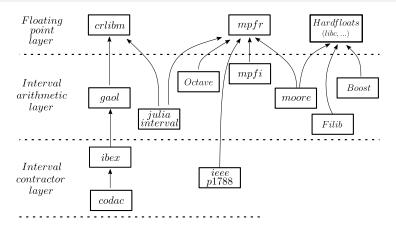
Interval Analysis on the RISC-V for mobile robotics

Design of a custom ISA extension

Pierre Filiol Luc Jaulin Jean-Christophe Le Lann Théotime Bollengier

Contents


- Motivations
- Fundamentals of RISC-V
- Strategy Used in This Work
- Contours of the Extension
- Hardware Implementation
- Toolchain Adaptation
- Validation and Results
- Conclusion

Contents

- Motivations
- Fundamentals of RISC-V
- Strategy Used in This Work
- Contours of the Extension
- Hardware Implementation
- Toolchain Adaptation
- Validation and Results
- Conclusion

The Software Ecosystem

The most popular libraries are very diverse in terms of

- Programming languages
- Design trade-off

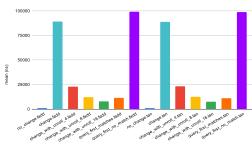
- Abstraction level
- Architecture targeted

The Challenges of Intervals Software

▶ Implementing intervals correctly in software is **notoriously hard**.

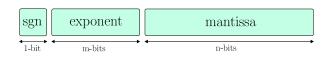
A lot of the difficulties comes from IEEE-754 floating-point

- Rounding
- Precision
- Overall performances



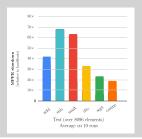
About Rounding

- ▶ To ensure that the true value is included in the result, intervals must be correctly rounded.
- ▶ This involves frequent switches between multiple IEEE-754 rounding modes: Round-up (RU) and Round-Down (RD).
- **►** Example of the addition:


$$[x] + [y] = [\lfloor \underline{x} + \underline{y} \rfloor, \lceil \bar{x} + \bar{y} \rceil] \qquad \qquad \text{where } \lfloor . \rfloor \text{ and } \lceil . \rceil \text{ are RD/RU}$$

▶ This is a performance killer on x86/arm platforms (up to $70 \times$ slower)

About precision


► IEEE-754 floating-points available in multiple formats:

type	$[\mathbf{m}]$	n
float64	11	53
float32	8	24
float16	5	11

Interval libraries handle it in multiple ways

► Using softfloat (MPFR, CRlibm, ...)

- ► Using hardfloat (FPU, GPU, ...)
 - Limited to predefined precisions (f64, f32, f16)
 - "One size fits all" approach

The needs of embedded robotics

- ► Embedded robotics plays with specific rules:
 - Time-critical applications
 - Varying precision requirements
 - Need guarantees, even at the cost of pessimism

In this presentation

- ▶ Design of a dedicated hardware architecture for interval analysis.
- ► Targeted at mobile robotics.
- ▶ Implemented as a RISC-V custom extension.

Contents

- Motivations
- Fundamentals of RISC-V
- Strategy Used in This Work
- Contours of the Extension
- Hardware Implementation
- Toolchain Adaptation
- Validation and Results
- Conclusion

An open and accessible standard

► The RISC-V standard has a specific approach

- The ISA is open and free of charge.
- Being RISC-V compliant = Implementing the instruction set.

RISC-V processors are shipped in two ways:

- As a manufactured chip (founder approach).
- As an Intellectual Property (IP) softcore (fabless approach) for synthesis on ASIC/FPGA.

Figure: Payed and closed-source

Figure: Payed support and open-source

Hardware shipped as software is handy

As researchers, softcores gives us the opportunity to **experiment**, **benchmark** & **modify** a processor.

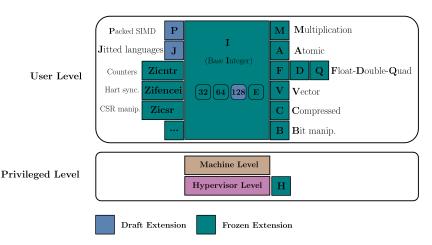
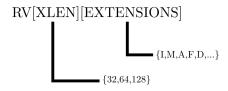


Figure: Free and open-source

A Modular Approach to ISA


▶ Instructions are regrouped in purpose-oriented modules called extensions.

Pay for what you use

- ▶ Extension I defines the minimal subset of instructions and is mandatory to every design.
- ► The other extensions are optional and implemented when the application requires it.
- ▶ The extensions available in a particular RISC-V design are described through the following nomenclature:

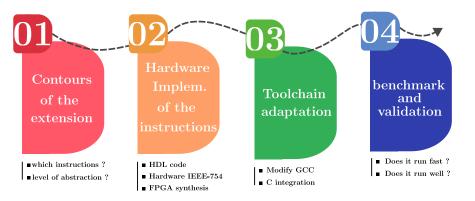
Example: RV32-IMAF

Sometimes You Want More

- ▶ Standard extensions are meant for general-purpose computing.
- ▶ Intervals are too niche to be part of the official standard.
- ▶ Do not worry! The RISC-V standard has you covered.

					inst	r[4:2]			
		000	001	010	011	100	101	110	111
:5]	00	LOAD	LOAD-FP	CUSTOM 0	MISC MEM	OP-IMM	AUIPC	OP-IMM 32	48b
instr[6:	01	STORE	STORE-FP	CUSTOM 1	AMO	OP	LUI	OP-32	64b
ir	10	MADD	MSUB	MSUB	NMADD	OP-FP	OP-V	CUSTOM 2	48b
	11	BRANCH	JARL	reserved	JAL	SYSTEM	OP-VE	CUSTOM 3	≥ 80b

▶ The RISC-V GCC toolchain supports the addition of new instructions.


Contents

- Motivations
- Fundamentals of RISC-V
- Strategy Used in This Work
- Contours of the Extension
- Hardware Implementation
- Toolchain Adaptation
- Validation and Results
- Conclusion

Workflow

▶ **Goal**: Design a custom RISC-V extension called **xinterval** to accelerate intervals at the operator level.

Contents

- Motivations
- Fundamentals of RISC-V
- Strategy Used in This Work
- Contours of the Extension
- Hardware Implementation
- Toolchain Adaptation
- Validation and Results
- Conclusion

A Contractor-centric Approach

▶ In embedded robotics, intervals are used in many recurring problems.

Examples

- Localization
- Robust control
- Optimization
- ...

- ► Still, the workflow is always the same:
 - Translate the situation as a Constraint Satisfaction Problem (CSP).
 - Derive the relevant contractors with a forward-backward methodology (e.g HC4R).
 - Use the contractor as it is or use a Branch and Bound strategy such as SIVIA

An example - CSP

Let \mathcal{H} be the following CSP:

$$\mathcal{H}: \begin{cases} X: (x_1, x_2) \\ D: ([-3.5, 2], [-3, 3]) \\ C: \mathbf{f}(X) \in [0.325, \ +\infty] \end{cases} \quad \text{where } \mathbf{f}(X) = \left\{\frac{\sin{(x_1}^2 + x_2}^2)}{e^{x_1} + x_2}\right\}$$

▶ Let us build a contractor for this problem using HC4R

An Example - HC4R

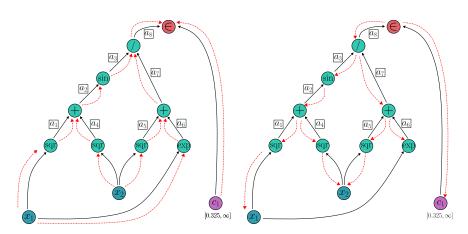


Figure: Forward (left) and backward (right) propagations of HC4R

An Example - Forward-Backward Contractor for ${\mathcal H}$

```
Data: [x_1], [x_2]

[a_1] = \overrightarrow{C_{sqr}}([x_1]);

[a_4] = \overrightarrow{C_{sqr}}([x_2]);

[a_5] = \overrightarrow{C_{sqr}}([x_2]);
[a_6] = \overrightarrow{C_{exp}}([x_1]);
[a_2] = \overrightarrow{C_+}([a_1, a_4]);
[a_3] = \overrightarrow{C_{sin}}([a_2]);
[a_7] = \overrightarrow{C_+}([a_5, a_6]);
 [a_8] = \overrightarrow{\mathcal{C}}_{/}([a_3, a_7]);
 [a_8] = [a_8] \cap [c_1];
return [x_1], [x_2], [a_{1-8}]
Algorithm 1: Contractor \overrightarrow{C_{\mathcal{H}}}
```

$$\begin{array}{l} \textbf{Data:} \ [x_1], [x_2], [a_{1-8}] \\ [a_3], [a_7] = \\ \overleftarrow{C_/}([a_3], [a_7], [a_8]); \\ [a_2] = \overleftarrow{C_{sin}}([a_2], [a_3]); \\ [a_1], [a_4] = \\ \overleftarrow{C_+}([a_1], [a_4], [a_2]); \\ [x_1] = \overleftarrow{C_{sqr}}([x_1], [a_1]); \\ [x_2] = \overleftarrow{C_{sqr}}([x_2], [a_4]); \\ [a_5], [a_6] = \\ \overleftarrow{C_+}([a_5], [a_6], [a_7]); \\ [x_1] = \overleftarrow{C_{exp}}([x_1], [a_6]); \\ [x_2] = \overleftarrow{C_{sqr}}([x_2], [a_5]); \\ \textbf{return} \ [x_1], [x_2] \end{array}$$

Algorithm 2: Contractor $\overleftarrow{\mathcal{E}_{\mathcal{H}}}$

Strategy for xinterval

► The aforementionned workflow is intuitive for the programmer and accommodate most situations.

Strategy

We need **xinterval** to accelerate the forward and backward contractors of the most recurring elementary operators on intervals.

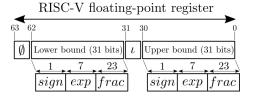
Problem: How to translate this to RISC-V compliant instructions?

31 30	25 24	21	20	19	15 14	12	11 8	7	6 0	
funct7		rs2		rs1	func	t3	$^{\mathrm{rd}}$		opcode	R-type
in	nm[11:0]			rs1	func	t3	$^{\mathrm{rd}}$		opcode	I-type
imm[11:5]		rs2		rs1	func	t3	imm[4:0]		opcode	S-type
imm[12] $imm[10]$	0:5]	rs2		rs1	func	t3	$imm[4:1] \mid imm$	n[11]	opcode	B-type
	i	mm[31:1]	.2]				$^{\mathrm{rd}}$		opcode	U-type
										,
imm[20] in	nm[10:1]	in	nm[11]	imr	n[19:12]		$^{\mathrm{rd}}$		opcode	J-type

The Format of **xinterval** Instructions

▶ All the instructions from **xinterval** use the R-Type format (register to register).

31	30	25	24	21	20	19	15	14	12	11	8	7	6	0	
	funct7			rs2		rs1		funct	3		$^{\mathrm{rd}}$		opcod	le	R-type


- **opcode**: The opcode number. We use the *custom-0* one (0xB) which is dedicated to custom extensions.
- r_d: The destination register.
- rs_1 , rs_2 : The source registers (up to two arguments).
- funct₃, funct₇: 3-bits and 7-bits identifiers. The pair must be unique to each instruction.

Example: itv.add (interval addition)

The assembly instruction itv.add $f3\ f1\ f2$ performs the addition of the two intervals contained in floating-point registers f1 and f2 and stores the result in floating-point register f3.

Fitting Intervals Into Floating-point Registers

- ▶ Intervals are stored in the 64-bit registers dedicated to double precision floating-points.
- ► The following interval model is used:

It contains:

- A 1-bit flag for emptyness
- A 1-bit flag for iota
- Two custom-float bounds

Publication about the iota flag

Filiol and al. "A new interval arithmetic to generate the complementary of contractors." Acta Cybernetica, vol. 26, no. 4, 21 Mar. 2024, pp. 817–838, https://doi.org/10.14232/actacyb.300840.

A tour of **xinterval** instructions

register content interpretation

reg interval reg integer
reg float32 reg float64

► Instructions to create intervals

asm	$[m r_d]$	$[\mathrm{rs}_1$	$[\mathrm{rs}_2]$	effect	description
itv.mk				${\color{red} \overline{r_d}} = \operatorname{itv}({\color{red} \overline{rs_1}}, {\color{red} \overline{rs_2}})$	Create interval from float bounds
itv.mki				$[r_d] = \operatorname{itv}([rs_1], [rs_2]) \cap \iota$	Create interval from float bounds + iota

► Instructions to extract data from an interval

asm	$[{f r_d}]$	$[\mathbf{rs}_1$	$[\mathrm{rs}_2]$	effect	$\operatorname{description}$
itv.ext.e		✓	×	${r_d \choose l} = 1$ if ${rs_1 \choose l}$ is empty else 0	Check empty state of selected itv
itv.ext.i			×	${r_d \choose r_d} = 1$ if ${rs_1 \choose r_d}$ is iota else 0	Check iota state of selected itv
itv.ext.lb			×	$\boxed{ r_d = \operatorname{lb}(\boxed{rs_1}) }$	Get lower bound of selected itv
itv.ext.ub		V	×	$rac{r_d} = \operatorname{ub}(rs_1)$	Get upper bound of selected itv

A Tour of **xinterval** Instructions

register content interpretation

reg interval

reg integer

reg float 32

reg float 64

▶ Instructions for set operations on intervals

asm	$ m ar{r_d}$	\mathbf{rs}_1	$[\mathrm{rs}_2]$	effect	description
itv.set.u				$\boxed{ \boxed{ \{r_d\}} = \boxed{\{rs_1\}} \cup \boxed{\{rs_2\}} }$	Union of two itv
itv.set.i				$\boxed{\{r_d\}=[\{rs_1\}\cap \{rs_2\}]}$	Intersection of two itv

► Instructions for arithmetic operations on intervals

asm	$[m r_d]$	$[{ m rs}_1$	$[{ m rs}_2]$	effect	description
itv.add			V	$\boxed{\{r_d\}} = \boxed{\{rs_1\}} + \boxed{\{rs_2\}}$	add two itv
itv.sub				$[r_d] = [rs_1] - [rs_2]$	subtract two itv
itv.mul				$\boxed{\{r_d\} = \{rs_1\} \times \{rs_2\}}$	multiply two itv
itv.div				$[r_d] = [rs_1] / [rs_2]$	divide two itv

A Tour of **xinterval** Instructions

register content interpretation

reg interval r

reg integer reg float 64

reg float32

► Instructions for real functions on intervals

asm	$\mathbf{r}_{ ext{d}}$	$[\mathrm{rs}_1$	$[\mathrm{rs}_2]$	effect	description
itv.sqr	V		×	$\boxed{ \{r_d\} = \operatorname{sqr}(\boxed{rs_1}) }$	square of the selected itv
itv.sqr_revh			×	$\boxed{ \{r_d\} = \text{itv}(-\sqrt{lb(\llbracket rs_1 \rrbracket)}, \sqrt{ub(\llbracket rs_1 \rrbracket)}) }$	helper for backward square ctc
itv.sqrt			Image: Control of the	$\boxed{\{r_d\}} = \sqrt{\boxed{\{rs_1\}}}$	square-root of the selected itv
itv.exp			×	$\boxed{\{r_d\}} = \exp(\boxed{\{rs_1\}})$	exponential of the selected itv
itv.log			×	$\boxed{\{r_d\}} = \log(\boxed{\{rs_1\}})$	logarithm of the selected itv
itv.cos			×	$\boxed{\{r_d\} = \cos(\boxed{\{rs_1\}})}$	cosine of the selected itv
itv.sin			×	$\boxed{\{r_d\}} = \sin(\boxed{\{rs_1\}})$	sine of the selected itv
itv.acos			×	$[r_d] = \arccos([r_{s_1}])$	arccosine of the selected itv
itv.asin			×	$[r_d] = \arcsin([r_{s_1}])$	arcsine of the selected itv

Contents

- Motivations
- Fundamentals of RISC-V
- Strategy Used in This Work
- Contours of the Extension
- 6 Hardware Implementation
- Toolchain Adaptation
- Validation and Results
- Conclusion

Implementing xinterval Instructions in Hardware

► Porting **xinterval** instructions in hardware.

How to do it?

- Implementation using the VHDL language.
- Synthesis on FPGA.
- Choice of a low to middle-end chip (XC7Z020-1CLG400C).

This is challenging

- Heavily IEEE-754 reliant code (hard).
- Specificities of the FPGA target.

How we Handled Hardware Floats?

▶ Use of the FloPoCo project (INRIA).

```
arithmetic operation input formats output formats

Output formats

Functional specification

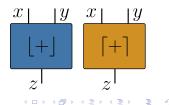
architecture generator

yellogenerator

yellogenerator

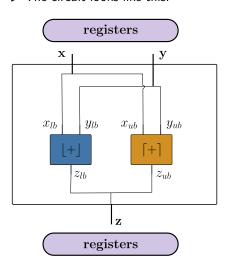
yellogenerator

yellogenerator


yellogenerator

Performance specification
```

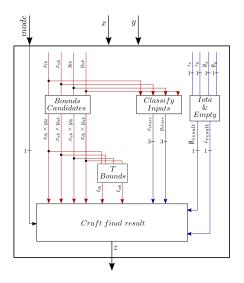
More Information


Dinechin, Pasca. "Designing custom arithmetic data paths with FloPoCo" (2011)

- ► This is very practical:
 - Custom float format.
 - Selectable rounding mode.
 - Automatic pipelining (heuristic)
 - Huge catalog of operators
- ▶ We use this convention:

A Simple Example: Addition With **itv.add**

► The circuit looks like this:



▶ Benefits:

- Bounds handled concurrently.
- Different roundings at the same time.
- No context switch.
- Directly from and to registers.
- Timing controlled precisely.

A Bit More Complex: Multiplication With itv.mul

► The circuit looks like this:

▶ Bounds candidates:

• 4 multiplications in parallel (possible bounds).

► Classify inputs:

Bound selection criteria.

► Craft result:

- Selected bounds re-rounding.
- Package result.

Summary of the Results Achieved

▶ Numbers given for XC7Z020-1CLG400C @ 100MHz

	LUTs	Reg.	Muxes	DSP	BRAM	Cycles
ItvAdd	1334	880	0	0	0	7
ItvMul	1115	1002	7	8	0	8
ItvDiv	3399	2893	52	2	0	15
ItvSqrt	896	720	0	0	0	12
ItvExp	650	805	558	2	0	10
ItvLog	1279	1673	48	6	2	12
ItvSinCos	6105	5123	0	20	2	37
ItvAsinAcos	5320	4125	327	0	0	31

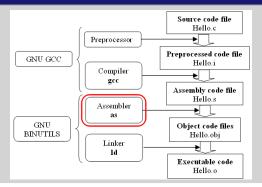
More information on this topic

Filiol and al. "Efficient Hardware Primitives for Interval Contractors in Robotics and Integration to a Custom RISC-V ISA Extension". Published in Newcas2025

September 23, 2025

Contents

- Motivations
- Fundamentals of RISC-V
- Strategy Used in This Work
- Contours of the Extension
- Hardware Implementation
- Toolchain Adaptation
- Validation and Results
- Conclusion



Adding compiler support for xinterval

September 23, 2025

Solution: Declare the instructions in the binutils layer

More information on this topic

Filiol and al. "Efficient Hardware Primitives for Interval Contractors in Robotics and Integration to a Custom RISC-V ISA Extension". Published in Newcas2025

Using the New xinterval Instructions From C

▶ Let's bind assembly instructions from C.

```
/* interval as double (64 bits ) */
2 typedef itv_t double ;
4 /* Inlining of xinterval instruction itv.set.i */
5 inline itv_t __attribute__((always_inline))
6 itv set i(itv t itv1, itv t itv2) {
7 itv t result:
asm("itv.set.i %0, %1, %2" : "=f"(result) : "f"(itv1), "f"(itv2));
9 return result;
10 }
12 /* Inlining of xinterval instruction itv.sub */
inline itv_t __attribute__((always_inline))
itv_sub(itv_t itv1, itv_t itv2) {
itv_t result;
asm("itv.sub %0, %1, %2" : "=f"(result) : "f"(itv1), "f"(itv2));
return result;
18 }
```

Listing: Addition backward contractor using xinterval

Implementing contractors

▶ Implementing accelerated contractors becomes easy.

Example: Backward addition

Suppose that we have the contrainst x + y = z.

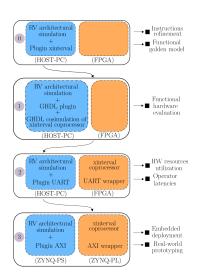
The associated backward contractor is:

$$\stackrel{\leftarrow}{C_+}: [x'] = ([z] - [y]) \cap [x]$$

```
1 /* Backward ctc for x1 */
2 itv_t addbwctc1(itv_t x1, itv_t x2, itv_t x3) {
3    itv_t sub = itv_sub(x3, x2);
4    itv_t inter = itv_set_i(x1, sub);
5    return inter;
6 }
```

Listing: Addition backward contractor using xinterval

▶ Other libraries can be easily ported to use xinterval!


Contents

- Motivations
- Fundamentals of RISC-V
- Strategy Used in This Work
- Contours of the Extension
- Hardware Implementation
- Toolchain Adaptation
- Validation and Results
- Conclusion

An Iterative Development and Validation Flow

▶ A strategy based on gradual replacement of software by hardware.

► Hybrid approach:

- Instrumented emulation.
- Hardware (xinterval core).

▶ Comparison between:

- Interval analysis implemented in non-accelerated RISC-V.
- Interval analysis implemented with xinterval.

► Targeted at robotics applications:

 Capable of running contractors/SIVIA at each step of the design.

Reference Testbenches

Benchmark 1: ring

$$\mathcal{H}: \begin{cases} X: (x_1, x_2) \\ D: ([-10, 10], [-10, 10]) & \text{where } f(X) = (x_1 - 1)^2 + (x_2 - 2)^2 \\ C: f(X) \in [16, 25] \end{cases}$$

Features: Addition, Subtraction, Square

Benchmark 2: waves

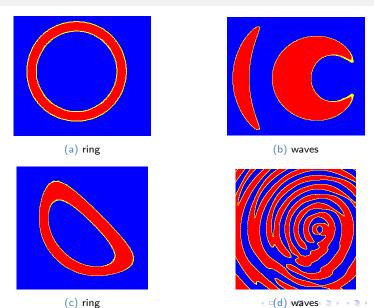
$$\mathcal{H}: \begin{cases} X: (x_1, x_2) \\ D: ([-3.5, 2], [-3, 3]) \\ C: \mathrm{f}(X) \in [0.325, +\infty] \end{cases} \quad \text{where } \mathrm{f}(X) = \left\{ \frac{\sin{(x_1}^2 + x_2}^2)}{e^{x_1} + x_2} \right\}$$

Features: Addition, Square, Exponential, Sine

Reference Testbenches

Benchmark 3: donut

$$\mathcal{H}: \begin{cases} X: (x_1, x_2) \\ D: ([-3, 3], [-3, 3]) \\ C: \mathbf{f}(X) \in [\text{-0.2, 0.2}] \end{cases} \quad \text{where } \mathbf{f}(X) = e^{x_1 \times x_2} - \sin(x_1 - x_2)$$


Features: Subtraction, Multiplication, Exponential, Sine

Benchmark 4: vortex

$$\mathcal{H}: \begin{cases} X: (x_1, x_2) \\ D: ([-3.5, 2], [-3, 3]) \\ C: \mathbf{f}(X) \in [0.325, +\infty] \end{cases} \quad \text{where } \mathbf{f}(X) = (x_2 - 5) \cos(4\sqrt{(x_1 - 4)^2}) + x_2^2 \\ - x_1 \sin(2\sqrt{x_1^2 + x_2^2}) \end{cases}$$

Features: Addition, Subtraction, Multiplication, Square, Square-root, Sine, Cosine

Running Everything on the FPGA

Performance Estimations

▶ We obtained the following preliminary results

Benchmark	Speedup *
ring	×3.2
waves	×7.3
donut	×8.2
vortex	×7.8

Table: Speed-up estimate relative to a RISC-V non xinterval-accelerated implementation.

Contents

- Motivations
- Fundamentals of RISC-V
- Strategy Used in This Work
- Contours of the Extension
- Hardware Implementation
- Toolchain Adaptation
- Validation and Results
- Conclusion

Conclusion

Some remarks about this study

- It works! (that's cool).
- Still a proof of concept.
- Much room for improvement (IEEE-754 operators, FPGA, ...).
- Low learning curve for a programmer.
- Allow porting of existing libraries.

Thank you!

