z Medizinische Physik 31(3), 289-304. DOI: 10.1016/j.zemedi.2021.03.003

Urbschat A, S Uppenkamp, J Anemüller(2021) "Searchlight classification informative region mixture model (SCIM): identification of cortical regions showing discriminable BOLD patterns in event-related auditory fMRI data," Frontiers in Neuroscience 14, article No. 616906.
DOI: 10.3389/fnins.2020.616906

Behler O, S Uppenkamp (2020) "Activation in human auditory cortex in relation to the loudness and unpleasantness of low-frequency and infrasound," PLoS One 15(2), article No. e0229088.

Behler O, S Uppenkamp (2016) "The representation of level and loudness in the central auditory system for unilateral stimulation," Neuroimage 139, 176-188.

Bach JP, M Lüpke, P Dziallas, P Wefstaedt, S Uppenkamp, H Seifert, I Nolte (2016) "Auditory functional magnetic resonance imaging in dogs - normalization and group analysis and the processing of pitch in the canine auditory pathways," BMC Veterinary Research 12, 32.

Gutschalk A, S Uppenkamp, B Riedel, A Bartsch, T Brandt, M Vogt-Schaden (2015) "Pure word deafness with auditory object agnosia after bilateral lesion of the superior temporal sulcus," Cortex 73, 24-35.

JOURNAL ARTICLES (before 2015)

Uppenkamp, S., M. Röhl (2014). Human auditory neuroimaging of intensity and loudness. Hearing Research 307, 65-73.

Bach, J.P., M. Lüpke, P. Dziallas, P. Wefstaedt, S. Uppenkamp, H. Seifert, I. Nolte (2013). Functional magnetic resonance imaging of the ascending stages of the auditory system in dogs, BMC Veterinary Research 9, 210 (10 pages).

Puschmann, S., J. Özyurt, S. Uppenkamp, C.M. Thiel (2013). Pitch-induced responses in right auditory cortex correlate with musical ability in normal listeners. Neuroreport 24, 841-845.

Röhl, M., Uppenkamp, S. (2012). Neural coding of sound intensity and loudness in the human auditory system. J. Assoc. Res. Otolaryngol. 13, 369-379.

Röhl, M., B. Kollmeier, S. Uppenkamp (2011). Spectral loudness summation takes place in the primary auditory cortex. Hum. Brain Mapp. 32, 1483-1496.

Gutschalk, A., S. Uppenkamp (2011). Sustained responses for pitch and vowels map to similar sites in human auditory cortex. Neuroimage 56, 1578-1587.

Epp, B., Verhey, J. L., Mauermann, M. (2010) Modeling cochlear dynamics: Interrelation between cochlea mechanics and psychoacoustics, J Acoust Soc Am, 128, 1870-1883.

Journal articles from previous group members

Bharadwaj H, Masud S, Mehraei G, Verhulst S, Shinn-Cunningham B (2015). Individual differences reveal correlates of hidden hearing deficits. Journal of Neuroscience 35 (5): 2161-2172.

Dietz M., Klein-Hennig M., Hohmann V. (2015). The influence of pause, attack, and decay duration of the ongoing envelope on sound lateralization. J. Acoust. Soc. Am. 137, EL137-EL143.

Hansen R., Santurette S., Verhulst S. (2014). Effects of spontaneous otoacoustic emissions on pure-tone frequency difference limens. Journal of the Acoustical Society of America, 136, 3147- 58.

Altoè A., Pulkki V., Verhulst S. (2014). Transmission-line Cochlear Models: Improved Accuracy and Efficiency. Journal of the Acoustical Society of America – 136 EL302.

Dietz, M., T. Marquardt, A. Stange, M. Pecka, B. Grothe, D. McAlpine (2014). Emphasis of spatial cues in the temporal fine structure during the rising segments of amplitude-modulated sounds II: Single Neuron Recordings. J. Neurophysiol. 111, 1973-1985.

Bharadwaj, H.M., Verhulst S., Shaheen L., M.C. Liberman, Shinn-Cunningham, B.G. (2014). Cochlear Neuropathy and the coding of supra-threshold sound. Front. Sys. Neurosci. 8, 26 (18 pages)

Bianchi, F., Verhulst, S., Dau,T. (2013). Experimental evidence for a cochlear source of the precedence effect. J. Assoc. Res. Otolaryngol. 14(5), 767-779.

Dietz, M., T. Marquardt, N.H. Salminen, D. McAlpine (2013). Emphasis of spatial cues in the temporal fine structure during the rising segments of amplitude-modulated sounds. Proc. Natl. Acad. Sci. 110, 15151-15156.

Dietz, M., L.R. Bernstein, C. Trahiotis, S.D. Ewert, V. Hohmann (2013). The effect of overall level on sensitivity to interaural differences of time and level at high frequencies. J. Acoust. Soc. Am. 134, 494-502.

Dietz, M., T. Wendt, S.D. Ewert, B. Laback, V. Hohmann (2013). Comparing the effect of pause duration on threshold interaural time differences between exponential and squared-sine envelopes. J. Acoust. Soc. Am. 133, 1-4.

Klein-Hennig, M., Dietz M., Klinge-Strahl, A., Klump, G.M., Hohmann, V. (2012). Effect of mistuning on the detection of a tone tasked by a harmonic tone tomplex. PLoS ONE 7(11), e48419.

Verhulst, S., T. Dau, C.A. Shera (2012). Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. J. Acoust. Soc. Am. 132(6), 3842-3848.

Dietz, M., Ewert, S.D., Hohmann, V. (2012). Lateralization based on interaural differences in the second-order amplitude modulator. J. Acoust. Soc. Am. 131, 398-408

Dietz, M., S.D. Ewert, V. Hohmann (2011). Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Commun. 53, 592-605.

Klein-Hennig, M., Dietz, M., V. Hohmann, S.D. Ewert (2011). The influence of different segments of the ongoing envelope on sensitivity to interaural time delays. J. Acoust. Soc. Am. 129, 3856-3872.

Verhulst, S., J.M. Harte, T. Dau (2011). Temporal suppression of the click-evoked emission level-curve. J. Acoust. Soc. Am. 129(3), 1452-1463. 

(Stand: 09.02.2024)  | 
Zum Seitananfang scrollen Scroll to the top of the page