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Abstract

Optimal power flow is a class of complex problems of modern energy
systems, aiming to control all energy flows of the system in an optimal
way by minimizing an objective function without violating the systems
constraints. Real world applications of optimal power flow are often non-
linear and very time consuming to solve using conventional approaches.
Deep reinforcement learning approaches have shown promising results
to solve optimal power flow problems in real time, but commonly use
the constraint satisfaction strategy of modifying the reward with fixed
penalty functions. This thesis demonstrates by experiment how fixed
penalties suffer from a trade-off between constraint satisfaction and ob-
jective optimality on more complex energy systems. To provide a more
effective constraint satisfaction strategy, the Constrained Twin Delayed
Deep Deterministic Policy Gradient algorithm is proposed as a sam-
ple efficient off-policy safe deep reinforcement learning algorithm, using
the method of a learned lagrange multiplier. The proposed algorithm
slowly adjusts a lagrange penalty multiplier to avoid the policy to become
too conservative and shows how guarantees for constraint satisfaction
within a given error threshold are possible. As shown by experiment, this
method avoids the trade-off problem and achieves both high objective
performance and constraint satisfaction.
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1 I n t r o d u c t i o n

1.1 Motivation

Electrical power systems are facing large difficulties with the increasing demand for elec-
tricity and the transition to renewable energies and decentralized energy markets [1]. The
Optimal Power Flow (OPF) problem formalizes this difficulties mathematically, aiming to
control all power flows of an energy system in an optimal way by minimizing an objective
function, subject to the systems constraints and operating limits. OPF problems are often
non-linear and non-convex and therefore very time consuming to solve with conventional
methods, especially because the constraints increase the complexity significantly. With the
progress of machine learning in the recent years, Deep Learning (DL) has shown promising
results for solving OPF in real time [2]. Especially Deep Reinforcement Learning (DRL)
algorithms show great potential for this problem, as they can provide nearly optimal solu-
tions to OPF in orders of magnitude less time in a model free manner, training an agent
by trial and error to maximize a given reward. Because constraint violations can lead to
unpredictable costs and damage to the systems involved, a sufficient constraint satisfaction
strategy is necessary. However, most of the previous DRL approaches to OPF augment the
reward with a fixed penalty function, making constraint violations unattractive to the agent.
Two methods of fixed penalty functions are commonly used: the summation method penal-
izes constraint violations with a fixed linear penalty factor and the replacement method
uses different reward functions for states with violations and states without. According to
the literature, the summation method is expected to result in either suboptimal policies
or unacceptable amounts of constraint violations [3], [4]. Therefore, this thesis investigates
the relevance of this problem for the summation method, tests if the replacement method
is a suitable alternative and compares the two methods with promising Safe Reinforcement
Learning (SRL) strategies from the literature.

1.2 Objective

The main objective of this thesis is to answer the question, how effective constraint satis-
faction can be achieved or even guaranteed for DRL approaches to OPF problems. Effective

Definition: Optimal Power Flow
Definition: Optimal Power Flow
Definition: Deep Learning
Definition: Optimal Power Flow
Definition: Deep Reinforcement Learning
Definition: Optimal Power Flow
Definition: Deep Reinforcement Learning
Definition: Optimal Power Flow
Definition: Safe Reinforcement Learning
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constraint satisfaction in this context means to not only ensure constraint satisfaction, but
to also achieve the highest objective performance that is possible within the constraints.
As mentioned before, previous DRL approaches to OPF use fixed penalty functions to
prevent constraint violations. The summation method modifies the reward with a fixed
linear violation penalty factor, which can not guarantee constraint satisfaction and also
raises the question, how an optimal penalty factor can be selected and if the learned policy
can reach optimal objective performance within the constraints. As mentioned by Wang et
al. [3], a penalty factor set too high can lead to a decreased objective performance, because
the policy is trained to be too conservative. A smaller penalty on the other hand can result
in more frequent constraint violations, which is also not acceptable. Having this trade-off
between objective performance and sufficient constraint satisfaction, balancing the penalty
factor constitutes an optimization problem that has to be solved experimentally for every
new problem the approach is applied to. Although the trade-off is highly expected as a
problem of the summation method, it is not clear how relevant it actually is within the
OPF application. The first research question of this work is therefore:

Research Question 1:
How relevant is a trade-off between objective performance and constraint
satisfaction for the fixed penalty DRL approaches to the OPF problem?

A second common strategy used in the literature is the replacement method, using
different rewards for states with violations and states without. Because the rewards of
states with violations are in orders of magnitude smaller than the rewards of states without
violations, constraint satisfaction is always more important to the agent than optimal
objective performance. Therefore it is plausible that the replacement method also leads to
policies that are too conservative, comparable to the summation method with a very high
penalty factor. The second research question therefore is:

Research Question 2:
Which advantages and disadvantages regarding effective constraint satisfaction

does the replacement method have within the OPF problem, compared to the
summation method?

The possible problem of the trade-off leads to the question, if there are more effective
strategies that can improve or even provide guarantees for the constraint satisfaction, which
can be used in DRL algorithms. As shown in the literature, Safe DRL (SDRL) approaches
have successfully solved comparable problems in the past, especially with strategies based
on the lagrange relaxation method and applications of the CPO algorithm [3], [4]. Therefore
the third research question of this thesis is:

Definition: Deep Reinforcement Learning
Definition: Optimal Power Flow
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1.3 structure 3

Research Question 3:
Which advantages and disadvantages regarding effective constraint satisfaction

do SDRL approaches have within the OPF problem, compared to the fixed
penalty methods?

1.3 Structure

In Chapter 2, the background for OPF, DRL and SRL is provided with focus on the algo-
rithms and theoretical foundations most relevant to this thesis. Afterwards, in Chapter 3,
previous DRL approaches to OPF are surveyed and their different constraint satisfaction
strategies are analysed, followed by a survey of the most promising SDRL approaches to
comparable problems within the energy systems context. Chapter 4 explains the approach
and the algorithms and methods used in this thesis in detail. Afterwards, the three con-
ducted experiments are described in Chapter 5, followed by the collected results of the
experiments in Chapter 6. The results are then discussed in Chapter 7, reflecting on the
approach and answering the research questions. The thesis is then concluded in Chapter 8
with a short summary of the research done and its findings.

Definition: Safe Deep Reinforcement Learning
Definition: Optimal Power Flow
Definition: Optimal Power Flow
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2 B a c k g r o u n d

This chapter provides the theoretical background and foundations for the topics and ap-
proaches covered in this thesis. In Section 2.1, the OPF problem is introduced with focus
on its computational difficulties in regard to the optimization objective and constraint
satisfaction. The next two sections Section 2.2 and Section 2.3 cover the core principles
and algorithms of DL and Reinforcement Learning (RL), building the foundation for the
most commonly used and state of the art DRL algorithms covered in Section 2.4. Finally,
in Section 2.5 an overview of SRL concepts and strategies is provided. The overview part
of the first four sections as well as the SRL section have been previously elaborated within
the proposal of this thesis and are reused in a sligthly modified form.

2.1 Optimal Power Flow

The following section summarizes the OPF problem with main emphasis on the constraints
as described by Frank et al. [1]. OPF is an optimization problem for electric power control,
that can represent the increasing complexity of modern electrical power systems, caused by
the uncertainty introduced with the deregulation of electricity markets and the introduction
of renewable energies. In most applications, the objective of OPF is to optimize the control
variables of the systems power flow for minimal generation costs or minimal network losses
without neglecting the systems constraints or control limits, ensuring safe and reliable
operation of the power system. The standard formulation of the OPF problem consists of
the objective function f to be minimized and a set of equality constraints g and inequality
constraints h for control variables u and a current systems state x.

min f(u, x)

s.t. g(u, x) = 0

h(u, x) ≤ 0

The objective function, constraints, control variables and system state representation vary
between different OPF formulations and applications. Because in many cases the objective

Definition: Optimal Power Flow
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function as well as the constraints are nonlinear and non-convex, the problem becomes
increasingly challenging to solve with better representations of the systems involved.

2.1.1 Variables

The control variables are usually a subset of the state variables combined with device
control settings, for example real and reactive power of the generators or transformer tap
ratios. State variables are a continuous representation of the electric state of the system,
including bus voltage magnitude, bus voltage angle, and real and reactive power injections
at the busses.

2.1.2 Objective function

Usually, the objective function contains some notion of generation costs but it can also
include system losses, power quality, planning costs or even the environmental impact
of the power generation. With the generation costs being the most common objective
function, OPF can extend the classic economic dispatch problem to not only control the
generation units to dispatch but all power flows of the system. The generation cost can
then be represented by quadratic or piecewise linear cost curves. Power quality can also
be ensured as part of the objective function by minimizing voltage deviation.

2.1.3 Equality constraints

The equality constraints consist of the power flow network equations, in their polar or
rectangular form, and other balancing constraints. The power flow equations in their
complete form represent AC power flow of the system and are nonlinear as well as non-
convex. A common approach to the problem is a simplification to a linear DC power flow
that is much easier to solve but far less accurate. Therefore, in many applications, a full
AC power flow solution is necessary.

The more often used polar form of the AC power flow equations depends on state variables
for voltage magnitude |V | and voltage phase angle δ. This form has the advantage of a
strong coupling of real power P with voltage angle δ and reactive power Q with voltage
magnitude |V |. Yik is the ik-th element of the bus admittance matrix and θik is the angle
of the ik-th element of the bus admittance matrix of the power system.

Definition: Optimal Power Flow
Definition: Alternating Current
Definition: Direct Current
Definition: Alternating Current
Definition: Alternating Current
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Pi =
N∑

k=1
|Vi||Vk||Yik| cos(δi − δk − θik) (2.1)

Qi =
N∑

k=1
|Vi||Vk||Yik| sin(δi − δk − θik) (2.2)

The rectangular form has the advantage of constant second partial derivatives and comes
without the trigonometric function sin and cos, depending on the real and imaginary voltage
components R and F as state variables. Gik and Bik are the real and imaginary parts of
the bus admittance matrix Y .

Pi =
N∑

k=1
Gik(EiEk + FiFk) +Bik(FiEk − EiFk) (2.3)

Qi =
N∑

k=1
Gik(FiEk − EiFk) +Bik(EiEk + FiFk) (2.4)

2.1.4 Inequality constraints

Inequality constraints represent upper and lower control limits as well as security and
stability constraints, preventing physical damage to the systems involved. The control
limits can include the generation limits of the power generators, the bus voltage and
branch flow limits and operational limits of other electrical systems. They can also include
limits on the environmental impact of the power system.

2.2 Deep Learning

DL is a part of machine learning that utilises Deep Neural Networks (DNN) to learn patterns
in high dimensional, unstructured raw input data. Mainly used in supervised but also
unsupervised learning methods, a DNN can learn, recognize and generalize abstract patterns
in large datasets, making it highly applicable for speech recognition, computer vision and
natural language processing. DNNs consist of multiple layers of virtual neurons, processing
units, that imitate the mathematical properties of biological neurons. A DNN consists of
an input layer, multiple in-between layers, called hidden layers, and an output layer. Every
hidden layer processes and abstracts the information from the previous layer and puts
it forward to the next layer. DNNs can be trained on datasets using a gradient descend
algorithm, which can use backpropagation to propagate the network losses backwards

Definition: Deep Learning
Definition: Deep Neural Network
Definition: Deep Neural Network
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through the network and adjust the parameters causing the errors, to increase the networks
accuracy. [5]

2.2.1 Artificial Neural Network

The following subsection is based on the information on Artificial Neural Networks (ANN)
provided by the book "Artificial Neural Networks - A Practical Course" [6].

Artificial neurons, the core concept behind ANNs, have been first described by Warren
McCulloch and Walter Pitts in 1943 [7], proposing a simplified computational model for
biological neurons with the McCulloch-Pitts Neuron. Later, Frank Rosenblatt introduced
the Perceptron [8] and a learning algorithm based on Hebb’s rule [9], building the basis
for modern ANNs.

An artificial neuron is a simple computational unit, that represents the most fundamental
information processing of biological neurons in a highly simplified form. It consists of a
vector of weights w = [w1, ..., wm] representing the synaptic weights and a threshold or bias
value θ for the threshold of the axon hillock, takes a vector of input values x = [x1, ..., xm]
representing the dendrites, and has one single output value y for the axon of a biological
neuron. The input values are multiplied by the weights and are then added up to an
activation u.

u = w⊤ · x− θ =
n∑

i=1
xiwi − θ (2.5)

The output y of the neuron is then determined by an activation function g(u), for
example the Heaviside step function for the most simple perceptron.

gheav(u) =

1 if u > 0,

0 otherwise
(2.6)

From a mathematical perspective, these binary perceptrons are binary linear classifiers, so
they can only represent linearly separable classes if used in a single layer. Being fundamental
building blocks of machine learning, perceptrons can learn linear classifications by training
on a set of training examples. For binary output perceptrons, a training example is a pair
of an input value vector xk = [xk

1, ..., x
k
m] and an expected binary output ak. The training

algorithm for binary perceptrons loops over all examples for a given number of iterations,

Definition: Artificial Neural Network
Definition: Artificial Neural Network
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calculates the error ak −yk for each example and then adjusts the weights of the perceptron
according to their contribution to the error. α is the learning rate, a small value α ∈ (0, 1).

∆wi = α(ak − yk)xk
i (2.7)

If the examples are linearly separable sets, this algorithm is proved to converge to the linear
classification given infinite update steps, otherwise it converges to a linear classification
with a minimal error. [9]

Binary classification has its limitations, when applied to real world examples. To abstract
the activation frequency and to deal with uncertainty, continuous and more probabilistic
activation functions can be used, such as the sigmoid and the tanh activation functions:

gsig (u) = 1
1 + e−u

(2.8)

g
tanh

(u) = eu − e−u

eu + e−u
(2.9)

The sigmoid function has the advantage of being easily differentiable, allowing neurons
with this activation function to be trained with a gradient descend algorithm using the
Delta Rule:

∆wi = α(ak − yk)g′(uk)xk
i (2.10)

Nowadays it has been shown that the Rectified linear unit (ReLU) outperforms the
sigmoid activation function in many DL applications, being faster to calculate, even more
simple to differentiate and being less prone to the vanishing gradient problem other acti-
vation functions have [10].

gReLU (u) = max(u, 0) (2.11)

2.2.2 Deep Neural Networks

Because real world problems are often very complex and non linear, the single layered
perceptron is not very useful for most applications. Therefore DNNs, large, multi layered
neural networks, are used, that can learn non linear behaviour. In a DNN, the outputs of

Definition: Rectified Linear Unit
Definition: Deep Learning
Definition: Deep Neural Network
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Figure 2.1: Feed forward DNN with one hidden layer

a neuron can be the inputs of another neuron, building multiple processing layers on top
of each other.

In Feed-forward DNNs the neurons are sorted in layers such that every neuron is only
connected with its inputs to the outputs from the previous layers, as shown in Figure 2.1.
Connections that skip layers are sometimes allowed and are called shortcuts. Feed-forward
DNNs can be trained in a gradient descend algorithmn, using the backpropagation method
[11], that generalizes the Delta Rule to DNNs by automatic differentiation. The chain
rule is applied, to propagate the error backwards through the network and adjust the
weights accordingly to their influence on the error. This allows every layer of the network
to learn a layer of abstraction, by learning patterns in the classifications output from
the previous layer, resulting in non linear and highly complex behaviour. In contrast to
feed-forward DNNs, other DNNs do allow recursion to happen and are called Recurrent
Neural Networks (RNN). In a RNN a neuron can also feed information to itself or to
previous neurons, such that loops can emerge. RNNs are more difficult to train, because
their structure is less straightforward, making training more difficult. Nevertheless, RNNs
have shown outstanding results in complex time series classification problems, such as
speech recognition. [5]

Definition: Deep Neural Network
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2.3 reinforcement learning 11

2.3 Reinforcement Learning

This section is based on the book "Reinforcement learning: An introduction" by Sutton and
Barto [12]. RL describes, how an agent can learn from interactions with its environment
to reach a given goal. The problem is described as a finite Markov Decision Process
(MDP), represented by the tuple (S,A, P,R). As shown in Figure 2.3, the environment
at time t is represented by a state st ∈ S, that can be fully or partially observed by the
agent. The agent then chooses an action at ∈ A to perform next in the environment,
according to its policy function π that represents the agents behaviour as a deterministic
at = π(st) or stochastic π(a|s) = P [at = a | st = s] policy for every state. In the following,
the policy is assumed to be stochastic for better generalization. The taken action at

influences the probability of the next state st+1 ∈ S, represented with the transition function
Pa(s, s′) = P [st+1 = s′ | st = s, at = a]. The agent then receives a reward rt = Rat(st) for
its action, representing its progress towards the goal. There are three general types of
RL algorithms, Value-Based, Model-Based and Policy-Based, but combinations are also
possible.

State st

Policy
at = π(st)

Agent

Environment

rt

st

at

Figure 2.2: RL agent-environment relationship. The agent observes the state st from the
environment, gets a reward rt for the previous action and uses its policy π to
select a new action at to execute next.

2.3.1 Value Functions

RL algorithms adjust the agents behaviour by trial and error to maximize the return, that
is the sum of the rewards the agent accumulates over time. Instant rewards and far future

Definition: Reinforcement Learning
Definition: Markov Decision Process
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rewards can be balanced by a discounting factor γ ∈ [0, 1) resulting in a discounted return
Gt, such that a low discounting factor represents more focus on immediate rewards and a
high discounting factor represents more awareness of far future rewards.

Gt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑

k=0
γkrt+k+1 (2.12)

The expected discounted return of a state s is represented recursively with the value
function vπ(s), depending on the policy of the agent. This is called the Bellman Expectation
Equation.

vπ(s) = Eπ [Gt | st = s]

= Eπ

[ ∞∑
k=0

γkrt+k+1 | st = s

]
= Eπ [rt+1 + γ vπ(st+1) | st = s]

(2.13)

This concept can also be applied to state-action values, representing the expected dis-
counted return if action a is taken in state s. This is also referred to as the Q-function and
its values are referred to as Q-values.

qπ(s, a) = Eπ [Gt | st = s, at = a]

= Eπ

[ ∞∑
k=0

γkrt+k+1 | st = s, at = a

]
= Eπ [rt+1 + γ vπ(st+1, at+1) | st = s, at = a]

(2.14)

The optimal value function v∗ and the optimal Q-function q∗ represent the best possible
values and Q-values for states and actions.

v∗(s) = max
π

vπ(s) (2.15)

q∗(s, a) = max
π

qπ(s, a) (2.16)
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An RL algorithm uses this equations to make adjustments to the agents policy for it to
converge with infinite time to the optimal policy π∗, which would be always choosing the
actions with the highest possible Q-values.

π∗(a|s) =


1 if a = arg max

a′∈A
q∗(s, a′),

0 otherwise
(2.17)

There are model-based and model free RL algorithms. Model based algorithms learn a
model of the environment that can predict the consequences of the possible actions the
agent can take in each state. With a good model of the environment, the agent can use
search algorithms to select action with the most promising future state trajectories.

There are also model-free algorithms, that can learn optimal behaviour without the need
of a model. Model-free algorithms can be policy-based or value-based or a combination of
both. Policy-based algorithms strive to learn the optimal policy itself while value based
algorithms learn estimate functions for the state-value or action-value. In value-based
strategies the value estimate can then be used in a ϵ− greedy policy, choosing a random
action with a probability of ϵ and choosing the action with the maximal action-value
otherwise.

A common strategy of RL is temporal difference learning, a model-free and value-based
method that updates its value function after every interaction with the environment. The
core priciple of temporal difference learning is bootstrapping: The reward received after the
taken action is combined with the value estimation of the current state to get a temporal
difference error gradient to update the estimation of the last state. The Actor-Critic method
applies temporal difference learning to a combination of value-based and policy-based RL,
learning both a policy (the Actor) and the value estimate (the Critic). After each interaction
with the environment the Critic provides a value estimate that is used to calculate the
temporal difference error, which can then be used to update both Actor and Critic.

2.4 Deep Reinforcement Learning

DRL is a combination of RL and DL, representing parts of the agent by DNNs that can
detect patterns in the observations of the agent and learn complex function approximations
for the optimal policy, value function or model using gradient ascend. Figure 2.3 shows
how the policy of a DRL agent is represented by a DNN, choosing actions from a given
state observation.
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Figure 2.3: Basic DRL setup. The agents policy is represented by a actor neural network,
that takes the current state as input and produces the agents next action as
output. The network is trained using the reward with a DRL algorithm, often
using additional DNNs to derive the policy gradient.
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Many state of the art DRL algorithms are based on the Actor-Critic method, representing
both Actor and Critic by a DNN. In the following section, some state of the art DRL
algorithms are explained that are relevant to this thesis.

2.4.1 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is an Actor-Critic DRL algorithm with Critic
and Actor represented by a DNN. It is based on Deep Q-Learning, with the Critic DNN
learning the Q-function using the reward by application of the Bellman Equations. The
Actor then improves the policy with a gradient ascend method using the gradient of the
critics action-value output. DDPG is useful in environments with continuous action spaces,
where ϵ − greedy is not applicable because the action with the highest approximated
action-value is difficult to search for. [13]

2.4.2 Twin Delayed DDPG

Because DDPG is prone to the problems of value overestimation, suboptimal policies and
divergent behaviour, Twin Delayed DDPG (TD3) has been introduced to solve this issues.
In TD3, three mayor adjustments are made to the original DDPG algorithm. The first is
called Clipped Double-Q Learning, learning two Q-functions instead of one and using the
smaller Q-value for the Bellman error loss, adressing the problem of overestimation. The
second adjustment is, to update the policy less frequently than the Q-function. Finally
with target policy smoothing, noise is added to the target action to reduce the expoitation
of Q-function errors by the policy. [14]

2.4.3 Soft Actor Critic

Another algorithm invented to solve the problems of DDPG is Soft Actor Critic (SAC),
also using the trick of Clipped Double-Q Learning. However, instead of using target policy
smoothing SAC trains a stochastic policy that maximizes both the policy entropy and
expected return, with the balance determined by a temperature parameter. It has been
shown that maximal entropy policies substantially improve robustness and exploration,
because the policy learns more diverse behaviours. [15]

2.4.4 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a policy gradient method based on Trust Region
Policy Optimization (TRPO). In policy gradient methods a DNN is trained in a policy-based
way towards an optimal policy, using stochastic gradient ascend on the policy gradient. The
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most common policy gradient is calculated as follows, with θ being the policy parameters
of the DNN and Ât being the advantage of at, that is the difference between action-value
and value. [16]

LP G(θ) = Êt

[
log πθ(at | st)Ât

]
(2.18)

Because multi-step updates of this vanilla policy gradient method can often lead to
destructively large policy updates, learning from batch experience is often not possible.
TRPO solves this problem by limiting the policy update step to a safe stepsize using a
constraint at the cost of increasing the algorithms complexity and incompatibilities with
noise and parameter sharing [17]. PPO therefore simplifies this approach by introducing a
clipped surrogate objective. [16]

rt(θ) = πθ(at|st)
πθold

(at|st)
(2.19)

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)

]
(2.20)

2.5 Safe Reinforcement Learning

This section covers the concepts of SRL as described by García and Fern [18]. Although RL
and especially DRL algorithms can learn nearly optimal policies for MDPs by interacting
with the environment, it usually can not guarantee the safety of the agent and its sur-
roundings in high risk environments. For example, a physical robot is expensive to build
and should not be allowed to cause harm or damage to itself or its environment. For this
situations, SRL strategies have been developed, to provide better damage prevention in
this safety-critical applications.

There a two major strategies used in different forms for SRL. The first strategy modifies
the agents optimization criterion to contain some notion of risk. The second strategy
modifies the exploration process of the agent with external knowledge or a risk metric.

For the first strategy, there are three major modifications in use: The Worst-Case Cri-
terion, the Risk-Sensitive Criterion, the Constraint Criterion. Instead of optimizing for
the expected discounted cumulative reward, the Worst-Case Criterion optimizes for the
expected discounted cumulative worst possible reward, always assuming the worst state
transition to happen. The Risk-Sensitive Criterion allows the desired level of risk to be
controlled by a scalar parameter in the optimization criterion, using an exponential utility
function or a weighted sum of expected cumulative reward and risk. The Constraint Cri-
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terion might be especially relevant to this thesis because it formulates the problem as a
Constrained Markov Decision Process (CMDP). In a CMDP the objective is to optimize for
a given goal without violating the given constraints, restricting the policy space to a subset
of allowed policies. A possible way to solutions for the CMDP is the lagrangian relaxation
of the constrained optimization criterion into an unconstrained lagrangian expression, in-
cluding the constraints in the optimization criterion while preserving the original objective.

For the second strategy, the exploration process can be modified with external knowledge.
Initial knowledge can be used to bootstrap the learning agent, to switch to a fully greedy
exploration, exposing the agent to the most relevant state and action spaces. Exploration
can also be modified by deriving a policy from a finite set of demonstrations. Instead of
random examples, the agent learns from a set of given examples. It is also possible to use
external knowledge in form of a so called teacher, that follows the same goal as the agent
and assists the agent with training. Furthermore a risk metric can be used for risk-directed
exploration, determining the exploration probability for different actions by the risk of that
actions.
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3 R e l a t e d W o r k

3.1 DRL approaches to OPF

Solving OPF problems with DRL is an open field of research. Cao et al. [19] use PPO to
provide OPF control decisions in real time for a IEEE 33-bus system. In this approach, the
power system is modified to contain renewable energy generators and storage devices, to
better match the conditions of a real world application. It outperforms Stochastic Program-
ming and Double Deep Q-Learning but points out that ensuring constraint satisfaction
with SDRL needs to be studied in later works. To prevent constraint violations, Yan et
al. [20] successfully apply the Lagrangian relaxation method to the reward, transforming
the constrained OPF formulation into an unconstrained approximation objective using
Lagrange multipliers, resulting in penalties that do not conflict with the optimization goal.
This approach uses the DDPG algorithm with the interior point method for the gradient
approximation during training on a IEEE 118-bus system. Another approach is presented
by Zhou et al. [21], using PPO to solve AC-OPF without violating constraints. In this
approach, the agent is trained with the PPO algorithm, setting a penalty linear to the
amount and magnitude of constraint violations, replacing the optimization reward if viola-
tions occurred. When using Imitation Learning for the initialisation of the DNN, this has
shown to prevent constraint violations while improving computation time, compared to
the interior-point method. Woo et al. [22] apply the TD3 algorithm to solve the AC-OPF
problem in real time, demonstrated on a IEEE 118-bus system and using Gaussian noise
to represent uncertainties of renewable energy sources. The presented approach uses linear
penalties added to the reward for constraint violations, which can be detected at train-time
by solving the power flow equations. The results are compared to a MATPOWER AC-OPF
solver on a IEEE 118-bus system and match its performance at 30 times less computation
time. Nie et al. [23] use the DDPG algorithm to solve the OPF problem in real-time on a
small IEEE 9-bus system. In this approach, a quadratic penalty is added to the reward to
prevent constraint violations. The approach provides nearly optimal OPF solutions com-
pared to the MATPOWER OPF solver. Zhou et al. [24] solve the OPF problem using PPO
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on the Illinois 200-bus system with wind generation variation, replacing the optimization
objective with linear penalties if constraint violations occur.

All approaches examined use penalties as a strategy to avoid constraint violations. Two
major strategies, how a penalty can be applied to the reward function, can be identified. The
first strategy will be referred to as the summation method, which sets different penalty
coefficients for constraint violations added to the cost function, which are implemented as
lagrangian multipliers in [20], linear coefficients in [22] and quadratic coefficients in [23].

The second strategy, used in [21] and [24], will be referred to as the replacement method
and has different reward functions for different operating states. If the operational state
is valid, the reward is set as the optimality reward using the generation costs subtracted
from a high value (1000 for [24]). If constraints are violated, the linear constraint violation
penalties are replacing the optimality reward. If the solution is diverged, a super high
penalty of e.g. -5000 is used.

The Lagrangian based method in [20] utilises the Constrained Optimization Criterion
mentioned in Section 2.5, using a Lagrangian expression to transform the constrained
optimization criterion into an unconstrained expression. Therefore, [20] can actually be
classified as a SDRL approach with the penalties more sophisticated, but this is not explicitly
mentioned by the paper.

Although OPF problems and SRL are both open and wide fields of research, there is no
other SRL approach to OPF yet. However, as described in the next section, SDRL has been
successfully applied to other problems related to power systems.

3.2 SDRL approaches to CMDPs similar to OPF

In this section, different promising approaches of SRL to problems with similarities to the
OPF problem are reviewed, providing a basis to select from when choosing the approach
and algorithms used in the SRL implementation of this thesis. First of all, the criteria and
similarities to look for have to be defined. The main safety challenge of the OPF problem are
its constraints, making it describable as a CMDP. Therefore, the main focus of this analysis
is, to find SRL approaches that specifically aim to solve CMDPs with DRL, preferably within
the energy systems context. Currently, there are three papers that apply SDRL to CMDP
problems of energy systems, using variations of two very promising approaches. The first
approach is the Constrained Criterion mentioned in [18], using lagrangian relaxation to
transform the constrained objective into an unconstrained one. The second approach is
based on the Constraint Policy Optimization (CPO) algorithm, a PPO variation dedicated
to solve CMDPs with PPO.
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As found out in the last section Yan et al. [20] provided the only SDRL approach to the
OPF problem so far, using the Lagrangian relaxation method with DDPG to transform the
constraints into penalty coefficients in the objective function.

In [3], a SDRL approach is successfully used to solve the Volt-VAR problem, which
can be a partial problem of OPF as it aims to control voltage levels and reactive power
flow in power distribution systems subject to system constraints. The paper proposes
Constrained Soft Actor Critic (CSAC), a novel policy gradient method, that applies SAC to
CMDPs. CSAC combines the advantages of the SAC algorithm with the method of Lagrange
multipliers, relaxing the constrained CMDP objective into an unconstrained one. To be
able to calculate the Lagrange multipliers, the algorithm involves additional action-value
and state-value functions, separate from the optimality value functions, that represent the
constraint violations as their own state-values and action-values. Being a SAC method,
the algorithm enforces maximum policy entropy, the Q-functions for both optimality and
constraints are represented twice (Clipped Double Q-learning) and the value-function
updates are delayed to improve stability.

Another approach applying SDRL to a CMDP energy system problem is presented by Li
and He [25], solving the problem of Optimal Operation of Distribution Networks (OODN).
This method uses the CPO algorithm previously presented in [4], which exploits a recently
found connection of the difference in any return of two policies to an average divergence
between these policies. Using this to get an upper and lower bound for the difference in
policy performance between two policies, CPO modifies the PPO algorithm to introduce
worst case surrogate functions for the objective function and the constraints, that can be
easily evaluated from policy samples, to establish a trust region method that enforces an
upper tolerance bound on constraint violations. This method can guarantee both prevention
of constraint violations up to a small tolerance value as well as monotonic performance
improvements, but is not very sample efficient and on-policy, because it is based on PPO.
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4 M e t h o d o l o g y

This chapter first describes and justifies the general approach that is followed in this thesis.
The OPF simulator environments are described and the algorithms and frameworks are
selected that are used to conduct experiments and collect data on the research questions.
Finally, the strategies and algorithms used are explained in detail and the CTD3 algorithm
is introduced.

4.1 General approach

Ensuring constraints in DRL approaches to CMDPs with added fixed linear penalties can
come with the problem of having a trade-off between constraint satisfaction and policy
optimality. Wang et al. [3] makes this clear by stating: "if one simply augments the reward
with the product of a fixed penalty factor and constraint violation, then the learned policy
will be either too conservative or infeasible". This problem of fixed penalty factors is also
mentioned explicitly as a trade-off between reward and constraint cost in section 8.3 by
Achiam et al. [4].

This problem is therefore also to be expected with the summation method mentioned
in Chapter 3 that is used in many of the previous DRL approaches to OPF but not for the
replacement method used in the other approaches as explained later. Research Question 1
of this thesis is, how relevant this trade-off is within the OPF problem. To answer this and
to test the difficulty of finding the best penalty factor for every new OPF formulation, this
thesis first measures the relevance of this trade-off by systematically comparing the objective
and constraint performances of a variety of different penalty factors for the summation
method. A state-of-the-art DRL algorithm is set up for two simulated OPF environments
with different complexity and both the replacement method as well as the summation
method from the DRL OPF literature are implemented. This makes the performance of the
two penalty methods directly comparable within the OPF problem, which has not yet been
done within the DRL OPF literature. After investigating the relevance of the trade-off for
the summation method, the average performance of the replacement method is measured
and the penalty methods are compared in performance, to answer Research Question 2
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and test if the replacement method is a good trade-off free alternative to the summation
method.

Afterwards, Research Question 3 is answered, investigating if SRL strategies are suit-
able alternatives to the fixed penalty methods for DRL approaches to the OPF problem.
Therefore, a suitable and promising SDRL strategy is selected from the literature, applied
to the previously used DRL agent and then tested on the different OPF simulators. Using
the same base DRL algorithm, the objective performance and constraint satisfaction of the
SRL approach are directly comparable to the fixed penalty methods.

Finally the results of the conducted experiments are analysed and conclusions towards
the research questions are made. If the supposed trade-off of the summation method was
shown in the first experiment, it is examined if the replacement method or the SDRL
approach have improved or solved this problem in any way. If there has been no significant
trade-off in the first place, it is analysed if the replacement method or SDRL approach
has any other benefits or drawbacks compared to the summation method, for example
improved policy optimality or if they can provide any guarantees for constraint satisfaction.

4.2 Selection of the algorithms

In this section, the algorithms used in this thesis are selected. To make the results of the
different methods directly comparable, the fixed penalty methods and the SRL method
have to be implemented into a common base DRL algorithm. Because implementing a
full DRL algorithm is beyond the scope of this bachelor thesis, a selection of previously
implemented DRL algorithms is at hand: TD3, which has many similarities to SAC, and
Advantage Actor-Critc (A2C), which is a predecessor of PPO. The most promising SDRL
algorithms for this thesis are CSAC and CPO as they aim to solve the trade-off and can
provide guarantees for constraint satisfaction. CSAC is based on SAC and CPO is based
on PPO, so none of the possible base DRL agents are at hand. Therefore the alternatives
are, to either transfer the SRL strategy from CSAC or CPO to an algorithm at hand or to
modify one of the algorithms at hand to an implementation of SAC or PPO.

All experiments and training processes of this thesis are done on a Desktop PC with
limited computation power. To still be able to collect enough data for reliable conclusions
in the limited time span of this thesis, it is necessary to use an algorithm with a good
sample efficiency, that is able to learn nearly optimal behaviour within little amount of
training time. Because the power system simulators are slow on the Desktop PC as well,
an off-policy algorithm would also be preferable, to be able to let the agent learn from the
collected past interactions.
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PPO is an on-policy algorithm and less sample efficient than SAC and TD3, which are
off-policy, so CPO inherits this properties from PPO. The surrogate objective used in CPO
can not be easily applied to other algorithms than PPO, while the method of lagrange
multipliers used in CSAC is independent of the base algorithm and therefore more easily
transferable to one of the algorithms at hand. Therefore, the langrange relaxation approach
used in the CSAC algorithm is the chosen SRL strategy used in this work. This choice is
also expected to lead to higher performance, because CSAC has clearly outperformed CPO
in the Volt-VAR problem in both constraint satisfaction and policy optimality. [3]

As mentioned earlier, a working TD3 implementation is at hand which has many similar-
ities to SAC. There is no TD3 based SRL approach to energy systems yet, so this research
gap is a great opportunity to transfer the SRL strategy used by CSAC to the TD3 algo-
rithm, introducing a Constrained TD3 (CTD3) algorithm as a SRL variant of TD3. This
approach is followed in this thesis, so TD3 is selected as the base DRL algorithm used in
the experiments.

4.3 OPF Simulator Environments

The algorithms are tested in two different power system simulator environments of different
complexity. The less complex simulates a reactive power market base case with the objective
of minimizing reactive power costs and minimizing loss costs. The continuous actions in
this simulator environment are the reactive power settings of all generators. The agent can
observe the active and reactive power of the loads and the active power of the generators,
as well as the prices for reactive power of the generators. For the constraints, the first
simulator has limits for the voltage band, line/trafo load, min/max reactive power and
does not allow reactive power to flow over the slack bus.

The second simulator is of higher complexity and represents an economic dispatch prob-
lem, with the objective of minimizing active power costs and minimizing loss costs. In this
simulator, the actions are to set the active power of all generators and the agent can observe
the active and reactive power of all loads and the active power prices of all generators. The
constraints are limits for voltage band, line/trafo load and min/max active power limits.

The original rewards rt of the simulation environments at timestep t come in vector
form, with the first reward for the objective performance f(xt) of the current state xt and
multiple other rewards for each constraint violation ct,k(xt), k ∈ {1, ..., n− 1}.
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rt =


f(xt)
ct,1(xt)

...
ct,n−1(xt)

 (4.1)

The rewards are predominantly negative, because the objective is a cost function and
the constraint rewards are either zero or the negative amount of violation. For the penalty
methods, the reward vector is transformed into a scalar reward using the penalty function
of the currently investigated method. For the SRL method, the full reward vector is fed
into the agent to have both the optimality and constraint information at hand.

4.4 Implementation of the penalty methods

To measure the relevance of a trade-off between objective optimality and constraint satis-
faction as a problem of the summation method and to compare it with the replacement
method, the two different linear penalty approaches are implemented. The summation
method has the penalty function psum and the replacement method has the penalty func-
tion prepl. Both methods are transforming a reward vector rj , j ∈ {1, ..., n} into a scalar
reward, using a set of constraint penalty coefficients ψk, k ∈ {1, ..., n − 1} and for the
summation method the common penalty factor ϕ .

psum(r) = r1 + ϕ ·
n∑

i=2
ψi−1 · ri (4.2)

prepl(r) =


∑n

i=2 ψi−1 · ri if violations occurred

1000 + r1 otherwise
(4.3)

The summation method weights each constraint violation with a linear penalty, here
the product of penalty factor and penalty coefficient ϕ ·ψk, such that constraint violations
reduce the overall reward of the agent. The replacement method has different rewards for
different states of operation: If no violations occur, a high value is added to the objective
reward, with 1000 being the value used in all previous approaches. If violations occur,
the reward drops to a small value that is a weighted sum of the constraint violations. It
is worth noting, that for the replacement method, constraint satisfaction is always more
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important than objective performance, because with violated constraints the reward is of
magnitudes smaller and not representing the objective anymore.

For the summation method, the penalty coefficients are balancing the importance of
the different constraints to represent all constraint violations with a single value, which
is then scaled by the penalty factor. This is a formal modification to the original method
used in the literature and is introduced to seperate two problems of different relevance:
the trade-off between constraint violations and policy optimality controlled by ϕ, which is
of high interest for this thesis, and the weighting of the different constraints against each
other. The ladder is less relevant to this thesis, as weighting the importance of different
constraints against each other is not the research goal of this thesis and requires more
in depth knowledge about the energy system, which is beyond the scope of this bachelor
thesis. The coefficients can therefore be set by trial and error to result in penalized values
of similar magnitude, which represents equal importance.

It is highly expected, that with the replacement method, no trade-off exists at all, because
the constraint violation penalty factor is never effecting the optimality reward, there is no
weighting between constraint satisfaction and optimality and the constraint satisfaction
always has to be ensured first. Even with very low penalty factors the reward drops in
magnitudes from a high objective value around 1000 to a low violation value below 0,
which is assumed to be leading to very similar behaviour as using the summation method
with high penalty factors. Therefore the trade-off is only investigated for the summation
method, but after finding the best penalty factor, the replacement method is tested and
compared with the summation method.

4.5 Implementation of CTD3

To transfer the SRL strategy used in CSAC from SAC to TD3, the differences between SAC
and TD3 have to be considered. The main difference is, that SAC uses a stochastic policy
while TD3 on the other hand uses a deterministic one. Another difference is the entropy
maximization SAC proposes, adding an entropy term to the objective. The original SAC
algorithm used in CSAC also learns an additional state value function which is left out by
more recent versions of the SAC algorithm and not used with TD3. SAC and TD3 have in
common, that they both use clipped double Q-Learning and delayed target updates.

4.5.1 Constrained SAC

In the following, the CSAC algorithm is explained in detail, to be able to transfer its inner
workings to the TD3 algorithm.
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CSAC uses a lagrange relaxation to learn a lagrange multiplier, which is used like a
penalty factor in the summation method, linearly penalizing constraint violations in the
relaxed Lagrangian objective. CSAC learns a Q-function for the Lagrangian reward and
another Q-function for the constraint violation reward. The lagrange multiplier is then
updated towards the minimal penalty factor necessary to reach constraint satisfaction
within a given violation tolerance.

For SAC, V π
h is the value function for the objective function of the CMDP, with the

entropy maximization term H(π(·, st)) from SAC added.

V π
h (s) = E

τ∼π

[
T∑

t=0
γt(Rt + αH(π(·, st))) | s0 = s

]
(4.4)

Within the maximum entropy framework of SAC, the optimal policy for the CMDP can
be obtained by solving the following constrained optimization problem. D is the buffer
of historical operation data and V c,π is the value function for the constraint violation Rc

with V c being an upper limit to a tolerated value of constraint violation.

π∗ = max
π

E
s∼D

[ V π
h (s) ] , s.t E

s∼D
[ V c,π(s) ] ≤ V c (4.5)

CSAC uses a lagrange relaxation to transform the constrained optimization problem
into an unconstrained one, by maximization of the relaxed Lagrangian objective L using a
lagrange multiplier λ to penalize constraint violations. V l,π

h is the value function associated
with the Lagrangian objective.

V l,π
h (s) = E

τ∼π

[
T∑

t=0
γt ( Rt − λRc

t + αH(π(·, st)) ) | s0 = s

]
(4.6)

Ql,π
h (s, a) = E

τ∼π

[
R0 + γV l,π

h (s1) | s0 = s, a0 = a
]

(4.7)

L(π, λ) = E
s∼D

[ V π
h (s) ] + λ

(
V c − E

s∼D
[ V c,π(s) ]

)
= E

s∼D

[
V l,π

h (s)
]

+ λV c
(4.8)

With V c being a constant, maximizing the Lagrangian means maximizing the Value
function associated with the Lagrangian.
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π∗ = max
π

L(π, λ) = max
π

E
s∼D

[
V l,π

h (s)
]

(4.9)

With the method of multipliers, the lagrange multiplier λ can be updated iteratively,
with δλ being the learning rate of the update step. At k-th iteration, the optimal policy
πk is obtained for the current λk by maximizing L(·, λk).

λk+1 =
[
λk + δλ

(
E

s∼D

[
V c,πk(s)

]
− V c

) ]+
(4.10)

In CSAC the lagrange multiplier and the policy and value networks are updated concur-
rently in the update step of the algorithm. With finite episodes, convergence can be proven
with lambda update steps smaller than the learning rate of the policy network.

CSAC approximates V l,π
h , Ql,π

h , V c,π and Qc,π with neural networks using clipped double
Q-Learning for both Q-functions. The Q-functions are updated using the current value
functions and the value functions are updated using the current Q-functions.

4.5.2 Constrained TD3

With TD3 having a deterministic policy, the entropy maximization term can be removed
from the value functions, resulting in simpler value functions for V l,π and Ql,π.

V l,π(s) = E
τ∼π

[
T∑

t=0
γt ( Rt − λRc

t ) | s0 = s

]
(4.11)

Ql,π(s, a) = E
τ∼π

[
R0 + γV l,π(s1) | s0 = s, a0 = a

]
(4.12)

Because TD3 uses a deterministic policy and the state-values can be easily obtained from
the Q-values, CTD3 only learns the Q-functions Ql,π and Qc,π with both clipped double
Q-learning and uses them to obtain the value functions V l,π and V c,π, using the average
Q-value of the current learned on experience batch B with actions chosen with the current
policy π.

V π(s) = E
τ∼π

[ Qπ(s0, π(s0)) | s0 = s ] (4.13)

≈ 1
|B|

∑
B

Qπ(s0, π(s0)) (4.14)
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The core modifications of CTD3, compared to the base TD3 algorithm, are first the
replacement of the reward Rt at timestep t, the TD3 Q-function is normally learned on,
by the relaxed lagrange reward Rl

t and second the learning of another Q-function on the
constraint violation reward Rc

t . Because in the simulators used in this work only one of the
constraints is violated often, the CTD3 algorithm is simplified to use a single reward for
all constraint violations, calculated as the weighted sum of the violation rewards from the
reward vector rt,i, i ∈ {1, ..., n}. The weights ψi−1 are analogous to the penalty coefficients
in the penalty methods and are used to scale violations of the different constraint to a similar
magnitude. For more complex environments, it is also possible to train the Q-function
on all constraint rewards or even train an own Q-function and lagrange parameter for
every constraint reward, if this simplification is not suitable. However, in this thesis a more
complex architecture would make training even more time consuming, because training is
done on a Desktop PC with limited computation power, therefore the simplification. The
following shows how the reward vector rt,i, i ∈ {1, ..., n} from the simulator is transformed
into the CTD3 rewards.

Rt = rt,1

Rc
t =

n∑
i=2

ψi−1rt,i

Rl
t = Rt + λRc

t

(4.15)

All Q-functions are learned by minimizing their mean squared error, both using the
clipped double Q-Learning trick and both using delayed target updates and soft target
updates as used in base TD3.

Using clipped double Q-learning, both Q-functions are represented with two DNNs each,
resulting in two sets of Q-networksQϕ1 = {Qϕc

1
, Qϕl

1
} andQϕ2 = {Qϕc

2
, Qϕl

2
}, parameterized

by ϕl for the lagrange objective and by ϕc for the constraints. The policy network πθ,
parameterized with θ, is updated with gradient ascend towards the policy π̂ that maximizes
the expected lagrange Q-values of the batch, as estimated by the current Q-networks.

π̂ = arg max
π

E
τ∼π

[
Qϕl(s0, π(s0)) | s0 = s

]
(4.16)

Like with base TD3, the Q-value targets Q̂l and Q̂c are obtained by using the current
policy network πθ, for temporal difference learning on a random batch from the experience
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buffer, which for CTD3 is extended to contain the whole reward vectors received from the
environment.

Q̂l(st, at) = Rl
t +Qϕl(st+1, πθ(st))

Q̂c(st, at) = Rc
t +Qϕc(st+1, πθ(st))

(4.17)

The Q-networks as well as the policy network are learned using soft target updates to
decrease variance and stabilize learning. Soft target updates manage a copy of every DNN,
that is used instead of the actual networks and slowly updated towards the parameters ϕ
of the trained network, using a weight ρ ∈ (0, 1).

ϕtarg = (1 − ρ)ϕtarg + ρϕ (4.18)

The are some additional modifications made in CTD3 to stabilize the learning of the
λ-parameter further, to reduce problems that are observed in test runs of the algorithm.
The first modification is, to delay the start of λ-learning process to a learning step, where
the Q-functions have already converged to a good approximation. For training runs with
25000 episodes this point of time is set 1500 episodes after Q-function learning started
and for training runs with 50000 episodes λ-learning starts 3000 episodes after Q-function
learning started. This avoids having extremely high λ-learning steps at the beginning of
training, because the first estimated constraint Q-values can be extremely high, which
leads to extremely high constraint state-values and therefore high λ-learning steps and
far too high λ values. This is often not recoverable, because the high λ values result in
high Lagrange Q-function losses and destructive policy updates, which again result in high
constraint Q-value losses. Delaying λ-learning to start learning after the Q-functions have
settled, solves this feedback-loop.

Another modification made to balance λ-learning is intended for constraints, that can
reach very high violation values at start of λ-learning. The solution is, to clip the λ-
learning gradient to a small maximal stepsize ϵ. This allows to set a higher λ-learning
rate δλ necessary to reach high constraint satisfaction within short training runs, without
having the λ-parameter grow out of bounds at start of λ-learning.

λk+1 =
[
λk + CLIP

(
δλ

(
E

s∼D

[
V c,πk(s)

]
− V c

)
, −ϵ, ϵ

) ]+
(4.19)
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5 E x p e r i m e n t a l s e t u p

To answer the three research questions, three experiments are conducted. To answer Re-
search Question 1, the first experiment investigates the relevance of the trade-off by testing
the given TD3 DRL agent with the summation method using a variety of different penalty
factors. If the trade-off is relevant, high penalty factors should lead to high constraint
satisfaction at cost of low objective optimality and low penalty factors should achieve the
highest objective optimality at cost of high amounts of constraint violations. The trade-off
is only investigated for the summation method, because the experiment of trying many
penalty factors is very time consuming and the replacement method is highly expected to
have no trade-off at all, as explained earlier. The second experiment is set up to answer Re-
search Question 2, investigating the potential of the replacement method as an alternative
to the summation method. The performance regarding objective optimality and constraint
satisfaction of the replacement method is compared to to the performance of the summa-
tion method to find the most effective commonly used constraint satisfaction strategy. To
answer Research Question 3, the promising SDRL strategy of a learned lagrange multiplier
is tested by implementing the proposed CTD3 algorithm by extending the previously used
TD3 agent. In the third experiment the performance of CTD3 is compared to the fixed
penalty methods, testing if SDRL methods can achieve more effective constraint satisfaction
or guarantees for constraint satisfaction.

5.1 General setup

The experiments are conducted based on a TD3 algorithm previously implemented in
python using pytorch [26]. The hyperparameters of the algorithm are set the same for all
three conducted experiments. Both the actor network as well as the critic networks have
two hidden layers with 500 neurons each. The optimizer of the networks is set to Adam
[27] and the networks losses are mean squared error losses. For the actor, the learning rate
is 0.0001 and for the critic it is 0.0001.
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5.2 Experiment 1: Investigation of the trade-off for the

summation method

For the summation method, an experiment is set up, that systematically runs s ∈ {1, ...,M}
sub experiments, such that the penalty factor ϕs doubles with every experiment, starting
with start value ω. For every sub experiment s, five training sessions are conducted then,
to provide enough reward data for each penalty factor. An exponentially increasing reward
is chosen, because this allows comparing the effects of a wide range of penalty factors in a
very efficient way.

ϕs = ω · 2s−1 (5.1)

The experiment is conducted on two OPF simulators of differing complexity. With
ω = 0.04 and M = 10 the penalty factor covers values between 0.04 and 20.48. With
five training session per experiment, there is enough data to draw conclusions, without
having a time expenditure too high for the scope of this thesis. On the simplest simulator
5000 training steps are used, 10000 on the more difficult simulator and 20000 on the most
difficult one, because the more complex the simulator, the more time the agent needs to
learn. The full reward history of each training session is saved to disk in CSV-format, using
the original reward vectors from the simulation environment, to have a common metric
between all experiments. The results are analysed by first averaging each rewards over the
last 10% of training steps to get a final average performance for every reward after each
training session. The final performances of the five training sessions of each penalty factor
are then again averaged, to get the average final rewards for every penalty factor.

If the supposed trade-off is relevant, the optimality reward should get more negative
(higher cost) with an increasing penalty factor and the constraint violation value should
get closer to zero.

5.3 Experiment 2: Comparison between the summation

and the replacement method

Because the mentioned trade-off is not to be expected for the replacement method, it could
be a good alternative to the summation method, if the policy optimality is comparably high.
But this is not very likely, as with the replacement method, the constraint satisfaction is
always more important to the agent then the policy optimality, so it is expected to behave
like a very high penalty factor. On the other hand, the policy gradient is never distorted by
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the penalties, which might allow the replacement method to converge to a more optimal
policy than the summation method. To investigate this, an experiment is set up to test
the average performance of the replacement method both OPF simulator environments.
For every simulator, five training sessions are conducted with 10000 steps for the most
simple simulator, 25000 steps for the more complex simulator and 50000 steps for the most
complex one. The higher number of training steps is chosen, because in contrast to the 150
training sessions conducted in Experiment 1 (10 · 5 = 50 for each simulator), Experiment 1
only conducts 15 training sessions so time is less relevant. Furthermore, the value function
approximations need some time to reach the high values over 1000, so the replacement
method is expected to converge slower. Because the results with more training steps are
not directly comparable with the results from Experiment 1, Experiment 2 is conducted
again for the summation method but with a penalty factor that had the best trade-off in
Experiment 1. For both methods, the rewards are saved to disk in CSV format and the
average training rewards for both objective and constraints are averaged over all 5 sessions
and over the last 10% of training steps of each session to get an approximation of the final
performance.

5.4 Experiment 3: Constrained TD3

To test the objective and constraint performances of CTD3, an experiment comparable to
Experiment 2 is conducted that trains the CTD3 agent five times for each simulation envi-
ronment. The results have to be directly comparable to Experiment 2, so hyperparamters
and training duration remain unchanged. The additional CTD3 hyperparameters are set
as following: The lagrange multiplier λ is initialized to zero, as recommended in the CSAC
paper [3]. For the lower complexity simulator, the lagrange multiplier learning rate δλ is set
to 0.005 and the upper limit for the lagrange multiplier update step ϵ is set to 0.002. For the
higher complexity simulator, δλ is set to 0.001 and ϵ is set to 0.0001. This hyperparameters
are found by trial an error in test runs to result in a slowly increasing λ-parameter that
still increases fast enough to reach convergence to the best penalty factor during the 25000
and 50000 training steps. The tolerated value of constraint violation V c is set to 0.05 for
both simulators, lower then the average violation of the best results of the penalty methods
but not too small as this can make the lagrange multiplier grow out of bounds, resulting
in too conservative policies. The learning of the lagrange multiplier is delayed to start
after 3000 training steps, because this allows the Q-function networks to settle for a good
approximation before the lagrange learning starts. This also allows the agent to first learn
the objective and then slowly begin to consider the constraints as well.
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Again, the rewards are saved to disk in CSV format and the final performance for both
objective and constraint satisfaction is averaged over all ten sessions and over the last
10% of training steps. Afterwards the average total performance of the CTD3 algorithm
regarding objective and constraint satisfaction can be compared to the penalty methods
and it can be discussed, how and if CTD3 has solved the trade-off problem mentioned
earlier and if CTD3 can provide guarantees for constraint satisfaction.
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6 R e s u l t s

The following sections describe the results of the experiments in detail. For every experi-
ment, first some important observations from the training processes of the used method
are provided, followed by the final result data of each experiment.

6.1 Experiment 1: Investigation of the trade-off for the

summation method

6.1.1 Training process

For both simulator environments 50 training session are run, resulting in a total of 100
training sessions. On the used Desktop PC, a low complexity simulator training session
with 10000 training steps takes on average 10 minutes and a high complexity simulator
training session with 20000 training steps takes on average 20 minutes, so the full training
process of Experiment 1 has a time expenditure of roughly 1500/60 = 25 hours. Figure 6.1
show the performance progression of the objective reward and the constraint violations
scaled by the penalty coefficients of four training sessions, having both the lowest and
highest penalty factors of 0.04 and 20.48 on both simulators. The original reward data has
very high variance, so the graphs show the mean rewards of the last 300 episodes. At the
first 1000 training steps, training has not yet started and the agent is filling the experience
buffer, so the performance is very low and no improvement is observable. Afterwards,
training begins and a short drop of performance happens and then the curves quickly move
to a high level of performance that is then slowly improved upon. With the low penalty
factor, the constraint violations occur more often but the average objective reward reaches
higher levels than with the high penalty factor. The high penalty factor on the other hand
results in minimal amounts of constraint violations but with worse objective performance.
In the high complexity simulator the highest penalty factor even leads to both extremes,
perfect constraint satisfaction but with the objective performance staying on the initial
level.
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(a) Penalty factor 0.04 on lower complexity Simulator

(b) Penalty factor 0.04 on higher complexity Simulator

(c) Penalty factor 20.48 on lower complexity Simulator

(d) Penalty factor 20.48 on higher complex-
ity Simulator

Figure 6.1: Selection of training sessions of Experiment 1: Average objective and constraint
rewards of a gliding window of the last 300 training steps using the summation
method with a low penalty of 0.04 and a high penalty of 20.48 on two simulators
of different complexity.
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6.1.2 Final results

The final results of Experiment 1 show a significant trade-off between objective optimality
and constraint satisfaction. Figure 6.2 shows the average final 10% training objective costs
and constraint violations of the summation method over a range of ten different penalty
factors, exponentially growing from 0.04 to 20.48. The figure shows the costs and violations
as positive values in contrast to the negative reward value that are used in the results of
the other experiments.

The higher complexity simulator shows the most significant trade-off. With the lowest
penalty factor the best average objective cost 0.31 is reached but the average constraint
violations are very high at 0.15. With increasing penalty factor, the objective performance
gradually worsens and the constraint satisfaction improves. The highest penalty factor then
comes with perfect constraint satisfaction with 0 average violations, but has an objective
cost of 3.3, ten times worse than with the low penalty.

On the lower complexity simulator the trade-off is less significant. The objective cost
stays between 2.0 and 2.5 while the constaint violations improve from 1.66 to 0.24 until the
penalty factor reaches 5.12. Afterwards, the objective costs drop to 3.62 as the constraint
violations stay roughly the same around 0.24.

(a) Lower complexity OPF Simulator (b) Higher complexity OPF Simulator

Figure 6.2: Final results of Experiment 1: Penalty factor trade-off between average amount
of constraint violation and average OPF objective cost, tested on two simulators
of different complexity.



40 results

6.2 Experiment 2: Comparison between the summation

and the replacement method

To measure and compare the average performance of both methods, five training sessions are
run for both the summation method with the best penalty factor as well as the replacement
method with 25000 steps on the lower complexity simulator and 50000 steps on the higher
complexity simulator, with a total time expenditure of around 12.5 hours. The penalty
factor of the summation method is set to 5.12 for the lower complexity simulator and to
1.28 for the higher complexity simulator, as they have the most balanced compromise in
the trade-off between optimality and constraints, according to the results of Experiment 1.
The performance metric in this section is the average final training reward, so in contrast
to the results of Experiment 1, the performance values shown here are always negative.

6.2.1 Training process

In the training processes shown in Figure 6.3, some differences between the summation
method and the replacement method are observable. With the summation method, the con-
straints come to a high performance of −0.3 first, shortly followed by a moderate objective
performance between −3 and −4 that slowly improves to a high performance around −2.3.
With the replacement method on the other hand, constraint and objective performance
start to rise simultaneously but shortly followed by a drop in objective performance to a
low value around −7. The objective performance never reaches a very high level but slowly
improves to a slightly better low value of −5, while the constraint performance reaches
high values on the same level as the summation method around −0.3.

6.2.2 Final results

The results Experiment 2 are presented in Table 6.1. The replacement method reaches far
lower objective rewards than the summation method, with −3.83 compared to −2.33 for
the lower complexity simulator and −3.32 compared to −0.66 for the higher complexity
simulator. For the constraint satisfaction, both methods reach roughly the same average
reward of −0.29 on the lower complexity simulator but different rewards on the higher com-
plexity simulator, with the replacement method reaching −0.013 for the first constraint and
0.0 for the second, whereas the summation method reaches −0.016 for the first constraint
and −0.0066 for the second.
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(a) Summation method

(b) Replacement method

Figure 6.3: Selection of training sessions of Experiment 2: Average objective and constraint
rewards of a gliding window of the last 300 training steps using the summation
method with penalty of 5.12 and the replacement method on the lower com-
plexity OPF simulator.

Simulator type Low complexity High complexity
Reward objective constraint objective constraint 1 constraint 2
Summation method −2.33170 −0.28746 −0.65634 −0.01627 −0.00660
Replacement method −3.83137 −0.28978 −3.32034 −0.01258 0.0

Table 6.1: Experiment 2: Average final 10% of training rewards of the replacement method
compared to the summation method with selected penalty factor, for both objec-
tive and constraint satisfaction. The experiment is run on two OPF simulators of
different complexity with 25000 training steps for the low complexity simulator
and 50000 training steps for the high complexity simulator
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6.3 Experiment 3: Constrained TD3

The new CTD3 algorithm is tested on the low complexity simulator with 25000 training
steps and on the high complexity simulator with 50000 training steps.

6.3.1 Training process

(a) Summation method

(b) CTD3 method

Figure 6.4: Selection of training sessions of Experiment 3: Average objective and constraint
rewards of a gliding window of the last 300 training steps using the summation
method with penalty of 5.12 and the CTD3 algorithm on the lower complexity
OPF simulator.

The training process of CTD3 is shown in Figure 6.4. There is one central difference
to the training process of the summation method: The constraint performance of the
summation method reaches a high level right after start of training, while in the CTD3
algorithm the constraint performance first rises to a very low level of −3.5 but after the
start of lambda learning, it jumps to a very high level of −0.4, close to the final level of
−0.3. The objective performance on the other hand is not delayed as in the summation
method and reaches a high level around −2.5 right after training started.
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Although the lagrange multiplier development is not recorded as result data, the train-
ing console outputs the current lagrange multiplier and the current expected constraint
violation from the additional Q-functions. It is observable, that the Q-function constraint
violation expectations are far smaller than the actually happening constraint violations
and that the lagrange multiplier stops growing before the accepted violation tolerance is
reached. The mean error of the constraint Q-functions is between 0.5 and 1.0.

6.3.2 Final results

In Table 6.2, the final results of Experiment 3 are presented. On the lower complexity
simulator, CTD3 achieves slightly higher average final objective rewards of −2.28 compared
to the summation method with −2.33. It also comes with slightly higher constraint satis-
faction of −0.27 compared to −0.29 of the summation method. On the higher complexity
simulator, the objective performance is lower, reaching −0.74 with CTD3 and −0.66 with
the summation method, but the constraint satisfaction is higher, achieving −0.011 com-
pared to −0.016 for the first constraint and −0.0003 compared to −0.0066 for the second.
Except for the constraint 2 violations, CTD3 outperforms the replacement method in all
rewards on both simulators.

Simulator type Low complexity High complexity
Reward objective constraint objective constraint 1 constraint 2
Summation method −2.33170 −0.28746 −0.65634 −0.01627 −0.00660
Replacement method −3, 83137 −0.28978 −3.32034 −0.01258 0.0
CTD3 algorithm −2.28032 −0.27302 −0.74297 −0.01106 −0.00028

Table 6.2: Experiment 3: Average final 10% of training rewards of the CTD3 algorithm
compared to the summation method with selected penalty factor and the replace-
ment method, for both objective and constraint satisfaction. The experiment is
run on two OPF simulators of different complexity with 25000 training steps for
the low complexity simulator and 50000 training steps for the high complexity
simulator
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7 D i s c u s s i o n

In this chapter, the implications of the experimental results are analysed to answer the
research questions of this thesis, investigating if the research goals are reached. Previously
made expectations are compared with the results and possible explanations for some
of the results are provided. The approaches taken in this thesis are reflected upon and
its advantages and disadvantages are discussed. Finally the limitations of this work are
explained as well as unanswered questions and newly opened research gaps for following
work.

The research goal of this thesis is to find more effective constraint satisfaction strategies
for DRL approaches to the OPF problem. As defined in Chapter 1, this thesis aims to
answer the three research questions:

Research Question 1:
How relevant is a trade-off between objective performance and constraint
satisfaction for the fixed penalty DRL approaches to the OPF problem?

Research Question 2:
Which advantages and disadvantages regarding effective constraint satisfaction

does the replacement method have, compared to the summation method?

Research Question 3:
Which advantages and disadvantages regarding effective constraint satisfaction
do SDRL approaches have for the OPF problem, compared to the fixed penalty

methods?

7.1 Literature and expectations

Some theoretical results can be deduced from the literature in Chapter 3, which are
important for the research questions as they provide a basis for important expectations.
First, most of the previous approaches use fixed penalty functions to achieve constraint
satisfaction, only one approach used a lagrange relaxation. Second, two SRL papers suggest
that fixed penalty methods come with the drawback of a trade-off between objective
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and constraints [25], [4]. It is highly expected, that the same problem is also relevant
to the previous DRL approaches to OPF. Third, both mentioned SRL papers provide
SDRL algorithms for CMDP, CSAC and CPO, that are designed to solve or avoid the
trade-off, showing higher overall performance compared to fixed penalty methods in other
CMDPs. Therefore, the CSAC and the CPO algorithms are highly expected to also achieve
more effective constraint satisfaction for the OPF problem, compared to the fixed penalty
methods.

7.2 Interpretation of the experimental results

The first two experiments clearly demonstrate the drawbacks of the constraint satisfac-
tion strategies of previous approaches. Confirming the previously made expectations, the
trade-off between policy optimality and constraint satisfaction is demonstrated with both
simulator environments when using the summation method, which makes finding the best
penalty factor a time consuming optimization problem in itself.

As seen in Experiment 1, high penalty factors correlate with high levels of constraint
satisfaction but low objective performances, while low penalty factors correlate with low
constraint satisfaction and high objective performance. Because every penalty factor is
tested 5 times and the penalty factor is the only parameter that changes between the
training sessions, it is safe to interpret this correlation as a causal. This implies, that high
overall performance is only possible if the penalty factor is set to optimally balance the
trade-off between objective and constraints, which is not trivial to find. Therefore, the
answer to Research Question 1 is, that the trade-off is highly relevant for applications of
the summation method to OPF problems.

Experiment 2 shows, that although the replacement method avoids the problem of having
to find the right penalty factor, it is not a very effective constraint satisfaction strategy
either, because it behaves just like the summation method with a very high penalty factor,
having high constraint satisfaction at cost of very low objective performance. Therefore,
the replacement method has the advantages of high constraint satisfaction and that it
avoids finding the best penalty factor, but the disadvantages of having far lower objective
optimality and less control over the trade-off, which answers Research Question 2.

The most likely explanation for the trade-off is the statement made by Wang et al. [3]
that high penalties lead to policies that are too conservative, avoiding to choose actions
that get close to constraint violations, although they may lead to the highest objective
rewards within the constraints. Furthermore, the global optimum of the objective function
probably does not lie within the constraints, which can make it profitable for the agent to
violate constraints if low penalty factors are used. This also means, that the best objective
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performances found in the experiments are probably only achievable with high constraint
violations, whereas the optimal OPF solutions within the constraints can have far lower
performances.

Experiment 3 shows, that the proposed CTD3 algorithm can solve OPF with slightly
more effective constraint satisfaction than the summation and the replacement method.
Compared to the best penalty factor summation method, it reaches both higher objective
performance and slightly higher constraint satisfaction on the lower complexity simulator
and higher constraint satisfaction and still comparably high objective performance on the
high complexity simulator. A comparable performance is achieved on both simulators,
because the lagrange multiplier is updated to converge towards the most optimal penalty
factor, that can guarantee constraint satisfaction within a given violation tolerance. The
main advantage of CTD3 therefore is, that it can automatically find the optimal penalty
factor, making it unnecessary to find it by hand for every new OPF problem. The lower
objective performance in the high complexity simulator indicates that the trade-off might
still be relevant with CTD3. An explanation for this is, that the summation method is
only able to reach higher objective performance, because it has higher constraint violations
and the higher objective rewards lie outside of the constraints. Therefore it is difficult
to know the highest objective performance that is reachable within the constraints and
it is still possible that the objective performance of CTD3 is in fact near optimal within
the constraints. However, the relevance of the trade-off is measurably reduced with CTD3:
On the lower complexity simulator, CTD3 achieves higher objective performance with at
least the same level of constraint violations as the summation method and on the high
complexity simulator CTD3 achieves near perfect constraint satisfaction comparable to the
replacement method with still very high objective performance. A possible explanation
for this is, that the delayed start of the penalty learning leads to more optimal policies.
In theory, a policy that is learning the objective first and then begins to learn constraint
satisfaction, should reach higher objective performance faster than a policy that learns
constraint satisfaction first, because it is easier to find the local optimum within the
constraints after the global optimum of the objective function has already been found.
The summation and replacement method both start learning constraints and objective
simultaneously, so this is an important difference. The results of Experiment 3 answer
Research Question 3: The CTD3 SDRL algorithm has the advantage of more effective
constraint satisfaction, reaching both high levels of constraint satisfaction and objective
performance without having to find the best penalty factor by hand. The disadvantage of
CTD3 is, that the new λ-learning rate and constraint violation tolerance hyperparameters
have to be tuned by hand to reach high constraint and objective performance.
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With the results of the three experiments, the research questions are answered. The trade-
off between constraint satisfaction and objective optimality is shown as highly relevant for
the summation method. The replacement method is analysed as being too conservative so
it is not a more effective constraint satisfaction strategy than the summation method. The
potential of SRL for this problem is measurably demonstrated. CTD3 as a simplified TD3
version of CSAC is presented by transferring its SRL strategy to the CTD3 algorithm, and
shown as a suitable approach to the OPF problem as it reaches both high constraint satis-
faction and objective performance. The research goal of finding more effective constraint
satisfaction strategies is therefore reached, because with CTD3 the trade-off is less relevant,
so this is an example, how more effective constraint satisfaction is possible using SRL.

7.3 Limitations of this work

Although the research goals are reached and the results of the experiments are significant,
it is important to note the limitations of this work. First of all, there are important
technical limitations. The experiments have only be conducted on two energy simulators,
so other simulators might lead to different results. Furthermore, the training of the neural
networks is done on CPU using a desktop PC with limited computation power. Because
the conducted experiments are very time consuming, the neural networks are not very
large, having only two layers of 500 neurons each. To verify the findings of this thesis,
the results have to be reproduced with more complex power simulators and more complex
neural networks that can be trained on compute clusters.

For the CTD3 algorithm, there are some important limitations, too. First of all, the
CTD3 algorithm is at its core a penalty method comparable to the summation method.
The main differences are the automated learning of the penalty factor and the delayed
learning of the constraints. Therefore, the trade-off problem might still be relevant to the
CTD3 algorithm. Although CTD3 can provide limited guarantees for constraint satisfaction,
it can not provide a general guarantee of finding an optimal policy. An important problem
found in the experiments of the CTD3 algorithm is, that the Q-function estimators for the
constraints have high losses, which lead to underestimated constraint violation Q-values
being used in the lagrange update step. This results in the problem, that the penalty factor
stops growing before the constraint tolerance is reached. This can be easily solved by setting
the constraint tolerance to a smaller value, but it is not clear how small the value has to be
set to achieve the intended constraint satisfaction guarantee. This problem might be related
to the used small neural networks, that might not be able to represent the complexity of
the constraints, so larger neural networks might fix this problem. Another reason for this
problem might be the fact, that CTD3 simplifies CSAC by not learning the state-value
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functions and approximating them with the Q-function. Therefore a reintroduction of the
additional state-value function could solve this problem. From a theoretical standpoint,
the CTD3 algorithm can provide guarantees for constraint satisfaction, if the constraint
Q-function estimators are precise enough.

7.4 Open questions

Experiment 1 has shown, that the trade-off of the summation method is much more
significant for the more complex OPF simulator than for the less complex simulator. This
indicates that the significance of the trade-off is related to the complexity of the used
OPF-formulation. Therefore, an interesting newly opened research question is, how the
relevance of the trade-off is related to the complexity of the OPF formulation.

This thesis does not implement the original CSAC algorithm but a simplified TD3 version
of it. Therefore, an important question is, if the original CSAC algorithm can provide even
more effective constraint satisfaction for the OPF problem.

Another important question is, how CTD3 compares to the summation method, if every
constraint has its own penalty factor, especially important in OPF formulations with a
large number of easily violated constraints. The CTD3 algorithm could learn a lagrange
multiplier for every constraint and therefore avoid a multi-dimensional trade-off, that is
expected to be far more time consuming to solve by hand.

Unfortunately, the theoretical guarantees for constraint satisfaction of CTD3 are not
realized in this thesis, because the Q-function network losses are too high. This could be
easily solved with more computational power and larger neural networks. So the question
arises, how the CTD3 algorithm scales compared to the summation and the replacement
method.

It is also not clear, how CTD3 achieves the reduced relevance of the trade-off. A possible
explanation is, that it makes a difference in which order multiple tasks are learned by
a neural network, because the order determines the gradient descend/ascend trajectory
of the network parameters through the optimization landscape. In case of OPF a policy
network that has already found the global optimum of the objective function might be
closer to the constrained local optimum than a policy network that is only capable of
avoiding constraint violations. It is an open question if this is true but the answer probably
has broad implications for other DL problems with multiple tasks as well.
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8 C o n c l u s i o n

After conducting three experiments, this thesis shows that more effective constraint satis-
faction is necessary for DRL approaches to the OPF problem and that it can be improved
with SRL strategies. In Experiment 1 and Experiment 2, the fixed penalty function methods
used in most previous approaches are applied to the TD3 algorithm and tested on two
different OPF simulators. The experiments show how both methods suffer from a trade-off
between policy optimality and constraint satisfaction. In Experiment 1, the commonly used
summation method is tested with a variety of different penalty factors, showing that finding
the optimal penalty factor is difficult and that the method comes with either suboptimal
policies or unacceptable amounts of constraint violations. As expected, high penalty fac-
tors lead to a policy that is too conservative and low penalty factors lead to unacceptable
amounts of constraint violations. Experiment 2 shows how the same trade-off is inherent
to the other commonly used replacement method, that can achieve high performance for
constraint satisfaction but at cost of a highly suboptimal policy. The replacement methods
behaves like the summation method with a very high penalty factor, with the summation
method with a optimally chosen penalty factor being the most effective commonly used
constraint satisfaction strategy. After demonstrating the need for more effective constraint
satisfaction strategies, a first promising candidate is implemented. The lagrange multiplier
SRL strategy used in the CSAC algorithm is transferred to the TD3 algorithm, proposing
CTD3 as a novel SRL algorithm. In Experiment 3, the novel CTD3 algorithm is compared
to the fixed penalty methods and achieves high performance of constraint satisfaction and
policy optimality, suffering less from the mentioned trade-off. CTD3 is able to automati-
cally find the best penalty factor, saving the time to systematically search for it for every
new OPF problem. In theory, CTD3 can even provide a tolerance guarantee for constraint
satisfaction, if the constraint Q-functions have very low losses. Unfortunately, this is not
achieved in the implementation used in this work, because the constraint Q-function losses
are too high, as the used neural networks are comparably small and the training runs are
short to save computation time. Nevertheless, the research questions are answered and the
research goal of finding more effective constraint satisfaction strategies for DRL approaches
to OPF is reached.
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