AdamMC — A User’s Guide

A Flow-LTL Model Checker
for the Analysis of Distributed
Asynchronous Models

https:/ /uol.de/csd /adamMC/
Version 1.0 — January 28, 2020

https://uol.de/csd/adam/

Contents

Contents 1
1_About AdamMCl 3
2 Setting up AdamMC| 5
2.1 Downloadl 5)
2.2 Dependencies| 5
2.3 Installationl 6
2.4 Compiling from Sourcefo 7

[3 Usage of AdamMC| 9
4_File Formats 13
(4.1 The Input Formats| 13
M1.1 Petri Netsl 13

“.1.2 Petri Nets with Transitsl 14

4.1.3 Software Defined Networks and Concurrent Overlapping Up- |

[datesl 16
14 DIl and Flow-LTLfo 0000000000000 18
[6_Contactl 19
[A_Detailed List of Modules and Parameters| 21

Chapter 1

About AdamMC

AdamMC is a model checker providing three different kind of input domains for
asynchronous distributed systems: software-defined networks & Flow-LTL, Petri
nets with transits & Flow-LTL, and 1-bounded Petri nets & LTL. Internally it
reduces the problems to a verification problem of circuits which is checked by
ABC, a large toolbox of hardware verification algorithms.

In software-defined networks (SDNs) the data plane of a network is separated
of the control plane to allow for a simplified network management. Flow-LTL
is a linear temporal logic to separately reason with LTL about the control plane
and also with LTL about the data plane. AdamMC allows for checking SDNs with
concurrent overlapping updates, i.e., updates which can be rolled out concurrently
during the network’s execution without demanding a package to be either routed by
the initial or the final configuration but allow for a mixture. In addition to Flow-
LTL formulas standard properties like connectivity, loop freedom, drop freedom,
and packet coherence can be checked.

Internally, Petri nets with transits are used to represent SDNs with updates.
Petri nets with transits refine the flow relation of standard 1-bounded Petri nets
to allow for the modeling of the precise flow of the data. In general Petri nets with
transits can be used to distinguish the flow of tokens in a Petri net in cases where
the additional complexity introduced by Colored Petri nets is not needed. Further
application domains apart from SDNs are for example the flow of work pieces in a
smart factory or the flow of people in access control scenarios.

Internally, this problem is reduced to the checking of 1-bounded Petri nets
against LTL. Petri nets are one of the most suitable formalism to model asyn-
chronous systems with a high degree of concurrency. AdamMC takes Petri nets in
PNML or APT format.

AdamMC is a command line tool, which once started does not allow any further
interaction. It does not provide a graphical interface for the input models but

https://people.eecs.berkeley.edu/~alanmi/abc/
http://www.pnml.org/
https://github.com/CvO-Theory/apt/

4 CHAPTER 1. ABOUT ADAMMC

provide automatically created outputs using the DOT format of Graphviz. Detailed
information about the background can be found here:

Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-Riidiger
Olderog. Model checking data flows in concurrent network updates. In Automated
Technology for Verification and Analysis - 16th International Symposium, ATVA
2019, 2019a

Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-Riidiger
Olderog. Model checking data flows in concurrent network updates (full version).
arXiw preprint arXiw:1907.11061, 2019b. URL https://arxiv.org/abs/1907.
11061

http://www.graphviz.org/
https://arxiv.org/abs/1907.11061
https://arxiv.org/abs/1907.11061

Chapter 2

Setting up AdamMC

2.1 Download

The most recent version of AdamMC can be found at https://uol.de/csd /adamMC/.
At the given address additionally to the binary JAR file the corresponding source
code is provided. The license is GNU GPLv3, for details please see the COPYING

file provided in the main folder.

2.2 Dependencies

AdamMC needs Java in a version > 9 and uses the following external tools for
dedicated subprocesses:

e Mandatory:

— MCHyper
— [ABC
— Aigertools (aigtoaig and aigtodot)

e Optional:

— DOT in a version > 2.36.0. For the visualization of the input and
intermediate results.

Note that we adapted MCHyper such that formulas can be read from a file and

increased an offset such that larger formulas can be handled. Also the output is

slightly adapted. A patch to integrate the changes is provided in the tarball.
Furthermore, AdamMC uses the following libraries included in the JAR file:

5

https://uol.de/csd/adammc/
https://www.react.uni-saarland.de/tools/mchyper/
https://people.eecs.berkeley.edu/~alanmi/abc/
http://fmv.jku.at/aiger/
http://www.graphviz.org/

6 CHAPTER 2. SETTING UP ADAMMC

e APT

Apache commons-cli-1.2

Apache commons-collections4-4.0

Apache commons-io-2.4

e antlr-4.5.1

Finally, AdamMC is integrated into the ADAM framework.

2.3 Installation

For unpacking the downloaded tarball into the current directory navigate to the
file and type

$ tar —xf adam mc. tar.gz

For the external tools please consult the documented installation processes pro-
vided by the given websites. For MCHyper please firstly apply the patch
mchyper.patch located in the res folder to the downloaded sources, i.e., navi-
gate to the extracted main folder of MCHyper mchyper-0.91

$ cd mchyper—0.91
$ patch —pl < <mainfolder >/res/mchyper.patch

Add the corresponding paths to the installed binaries to the ADAM. properties file
for example like this:

aigertools=/home/user/tools/aiger/
mcHyper=/home/user/tools /mchyper —0.91/mchyper
abcBin=/home/user/tools /abc/abc

dot=dot

time=/usr /bin/time

Now AdamMC is easily started by the given bash script

’ $./adam mc ‘

or direct by calling java with

’$ java —DPROPERTY_ FILE=./ADAM. properties —jar adam_mc. jar ‘

When so far everything went fine, you should see a list of available modules. For
some example calls of AdamMC please see Sec. [3]

https://github.com/CvO-Theory/apt/
https://commons.apache.org/proper/commons-cli/
https://commons.apache.org/proper/commons-collections/
https://commons.apache.org/proper/commons-io/
https://www.antlr.org/
https://uol.de/csd/adam/

2.4. COMPILING FROM SOURCE 7

2.4 Compiling from Source

For compiling the provided sources the make script in the main folder can be used.
For also using the tests the following jars have to be put into ./test/1lib/:

e javassist-3.21.0.GA
e testng-6.9.9
e scannotation-1.0.2

You can either change the build.properties of each module (client/ui, logics,
modelchecking, petrinetWithTransits, tools) or you put the above men-
tioned libraries (APT, Apache commons-cli-1.2; Apache commons-collections4-4.0,
Apache commons-i0-2.4, antlr-4.5.1) into the ./1ib/ folder. Either you use the
naming and folder structure ant will tell you while compiling or you adapt the
libs.res and testlibs.res for each module. With

$ make

a new folder ./deploy is created containing the binary, a bash script for calling
AdamMC, and the ADAM.properties copied from the main source folder (you have
to adapt the path as mentioned in Section . For deleting all created files you
can use

‘$ make clean

or to also delete the created files from the test

‘ $ make clean—all

can be used.

The tests for each module can be executed with the help of ant. For each module
providing tests you can choose to run all test, a test class, or a test-method. For
example for the model checking module you can use

$ ant test

to run all tests provided (i.e., all classes in test annotated with @Test). With

$ ant test—class —Dclass.name=uniolunisaar.adam.modelchecker.libraries.
TestingM CHyper

the complete class TestingM CHyper is run. However,

$ ant test—method —Dclass.name—uniolunisaar.adam.modelchecker. circuits.
TestingModelcheckingFlowLTLParallel —Dmethod.name=updatingNetworkExample

tests the specific method updatingNetworkEzample of the class TestingMCHyper.

https://github.com/jboss-javassist/javassist
https://github.com/cbeust/testng
http://scannotation.sourceforge.net/
https://github.com/CvO-Theory/apt/
https://commons.apache.org/proper/commons-cli/
https://commons.apache.org/proper/commons-collections/
https://commons.apache.org/proper/commons-io/
https://www.antlr.org/

Chapter 3

Usage of AdamMC

The usage of AdamMC should be self-explanatory by the printable helping dialogues.
Calling AdamMC with

$./adam mc

lists the available modules like

Usage: sh adam.sh <module> or java —jar adam.jar <module>
Available modules:

pnwt2dot Converts a Petri net with transits to a
dot file.

nw onverts a Petri net wi ransits to a

pnwt2pdf C t Petri net with t its t

pdf file by using Graphviz (dot has to be
executable).

sdn2dot Converts a Software Defined Networks
topology (with an concurrent update) to a
Petri net with transits and saves this to
a dot file.

sdn2pdf Converts a Software Defined Networks
topology (with an concurrent update) to a
Petri net with transits and saves this to
a pdf file by using Graphviz (dot has to
be executable).

mc_pn Modelchecking 1-bounded Petri nets with
inhibitor arcs against LTL.

mc_ pnwt Modelchecking Petri nets with transits
against FlowLTL or LTL.

mc_sdn Modelchecking Software Defined Networks
with concurrent updates.

gen_mc_rm_node_update Generates a network which has an update

function to detour exactly one node (the
node is chosen randomly). Saves the
resulting net in APT and, if dot is
executable , as pdf.

gen mc_redundant flow network Generates a network which has two ways to
the output. A update function can block
one of the ways. This can be done in
correct or incorrect ways. Saves the

10 CHAPTER 3. USAGE OF ADAMMC

resulting net in APT and, if dot is
executable , as pdf.

gen topologie zoo Generates a network from the topology
given by the input file. Saves the
resulting net in APT and, if dot is
executable , as pdf.

Calling a module without any parameter results in a helping dialog printing the
available and needed parameters. For a complete list see App. [A]

There are different kind of modules. The module *2dot and *2pdf are used the
visualize Petri net with transits or SDNs with the help of Graphviz. The module
mc_pnwt allows for model checking Petri net with transits against Flow-LTL and
module mc_pn for standard 1-bounded Petri nets against LTL. The module mc_sdn
is used for the software-defined network scenarios. The remaining modules are used
to generate example Petri nets with transits.

You can find several examples for each of the three different application areas
of AdamMC in the examples folder of the tarball. In the following we list some
example calls with the resulting output:

$./adam mc mc_ pnwt —i ./examples/pnwt—flowltl/detour5.apt —f "A_F_pOut"
UNSAT

$./adam mc mc_ pnwt —i ./examples/pnwt—flowltl/detour5.apt —f " (((F_G_(p2
JAND_ (pup AND_pIn)) IMP_G_F_tup) _AND_ ((F_G_ (pOut_AND_p3) _.IMP_G_F_t4)_

AND_ ((F_G_ (p3_.AND_p2) . IMP_G_F_t3) _AND_ ((F_G_ (p1_AND_pIn) _IMP_G_F_t0)_

AND_ (F_G. (p1_AND_p2) _IMP_G_F_t2))))) IMP_A_F_pOut)" - SAT

$./adam mc mc_pnwt —i ./examples/pnwt—flowltl/detour5.apt —f " (((F_G_(p2
JAND_ (pup _AND_pIn)) . IMP_G_F_tup) _AND_ ((F_G_ (pOut _AND_p3) .IMP_G_F_t4)_
AND_ ((F_G_ (p3_AND_p2) .IMP_G_F_t3) _AND_ ((F_G_ (p1_AND_pIn) _IMP_G_F_t0)_
AND_ (F_G_ (p1_AND_p2) .IMP_G_F_t2))))) _.IMP_A_F_pOut)" —app seqln SAT

with fairness assumptions in APT file

$./adam mc mc pnwt —i ./examples/pnwt—flowltl /twoWays33C.apt —f "A_F_out
" —app parln —v UNSAT

$./adam mc mc_ pnwt —i ./examples/pnwt—flowltl/twoWays33C.apt —f "(NEG_G_
F_ (tupD_OR_tupU)_IMP_A_F_out)" —app parln —cr_abc SAT

$./adam mc mc pnwt —i ./examples/pnwt—flowltl /twoWays33C.apt —f "(G_F_
createFlows _IMP_ (NEG_G_F_ (tupD_OR_tupU) _IMP_A_F_out))" —app parln —max

NONE +# SAT

$./adam mc mc_pnwt —i ./examples/pnwt—flowltl/factory.apt —f " ((m_ w_AND_

m_ i) IMP_A_((G.NEG_F_db_w_AND_F_sdb 1)_AND_F_vA w))" —app parln —stuck

GFo /+ SAT
$./adam mc mc_pnwt —i ./examples/pnwt—flowltl/factory.apt —f " (F.m w_AND
.db_w)" —app parln —max IntC —veri "IC3|BMC2|BMC3" —stats "" / UNSAT

$./adam mc mc_pnwt —i ./examples/pnwt—flowltl/factory.apt —f "A_((F.m w_
AND_F_db_w)_AND_F_vA w)" —app parln —max IntC / SAT

Listing 3.1: Example calls for checking Petri nets with transits against Flow-LTL.

$./adam mc mc pn —i ./examples/pn—1tl/AutoFlight—PT—04a/model.pnml —pnml
—f "NEG_ (p73_AND_NEG_p74)" —psst SAT

$./adam mc mc _pn —i ./examples/pn—1tl/AutoFlight -PT—24a/model.pnml —pnml
—f "(NEG_p453_OR_p129)" —v SAT

$./adam mc mc_pn —i ./examples/pn—1tl/BusinessProcesses—PT—01/model.pnml
—pnml —f "FALSE" —veri "IC3|BMC2" UNSAT

11

$./adam mc mc pn —i ./examples/pn—1tl/BusinessProcesses —PT—01/model.pnml
—pnml —f "G_X_F_G_pl71" —veri "BMC3" UNSAT
$./adam mc mc_pn —i ./examples/pn—1t1/DES-PT—02a/model.pnml —pnml —f "F_
F_(FALSE_U_NEG. (p35_AND_NEG_p93))" —veri "IC3" 7 SAT
$./adam mc mc_pn —i ./examples/pn—1t1/DES-PT—02a/model.pnml —pnml —f "(
NEG. (p66 ,AND_NEG_p51) _U._ (NEG. (p94 _AND_NEG_p73) _U_NEG._ (p47 _AND_NEG_p7))
)" —max IntF —v / SAT

$./adam mc mc pn —i ./examples/pn—1t1/Dekker—PT—010/model.pnml —pnml —f
"F_NEG_ (p34_AND_NEG_p0_8)" —stats "" SAT

$./adam mc mc pn —i ./examples/pn—1t1/Dekker—PT—010/model.pnml —pnml —f
"G_G_G_F_NEG_ (p0_9_AND_NEG_flag 0 4)" —veri "IC3|BMC2" / UNSAT

$./adam mc mc_pn —i ./examples/pn—1tl/Raft—PT—05/model.pnml —pnml —f "X_
G_X_F_NEG_ (p62_AND_NEG_p120)" —veri "IC3|BMC3" UNSAT

$./adam mc mc_pn —i ./examples/pn—1tl/Raft—PT—05/model.pnml —pnml —f "G_
p43" —veri "BMC2" —max NONE —psst ~* UNSAT

Listing 3.2: Example calls for checking Petri nets against LTL.

$./adam mc mc sdn —i ./examples/sdn/pipelineTopology.txt —u "[[upd(sl.
fwd (s3/s2))_>>_upd(s2.fwd(—/s4))]|_||cupd(s3.fwd(s5))]" —f "A_F_(s4_OR_
s5)" 4 SAT

$./adam mc mc_sdn —i ./examples/sdn/pipelineTopology.txt —u "[[upd(sl.
fwd (s3/s2))_>>_upd(s2.fwd(—/s4))]|_ || _upd(s3.fwd(s5))]" —c loopFreedom
-V SAT

$./adam mc mc_sdn —i ./examples/sdn/pipelineTopology.txt —u "[upd(sl.fwd
(s4/s2))>>_upd(s2.fwd(—/s4))|" —c connectivity # SAT

$./adam mc mc_sdn —i ./examples/sdn/pipelineTopology.txt —u "[upd(sl.fwd
(s4/s2))>>_upd(s2.fwd(—/s4))|" —f "A_F_s2" —t # UNSAT

$./adam mc mc_sdn —i ./examples/sdn/pipelineTopology.txt —u "[upd(s2.fwd
(s3/s4))_>>_upd(s3.fwd(s5))]" —c dropFreedom // SAT

$./adam mc mc_sdn —i ./examples/sdn/campus.txt —u "[[upd(S.fwd(C/A))_>>_
upd (L. fwd (P/C))|_ || cupd (C.fwd (L/P))|" —c dropFreedom + SAT

$./adam mc mc_sdn —i ./examples/sdn/campus.txt —u " [[upd(S.fwd(C/A))_>>_
upd (L. fwd (P/C))|_ || cupd (C.fwd (L/P))|" —c connectivity # SAT

$./adam mc mc_sdn —i ./examples/sdn/campus.txt —u " [[upd(S.fwd(C/A))_>>_
upd (L. fwd (P/C))|_ || cupd (C.fwd (L/P))|" —c loopFreedom + SAT

Listing 3.3: Example calls for checking SDNs with updates.

These calls are provided as bash scripts pnwt-FlowLTLExamples, pn-LTLExamples,
sdnExamples in the main folder.

To compare your own settings for the optimizations of AdamMC on your bench-
mark families, we provide example scripts in the folder compare.

Chapter 4

File Formats

4.1 The Input Formats

4.1.1 Petri Nets

Petri nets can be given to AdamMC in the Petri Net Markup Language (PNML)
and in the [APT format. Since the format of Petri nets with transits in Sec. 4.1.2]
extends the APT format, we shortly introduce this format here.

An input file in APT format contains sections for places (.places), transitions
(.transitions) and the connections between them (.flows). You have to name the
Petri net (.name "my name") and set its type (.type LPN). If you like to, you
can give a description of the net with .description "lorem”. This is the only string
which allows line breaks. In general white spaces are ignored and comments are
allowed in C syntax. Thus, either whole lines can be commented by //, or an area
is commented starting with /* and ending with */. The section .initial marking
contains the initial marking of the Petri net. A simplified grammar for Petri nets
in APT format is given by:

pn = (description | flows | initialMarking |
name | netOptions | places | transitions | type)=
name = ’.name’ STR
type — ".type’ (LPN’ | 'PN’)
description = ’.description’ (STR | STR MULTI)
netOptions = ’.options’ (option (’,’ option)x*)?
places ".places’ placex

place (ID | NAT) (opts)?

. transitions’ transition*

(ID | NAT) (opts)?

transitions
transition

opts
option

|’ option (’,’ option)x |’
ID '=> STR | ID =’ NAT | ID ’=’ NEGNAT |

13

http://www.pnml.org/
https://github.com/CvO-Theory/apt

14 CHAPTER 4. FILE FORMATS

ID =’ DOUBLE | ID
flows = ".flows’ flowx*
flow = (ID | NAT) ’:’ set =’ set (opts)?
set — {7 (| obj (", obj)x) '}’
obj = NAT ’x’ (ID | NAT) | (ID | NAT)
initialMarking ".initial marking’ (set)?
NAT = (’07..79")+
NEGNAT = (707079 7)+
DOUBLE = 7="7 (707..797)+ 7.7 (07 ..797)+
ID :(7a7"7z7|7A7..7Z7‘777) (7a‘"'7z7|7A7.'7Z7|7O7..797|777)*
COMENT = (7//> “(w [\r) [2/ (0)#? x/0)
WS — b b 7\\\n7 ‘ 7\\1, b) ‘ 7\\t 7)
STR — ono ~(>H7 | 7\\n7 ‘ 7\\1,7 | “\t")* an o
STR,_MULTI — no ~(7N7 | M\t’)* I

Listing 4.1: Simplified grammar of the APT format for labeled Petri nets.

4.1.2 Petri Nets with Transits

The APT format allows to equip places or transitions with additional information.
We exploit this generality to obtain a input format for Petri nets with transits. We
add for every transition with transit the definition of the transits to the keyword
tfli. This definition contains a comma separated list of transits. Each transit states
the preset place where the flow comes from, or the special character > if a flow
is newly started and a set of postset places where the flow is transited to. We
additionally allow to mark a transition as weak or as strong fair by the keyword
weakFair or strongFair, respectively. As an example see the following Petri net
with transits:

.name "twoWays33C"
.type LPN

.places

in

mD

mU

mutex

out [reach="true"|

4.1. THE INPUT FORMATS

.transitions

createFlows [tfl="in — {in},> —> {in}"]

mtD[t f1="pupD —> {p3}"]

mtU|[tf1="pupU —> {p0}"|

resD [strongFair="true", tfl="in —> {in},pupD —> {in}"]
resU[strongFair="true", tfl="in —> {in},pupU —> {in}"]
tDO[strongFair="true", tfl1="p3 — {p3},in —> {p3}"]
tD1[strongFair="true", tfl="p3 — {pd},pd —> {p4}"]
tD2[strongFair="true", tf1="p4 — {p5},p5 —> {p5}"]
tDout [strongFair="true", tfl="p5 — {out},out — {out}"]
tUO0[strongFair="true", tfl1="p0 — {p0},in —> {p0}"]
tUl[strongFair="true", tfl="p0 — {pl},pl — {pl}"]
tU2[strongFair="true", tfl="pl — {p2},p2 —> {p2}"]
tUout [strongFair="true", tfl="p2 — {out},out —> {out}"]
tupD [tf1="p3 —> {pupD}"]

tupU [tf1="p0 —> {pupU}"]

flows

createFlows: {1xin} —> {1xin}

mtD: {lxpupD, 1smD} —> {lsxmutex, 1xp3}
mtU: {1smU, 1spupU} —> {1xp0, lsxmutex}
resD: {lxpupD, 1lxin} —> {lspupD, 1lxin}
resU: {1xpupU, 1xin} —> {lxpupU, I1xin}
tDO: {lxin, 1xp3} —> {1lxin, 1%xp3}

tD1: {1xp3, 1xpd} —> {1xp3, 1xp4}

tD2: {lxp4, 1xpb} —> {1l*xpd, 1*p5}
tDout: {lxout, 1xp5} —> {lxout, 1xp5}
tUO0: {1xp0, 1xin} —> {1xin, 1xp0}

tULl: {1xpl, 1xp0} —> {1xp0, 1xpl}

tU2: {1xp2, 1xpl} —> {1*p2, 1xpl}
tUout: {lxout, 1xp2} —> {lxout, 1xp2}
tupD: {lxmutex, 1xp3} —> {lxpupD, 1lxmD}
tupU: {1xp0, lsxmutex} —> {1lxpupU, 1xmU}

Jnitial marking {1l*xin, lxmutex, lxout, 1xp0, 1xpl, 1xp2, 1xp3, 1xpd, 1x
p5}

15

Listing 4.2: An example Petri net with transits in AdamMC’s format.

The grammar of the transit relation is given by the following listing:

tfl = (flow (7,7 flow)x*) EOF

flow = init '—>’ set

init = (obj | GR)

set = {7 (obj (7,7 obj)x) "}’

obj = ID | INT

INT =0".."9+

ID — (7a7 .7Z7|7A’ ’Z |747) (7a7..7z7‘7A7'.’Z’|’0’ 797| 47)*
GR = >’

COMMENT = (’//7 ~(’\n’ |\t)* | /x> (.)*? ’x/7)

WS = (77 \n7 | Ar7 | At)

Listing 4.3: Grammar of the transit relation of Petri nets with transits.

16 CHAPTER 4. FILE FORMATS

(a) The connections of the example. (b) The forwardings of the example.

Figure 4.1: Example network topology and initial configuration of a software de-
fined network. The corresponding input file is given in Listing [4.4

4.1.3 Software Defined Networks and Concurrent
Overlapping Updates

For SDNs AdamMC provides an input format to describe a topology with an initial
configuration. As an example see the input file in Listing [4.4]

.name "campus"
.switches

HYQR®m

onnections

A

TQQFE®n®

C
C
P
L
L

.ingress={S}

.egress={P}

initial config
forwarding
S.ftwd (A)
A fwd (C)
L.fwd (C)
C.ftwd (P)

Listing 4.4: Example for a topology and inital configuration of an SDN.

We define a network with five switches S, A, C, P, and L, with an ingress node S
and an egress node P. The connections of the topology and the forwardings of the
initial configuration can be seen in Fig. The following grammar defines the
input format.

4.1. THE INPUT FORMATS 17
ts = name description? genOptions? switches cons
ingress egress forwarding EOF

name = ’.name’ STR

description = ’.description’ (STR | STR_MULTI)
genOptions = ’.options’ (option (’,’ option)x*)?
switches = ’.switches’ switchTx

switchT = sw (opts)?

opts = 7|’ option (’,’ option)x |’

option = ID ’=’ STR

cons = ’.connections’ conx

con = sw sw (opts)?

SW = ID | NAT

ingress = ’.ingress=’ set

egress = ’.egress=" set

set = {7 (sw (7,7 sw)x) '}’

forwarding = ’.forwarding’ forwardsx

forward =sw '.fwd(’ sw ")’

NAT =0"..79+

ID :(7a7 7Z7| A 7Z7| _7) (7a7 .7Z7|7A7..7Z | 07 79 |7_7)*
STR — onoy = omny | \\\Il | \r7 | 7\1}’)* an
STRiMULrI‘I — Mmoo T omny \t’)* o

COMMENT = (/)7 T0C\n o\)= | 0/« (L)xT %))
WS — ()) | 7\\117 | 7\\\1.7 | 7\\t 7)

Listing 4.5: Grammar of the topology and the initial configuration of SDNs.

Furthermore, AdamMC provides a parser for the concurrent overlapping updates.
For examples please see the updates in the example calls of Listing [3.3]

result
update

swUpdate
seqUpdate
parUpdate

sidi

idi
PAR
SEQ

INT
ID

COMMENT
WS

= update EOF

= swUpdate | seqUpdate | parUpdate

= Tupd(’ idi ’.fwd(’ sidi (/7 idi)? 7))’
= 7|’ update (SEQ update)x |’

= 7|’ update (PAR update)s* ']’

—idi | -

— ID | INT

—

= >>7

— 0.9+

— (7a7 .’Z’|’A7 7Z7|747) (7a’7..7Z7|7A7‘V’Z7|707"797|747)*
= /) SO) | e (s /)
:(b b | 7\\n7 | ’\\\ b | 7\\t7)

Listing 4.6: Grammar of the concurrent overlapping updates of SDNs.

18

CHAPTER 4. FILE FORMATS

4.1.4 LTL and Flow-LTL

AdamMC also provides a parser for the temporal logics LTL and Flow-LTL. For
examples please see the example calls of AdamMC of Listing [3.2] and Listing [3.1}
The syntax is given by the following grammar.

flowLTL

runFormula
flowFormula

runBinary

flowFormula

Itl
I1t1Unary
It1Binary

atom

// LTL
unaryOp
binaryOp
ItlFinally
globally
next

neg

and

or

imp

bimp
until
weak
release

// FlowFormula
forallFlows

// RunFormula
rbin

rand

ror

rimp

tt
ff

INT
1D

) *

COMMENT
WS

runFormula EOF
bl (bl

(7 runFormula rbin runFormula)’
forallFlows 1tl

It1 | 1t] rimp runFormula ’)’ | runBinary |

1t1Unary | ff
unaryOp 1tl

(7 1tl binaryOp

It1Binary |

7)’

tt | | atom

1tl

ID | INT

(It1Finally |
(and | or
’F’

7G7

’X’

7Nm7 | 7!7
’AND7
7OR7
IMP® |
BIMP® |
’U’

7W7

’R’

neg)
| weak |

next |
until

globally |

| imp | bimp | release)

))
—>
9)
<—

7A7

rand | ror
7OR7
7IMP bl | 77>)
"TRUE’
"FALSE’

(/)
())

(] () e
| ’\\Il, ‘ 7\\\1.7 | 7\\t7)

\

Listing 4.7: Grammar of the temporal logics Flow-LTL

Chapter 5]

Contact

We appreciate your feedback on AdamMC. Please send any bugs, comments, or ques-
tions to:

manuel.gieseking(at)informatik.uni-oldenburg.de

19

Appendix A

Detailed List of Modules and
Parameters

In the following we list the help dialogues of each module. That is, how to call the
module, the possible and needed parameters including their explanations.

Module: pnwt2dot

Converts a Petri net with transits to a dot file. The help dialogue:

usage: sh adam.sh pnwt2dot [—-d] —i <file> [—1 <file >]| [—o <file >]| [—psst]
[—v]

Converts a Petri net with transits to a dot file.

—d,——debug Get some debug infos.

—i,——input <file > The path to the input file.

—1,——logger <file > The path to an optional logger file. If it’s not
set , the information will be send to the terminal.

—o,——output <file > The path to the output folder. If it’s not given the
path from the input file is used.

—psst,——silent Makes the tool voiceless.

—v,——verbose Makes the tool chatty.

Module: pnwt2pdf

Converts a Petri net with transits to a pdf file by using Graphviz (dot has to be
executable). The help dialogue:

usage: sh adam.sh pnwt2pdf [—-d] —i <file> [-1 <file >]| [—o <file >]| [—psst]
[—v]

Converts a Petri net with transits to a pdf file by using Graphviz (dot

has to be executable).

—d,——debug Get some debug infos.

—i,——input <file > The path to the input file.

—1,——logger <file > The path to an optional logger file. If it’s not

21

22 APPENDIX A. DETAILED LIST OF MODULES AND PARAMETERS

set , the information will be send to the terminal.
—o,——output <file > The path to the output folder. If it’s not given the
path from the input file is wused.
—psst,——silent Makes the tool voiceless.
—v,——verbose Makes the tool chatty.

Module: sdn2dot

Converts a Software Defined Networks topology (with an concurrent update) to a
Petri net with transits and saves this to a dot file. The help dialogue:

usage: sh adam.sh sdn2dot [—-d] —i <file> [—1] <file >] [—o <file >]| [—optCon]
[-psst] [—u <cup>]| [—V]

Converts a Software Defined Networks topology (with an concurrent update)

to a Petri net with transits and saves this to a dot file.

—d,——debug Get some debug infos.

—i,——input <file > The path to the input file.

—1,——logger <file > The path to an optional logger file. If it’s
not set, the information will be send to the
terminal .

—o,——output <file > The path to the output folder. If it’s not
given the path from the input file is used.

—optCon,——opt—connections If set only the necessary connections of the

topology are added. This means only those
used in the initial configuration and those
of the update.

—psst,——silent Makes the tool voiceless.
—u,——update <cup> A concurrent update.
—v,——verbose Makes the tool chatty.

Module: sdn2pdf

Converts a Software Defined Networks topology (with an concurrent update) to a
Petri net with transits and saves this to a pdf file by using Graphviz (dot has to
be executable). The help dialogue:

usage: sh adam.sh sdn2pdf [—-d] —i <file> [-1 <file >] [—o <file >] [—optCon]
[—psst] [—u <cup>]| [—V]

Converts a Software Defined Networks topology (with an concurrent update)

to a Petri net with transits and saves this to a pdf file by using

Graphviz (dot has to be executable).

—d,——debug Get some debug infos.

—i,——input <file > The path to the input file.

—1,——logger <file> The path to an optional logger file. If it’s
not set, the information will be send to the
terminal .

—o,——output <file > The path to the output folder. If it’s not
given the path from the input file is used.

—optCon,——opt—connections If set only the necessary connections of the

topology are added. This means only those
used in the initial configuration and those
of the update.

—psst,——silent Makes the tool voiceless.

23

—u,——update <cup> A concurrent update.
—v,——verbose Makes the tool chatty.

Module: mc_ pn

Modelchecking 1-bounded Petri nets with inhibitor arcs against LTL. The help
dialogue:

usage: sh adam.sh mc pn [—circ] [—cp]| [—cr_abc] [—cr com <arg>| [—cr sys
<arg>] [—d] [—enc <arg>| —f <LTL> —i <file> [—1 <file >] [—max
<arg>]| [-noF]| [—o <file >] [-p <abcParameters>] [—pnml] [—pre
<process >| [—psst] [—stats] [—v] [—veri <verifier >|

Modelchecking 1—bounded Petri nets with inhibitor arcs against LTL.

—circ,——circuit Saves the created circuit of the net

as PDF. Attention: this could be
really huge and dot could need lots
of time!

—cp,——check—precon Checks preconditions like l1—bounded.
Takes some time, but should be used
if you are not sure that your net
fulfills all necessary
preconditions!

—cr_abc,——red_abc Uses abc dfraig to reduce the
circuit .
—cr_com,——red _gates com <arg> Reduces the number of gates of the

whole cirucit. That means it reduces
the output of McHyper. Possible
values: RX-G | RX-G-S | DS-G |
DS-G-S | DS-G-S—EXTRA | NONE.
Standard: NONE.

—cr_sys,——red _gates sys <arg> Reduces the number of gates of the
system’s circuit. Possible values: G
| GEQCOM | G-I | G-I-8HQCOM |
G-1-EXTRA | G-I-EXTRA-EQCOM | NONE.
Standard: NONE.

—d,——debug Get some debug infos.

—enc,——encoding <arg> Encoding of the transitions in the
circuit. Possible values: logEnc |
expEnc. Standard: logEnc.

—f,——formula <LTL> The formula which should be checked.
—i,——input <file > The path to the input file.
—1,——logger <file> The path to an optional logger file.

If it ’s not set, the information
will be send to the terminal.

—max,——maximality <arg> States which kind of maximality
should be used. Possible values:
IntC (interleaving calculated within
the circuit) | IntF (interleaving
added to the formula) | ConF
(concurrent added to the formula) |
NONE. Standard: IntC.

—noF,——noFile Does not write the formula to a file
for giving it to MCHyper. This
causes problems for huge formulas.

—o,——output <file > The path to the output folder. If
it ’s not given the path from the

24 APPENDIX A. DETAILED LIST OF MODULES AND PARAMETERS

input file is wused.

—p,——abcParameters <abcParameters> Parameters for the verifier /
falsifier for abc. Standard: no
parameters.

—pnml Allows to read the Petri net from

the PNML format rather than the
standard format.

—pre,——preProc <process> Allows to excute any pre—process of
abc before the actual veri— or
falsifier is started.

—psst,——silent Makes the tool voiceless.
—stats,——statistics Calculates and prints some
statistics for the call.
—v,——verbose Makes the tool chatty.
—veri,——verifier <verifier > The set of ver— and falsifieres

which should be executed in
parallel .Note that even parallel
execution has some overhead. Input
format: v_1 | ... | v_n with v_i
from {IC3, INT, BMC, BMC2, BMC3}.
Standard: IC3

Module: mc_ pnwt

Modelchecking Petri nets with transits against FlowLTL or LTL. The help dialogue:

usage: sh adam.sh mc pnwt [—app <arg>| [—circ| [—-cp] [—cr abc| [—cr com
<arg>| [—cr_sys <arg>| [-d] [—enc <arg>] [-f <LTL | Flow-LTL
formula>] —i <file> [—1 <file >|] [-max <arg>] [—noF] [—o <file >] [-p
<abcParameters >| [—pre <process >| [—psst] [—st <arg>]| [—stats] [—t]
[-v] [—veri <verifier >|

Modelchecking Petri nets with transits against FlowLTL or LTL.

—app,——approach <arg> Chosing the sequential or

parallel approach (with or
without inhibitor arcs). Possible

values: seq | seqln | par |
parln. Standard: parln.
—circ,——circuit Saves the created circuit of the

net as PDF. Attention: this could
be really huge and dot could need
lots of time!

—cp,——check—precon Checks preconditions like
1—bounded. Takes some time, but
should be used if you are not
sure that your net fulfills all
necessary preconditions!

—cr_abc,——red abc Uses abc dfraig to reduce the
circuit .
—cr_com,——red gates com <arg> Reduces the number of gates of

the whole cirucit. That means it
reduces the output of McHyper.
Possible values: RX-G | RX-G-S |
DS-G | DS-G-S | DS-G-S-EXTRA |
NONE. Standard: NONE.
—cr_sys,——red_ gates sys <arg> Reduces the number of gates of
the system’s circuit. Possible

—d,——debug
—enc,——encoding <arg>

—f,——formula <LTL | Flow—LTL formula>

—i,——input <file >
—1,——logger <file>

—max,——maximality <arg>

—noF,——noFile

—o,——output <file >

—p,——abcParameters <abcParameters>
—pre,——preProc <process>
—psst,——silent

—st,——stuck <arg>

—stats,——statistics

—t,——trans

—v,——verbose
—veri,——verifier <verifier >

25

values: G | GEQCOM | G-1 |
G-1-BQOOM | G-I-EXTRA |
G-1-EXTRAFQCOM | NONE. Standard:
NONE.

Get some debug infos.

Encoding of the transitions in
the circuit. Possible values:
logEnc | expEnc. Standard:
logEnc.

The formula, either Flow—LTL or
LTL, which should be checked.
The path to the input file.

The path to an optional logger
file. If it’s not set, the
information will be send to the
terminal .

States which kind of maximality
should be used. Possible values:
IntC (interleaving calculated

within the circuit) | IntF
(interleaving added to the
formula) | ConF (concurrent

added to the formula) | NONE.
Standard: IntC.

Does not write the formula to a
file for giving it to MCHyper.
This causes problems for huge
formulas.

The path to the output folder. If
it ’s not given the path from the
input file 1is wused.

Parameters for the verifier /
falsifier for abc. Standard: no
parameters.

Allows to excute any pre—process
of abc before the actual veri— or
falsifier is started.

Makes the tool voiceless.
Different formulas for the
sequential approach to prevent
runs from stucking in a subnet.
Possible values: GFo | GFANDNpi |
ANDGFNpi | GFoANDNpi. Standard:
GFANDNpi.

Calculates and prints some
statistics for the call.

Saves the transformed net in APT
format and, in the case that dot
is executable, as PDF.

Makes the tool chatty.

The set of ver— and falsifieres
which should be executed in
parallel .Note that even parallel
execution has some overhead.
Input format: v_1 | ... | v.n
with v_i from {IC3, INT, BMC,
BMC2, BMC3}. Standard: IC3

26 APPENDIX A. DETAILED LIST OF MODULES AND PARAMETERS

Module: mc_sdn

Modelchecking Software Defined Networks with concurrent updates. The help
dialogue:

usage: sh adam.sh mc _sdn [—app <arg>] —c <property> | —f <LTL | Flow—LTL
formula> [—circ] [—cr_abc] [—cr_com <arg>| [—cr sys <arg>] [—d]
[-enc <arg>] —i <file> [-1 <file >] [-max <arg>]| [—noF]| [—o <file >|
[-p <abcParameters>] [—pre <process>| [—psst]| [—-st <arg>] [—stats]
[-t] —u <update> [—v]| [—veri <verifier >|

Modelchecking Software Defined Networks with concurrent updates.

—app,——approach <arg> Chosing the sequential or

parallel approach (with or
without inhibitor arcs). Possible
values: seq | seqln | par |
parln. Standard: parln.

—c,——check <property> The standard property to check.
Possible values: connectivity |
loopFreedom | weakLoopFreedom |
dropFreedom | packetCoherence

—circ,——circuit Saves the created circuit of the
net as PDF. Attention: this could
be really huge and dot could need
lots of time!

—cr_abc,——red _abc Uses abc dfraig to reduce the
circuit .
—cr_com,——red _gates com <arg> Reduces the number of gates of

the whole cirucit. That means it
reduces the output of McHyper.
Possible values: RX-G | RX-G-S |
DS-G | DS-G-S | DS-G-S—-EXTRA |
NONE. Standard: NONE.
—cr_sys,——red _gates sys <arg> Reduces the number of gates of
the system’s circuit. Possible
values: G | GEQOOM | G-1 |
G-I-FQOOM | G-1-EXTRA |
G-I-EXTRA-EQCOM | NONE. Standard:

NONE.
—d,——debug Get some debug infos.
—enc,——encoding <arg> Encoding of the transitions in

the circuit. Possible values:
logEnc | expEnc. Standard:
logEnc.

—f,——formula <LTL | Flow-LTL formula> The formula, either Flow—LTL or
LTL, which should be checked.

—i,——input <file> The path to the input topology
file .
—1,——logger <file> The path to an optional logger

file. If it’s not set, the
information will be send to the
terminal.

—max,——maximality <arg> States which kind of maximality
should be used. Possible values:
IntC (interleaving calculated
within the circuit) | IntF
(interleaving added to the
formula) | ConF (concurrent
added to the formula) | NONE.

27

Standard: IntC.

—noF,——noFile Does not write the formula to a
file for giving it to MCHyper.
This causes problems for huge
formulas.

—o,——output <file> The path to the output folder. If
it ’s not given the path from the
input file 1is used.

—p,——abcParameters <abcParameters> Parameters for the verifier /
falsifier for abc. Standard: no
parameters.

—pre,——preProc <process> Allows to excute any pre—process

of abc before the actual veri— or
falsifier is started.
—psst,——silent Makes the tool voiceless.
—st,——stuck <arg> Different formulas for the
sequential approach to prevent
runs from stucking in a subnet.
Possible values: GFo | GFANDNpi |
ANDGFNpi | GFoANDNpi. Standard:

GFANDNpi.
—stats,——statistics Calculates and prints some
statistics for the call.
—t,——trans Saves the transformed net in APT

format and, in the case that dot
is executable, as PDF.

—u,——update <update> The update of the topoloy which
should be checked.

—v,——verbose Makes the tool chatty.

—veri,——verifier <verifier > The set of ver— and falsifieres

which should be executed in
parallel .Note that even parallel
execution has some overhead.
Input format: v_.1 | ... | v.n
with v_i from {IC3, INT, BMC,
BMC2, BMC3}. Standard: IC3

Module: gen mc rm_ node update

Generates a network which has an update function to detour exactly one node (the
node is chosen randomly). Saves the resulting net in APT and, if dot is executable,
as pdf. The help dialogue:

usage: sh adam.sh gen mc rm node update [—con]| [-d] [-1 <file >] —nbl
<numberOf nodes> [—npdf] —o <file> [—psst]| [—V]

Generates a network which has an update function to detour exactly one

node (the node is chosen randomly). Saves the resulting net in APT and, if

dot is executable, as pdf.

—con,——connectivity Adds the formula checking connectivity
to the net inscription.

—d,——debug Get some debug infos.

—1,——logger <file > The path to an optional logger file.

If it’s not set, the information will
be send to the terminal.
—nbl,——nb nodes <numberOf nodes> The desired number of node (>= 3).
—npdf,——noPDF Does not create a pdf of the generated

28 APPENDIX A. DETAILED LIST OF MODULES AND PARAMETERS

net .
—o,——output <file > The output path where the generated
Petri net with flows should be saved.
—psst,——silent Makes the tool voiceless.
—v,——verbose Makes the tool chatty.

Module: gen mc redundant flow network

Generates a network which has two ways to the output. A update function can
block one of the ways. This can be done in correct or incorrect ways. Saves the
resulting net in APT and, if dot is executable, as pdf. The help dialogue:

usage: sh adam.sh gen mc redundant flow network [—con]| [—-d]| [-1] <file >]
—nbl <numberOf nodesU> —nb2 <numberOf nodesD> [—npdf]| —nv <version>
—o <file> [—psst] [—V]

Generates a network which has two ways to the output. A update function
can block one of the ways. This can be done in correct or incorrect ways.
Saves the resulting net in APT and, if dot is executable, as pdf.

—con,——connectivity Adds the formula checking
connectivity to the net inscription.

—d,——debug Get some debug infos.

—1,——logger <file> The path to an optional logger file.

If it ’s not set, the information
will be send to the terminal.
—nbl,——nb nodesU <numberOf nodesU> The desired number of node for the
upper path (>= 1).
—nb2,——nb_ nodesD <numberOf nodesD> The desired number of node for the
lower path (>= 1).

—npdf,——noPDF Does not create a pdf of the
generated net.

—nv,——version <version> The desired version of the network
(B — basic, U — update, M — mutex, C
— correct).

—o,——output <file > The output path where the generated
Petri net with flows should be
saved .

—psst,——silent Makes the tool voiceless.

—v,——verbose Makes the tool chatty.

Module: gen topologie zoo

Generates a network from the topology given by the input file. Saves the resulting
net in APT and, if dot is executable, as pdf. The help dialogue:

usage: sh adam.sh gen topologie zoo [—-d] —i <path> [-] <file >] [-npdf] —o
<file> [—psst] [—V]

Generates a network from the topology given by the input file. Saves the

resulting net in APT and, if dot is executable, as pdf.

—d,——debug Get some debug infos.

—i,——input <path> The input file for the topology from which the Petri
game should be created.

—1,——logger <file > The path to an optional logger file. If it’s not
set , the information will be send to the terminal.

—npdf,——noPDF
—o,——output <file >

—psst,——silent
—v,——verbose

Does not create a pdf of the generated net.

The output path where the generated Petri
flows should be saved.

Makes the tool voiceless.

Makes the tool chatty.

net with

29

	Contents
	1 About AdamMC
	2 Setting up AdamMC
	2.1 Download
	2.2 Dependencies
	2.3 Installation
	2.4 Compiling from Source

	3 Usage of AdamMC
	4 File Formats
	4.1 The Input Formats
	4.1.1 Petri Nets
	4.1.2 Petri Nets with Transits
	4.1.3 Software Defined Networks and Concurrent Overlapping Updates
	4.1.4 LTL and Flow-LTL

	5 Contact
	A Detailed List of Modules and Parameters

