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Apologies

Due to serious health problems last week induced by a relapse, I
haven’t been able to prepare and print handouts. Pls. drop me an
email under

fraenzle@informatik.uni-oldenburg.de

and I will supply you with an electronic version asap.

Sorry for the inconvenience caused!
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What is a hybrid system?

Hybrid (griech.) bedeutet überheblich, hochmütig,
vermessen.
Weitere Inhalte [insbes. im wiss. Sprachgebrauch] sind
später hinein interpretiert worden.

Hybrid (from Greece) means arrogant, presumptuous.
Other interpretations [in particular, in scientific jargon] have
been added later.

After H. Menge: Griechisch/Deutsch, Langenscheidt 1984

⇒ when you try to verify hybrid systems,

be prepared that they may act like a prima donna!
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Hybrid Systems
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Hybrid systems
are ensembles of interacting discrete and continuous subsystems:

• Technical systems:
• physical plant + multi-modal control
• physical plant + embedded digital system
• mixed-signal circuits
• multi-objective scheduling problems (computers / distrib. energy

management / traffic managemant / ...)
• Biological systems:

• Delta-Notch signaling in cell differentiation
• Blood clotting
• ...

• Economy:
• cash/good flows + decisions
• ...

• Medicine/health/epidemiology:
• infectious diseases + vaccination strategies
• ...
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Discrete vs. continuous

A discrete system E.g., a program

• operates on a state, Prog. variables, position

• performs discontinuous state changes at dis-
crete time points,

Computation steps:
assignments, ctrl. flow

• state is constant in between Stable states
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Validation by

- Program
verification

- State exploration
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Discrete vs. continuous

a continuous system E.g., a ball

• operates on a continuous state, Height, speed

• which evolves continuously. Newtonian mechanics
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- Analytically

- Simulation +
continuity
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Coupled Dynamics: Forced Pendulum
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Interaction of continuous dynamics and discrete mode switch
destroys global convergence!
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A Formal Model: Hybrid Automata
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A Formal Model: Hybrid Automata
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Hybrid automata

Hybrid systems = Coupled digital & analog systems

↓
Hybrid automata = Finite automata with

• immediate transitions that are
• triggered by predicates on the (continuous)

plant state

+ evolution of the continuous plant
• real-valued variables governed by
• a set of (restricted) differential equations that

are
• selected by the current automaton state
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Hybrid Automata

The formal model

CAV ’07: Verification of Hybrid Systems – p.11/111



Hybrid Automaton (w/o input) [after K.H. Johansson]

Def: a hybrid automaton H is a tuple H = (V, X, f, Init, Inv, Jump), where :
• V is a finite set of discrete modes.

The elements of V represent the discrete states.
• X = {x1, . . . , xn} is an (ordered) finite set ofcontinuous variables.

A real-valued valuation z ∈ R
n of x1, . . . , xn represent a continuous

state.
• f ∈ V × R

n → R
n assigns a vector fieldto each mode.

The dynamics in mode m is dx
dt

= f(m, x).
• Init ⊆ V × R

n is the initial condition.
Init defines the admissible initial states of H.

• Inv ⊆ V × R
n specifies themode invariants.

Inv defines the admissible states of H.
• Jump ∈ V × R

n → P(V × R
n) is the jump relation.

Jump defines the possible discrete actions of H. The jump relation may
be non-deterministic and entails both discrete modes and continuous
variables.
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Generalizations

This definition of a HA is not the most general one. Obvious
extensions include

• Input / disturbances in the vector field.

• Labeled jumps.

• Nondeterministic continuous evolutions.

• Stochastic effects.
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Semantics: Two-Dimensional Time

Discrete activity: 
no progress of physical time involved;
continuous activity frozen

discrete activity ceases,
progress of physical
time starts again

No. of discrete
computation

steps

Physical time
0

5

10

A discretely perceptible event (threshold, elapse of clock)
occurs, starting discrete activity

Continuous phase:
Phys. time advances,
no discrete steps

An idealization partially justified by differing speeds of ES and environment!
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Hybrid time [after K.H. Johansson]

Def: A hybrid time frame is a finite or infinitesequence
τ = 〈I1, I1, . . .〉 of time intervals Ii, where
• each Ii is a non-empty convex subset of R≥0, i.e. a

non-empty interval in R≥0,
• inf Ii ∈ Ii for each i, i.e. the intervals are left-closed,
• sup Ii ∈ Ii for each i < len τ, i.e. all intervals excepts perhaps

the rightmost are right-closed,
• max Ii = min Ii+1 for each i < len τ, i.e. the intervals are

adjacent and overlap exactely in one point.

t

x
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Hybrid trajectories [after K.H. Johansson]

Def: A hybrid trajectory E is a tuple E = (τ, v, x) such that
• τ is a hybrid time frame,
• v ∈ V∗ ∪ Vω with len v = len τ is a sequence of discrete

modes,

• x ∈ (R≥0
part.,cont.
−→ R

n)∗ ∪ (R≥0
part.,cont.
−→ R

n)ω with len x = len τ

and dom xi = τi is a sequence of continuous flows of the
variables in X.

t

x

CAV ’07: Verification of Hybrid Systems – p.16/111



Executions of a HA [after K.H. Johansson]

Def: A run E = (τ, v, x) is an execution of the hybrid automaton
H = (V,X, f, Init, Inv, Jump) iff
• Initiation: (v1, x1(min τ1)) ∈ Init,
• Consecution: Jump ((vi, xi(max τi)) 3 (vi+1, xi+1(min τi+1))

holds for all i < len τ,
• Continuous evolution: xi is a solution of dx

dt
= f(vi, x) for

each i ≤ len τ,
• State consistency: (vi, xi(t)) ∈ Inv for each t ∈ dom τi and

each i ≤ len τ

hold.

t

x
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Hybrid systems

• Proof obligation: Can the
system be guaranteed to
show desired behaviour, even
under disturbances? E.g.,
• remains in safe states?
• eventually reaches a

desired operational
mode?

• stabilizes, i.e., converges
against a setpoint / stable
orbit / region of phase
space?

! involves co-verification of con-
troller and continuous envi-
ronment.
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State and Dimension Explosion
Number of continuous variables linear in number
of cars

• Positions, speeds, accelerations,
• torque, slip, ...

Number of discrete states exponential in number
of cars

• Operational modes, control modes,
• state of communication subsystem, ...

Size-dependent dynamics
• Latency in ctrl. loop depends on number of

cars due to communication subsystem.
• Coupled dynamics yields long hidden chan-

nels chaining signal transducers.

• Need a scalable approach
• Let’s try to achieve this through strictly symbolic methods.
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Outline

1. Translation of high-level models
• Simulink + Stateflow
• Compositional translation
• based on predicative encoding of block invariants

2. Basic principles of state-exploratory analysis of HA
• Finite-state abstraction vs. hybridisation vs. image computation of ODEs
• iterating a FO-definable map

3. A sample tool set
• SAT-modulo-theory based
• three (increasingly experimental) levels:

• linear hybrid automata vs. LinSAT
• non-linear assignments
• non-linear differential equations

• under development in AVACS subprojects H1 and H2
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Verification Frontend

Translation of hybrid systems
to arithmetic constraints

CAV ’07: Verification of Hybrid Systems – p.21/111



Translation

Hybrid System Effective VerificationModel
BackendEncoding

component

component
continuous

A/D, D/A

component
discrete

formula

FOL(R,Z,+,...)

Boolean

FOL(R,+,*,...)
Discrete/

Reach set

Existential

BMC/IV

Reach set

Iterated FOL(R,...)EA  /  AEA

pr
ec

isi
on

sy
st

em
 s

ize

FOL(R,...)

Timed abstr.

• Compositional translation into many-sorted logics
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Analogy: Combinatorial Circuits

Circuit
level

Formula
level

Valuation
− of propositional variables
− of circuit nodes
level

Translator

Combinational
Circuit I

Combinational
Circuit II

Logical
formula

Prove engine

Approval/
counterexample
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Mapping circuits to formulae
A gate is mapped to a propositional formula formalizing its invariant:

z
x

y
& 7→ x ∧ y ⇔ z

z
x

y
>= 1 7→ x ∨ y ⇔ z

z< 1x 7→ ¬x ⇔ z

... 7→ combinations thereof.

Circuit behavior corresponds to conjunction of all its gate formulae.
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Generalizing the concept: Simulink+Stateflow
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‘Algebraic’ blocks

outputinput
f

• time-invariant transfer function output(t) = f (input(t))

• made 1st-order by making time implicit: Flow ≡ output = f (input)

• no constraints on initial value: Init ≡ true,

• discontinuous jumps always admissible Jump ≡ true,

All the formulae are elements of a suitably rich
1st-order logics over R.
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Integrators

outputinput 1/s
init

• integrates its input over time: output(t) = init +
∫t

0
input(u) du.

• made semi-1st-order by using derivatives: Flow ≡ doutput
dt

= input

• initial value is rest value: Init ≡ output = init,

• discontinuous jumps don’t affect output Jump ≡ output =
↼

output,
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Use in Model Exploration

Given: Transition pred. trans(x, x ′), initial state pred. init(x), conj. invar. φ(x).

E.g., Bounded Model Checking (BMC) algorithm:
1. For given i ∈ N check for satisfiability of

¬

(

init(x0) ∧ trans(x0, x1) ∧ . . . ∧ trans(xi−1, xi)

⇒ φ(x0) ∧ . . . ∧ φ(xi)

)

.

If test succeeds then report violation of goal.

2. Otherwise repeat with larger i.

Can we use the predicates off-the-shelf?

No, as dynamics is not in terms of pure pre-/post-relations.
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Images of ODEs: Approaches
1. Safe finite-state abstraction:

E.g., discretization through quantization
(and overapproximation); yields finite-state
system.

exponential in dimension of system

coarse abstractions give many false nega-
tives CEGAR

δ

δ

δ
δ

δ

y

x

2. Hybridization: chop the phase space; do piece-
wise safe approximation by tractable dynamics
(e.g., maps definable in decidable logics over R)

potentially more concise,

yet still exponential in dimension of system

3. (Safely approximate) on-the-fly computation of ODE images.
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Hybridization
Will not elaborate on into this issue here: approaches range from

• approximation by piecewise (i.e., in a grid element) constant
differential inclusions obtained via interval-based safe approx. of
upper and lower bounds on individual derivatives:

dx

dt
= x2 + 2y ∧ x ∈ [1, 2] ∧ y ∈ [5, 7]  

dx

dt
∈ [11, 18]

a.o. [Henzinger, Kopke, Puri, Varaiya 1998] [Stursberg, Kowalewski 1999]
• to approximation by piecew. affine / multi-affine vector fields

[Asarin, Dang, Girard 06]
• and to Taylor approximations [Piazza et al. 05, Lanotte, Tini 05]

For Lipschitz-continuous ODEs, imprecision generally is

• linear in grid width (though with different constants),
• exponential in length of time frame.

e.g., [Girard 2002; Asarin, Dang, Girard 2006]
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Impact on decidability

Due to the (worst-case) exponential deviation over time, such
hybridizations are not sufficient for approximate (up to some ε)
computation of the reachable state space over unbounded time
frames.

Hence, questions like

• "If the distance of the reachable state space from a set of bad
states larger than ε then provide a proof of this fact.”

for flows lacking a closed-form solution are i.g. not “decidable” by
hybridization and related approximation schemes.

[Platzer, Clarke 2006]

...unless the flow is attracting such that it cancels the accumulating
error.

[Asarin, Dang, Girard 2006]
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Principles of hybrid state-space exploration:

Iterating a 1st-order definable map
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Checking safety

...in a finite Kripke structure:

1. For increasing n, calculate the
set Reach≤n of states reachable
in at most n steps.

2. Chain Reach≤1 ⊆ Reach≤2 ⊆ . . .

has only a finite ascending sub-
chain due to finiteness of state-
space.

⇒ Set
⋃

n∈N
Reach≤n of reachable

states can be constructed in
finitely many steps.

3. Check for intersection with set of
unsafe states.

...in a hybrid automaton:

Similar fixpoint construction

InitInitUnsafe InitUnsafe InitUnsafe InitUnsafe

InitUnsafe

need not terminate,
but yields an effective pro-
cedure for falsification.
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Making the idea operational: the ingredients

Idea: Iterate transition relation and continuous dynamics until an unsafe state is
hit:

Initial Step 1 Step 2 Step 3 Step 4

unsafe

initial

Result: Terminates iff HA is unsafe.

Requires: Effective representations of transition relation, continuous dynamics, and
initial, intermediate, and unsafe state sets s.t.
1. Calculation of the state set reachable within n ∈ N steps is effective,
2. Emptiness of intersection of unsafe state set with the state set

reachable in n steps is decidable.
(implemented in, e.g., HyTech [Henzinger, Ho, Wong-Toi, 1995–])
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From hybrid automata to logic

A: A:

σσ

∃∆t.









x =
↼
x +∆t

y <
↼
y +2∆t

x ≤ 10









↼
x= 10 ∧ x = 0 ∧ y =

↼
y

2
− 1

x = 0 ∧ y = 0x := 0, y := 0

x = 10 → x := 0, y := y
2
− 1

x ≤ 10

dy
dt

< 2

dx
dt

= 1

Convexity of behaviors required, continuity is not FO-expressible!
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Essentials of polynomial HA
• Finite set Σ of discrete states, finite vector x of cont. variables
• An activity predicate actσ ∈ FOL(R,=,+,×) defines the possible

evolution of the continuous state while the system is in discrete
state σ

• A transition predicate transσ→σ ′ ∈ FOL(R,=,+,×) defines guard
and effect of transition from discrete state σ to discrete state σ ′

• A path is a sequence 〈(σ0, y0), (σ1, y1), . . .〉 ∈ (Σ × R
d)?|ω

entailing an alternation of transitions and activities:

• (
↼
x := yi, x := yi+1) |= transσi→σi+1

if i is odd

• (
↼
x := yi, x := yi+1) |= actσi

and σi = σi+1 if i is even
• (x := y0) |= initialσ0

Decidability of FOL(R,=,+,×) yields decision procedures for tem-
poral properties of paths of finitely fixed length
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Reachability

of a final discrete state σ′ from an initial discrete state σ and through
an execution containing n transitions can be formalized through the
inductively defined predicateφn

σ→σ ′ , where

φ0
σ→σ ′ =

{
false , if σ 6= σ ′ ,

actσ , if σ = σ ′ ,

φn+1
σ→σ ′ =

∨

σ̃∈Σ

∃ x1, x2 .







φn
σ→σ̃[x1/x]∧

transσ̃→σ ′ [x1, x2/
↼
x , x]∧

actσ ′ [x2/
↼
x ]
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Safety of hybrid automata

⇒ An unsafe state is reachable within n steps iff

Unsafen =
∨

σ ′∈Σ

Reach≤n
σ ′ ∧ ¬safeσ ′

is satisfiable, where

Reach≤n
σ ′ =

∨

i∈N≤n

∨

σ∈Σ

φi
σ→σ ′ ∧ initialσ[

↼
x /x]

characterizes the continuous states reachable in at most n steps
within discrete state σ ′.

⇒ An unsafe state is reachable iff there is some n ∈ N for which
Unsafen is satisfiable.
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The semi-decision procedure

1. FOL(R,=,+,×) is decidable. [Tarski 1948]

2. Unsafen is a formula of FOL(R,=,+,×).

⇒ For arbitrary n ∈ N it is decidable whether an unsafe state is
reachable within n steps.

3. By successively testing increasing n, this yields a semi-decision
procedure for reachability of unsafe states:

(a) Select some n ∈ N,
(b) check Unsafen.
(c) If this yields true then an unsafe state is reachable.

Report this and terminate.
(d) Otherwise select strictly larger n ∈ N and redo from step (b).
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The semi-decision procedure — contd.

Note that in general the semi-decision procedure
can only detect being unsafe, yet does not termi-
nate iff the HA is safe. Hence, it

can be used for falsifying HA,

but not for verifying them.

However, there are cases where Reach≤n+1
σ ′ ⇒ Reach≤n

σ ′ holds for
some n ∈ N s.t. the reachable state set can be calculated in a finite
number of steps.

But the reachability problem is undecidable in general!
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Decidability

The problem is undecidable already for very restricted subclasses of hybrid
automata:

• Stopwatch automata [Čerāns 1992; Wilke 1994;
Henzinger, Kopke, Puri, Varaiya 1995]

• 3-dimensional piecewise constant derivative systems
[Asarin, Maler, Pnueli 1995]

• ...

Decidable subclasses tend to abandon interplay between changes in continuous
dynamics and transition selection/effect, or the dimensionality is extremely low:

• Timed automata [Alur, Dill 1994] and initialized rectangular automata
[Henzinger, Kopke, Puri, Varaiya 1995]

• multi-priced timed automata [Larsen, Rasmussen 2005], priced timed
automata with pos. and neg. rates [Boyer, Brihaye, Bruyère, Raskin 2007]

• 2-dimensional piecewise constant derivative systems [Maler, Pnueli 1994],
also non-deterministic [Asarin, Schneider, Yovine 2001]

• ...
CAV ’07: Verification of Hybrid Systems – p.41/111



Iterating over the state-space

...how do we do this in practice

• on very large state spaces, both continuous and discrete?

• for non-polynomial assignments / pre-post-relations?

• for non-linear differential equations?
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SAT modulo theory
as an engine for

bounded model checking of
linear hybrid automata
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Bounded Model Checking (BMC)

1 2 2 3 3 40 1I P

Method:

• construct formula that is satisfiable ifferror trace of length k

exists
• formula is a k–fold unrolling of the systems transition relation,

concatenated with a characterization of the initial state(s) and
the (unsafe) state to be reached

• use appropriate decision procedure to decide satisfiability of the
formula

• usually BMC is carried out incrementally for k = 0, 1, 2, . . . until
an error trace is found or tired

CAV ’07: Verification of Hybrid Systems – p.44/111



Bounded Model Checking (BMC) algorithm

1. For given i ∈ N check for satisfiability of

¬

(

init(x0) ∧ trans(x0, x1) ∧ . . . ∧ trans(xi−1, xi)

⇒ φ(x0) ∧ . . . ∧ φ(xi)

)

.

If test succeeds then report violation of goal.

2. Otherwise repeat with larger i.
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Linear hybrid automata
• In this part, we will concentrate on hybrid automata where the

initiation and transition predicates are linear and the activities
give rise to polyhedral pre-post-relations:
• initialσ ∈ FOL(R,+,≤) with free(initialσ) ⊆ {x1, . . . , xd}

for each σ,
• actσ = diffσ ∧ invσ ∈ FOL(R,+,≤) for each σ, where

• diffσ is purely conjunctive and free(diffσ) ⊆ { dx1

dt
, . . . , dxd

dt
},

• invσ is conjunctive and

free(invσ) ⊆ {x1, . . . , xd} ∪ {
↼
x1, . . . ,

↼
xd},

• transσ→σ ′ ∈ FOL(R,+,≤) with

free(transσ→σ ′) ⊆ {x1, . . . , xd} ∪ {
↼
x1, . . . ,

↼
xd}

for each σ, σ ′.

• N.B.: Such continuous activities give rise to linear

pre-/post-relations.
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Linear Hybrid Automata (LHA)

−6

0

6

12

0 10 20 30

x ′ = −6

x ≤ 0 /

2 ≤
dx

dt
≤ 3

x = 0

x ′ = 1
2
· x

x ≥ 12 /

x ≤ 12

x ≥ 0

−2 ≤
dx

dt
≤ −1
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BMC of Linear Hybrid Automata

−6

0

6

12

0 10 20 30

Parallel composition corresponds to conjunction of formulae

constraints over the reals

Quantifier−free Boolean combinations of linear arithmetic

No need to build product automaton

Initial state:

Jumps:

σ0
1 ∧ ¬σ0

2 ∧ x0 = 0.0

σi
1 ∧ σi+1

2 → (xi ≥ 12) ∧ (xi+1 = 0.5 · xi) ∧ ti = 0

Flows:

σi
1 ∧ σi+1

1 →






(xi + 2 ti) ≤ xi+1 ≤ (xi + 3 ti)

∧ (xi+1 ≤ 12)

∧ (ti > 0)

−2 ≤
dx

dt
≤ −1

x ′ = −6

x ≤ 0 /

2 ≤
dx

dt
≤ 3

x = 0

σ1

σ2

x ′ = 1
2
· x

x ≥ 12 /

x ≤ 12

x ≥ 0
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Ingredients of a Solver for BMC of LHA

BMC of LHA yields very large boolean combination of linear
arithmetic facts.

Davis Putnam based SAT-Solver:

tackle instances with � 10.000 variables

efficient handling of disjunctions

Boolean variables only

Linear Programming Solver:

solves large conjunctions of linear arithmetic inequations

efficient handling of continuous variables (> 106)

no disjunctions

Idea: Combine both methods to overcome shortcomings.
 SAT modulo theory
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Davis–Putnam Procedure

Deduce

Decide

Decide

Deducey, z, z̄

z, z̄ z

(x ∨ y ∨ z)

∧ (x̄ ∨ y)

∧ (ȳ ∨ z)

∧ (x ∨ ȳ ∨ z̄)

x x̄

∧ (x̄ ∨ ȳ ∨ z̄)
y ȳ
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Satisfiability solving for decidable theories:

Lazy theorem proving & DPLL(T)
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The Lazy TP Scheme: LinSAT

Learned conflict clause:

A
D

B

Deduce

Deduce

Deduce

Deduce from conflict cl.

DeduceDeduce

Davis Putnam Linear Programming

y

x

e e

C, D

f f

A, B g, g

g, f, A, B

C

D

A + B + C ≥ 1

DPLL search

1. traversing possible truth-value assignments of Boolean part
2. incrementally (de-)constructing a conjunctive arithmetic constraint system
3. querying external solver to determine consistency of arithm. constr. syst.
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Deciding the conjunctive T -problems

For T being linear arithmetic over R, this can be done by linear
programming:

n
∧

i=1

m∑

j=1

Ai,jxj ≤ bj iff Ax ≤ b

 Solving LP maximize cT x

subject to Ax ≤ b

with arbitrary c provides consistency information.
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Deciding the conjunctive T -problems (cntd.)

To cope with systems C containing strict inequations
∑m

j=1 Ai,jxj<bj,
one

classically: introduces a slack variable ε,
• then replaces

∑m

j=1 Ai,jxj<bj by
∑m

j=1 Ai,jxj+ε ≤bj,
• solves the resultant LP L, maximizing the objective function ε

 C is satisfiable iff L is satisfiable with optimum solution > 0.

more elegantly: treat ε symbolically:
• use 1 and ε as fundamental units of the number system,
• represent all numbers and coefficients in inequations as

linear combinations of 1 and ε

[Dutertre, de Moura 2006: Yices]
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Extracting reasons for T -conflicts

Goal: In case that the original constraint system

C =

(

∧k

i=1

∑n

j=1 Ai,jxj ≤ bi

∧
∧n

i=k+1

∑n

j=1 Ai,jxj < bi

)

is infeasible, we want a subset I ⊆ {1, . . . , n} such that
• the subsystem C|I of the constraint system containing only

the conjuncts from I also is infeasible,
• yet the subsystem is irreducible in the sense that any proper

subset J of I designates a feasible system C|J.
Such an irreducible infeasible subsystem (IIS) is a prime
implicant of all the possible reasons for failure of the constraint
system C.
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Extracting IIS
Provided constraint system C contains only non-strict inequations,

• extraction of IIS can be reduced to finding extremal solutions of a dual
system of linear inequations, similar to Farkas’ Lemma (Gleeson & Ryan
1990; Pfetsch, 2002)

• to keep the objective function bounded, one can use dual LP

maximize wT y

subject to AT y = 0

bT y = 1

y ≥ 0

where wi =

{
−1 if bi ≤ 0,

0 if bi > 0

• choice of w guarantees boundedness of objective function
=⇒ optimal solution exists whenever the LP is feasible.

! For such a solution, I = {i | yi 6= 0} is an IIS.
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Extensions & Optimizations

DPLL(T): If the T solver can itself do fwd. inference, it cannot only
prune the search tree through conflict detection, but also
through constraint propagation:
1. SAT solver assigns truth values to subset C ⊂ A of the set A

of constraints occurring in the input formula,
2. T solver finds them to be consistent and to imply a truth

value assignment to further T constraints D ⊆ A \ C,
3. these truth-value assignments are performed in the SAT

solver store before resuming SAT solving.
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SAT modulo theory for LinSAT
• SAT modulo theory solvers reasoning over linear arithmetic as a theory are

readily available: E.g.,
• LPSAT [Wolfman & Weld, 1999]
• ICS [Filliatre, Owre, Rueß, Shankar 2001], Simplics [de Moura, Dutertre

2005], Yices [Dutertre, de Moura 2006]
• MathSAT [Audemard, Bertoli, Cimatti, Kornilowicz, Sebastiani, Bozzano,

Juntilla, van Rossum, Schulz 2002–]
• SVC [Barrett, Dill, Levitt 1996], CVC [Stump, Barrett, Dill 2002], CVC

Lite [Barrett, Berezin 2004], CVC3 [Barrett, Fuchs, Ge, Hagen,
Jovanovic 2006]

• HySAT [Herde & Fränzle, 2004]
• ...

• Their use for analyzing linear hybrid automata has been advocated a
number of times (e.g. in [Audemard, Bozzano, Cimatti, Sebastiani 2004]).

• They combine symbolic handling of discrete state components (via SAT
solving) with symbolic handling of continuous state components.

• Formulae arising in BMC have a specific structure, which can be exploited
for accelerating SAT search [Strichman 2004]
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Pimp my SMT Solver: Isomorphy Inference

1 2 2 3 3 40 1I P

• learning schemes employed in SAT solvers account for a major
fraction of the running time

• creation of a conflict clause is even more expensive in a
combined solver as it entails the extraction of an IIS

• idea: exploit symmetric structure to add isomorphic copies of a
conflict clause to the problem

• thus multiplying the benefittaken from the time–consuming
reasoning process
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Pimp my SMT Solver: Decision Strategies

General–Purpose Decision Heuristics:

• distant cycles of the transition relation are being satisfied
independently

• until they finally turn out to be incompatible, often entailing the
need to backtrack over long distances

For BMC we can use smarter decision strategies !
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Pimp my SMT Solver: Decision Strategies

Forward–Heuristics:

• select decision variables in the natural order induced by the
linear structure of the BMC formula

• e.g. starting with variables from cycle 0, then from cycle 1, 2, etc.

• thereby extending prefixes of legal runs of the system

• allows conflicts to be detected and resolved more locally
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Pimp my SMT Solver: Knowledge Reuse

k = 3 :

k = 4 :

1 2 2 30 1I

1 2 2 3 3 40 1I P

P

• when carrying out BMC incrementally the consecutive formulas
share a large number of clauses

• thus, when moving from instance k to k + 1 (or doing them in
parallel), we can conjoin the conflict clauses derived when
solving the k–instance to the k + 1–instance (and vice versa)

• only sound for conflict clauses inferred from clauses which are
common to both instances
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Case Study: Elastic Distance Control

System Overview:

• n cars running on the same lane
• each car has a collision avoidance controller
• controller has four control modes:

• free running ↔ front or/and back intrusion into safety envelope
• elastic coupling in case of intrusion
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Sample Trace

t
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Case Study: Elastic Distance Control

Results: (total time needed to solve all 22+1 instances until error
trace is found)
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Methods yield factor 3 to 5 each
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but...

• what to do if assignments are non-linear?

x := sin y + ex

• what to do if continuous behavior is more general:
• linear differential equations?

dx

dt
= Ax + b

• non-linear differential equations?

dx

dt
= sin y
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Satisfiability solving in
undecidable arithmetic domains

iSAT algorithm
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Classical Lazy TP Layout

DPLL−SAT

+ conflict−driven learning
+ non−chronol. backtrack.

reasoner

Arithmetic

arithmetic
constraint system

explanation:
(minimal) infeasible
subsystem

consistent:
yes / no

Problems with extending it to richer arithmetic domains:
• undecidability: answer of arithmetic reasoner no longer

two-valued; don’t know cases arise

• explanations: how to generate (nearly) minimal infeasible
subsystems of undecidable constraint systems?
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The Task
Find satisfying assignments (or prove absence thereof) for large
(thousands of Boolean connectives) formulae of shape

(b1 =⇒ x2
1 − cos y1 < 2y1 + sin z1 + eu1)

∧ (x5 = tan y4 ∨ tan y4 > z4 ∨ . . .)

∧ . . .

∧ (dx
dt

= − sin x ∧ x3 > 5 ∧ x3 < 7 ∧ x4 > 12 ∧ . . .)

∧ . . .

Conventional solvers

• do either address much smaller fragments of arithmetic
• decidable theories: no transcendental fct.s, no ODEs

• or tackle only small formulae
• some dozens of Boolean connectives.
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Algorithmic basis:

Interval constraint propagation
(Hull consistency version)
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂ h1 + y

∧ h2 ≤ 6

• “Forward” interval propagation yields justificationfor constraint satisfaction:

x ∈ [−2, 2]

∧ y ∈ [−2, 2]

2

6

y

≤

+

∧

x

[−2, 2]

[0, 4]

[−2, 6]

[−2, 2]

h2

h1

satisfied in box

h2 ≤ 6 is

⇓
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂ h1 + y

∧ h2 ≤ 6

• Interval propagation (fwd & bwd) yields witness for unsatisfiability:

2

6

y

≤

+

∧

x

[3, 4]

[9, 16]

[9, 19]

[0, 3]

h2

h1

unsat. in box

h2 ≤ 6 is

⇓

x ∈ [3, 4]

∧ y ∈ [0, 3]
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂ h1 + y

∧ h2 ≤ 6

• Interval prop. (fwd & bwd until fixpoint is reached) yieldscontraction of box:

2

6

y

≤

+

∧

x

[−10, 10]

[0, 100]

[−10, 110]

[−10, 10]

h2

h1

∧ y ∈ [−10, 10]

x ∈ [−10, 10]
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂ h1 + y

∧ h2 ≤ 6

• Interval prop. (fwd & bwd until fixpoint is reached) yieldscontraction of box:

2

6

y

≤

+

∧

x

[−4, 4]

[0, 16]

[−10, 6]

[−10, 6]

h2

h1

⇓

∧ y ∈ [−10, 10]

x ∈ [−10, 10]

∧ y ∈ [−10, 6]

x ∈ [−4, 4]
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂ h1 + y

∧ h2 ≤ 6

• Interval prop. (fwd & bwd until fixpoint is reached) yieldscontraction of box:

Constraint is not satisfied

by the contracted box!

2

6

y

≤

+

∧

x

[−4, 4]

[0, 16] [−10, 6]

h2

h1

∧ y ∈ [−10, 6]

x ∈ [−4, 4]

[−10, 22]
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Interval contraction

Backward propagation yields rectangular overapproximation of
non-rectangular pre-images.

Thus, interval contraction provides a highly incomplete deduction
system:

x ∈ [0, ∞)

∧ h =̂ x · y

∧ h > 5

=⇒ x ∈ (0, ∞)

∧ y ∈ (0, ∞)
=⇒ h ∈ (0, ∞) 6=⇒ h > 5

 enhance through branch-and-prune approach.
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Schema of Interval-CP based CS Alg. / DPLL
Given: Constraint / clause set C = {c1, . . . , cn},

initial box (= cartesian product of intervals) B in R
|free(C)| / B

|free(C)|

Goal: Find box B ′ ⊆ B containing satisfying valuations throughout
or show non-existence of such B ′.

Alg.: 1. L := {B}

2. If L 6= ∅ then take some box b :∈ L, (LIFO)
otherwise report “unsatisfiable” and stop.

3. Use contraction to determine a sub-box b ′ ⊆ b. (Unit Prop.)
4. If b ′ = ∅ then set L := L \ {b}, goto 2.
5. Use forward interval propagation to determine whether all

constraints are satisfied throughout b′; if so then report b ′ as
satisfying and stop.

6. If b ′ ⊂ b then set L := L \ {b} ∪ {b ′}, goto 2.
7. Split b into subboxes b1 and b2, set L := L \ {b} ∪ {b1, b2},

goto 2.
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Observation

DPLL-SAT and interval-CP based CS are inherently similar:
DPLL-SAT Interval-based CS

Propagation: contraction in lattice

{false,true}

{false}

{}

{true} contraction in lattice
of intervals over R

of Boolean intervals

Split: split of Boolean interval [false,true] split of interval over R

This suggests a tighter integration than lazy TP:
common algorithms should be shared,
others should be lifted to both domains.
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Lazy TP: Tightening the Interaction

propagation

Arithmetic

constraint
+ conflict−driven learning
+ non−chronol. backtrack.propagation

Boolean

constraint

DPLL−SAT
control flow

enters / removes constraints &
triggers individual constraint propagations

reports narrowing results

Arithmetic

reasoner

DPLL−SAT

+ conflict−driven learning
+ non−chronol. backtrack.

arithmetic
constraint system

consistent:
yes / no

explanation:
(minimal) infeasible
subsystem
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Properties of Modified Layout

propagation

Arithmetic

constraint
+ conflict−driven learning
+ non−chronol. backtrack.propagation

Boolean

constraint

DPLL−SAT
control flow

triggers individual constraint propagations

reports narrowing results

enters / removes constraints &

• SAT engine has introspection into CP
• thus can keep track of inferences and their reasons

can use recent SAT mechanisms for generalizing reasons of

conflicts and learning them, thus pruning the search tree
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Optimizations inherited from modern prop. SAT:

• conflict-driven learning
• non-chronological backtracking
• watched literal scheme
• restarts

→ have been instrumental to thousand-fold
increase in tractable formula size for
prop. SAT.
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Conflict-driven learning in multi-valued case

Works like a charme w/o fundamental modifications:

• Decision variables coincide to interval splits;
the assigned values to asserted bounds x ≥ c, x > c, x < c,
x ≤ c;

• Implications correspond to contractions;

• Reasons to sets of asserted atoms giving rise to a contraction.

Through embedding into SAT, we get

conflict-driven learning and non-
chronological backtracking for free!
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Deduction and Learning

z

y

x

x > 0
x < 3
y > 2
y < 5
z > 0
z < 2
x > y
z = x*y
y = z+x
...

x > y

y > 2

x > 2

z = x*y

x > 2

z < 2

y > 2

Refutes other candidate boxes and constraint combinations immediately.
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The impact of learning: runtime
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BMC of

• platoon ctrl.
• bounc. ball
• gingerbread

map
• oscillatory

logistic map

Intersect. of geo-
metric bodies

Size:
Up to 2400 var.s,
� 103 Boolean
connectives.

[2.5 GHz AMD Opteron, 4 GByte physical memory, Linux]
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The competition: ABsolver
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small conjunctive systems
linear systems

non-linear systems

ABsolver : Bauer, Pister, Tautschnig, “Tool support for the analysis
of hybrid systems and models”, DATE ’07
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Discussion
Approach: Unification of ICP-based constraint solving and DPLL-based
propositional SAT solving in order to

• maintain the excellent reasoning power of ICP for robust constraints over R,
• boost the performance on complex Boolean compositions of constraints

[Fränzle, Herde, Ratschan, Schubert, Teige 2006/07]

First experimental results:
• conflict-driven learning and other SAT optimizations of ICP yield enormous

pruning of proof tree
⇒ corresponding growth in size of tractable formulae

Consequences:
• can solve large boolean combinations of non-linear arithmetic constraints:

non-linear time-discrete hybrid systems
(no differential equations, only difference equations)

appropriate hybridisations of ODEs

direct support for ODEs missing.
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Direct reasoning over
images and pre-images of ODEs
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Motivation

dx
dt

= 0

active

inactive
dy

dt
= c1x − c2y

dx
dt

= − sin y

dy

dt
= c3

• Linear and non-linear ordinary Differential Equations (ODEs)
describing continous behaviour in the discrete modes of a hybrid
system

• Want to do BMC on these models w/o prior hybridisation
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The Problem
Given: a system of time-invariant ODEs

dx1

dt
= f1(x1, . . . , xn)

...
dxn

dt
= fn(x1, . . . , xn)

plus three boxes B, I, E ⊂ R
n.

Problem: determine whether E is reachable from B along a trajectory
satisfying the ODE and not leaving I.

Added value: Prune unconnected parts of B and E:

E’
B’

B

E
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Special case: adjacent boxes

Stursberg,Kowalewski et. al. [1997]:
Check sign of relevant derivative at box border:

•
x∈ [−5, 1]

use interval arithmetic for evaluating the ODE over the box border.
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Towards Pre-Post-Constraints

Lemma (n-dimensional mean value theorem): If
(y1, . . . , yn) ∈ E ∩ I is reachable from (x1, . . . , xn) ∈ B ∩ I via a flow
in I satisfying dx

dt
= f then

∃t ∈ R≥0 :
∧

1≤i≤n

∃a ∈ I : yi = xi + fi(a) · t

xi

yi

ta
time

0 t

HSolver [Ratschan, 2004–]
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Problem: Safely determine whether E is unreachable from B along a
trajectory satisfying the ODE and not leaving I.

Some approaches:

1. Interval-based safe numeric approximation of ODEs
[Moore 1965, Lohner 1987, Stauning 1997]

(used in Hypertech [Henzinger, Horowitz, Majumdar, Wong-Toi 2000])

2. CLP(F): a symbolic, constraint-based technology for
reasoning about ODEs grounded in (in-)equational
constraints obtained from Taylor expansions
[Hickey, Wittenberg 2004]
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Safe Approximation

t

x

ti ∈ TOI

flowbox

postbox

startbox

Should also be tight! And efficient to compute!
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Euler’s Method

t

x
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Taylor Series

Exact solution x(t) has slope determined by f in each point:
dx
dt

= f(x(t))

Taylor expansion of exact solution:

x(t0 + h) =x(t0) +
h1

1!

dx

dt
(t0)

+
h2

2!

d2x

dt2
(t0) + . . .

+
hn

n!

dnx

dtn
(t0)

(LAGRANGE REMAINDER)
+

hn+1

(n + 1)!

dn+1x

dtn+1
(t0 + θh), with 0 < θ < 1
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Taylor Series

x(t0 + h) =x(t0) +
h1

1!

dx

dt
(t0)

︸ ︷︷ ︸
f(x(t0))

+
h2

2!

d2x

dt2
(t0)

︸ ︷︷ ︸
df
dt

(x(t0))·f(x(t0))

+ . . .

+
hn

n!

dnx

dtn
(t0)

+
hn+1

(n + 1)!

dn+1x

dtn+1
(t0 + θh)

︸ ︷︷ ︸
unknown

, with 0 < θ < 1

Can use interval arithm. to evaluate f(x(t0)), etc.,
if x(t0) is set-valued!

CAV ’07: Verification of Hybrid Systems – p.91/111



Bounding Box

t

x

B

t0

for all t ∈ [t0, t0 + h]
dx
dt

(t) ≤ max(f(B))
dx
dt

(t) ≥ min(f(B))

t0 + h

x(t)

dx
dt

(t) = f(x(t))

If we only knew B...
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Bounding Box [Lohner]

Given: Initial value problem:
dx
dt

= f(x), x(t0) = x0 may also be a box

Theorem (Lohner): If
[B1] := u0 + [0, h] · f([B0])

and
[B1] ⊆ [B0]

then the initial value problem above has exactly one solution
over [t0, t0 + h] which lies entirely within [B1] → Bounding Box.
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Algorithm

To get an enclosure . . .

• Determine bounding box and stepsize

• Evaluate Taylor series up to desired order over startbox

• Evaluate remainder term over bounding box
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Bounding Box
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Algorithm

• Find bounding box with greedy algorithm

• Generate derivatives symbolically

• Simplify expressions to reduce alias effects on variables

• Evaluate expressions with interval arithmetic
• Taylor series
• Lagrange remainder
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Example

dx
dt

= −x + 3, dy

dt
= x, x0 = [2, 4], y0 = [1, 1]
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Example II: Stable Oscillator

dx
dt

= y, dy

dt
= −x, x0 = [10, 12], y0 = [−1, 0]
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Wrapping Effect

dx
dt

= y, dy

dt
= −x, x0 = [10, 12], y0 = [−1, 0]

 8.5 9 9.5 10 10.5 11 11.5 12
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Fight Wrapping Effect

Lohner, Stauning, . . . : use coordinate transformation

[r, s]

[t, u]

p

q

x[a, b]

y

[c, d]
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Stable Oscillator

dx
dt

= y, dy

dt
= −x, x0 = [10, 12], y0 = [−1, 0]
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t = 1.20707

t = 0
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Damped Oscillator

dx
dt

= y − 0.8 · x, dy

dt
= −x + 0.3 · y, x0 = [10, 15], y0 = [−2, 1]
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Use in ICP: Tighten Target Box

−20
−15

−10
−5

 0
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 15

 0
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−20
−15
−10
−5
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 15

tightened postbox and TOI

y

x
tinitial postbox

• Given target box (including phase space and time)
• Intersect target box with enclosure
• Remove elements with empty intersection

(narrows also time-window of interest)
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Backward Propagation

• Use temporally reversed ODEs

• Use start box as target box and do normal forward propagation

• Intersect resulting target box with original start box

Fwd. and bwd. propagation do

• narrow the start box B and target box E — also iteratively!

• narrow the time window for both B and E,

• thus give fresh meat to constraint propagation along adjacent
parts of the transition sequence!
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Controlling Complexity: Partitioning

• Partition ODEs: Group together ODEs with common variables

• Deduction process alternates between different partitions and
between forward and backward pruning:

backward propagation

forward propagation

context P2 context P3

P1 P2 P3

-P3-P2-P1

TOI TOI

TOI TOI

TOI

TOI

. . .

. . .

context P1

TOI: [0, horizon]
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Summary

• Taylor-based numerical method with error enclosure

• Tightly integrated with non-linear arithmetic constraint solving:
• provides an interval contractor, just like ICP

E’
B’

B

E

• temporally symmetric (fwd. and bwd. contraction), unlike
traditional image computation

• refutes trajectory bundles based on partial knowledge

• experimental: first proof-of-concept implemented.
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Summary
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Verification Flow

Hybrid System Effective VerificationModel
BackendEncoding

component

component
continuous

A/D, D/A

component
discrete

formula

FOL(R,Z,+,...)

Boolean

FOL(R,+,*,...)

Yes/No

Hybrid System Effective VerificationModel
BackendEncoding

component

component
continuous

A/D, D/A

component
discrete

formula

FOL(R,Z,+,...)

Boolean

FOL(R,+,*,...)
Discrete/

Reach set

Existential

BMC/IV

Reach set

Iterated FOL(R,...)EA  /  AEA

pr
ec

isi
on

sy
st

em
 s

ize

FOL(R,...)

Timed abstr.

Hybrid System Effective VerificationModel
BackendEncoding

component

component
continuous

A/D, D/A

component
discrete

formula

FOL(R,Z,+,...)

Boolean

FOL(R,+,*,...)

H2

H1
H2 H3

H2
H1

Discrete/

Reach set

Existential

BMC/IV

Reach set

Iterated FOL(R,...)EA  /  AEA

pr
ec

isi
on

sy
st

em
 s

ize

FOL(R,...)

Timed abstr.

Strictly symbolic approach,

exemplified on an SMT-based tool set.
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Summary

• These were just some appetizers shedding light on principles.

• Haven’t touched major topics in hybrid systems, e.g.
• Data structures (and related image computation procedures)

for more precise representation of images:
• polytopes (e.g., [Henzinger, Ho, Wong-Toi 1995, Chutinan,

Krogh 1998, Frehse 2005]), zonotopes [Girard 2005,
Girard, le Guernic, Maler 2006, ...], ellipsoids [Kurzhanski,
Varaiya 2000], level sets of functions [Tomlin], ...

• AIG(LP) [Damm et al. 2006], hybrid restriction diagrams
[Wang 2004], ...

• Stability theory
• Lyapunov and Lyapunov-like functions
• discharging the related proof obligations; synthesizing

these witness functions
to name just a few.
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Perspectives for researchers
• Approximation theories and decidability issues

• Safe approximation is essential; under which circumstances do they
provide decision procedures; what are the appropriate notions of
approximate decision?

• Robust systems and “almost decidability” [Fränzle 1999, Asarin,
Bouajjani 2001, Collins 2006, Platzer, Clarke 2006, Girard, Pappas
2006, Girard 2007]

• Scalability and performance issues
• All current algorithms are quite confined
• Massively branching behavior of non-deterministic hybrid systems

together w. intricate continuous dynamics
• Better algorithms and data structures; maybe tailored to specific

analysis goals and system types
• Modeling issues

• Adequate modeling languages for the variety of hybrid phenomena
• Currently, most modeling is simulation-oriented
• Languages should concisely model system dynamics (including

non-determinism, probabilism, etc., were adequate) and the input
domain of open systems (shapes of inputs, controllability attributes, ...)
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