Lectures

Talks

The Selberg zeta function on degenerating hyperbolic surfaces on degenerating hyperbolic surfaces

Vortragsankündigung

Im Rahmen des Oberseminars Analysis/Numerik spricht

 

Herr Dr. Rares Stan

(Mathematics Institute of the Romanian Academy/ Univ Göttingen)

über

Title: The Selberg zeta function on degenerating hyperbolic surfaces on degenerating hyperbolic surfaces

 

Abstract:

 

We investigate the spectrum of the spin Dirac operator on families of hyperbolic surfaces where a set of disjoint simple geodesics shrink to 0, under the hypothesis that the spin structure is non-trivial along each pinched geodesic. The main tool is a trace formula for the Dirac operator on finite area hyperbolic surfaces. As a corollary we find a simultaneous Weyl law for the eigenvalues of the Dirac operator which is uniform in the degenerating parameter. The main result is the convergence of the Selberg zeta function associated to the Dirac operator on such families of hyperbolic surfaces. We shall also discuss how this result can be generalized to the case of hyperbolic manifolds of dimension 3.

 

Der Vortrag findet statt am

 

Donnerstag, den 12.12.2024 um 14.15 Uhr – 15.15 Uhr im Raum W01 0-006

 

Interessierte sind herzlich eingeladen. 
 

12.12.2024 14:15 – 15:15

The Selberg zeta function on degenerating hyperbolic surfaces on degenerating hyperbolic surfaces

Vortragsankündigung

Im Rahmen des Oberseminars Analysis/Numerik spricht

 

Herr Dr. Rares Stan

(Mathematics Institute of the Romanian Academy/ Univ Göttingen)

über

Title: The Selberg zeta function on degenerating hyperbolic surfaces on degenerating hyperbolic surfaces

 

Abstract:

 

We investigate the spectrum of the spin Dirac operator on families of hyperbolic surfaces where a set of disjoint simple geodesics shrink to 0, under the hypothesis that the spin structure is non-trivial along each pinched geodesic. The main tool is a trace formula for the Dirac operator on finite area hyperbolic surfaces. As a corollary we find a simultaneous Weyl law for the eigenvalues of the Dirac operator which is uniform in the degenerating parameter. The main result is the convergence of the Selberg zeta function associated to the Dirac operator on such families of hyperbolic surfaces. We shall also discuss how this result can be generalized to the case of hyperbolic manifolds of dimension 3.

 

Der Vortrag findet statt am

 

Donnerstag, den 12.12.2024 um 14.15 Uhr – 15.15 Uhr im Raum W01 0-006

 

Interessierte sind herzlich eingeladen. 
 

12.12.2024 14:15 – 15:15

(Changed: 20 Jun 2024)  Kurz-URL:Shortlink: https://uol.de/p87192c126026en
Zum Seitananfang scrollen Scroll to the top of the page