Automatic Verification of Hybrid Systems An arithmetic constraint solving perspective

Martin Fränzle ${ }^{\mathrm{a}}$

together with the hybrid systems group of the

Transregional Collaborative Research Center "AVACS"abcdef

${ }^{\text {a }}$ Carl von Ossietzky Universität Oldenburg, Germany
${ }^{\mathrm{b}}$ Albert-Ludwigs-Universität Freiburg, Germany
${ }^{\text {c }}$ Universität des Saarlandes, Saarbrücken, Germany
${ }^{d}$ MPII, Saarbrücken, Germany
${ }^{\mathrm{e}}$ Academy of Sciences of the Czech Republic, Prague ${ }^{f}$ ETH Zurich, Switzerland

Apologies

Due to serious health problems last week induced by a relapse, I haven't been able to prepare and print handouts. Pls. drop me an email under
fraenzle@informatik.uni-oldenburg.de
and I will supply you with an electronic version asap.
Sorry for the inconvenience caused!

What is a hybrid system?

Hybrid (griech.) bedeutet überheblich, hochmütig, vermessen.
Weitere Inhalte [insbes. im wiss. Sprachgebrauch] sind später hinein interpretiert worden.

Hybrid (from Greece) means arrogant, presumptuous. Other interpretations [in particular, in scientifi c jargon] have been added later.

After H. Menge: Griechisch/Deutsch, Langenscheidt 1984
\Rightarrow when you try to verify hybrid systems, be prepared that they may act like a prima donna!

Hybrid Systems

Hybrid systems

are ensembles of interacting discrete and continuous subsystems:

- Technical systems:
- physical plant + multi-modal control
- physical plant + embedded digital system
- mixed-signal circuits
- multi-objective scheduling problems (computers / distrib. energy management / traffi c managemant / ...)
- Biological systems:
- Delta-Notch signaling in cell differentiation
- Blood clotting
- Economy:
- cash/good flows + decisions
- ...
- Medicine/health/epidemiology:
- infectious diseases + vaccination strategies

Discrete vs. continuous

A discrete system

> E.g., a program

- operates on a state,
- performs discontinuous state changes at discrete time points,
- state is constant in between

Prog. variables, position
Computation steps: assignments, ctrl. flow

Stable states

Validation by

- Program verification
- State exploration

Discrete vs. continuous

a continuous system

- operates on a continuous state,
- which evolves continuously.

E.g., a ball

Height, speed

Newtonian mechanics

Validation:

- Analytically
- Simulation + continuity

Coupled Dynamics: Forced Pendulum

Interaction of continuous dynamics and discrete mode switch destroys global convergence!

A Formal Model: Hybrid Automata

$x=0.0 \wedge y \leq 0.0 /$

$$
y^{\prime}=-0.8 \cdot y
$$

x : vertical position of the ball
y : velocity
$y>0$ ball is moving up
$y<0$ ball is moving down

A Formal Model: Hybrid Automata

$$
\begin{aligned}
& x=0.0 \wedge y \leq 0.0 / \\
& y^{\prime}=-0.8 \cdot y
\end{aligned}
$$

x : vertical position of the ball
y : velocity
$y>0$ ball is moving up
$y<0$ ball is moving down

Hybrid automata

Hybrid systems $=$ Coupled digital \& analog systems

$$
\downarrow
$$

Hybrid automata = Finite automata with

- immediate transitions that are
- triggered by predicates on the (continuous) plant state
+ evolution of the continuous plant
- real-valued variables governed by
- a set of (restricted) differential equations that are
- selected by the current automaton state

Hybrid Automata

The formal model

Hybrid Automaton (w/o input) [after k.н. Johansson]

Def: a hybrid automaton H is a tuple $\mathrm{H}=(\mathrm{V}, \mathrm{X}, \mathrm{f}$, Init, Inv, Jump), where :

- V is a finite set of discrete modes. The elements of V represent the discrete states.
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is an (ordered) fi nite set ofcontinuous variables.

A real-valued valuation $z \in \mathbb{R}^{n}$ of x_{1}, \ldots, x_{n} represent a continuous state.

- $\mathrm{f} \in \mathrm{V} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ assigns a vector fi eldto each mode.

The dynamics in mode m is $\frac{d x}{d t}=f(m, x)$.

- Init $\subseteq \mathrm{V} \times \mathbb{R}^{n}$ is the initial condition. Init defi nes the admissible initial states of H .
- Inv $\subseteq \mathrm{V} \times \mathbb{R}^{n}$ specifi es themode invariants. Inv defi nes the admissible states of H .
- Jump $\in \mathrm{V} \times \mathbb{R}^{n} \rightarrow \mathcal{P}\left(\mathrm{~V} \times \mathbb{R}^{n}\right)$ is the jump relation.

Jump defi nes the possible discrete actions of H . The jump relation may be non-deterministic and entails both discrete modes and continuous variables.

Generalizations

This defi nition of a HA is not the most general one. Obvious extensions include

- Input / disturbances in the vector fi eld.
- Labeled jumps.
- Nondeterministic continuous evolutions.
- Stochastic effects.

Semantics: Two-Dimensional Time

An idealization partially justifi ed by differing speeds of ES and environment!

Hybrid time

Def: A hybrid time frame is a fi nite or infi nitesequence $\tau=\left\langle\mathrm{I}_{1}, \mathrm{I}_{1}, \ldots\right\rangle$ of time intervals I_{i}, where

- each I_{i} is a non-empty convex subset of $\mathbb{R}_{\geq 0}$, i.e. a non-empty interval in $\mathbb{R}_{\geq 0}$,
- inf $I_{i} \in I_{i}$ for each i, i.e. the intervals are left-closed,
- $\sup I_{i} \in I_{i}$ for each $i<$ len τ, i.e. all intervals excepts perhaps the rightmost are right-closed,
- $\max I_{i}=\min I_{i+1}$ for each $i<$ len τ, i.e. the intervals are adjacent and overlap exactely in one point.

Hybrid trajectories

Def: A hybrid trajectory E is a tuple $E=(\tau, \nu, x)$ such that

- τ is a hybrid time frame,
- $v \in \mathrm{~V}^{*} \cup \mathrm{~V}^{\omega}$ with len $v=$ len τ is a sequence of discrete modes,
- $x \in\left(\mathbb{R}_{\geq 0} \xrightarrow{\text { part.,cont. }} \mathbb{R}^{n}\right)^{*} \cup\left(\mathbb{R}_{\geq 0} \xrightarrow{\text { part.,cont. }} \mathbb{R}^{n}\right)^{\omega}$ with len $x=$ len τ and $\operatorname{dom} x_{i}=\tau_{i}$ is a sequence of continuous fbws of the variables in X.

Executions of a HA

Def: A run $E=(\tau, v, x)$ is an execution of the hybrid automaton $H=(V, X, f$, Init, Inv, Jump) iff

- Initiation: $\left(\nu_{1}, x_{1}\left(\min \tau_{1}\right)\right) \in \operatorname{Init}$,
- Consecution: $\operatorname{Jump}\left(\left(\nu_{i}, x_{i}\left(\max \tau_{i}\right)\right) \ni\left(\nu_{i+1}, x_{i+1}\left(\min \tau_{i+1}\right)\right)\right.$ holds for all $i<$ len τ,
- Continuous evolution: x_{i} is a solution of $\frac{d x}{d t}=f\left(v_{i}, x\right)$ for each $i \leq \operatorname{len} \tau$,
- State consistency: $\left(v_{i}, x_{i}(t)\right) \in \operatorname{In} \nu$ for each $t \in \operatorname{dom} \tau_{i}$ and each $i \leq$ len τ
hold.

Hybrid systems

- Proof obligation: Can the system be guaranteed to show desired behaviour, even under disturbances? E.g.,
- remains in safe states?
- eventually reaches a desired operational mode?
- stabilizes, i.e., converges against a setpoint / stable orbit / region of phase space?
! involves co-verifi cation of controller and continuous environment.

State and Dimension Explosion

Number of continuous variables linear in number of cars

- Positions, speeds, accelerations,
- torque, slip, ...

Number of discrete states exponential in number of cars

- Operational modes, control modes,
- state of communication subsystem, ...

Size-dependent dynamics

- Latency in ctrl. loop depends on number of cars due to communication subsystem.
- Coupled dynamics yields long hidden channels chaining signal transducers.
- Need a scalable approach
- Let's try to achieve this through strictly symbolic methods.

Outline

1. Translation of high-level models

- Simulink + Stateflow
- Compositional translation
- based on predicative encoding of block invariants

2. Basic principles of state-exploratory analysis of HA

- Finite-state abstraction vs. hybridisation vs. image computation of ODEs
- iterating a FO-defi nable map

3. A sample tool set

- SAT-modulo-theory based
- three (increasingly experimental) levels:
- linear hybrid automata vs. LinSAT
- non-linear assignments
- non-linear differential equations
- under development in AVACS subprojects H1 and H2

Verification Frontend

Translation of hybrid systems to arithmetic constraints

Translation

- Compositional translation into many-sorted logics

Analogy: Combinatorial Circuits

Mapping circuits to formulae

A gate is mapped to a propositional formula formalizing its invariant:

Circuit behavior corresponds to conjunction of all its gate formulae.

Generalizing the concept: Simulink+Stateflow

[$[$ [

(W

'Algebraic' blocks

- time-invariant transfer function output $(\mathrm{t})=\mathrm{f}(\operatorname{input}(\mathrm{t}))$
- made 1st-order by making time implicit: Flow \equiv output $=\mathrm{f}($ input $)$
- no constraints on initial value: Init \equiv true,
- discontinuous jumps always admissible Jump \equiv true,

All the formulae are elements of a suitably rich 1 st-order logics over \mathbb{R}.

Integrators

- integrates its input over time: output $(\mathrm{t})=$ init $+\int_{0}^{\mathrm{t}}$ input (u) du.
- made semi-1st-order by using derivatives: Flow $\equiv \frac{\text { doutput }}{\mathrm{dt}}=$ input
- initial value is rest value: Init \equiv output $=$ init ,
- discontinuous jumps don't affect output Jump \equiv output = output,

Use in Model Exploration

Given: Transition pred. $\operatorname{trans}\left(x, x^{\prime}\right)$, initial state pred. $\operatorname{init}(x)$, conj. invar. $\phi(x)$.

E.g., Bounded Model Checking (BMC) algorithm:

1. For given $i \in \mathbb{N}$ check for satisfi ability of
$\neg\binom{\quad \operatorname{init}\left(x_{0}\right) \wedge \operatorname{trans}\left(x_{0}, x_{1}\right) \wedge \ldots \wedge \operatorname{trans}\left(x_{i-1}, x_{i}\right)}{\Rightarrow \quad \phi\left(x_{0}\right) \wedge \ldots \wedge \phi\left(x_{i}\right)}$.
If test succeeds then report violation of goal.
2. Otherwise repeat with larger i.

> Can we use the predicates off-the-shelf?
> No, as dynamics is not in terms of pure pre-/post-relations.

Images of ODEs: Approaches

1. Safe finite-state abstraction:

- E.g., discretization through quantization (and overapproximation); yields fi nite-state system.
\because exponential in dimension of system
\because coarse abstractions give many false negatives \rightsquigarrow CEGAR

2. Hybridization: chop the phase space; do piecewise safe approximation by tractable dynamics (e.g., maps defi nable in decidable logics over \mathbb{R})

- potentially more concise,
\because yet still exponential in dimension of system

3. (Safely approximate) on-the-fly computation of ODE images.

Hybridization

Will not elaborate on into this issue here: approaches range from

- approximation by piecewise (i.e., in a grid element) constant differential inclusions obtained via interval-based safe approx. of upper and lower bounds on individual derivatives:

$$
\frac{d x}{d t}=x^{2}+2 y \wedge x \in[1,2] \wedge y \in[5,7] \quad \rightsquigarrow \quad \frac{d x}{d t} \in[11,18]
$$

a.o. [Henzinger, Kopke, Puri, Varaiya 1998] [Stursberg, Kowalewski 1999]

- to approximation by piecew. affi ne / multi-affi ne vector fi elds [Asarin, Dang, Girard 06]
- and to Taylor approximations [Piazza et al. 05, Lanotte, Tini 05]

For Lipschitz-continuous ODEs, imprecision generally is

- linear in grid width (though with different constants),
- exponential in length of time frame.
e.g., [Girard 2002; Asarin, Dang, Girard 2006]

Impact on decidability

Due to the (worst-case) exponential deviation over time, such hybridizations are not suffi cient for approximate (up to some ε) computation of the reachable state space over unbounded time frames.

Hence, questions like

- "If the distance of the reachable state space from a set of bad states larger than ε then provide a proof of this fact."
for fbws lacking a closed-form solution are i.g. not "decidable" by hybridization and related approximation schemes.
[Platzer, Clarke 2006]
...unless the fbw is attracting such that it cancels the accumulating error.
[Asarin, Dang, Girard 2006]

Principles of hybrid state-space exploration:

Iterating a 1st-order definable map

Checking safety

...in a fi nite Kripke structure:

1. For increasing n, calculate the set Reach ${ }^{\leq n}$ of states reachable in at most n steps.
2. Chain Reach ${ }^{\leq 1} \subseteq$ Reach $^{\leq 2} \subseteq \ldots$ has only a fi nite ascending subchain due to fi niteness of statespace.
\Rightarrow Set $\bigcup_{\mathfrak{n} \in \mathbb{N}}$ Reach $^{\leq n}$ of reachable states can be constructed in fi nitely many steps.
3. Check for intersection with set of unsafe states.
...in a hybrid automaton:
Similar fi xpoint construction

need not terminate, but yields an effective procedure for falsifi cation

Making the idea operational: the ingredients

Idea: Iterate transition relation and continuous dynamics until an unsafe state is hit:

Initial
unsafe

Result: Terminates iff HA is unsafe.
Requires: Effective representations of transition relation, continuous dynamics, and initial, intermediate, and unsafe state sets s.t.

1. Calculation of the state set reachable within $n \in \mathbb{N}$ steps is effective,
2. Emptiness of intersection of unsafe state set with the state set reachable in n steps is decidable.
(implemented in, e.g., HyTech [Henzinger, Ho, Wong-Toi, 1995-])

From hybrid automata to logic

A:

A:

Convexity of behaviors required, continuity is not FO-expressible!

Essentials of polynomial HA

- Finite set Σ of discrete states, fi nite vector \mathbf{x} of cont. variables
- An activity predicate $\operatorname{act}_{\sigma} \in \operatorname{FOL}(\mathbb{R},=,+, \times)$ defi nes the possible evolution of the continuous state while the system is in discrete state σ
- A transition predicate trans $_{\sigma \rightarrow \sigma^{\prime}} \in \operatorname{FOL}(\mathbb{R},=,+, \times)$ defi nes guard and effect of transition from discrete state σ to discrete state σ^{\prime}
- A path is a sequence $\left\langle\left(\sigma_{0}, \mathbf{y}_{0}\right),\left(\sigma_{1}, \mathbf{y}_{1}\right), \ldots\right\rangle \in\left(\Sigma \times \mathbb{R}^{\mathrm{d}}\right)^{\star / \omega}$ entailing an alternation of transitions and activities:

$$
\begin{array}{ll}
\text { - }\left(\overleftarrow{\mathbf{x}}:=\mathbf{y}_{i}, \mathbf{x}:=\mathbf{y}_{i+1}\right) \models \text { trans }_{\sigma_{i} \rightarrow \sigma_{i+1}} & \text { if } i \text { is odd } \\
\text { - }\left(\overleftarrow{\mathbf{x}}:=\mathbf{y}_{i}, \mathbf{x}:=\mathbf{y}_{i+1}\right) \models \operatorname{act}_{\sigma_{i}} \text { and } \sigma_{i}=\sigma_{i+1} & \text { if } i \text { is even } \\
\text { - }\left(\mathbf{x}:=\mathbf{y}_{0}\right) \models \text { initial }_{\sigma_{0}} &
\end{array}
$$

Decidability of $\operatorname{FOL}(\mathbb{R},=,+, \times)$ yields decision procedures for temporal properties of paths of fi nitely fi xed length

Reachability

of a fi nal discrete state o from an initial discrete state σ and through an execution containing n transitions can be formalized through the inductively defi ned predicate $\phi_{\sigma \rightarrow \sigma^{\prime}}^{n}$, where

$$
\begin{aligned}
& \phi_{\sigma \rightarrow \sigma^{\prime}}^{0}= \begin{cases}\text { false, } & \text { if } \sigma \neq \sigma^{\prime}, \\
\text { act } & \text { if } \sigma=\sigma^{\prime},\end{cases} \\
& \phi_{\sigma \rightarrow \sigma^{\prime}}^{n+1}=\bigvee_{\sigma \in \Sigma} \exists \mathbf{x}_{1}, \mathbf{x}_{2} \cdot\left(\begin{array}{l}
\phi_{\sigma \rightarrow \sigma}^{n}\left[\mathbf{x}_{1} / \mathbf{x}\right] \wedge \\
\left.\operatorname{trans}_{\sigma \rightarrow \sigma^{\prime}}, \mathbf{x}_{1}, \mathbf{x}_{2} / \overleftarrow{\mathbf{x}}, \mathbf{x}\right] \wedge \\
\text { act }_{\sigma^{\prime}}\left[\mathbf{x}_{2} / \mathbf{x}\right]
\end{array}\right)
\end{aligned}
$$

Safety of hybrid automata

\Rightarrow An unsafe state is reachable within n steps iff

$$
\text { Unsate }_{\mathfrak{n}}=\bigvee_{\sigma^{\prime} \in \Sigma} \operatorname{Reach}_{\bar{\sigma}^{\prime}}^{\leq n} \wedge \neg \text { safe }_{\sigma^{\prime}}
$$

is satisfi able, where

$$
\operatorname{Reach}_{\sigma^{\prime}}^{\leq n}=\bigvee_{i \in \mathbb{N}_{\leq n}} \bigvee_{\sigma \in \Sigma} \phi_{\sigma \rightarrow \sigma^{\prime}}^{i} \wedge \text { initial }_{\sigma}[\overleftarrow{\mathbf{x}} / \mathbf{x}]
$$

characterizes the continuous states reachable in at most n steps within discrete state σ^{\prime}.
\Rightarrow An unsafe state is reachable iff there is some $n \in \mathbb{N}$ for which Unsafe $_{n}$ is satisfi able.

The semi-decision procedure

1. $\operatorname{FOL}(\mathbb{R},=,+, \times)$ is decidable. [Tarski 1948]
2. Unsafe ${ }_{n}$ is a formula of $\operatorname{FOL}(\mathbb{R},=,+, \times)$.
\Rightarrow For arbitrary $\mathrm{n} \in \mathbb{N}$ it is decidable whether an unsafe state is reachable within n steps.
3. By successively testing increasing \mathfrak{n}, this yields a semi-decision procedure for reachability of unsafe states:
(a) Select some $n \in \mathbb{N}$,
(b) check Unsafe ${ }_{n}$.
(c) If this yields true then an unsafe state is reachable.

Report this and terminate.
(d) Otherwise select strictly larger $n \in \mathbb{N}$ and redo from step (b).

The semi-decision procedure - contd.

Note that in general the semi-decision procedure can only detect being unsafe, yet does not terminate iff the HA is safe. Hence, it
\because can be used for falsifying HA,
\because but not for verifying them.

However, there are cases where $\operatorname{Reach}_{\sigma^{\prime}}^{\leq n+1} \Rightarrow$ Reach $_{\sigma^{\prime}}^{\leq n}$ holds for some $n \in \mathbb{N}$ s.t. the reachable state set can be calculated in a fi nite number of steps.

But the reachability problem is undecidable in general!

Decidability

The problem is undecidable already for very restricted subclasses of hybrid automata:

- Stopwatch automata [Čerāns 1992; Wilke 1994; Henzinger, Kopke, Puri, Varaiya 1995]
- 3-dimensional piecewise constant derivative systems [Asarin, Maler, Pnueli 1995]

Decidable subclasses tend to abandon interplay between changes in continuous dynamics and transition selection/effect, or the dimensionality is extremely low:

- Timed automata [Alur, Dill 1994] and initialized rectangular automata [Henzinger, Kopke, Puri, Varaiya 1995]
- multi-priced timed automata [Larsen, Rasmussen 2005], priced timed automata with pos. and neg. rates [Boyer, Brihaye, Bruyère, Raskin 2007]
- 2-dimensional piecewise constant derivative systems [Maler, Pnueli 1994], also non-deterministic [Asarin, Schneider, Yovine 2001]

Iterating over the state-space

...how do we do this in practice

- on very large state spaces, both continuous and discrete?
- for non-polynomial assignments / pre-post-relations?
- for non-linear differential equations?

SAT modulo theory as an engine for bounded model checking of
 linear hybrid automata

Bounded Model Checking (BMC)

Method:

- construct formula that is satisfi able ifferror trace of length k exists
- formula is a k-fold unrolling of the systems transition relation, concatenated with a characterization of the initial state(s) and the (unsafe) state to be reached
- use appropriate decision procedure to decide satisfi ability of the formula
- usually BMC is carried out incrementally for $k=0,1,2, \ldots$ until an error trace is found or tired

Bounded Model Checking (BMC) algorithm

1. For given $i \in \mathbb{N}$ check for satisfi ability of
$\neg\binom{\quad \operatorname{init}\left(x_{0}\right) \wedge \operatorname{trans}\left(x_{0}, x_{1}\right) \wedge \ldots \wedge \operatorname{trans}\left(x_{i-1}, x_{i}\right)}{\Rightarrow \quad \phi\left(x_{0}\right) \wedge \ldots \wedge \phi\left(x_{i}\right)}$.
If test succeeds then report violation of goal.
2. Otherwise repeat with larger i.

Linear hybrid automata

- In this part, we will concentrate on hybrid automata where the initiation and transition predicates are linear and the activities give rise to polyhedral pre-post-relations:
- initial $_{\sigma} \in \operatorname{FOL}(\mathbb{R},+, \leq)$ with free $\left(\right.$ initial $\left._{\sigma}\right) \subseteq\left\{x_{1}, \ldots, x_{d}\right\}$ for each σ,
- $\operatorname{act}_{\sigma}=\operatorname{diff}_{\sigma} \wedge i n \nu_{\sigma} \in \operatorname{FOL}(\mathbb{R},+, \leq)$ for each σ, where
- $\operatorname{diff}_{\sigma}$ is purely conjunctive and free $\left(\right.$ diff $\left._{\sigma}\right) \subseteq\left\{\frac{d x_{1}}{d t}, \ldots, \frac{d x_{d}}{d t}\right\}$,
- $i n v_{\sigma}$ is conjunctive and

$$
\text { free }\left(\operatorname{inv}_{\sigma}\right) \subseteq\left\{x_{1}, \ldots, x_{d}\right\} \cup\left\{\overleftarrow{x_{1}}, \ldots, \overleftarrow{x_{d}}\right\}
$$

- $\operatorname{trans}_{\sigma \rightarrow \sigma^{\prime}} \in \operatorname{FOL}(\mathbb{R},+, \leq)$ with free $\left(\right.$ trans $\left._{\sigma \rightarrow \sigma^{\prime}}\right) \subseteq\left\{x_{1}, \ldots, x_{d}\right\} \cup\left\{\overleftarrow{\bar{x}_{1}}, \ldots, \overleftarrow{\chi_{d}}\right\}$ for each σ, σ^{\prime}.
- N.B.: Such continuous activities give rise to linear pre-/post-relations.

Linear Hybrid Automata (LHA)

BMC of Linear Hybrid Automata

Initial state:

$$
\sigma_{1}^{0} \wedge \neg \sigma_{2}^{0} \wedge x^{0}=0.0
$$

Jumps:

$$
\sigma_{1}^{i} \wedge \sigma_{2}^{i+1} \rightarrow\left(x^{i} \geq 12\right) \wedge\left(x^{i+1}=0.5 \cdot x^{i}\right) \wedge t^{i}=0
$$

Flows:

$$
\sigma_{1}^{i} \wedge \sigma_{1}^{i+1} \rightarrow \begin{cases} & \left(x^{i}+2 t^{i}\right) \leq x^{i+1} \leq\left(x^{i}+3 t^{i}\right) \\ \wedge & \left(x^{i+1} \leq 12\right) \\ \wedge & \left(t^{i}>0\right)\end{cases}
$$

Quantifier-free Boolean combinations of linear arithmetic constraints over the reals

Parallel composition corresponds to conjunction of formulae \longrightarrow No need to build product automaton

Ingredients of a Solver for BMC of LHA

BMC of LHA yields very large boolean combination of linear arithmetic facts.

Davis Putnam based SAT-Solver:

-) tackle instances with $\gg 10.000$ variables
(-) effi cient handling of disjunctions
: Boolean variables only
Linear Programming Solver:
-) solves large conjunctions of linear arithmetic inequations

- effi cient handling of continuous variables ($>10^{6}$)
© no disjunctions
Idea: Combine both methods to overcome shortcomings.
\rightsquigarrow SAT modulo theory

Davis-Putnam Procedure

```
    (x\veey\veez)
^(\overline{x}\veey)
^(\overline{y}\veez)
^(\overline{x}\vee\overline{y}\vee\overline{z})
\wedge(x\vee\overline{y}\vee\overline{z})
```


Satisfiability solving for decidable theories:

Lazy theorem proving \& DPLL(T)

The Lazy TP Scheme: LinSAT

Learned conflict clause: $\bar{A}+\bar{B}+\bar{C} \geq 1$

DPLL search

1. traversing possible truth-value assignments of Boolean part
2. incrementally (de-)constructing a conjunctive arithmetic constraint system
3. querying external solver to determine consistency of arithm. constr. syst.

Deciding the conjunctive T-problems

For T being linear arithmetic over \mathbb{R}, this can be done by linear programming:

$$
\bigwedge_{i=1}^{n} \sum_{j=1}^{m} A_{i, j} x_{j} \leq b_{j} \text { iff } A x \leq b
$$

\leadsto Solving LP
maximize $\mathbf{c}^{\top} \mathbf{x}$
subject to $\boldsymbol{A x} \leq \mathbf{b}$
with arbitrary c provides consistency information.

Deciding the conjunctive T-problems (cntd.)

To cope with systems C containing strict inequations $\sum_{j=1}^{m} A_{i, j} x_{j}<b_{j}$, one
classically: introduces a slack variable ε,

- then replaces $\sum_{j=1}^{m} A_{i, j} x_{j}<b_{j}$ by $\sum_{j=1}^{m} A_{i, j} x_{j}+\varepsilon \leq b_{j}$,
- solves the resultant LP L, maximizing the objective function ε
$\rightsquigarrow C$ is satisfi able iff L is satisfi able with optimum solution >0. more elegantly: treat ε symbolically:
- use 1 and ε as fundamental units of the number system,
- represent all numbers and coeffi cients in inequations as linear combinations of 1 and ε
[Dutertre, de Moura 2006: Yices]

Extracting reasons for T-conflicts

Goal: In case that the original constraint system

$$
C=\left(\begin{array}{cc}
& \bigwedge_{i=1}^{k} \\
\wedge & \sum_{j=1}^{n} \mathbf{A}_{i, j} \mathbf{x}_{j} \leq \mathbf{b}_{i} \\
\Lambda \bigwedge_{i=k+1}^{n} & \sum_{j=1}^{n} \mathbf{A}_{i, j} \mathbf{x}_{j}<\mathbf{b}_{i}
\end{array}\right)
$$

is infeasible, we want a subset $I \subseteq\{1, \ldots, n\}$ such that

- the subsystem $\left.C\right|_{I}$ of the constraint system containing only the conjuncts from I also is infeasible,
- yet the subsystem is irreducible in the sense that any proper subset J of I designates a feasible system $\left.\mathrm{C}\right|_{\mathrm{J}}$.
Such an irreducible infeasible subsystem (IIS) is a prime implicant of all the possible reasons for failure of the constraint system C.

Extracting IIS

Provided constraint system C contains only non-strict inequations,

- extraction of IIS can be reduced to fi nding extremal solutions of a dual system of linear inequations, similar to Farkas' Lemma (Gleeson \& Ryan 1990; Pfetsch, 2002)
- to keep the objective function bounded, one can use dual LP

$$
\begin{aligned}
& \text { maximize } \mathbf{w}^{\top} \mathbf{y} \\
& \text { subject to } \mathbf{A}^{\top} \mathbf{y}=0 \\
& \mathbf{b}^{\top} \mathbf{y}=1 \\
& y \geq 0 \\
& \text { where } \quad w_{i}= \begin{cases}-1 & \text { if } b_{i} \leq 0, \\
0 & \text { if } b_{i}>0\end{cases}
\end{aligned}
$$

- choice of w guarantees boundedness of objective function
\Longrightarrow optimal solution exists whenever the LP is feasible.
! For such a solution, $I=\left\{i \mid \mathbf{y}_{i} \neq 0\right\}$ is an IIS.

Extensions \& Optimizations

DPLL(T): If the T solver can itself do fwd. inference, it cannot only prune the search tree through confict detection, but also through constraint propagation:

1. SAT solver assigns truth values to subset $C \subset A$ of the set A of constraints occurring in the input formula,
2. T solver fi nds them to be consistent and to imply a truth value assignment to further T constraints $D \subseteq A \backslash C$,
3. these truth-value assignments are performed in the SAT solver store before resuming SAT solving.

SAT modulo theory for LinSAT

- SAT modulo theory solvers reasoning over linear arithmetic as a theory are readily available: E.g.,
- LPSAT [Wolfman \& Weld, 1999]
- ICS [Filliatre, Owre, Rueß, Shankar 2001], Simplics [de Moura, Dutertre 2005], Yices [Dutertre, de Moura 2006]
- MathSAT [Audemard, Bertoli, Cimatti, Kornilowicz, Sebastiani, Bozzano, Juntilla, van Rossum, Schulz 2002-]
- SVC [Barrett, Dill, Levitt 1996], CVC [Stump, Barrett, Dill 2002], CVC Lite [Barrett, Berezin 2004], CVC3 [Barrett, Fuchs, Ge, Hagen, Jovanovic 2006]
- HySAT [Herde \& Fränzle, 2004]
- ...
- Their use for analyzing linear hybrid automata has been advocated a number of times (e.g. in [Audemard, Bozzano, Cimatti, Sebastiani 2004]).
- They combine symbolic handling of discrete state components (via SAT solving) with symbolic handling of continuous state components.
- Formulae arising in BMC have a specifi c structure, which can be exploited for accelerating SAT search [Strichman 2004]

Pimp my SMT Solver: Isomorphy Inference

- learning schemes employed in SAT solvers account for a major fraction of the running time
- creation of a confict clause is even more expensive in a combined solver as it entails the extraction of an IIS
- idea: exploit symmetric structure to add isomorphic copies of a confict clause to the problem
- thus multiplying the benefi ttaken from the time-consuming reasoning process

Pimp my SMT Solver: Decision Strategies

General-Purpose Decision Heuristics:

- distant cycles of the transition relation are being satisfi ed independently
- until they fi nally turn out to be incompatible, often entailing the need to backtrack over long distances

For BMC we can use smarter decision strategies !

Pimp my SMT Solver: Decision Strategies

Forward-Heuristics:

- select decision variables in the natural order induced by the linear structure of the BMC formula
- e.g. starting with variables from cycle 0 , then from cycle 1, 2 , etc.
- thereby extending prefi xes of legal runs of the system
- allows conficts to be detected and resolved more locally

Pimp my SMT Solver: Knowledge Reuse

- when carrying out BMC incrementally the consecutive formulas share a large number of clauses
- thus, when moving from instance k to $k+1$ (or doing them in parallel), we can conjoin the confict clauses derived when solving the k-instance to the $k+1$-instance (and vice versa)
- only sound for confict clauses inferred from clauses which are common to both instances

Case Study: Elastic Distance Control

System Overview:

- n cars running on the same lane
- each car has a collision avoidance controller
- controller has four control modes:
- free running \leftrightarrow front or/and back intrusion into safety envelope
- elastic coupling in case of intrusion

Sample Trace

Case Study: Elastic Distance Control

Results: (total time needed to solve all $22+1$ instances until error trace is found)

- what to do if assignments are non-linear?

$$
x:=\sin y+e^{x}
$$

- what to do if continuous behavior is more general:
- linear differential equations?

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}+\mathbf{b}
$$

- non-linear differential equations?

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=\sin y
$$

Satisfiability solving in undecidable arithmetic domains

iSAT algorithm

Classical Lazy TP Layout

Problems with extending it to richer arithmetic domains:

- undecidability: answer of arithmetic reasoner no longer two-valued; don't know cases arise
- explanations: how to generate (nearly) minimal infeasible subsystems of undecidable constraint systems?

The Task

Find satisfying assignments (or prove absence thereof) for large (thousands of Boolean connectives) formulae of shape

$$
\begin{aligned}
& \left(b_{1} \Longrightarrow x_{1}^{2}-\cos y_{1}<2 y_{1}+\sin z_{1}+e^{u_{1}}\right) \\
\wedge & \left(x_{5}=\tan y_{4} \vee \tan y_{4}>z_{4} \vee \ldots\right) \\
\wedge & \ldots \\
\wedge & \left(\frac{d x}{d t}=-\sin x \wedge x_{3}>5 \wedge x_{3}<7 \wedge x_{4}>12 \wedge \ldots\right) \\
\wedge & \ldots
\end{aligned}
$$

Conventional solvers

- do either address much smaller fragments of arithmetic
- decidable theories: no transcendental fct.s, no ODEs
- or tackle only small formulae
- some dozens of Boolean connectives.

Algorithmic basis:

Interval constraint propagation (Hull consistency version)

Interval Constraint Solving (1)

- Complex constraints are rewritten to "triplets" (primitive constraints):

$$
\begin{array}{rlll}
\\
x^{2}+y \leq 6 & c_{1}: & & h_{1} \hat{=} x^{\wedge} 2 \\
c_{2}: & \wedge & h_{2} \hat{=} h_{1}+y \\
& \wedge & h_{2} \leq 6
\end{array}
$$

- "Forward" interval propagation yields justifi cationfor constraint satisfaction:

$$
\begin{gathered}
x \in[-2,2] \\
\wedge y \in[-2,2] \\
\Downarrow \\
h_{2} \leq 6 \text { is } \\
\text { satisfi ed in box }
\end{gathered}
$$

Interval Constraint Solving (1)

- Complex constraints are rewritten to "triplets" (primitive constraints):

$$
\begin{array}{llll}
& & c_{1}: & h_{1} \hat{=} x^{\wedge} 2 \\
x^{2}+y \leq 6 & c_{2}: & \wedge & h_{2} \hat{=} h_{1}+y \\
& & \wedge h_{2} \leq 6
\end{array}
$$

- Interval propagation (fwd \& bwd) yields witness for unsatisfi ability:

$$
\begin{gathered}
x \in[3,4] \\
\wedge y \in[0,3] \\
\Downarrow \\
h_{2} \leq 6 \text { is } \\
\text { unsat. in box }
\end{gathered}
$$

Interval Constraint Solving (1)

- Complex constraints are rewritten to "triplets" (primitive constraints):

$$
\begin{array}{rll}
\\
x^{2}+y \leq 6 & & c_{1}: \\
c_{1} \hat{=} x^{\wedge} 2 \\
c_{2}: & \wedge & h_{2} \hat{=} h_{1}+y \\
& \wedge h_{2} \leq 6
\end{array}
$$

- Interval prop. (fwd \& bwd until fi xpoint is reached) yieldscontraction of box:

$$
\begin{array}{r}
x \in[-10,10] \\
\wedge y \in[-10,10]
\end{array}
$$

Interval Constraint Solving (1)

- Complex constraints are rewritten to "triplets" (primitive constraints):

$$
\begin{array}{rll}
\\
x^{2}+y \leq 6 & c_{1}: & h_{1} \hat{=} x^{\wedge} 2 \\
c_{2}: & \wedge & h_{2} \hat{=} h_{1}+y \\
& \wedge h_{2} \leq 6
\end{array}
$$

- Interval prop. (fwd \& bwd until fi xpoint is reached) yieldscontraction of box:

$$
\begin{gathered}
x \in[-10,10] \\
\wedge y \in[-10,10] \\
\Downarrow \\
x \in[-4,4] \\
\wedge y \in[-10,6]
\end{gathered}
$$

Interval Constraint Solving (1)

- Complex constraints are rewritten to "triplets" (primitive constraints):

$$
\begin{array}{lll}
\\
x^{2}+y \leq 6 & c_{1}: & h_{1} \hat{=} x^{\wedge} 2 \\
c_{2}: & \wedge & h_{2} \hat{=} h_{1}+y \\
& \wedge h_{2} \leq 6
\end{array}
$$

- Interval prop. (fwd \& bwd until fi xpoint is reached) yieldscontraction of box:

$$
\begin{aligned}
& \text { Constraint is not satisfi ed } \\
& \text { by the contracted box! } \\
& \\
& \begin{array}{c}
x \in[-4,4] \\
\wedge y \in[-10,6]
\end{array}
\end{aligned}
$$

Interval contraction

Backward propagation yields rectangular overapproximation of non-rectangular pre-images.
Thus, interval contraction provides a highly incomplete deduction system:

$$
\begin{aligned}
& x \in[0, \infty) \\
& \wedge \hat{=} x \cdot y
\end{aligned} \Longrightarrow \quad \begin{aligned}
& x \in(0, \infty) \\
& y \in(0, \infty)
\end{aligned} \Longrightarrow h \in(0, \infty) \nRightarrow h>5
$$

\rightsquigarrow enhance through branch-and-prune approach.

Schema of Interval-CP based CS Alg.

Given: Constraint / clause set $C=\left\{c_{1}, \ldots, c_{n}\right\}$,
initial box (= cartesian product of intervals) B in $\mathbb{R}^{\mid \text {free }(\mathrm{C}) \mid} / \mathbb{B}^{\text {|ree }(\mathrm{C}) \mid}$
Goal: Find box $\mathrm{B}^{\prime} \subseteq \mathrm{B}$ containing satisfying valuations throughout or show non-existence of such B^{\prime}.

Alg.: 1. $L:=\{B\}$
2. If $\mathrm{L} \neq \emptyset$ then take some box $\mathrm{b}: \in \mathrm{L}$, (LIFO) otherwise report "unsatisfi able" and stop.
3. Use contraction to determine a sub-box $b^{\prime} \subseteq b$. (Unit Prop.)
4. If $b^{\prime}=\emptyset$ then set $L:=L \backslash\{b\}$, goto 2 .
5. Use forward interval propagation to determine whether all constraints are satisfi ed throughout b^{\prime}; if so then report b^{\prime} as satisfying and stop.
6. If $b^{\prime} \subset b$ then set $L:=L \backslash\{b\} \cup\left\{b^{\prime}\right\}$, goto 2 .
7. Split b into subboxes b_{1} and b_{2}, set $L:=L \backslash\{b\} \cup\left\{b_{1}, b_{2}\right\}$, goto 2.

Observation

DPLL-SAT and interval-CP based CS are inherently similar:

	DPLL-SAT	Interval-based CS
Propagation:	contraction in lattice is	(falsue\} \quad(false,true\} of Boolean intervals

This suggests a tighter integration than lazy TP: common algorithms should be shared, others should be lifted to both domains.

Lazy TP: Tightening the Interaction

Properties of Modified Layout

- SAT engine has introspection into CP
- thus can keep track of inferences and their reasons
- can use recent SAT mechanisms for generalizing reasons of conficts and learning them, thus pruning the search tree

Optimizations inherited from modern prop. SAT:

- conflct-driven learning
- non-chronological backtracking
- watched literal scheme
- restarts
\rightarrow have been instrumental to thousand-fold increase in tractable formula size for prop. SAT.

Conflict-driven learning in multi-valued case

Works like a charme w/o fundamental modifi cations:

- Decision variables coincide to interval splits; the assigned values to asserted bounds $x \geq c, x>c, x<c$, $x \leq c$;
- Implications correspond to contractions;
- Reasons to sets of asserted atoms giving rise to a contraction.

> Through embedding into SAT, we get confict-driven learning and nonchronological backtracking for free!

Deduction and Learning

The impact of learning: runtime

[2.5 GHz AMD Opteron, 4 GByte physical memory, Linux]

Examples:

BMC of

- platoon ctrl.
- bounc. ball
- gingerbread map
- oscillatory logistic map

Intersect. of geometric bodies

Size:
Up to 2400 var.s, $\gg 10^{3}$ Boolean connectives.

The competition: ABsolver

ABsolver: Bauer, Pister, Tautschnig, "Tool support for the analysis of hybrid systems and models", DATE '07

Discussion

Approach: Unifi cation of ICP-based constraint solving and DPLL-based propositional SAT solving in order to

- maintain the excellent reasoning power of ICP for robust constraints over \mathbb{R},
- boost the performance on complex Boolean compositions of constraints
[Fränzle, Herde, Ratschan, Schubert, Teige 2006/07]

First experimental results:

- conflict-driven learning and other SAT optimizations of ICP yield enormous pruning of proof tree
\Rightarrow corresponding growth in size of tractable formulae

Consequences:

- can solve large boolean combinations of non-linear arithmetic constraints:
© non-linear time-discrete hybrid systems
(no differential equations, only difference equations)
- appropriate hybridisations of ODEs
\because direct support for ODEs missing.

Direct reasoning over images and pre-images of ODEs

Motivation

- Linear and non-linear ordinary Differential Equations (ODEs) describing continous behaviour in the discrete modes of a hybrid system
- Want to do BMC on these models w/o prior hybridisation

The Problem

Given: a system of time-invariant ODEs

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
& \vdots \\
\frac{d x_{n}}{d t} & =f_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

plus three boxes $B, I, E \subset \mathbb{R}^{n}$.
Problem: determine whether E is reachable from B along a trajectory satisfying the ODE and not leaving I.

Added value: Prune unconnected parts of B and E :

Special case: adjacent boxes

Stursberg,Kowalewski et. al. [1997]:
Check sign of relevant derivative at box border:

$\dot{x} \in[-5,1]$
use interval arithmetic for evaluating the ODE over the box border.

Towards Pre-Post-Constraints

Lemma (n-dimensional mean value theorem): If
$\left(y_{1}, \ldots, y_{n}\right) \in E \cap I$ is reachable from $\left(x_{1}, \ldots, x_{n}\right) \in B \cap I$ via a fbw in I satisfying $\frac{d x}{d t}=f$ then

$$
\exists t \in \mathbb{R}_{\geq 0}: \bigwedge_{1 \leq i \leq n} \exists \mathbf{a} \in I: y_{i}=x_{i}+f_{i}(\mathbf{a}) \cdot t
$$

HSolver [Ratschan, 2004-]

Problem: Safely determine whether E is unreachable from B along a trajectory satisfying the ODE and not leaving I.

Some approaches:

1. Interval-based safe numeric approximation of ODEs [Moore 1965, Lohner 1987, Stauning 1997]
(used in Hypertech [Henzinger, Horowitz, Majumdar, Wong-Toi 2000])
2. $\operatorname{CLP}(F)$: a symbolic, constraint-based technology for reasoning about ODEs grounded in (in-)equational constraints obtained from Taylor expansions
[Hickey, Wittenberg 2004]

Safe Approximation

Should also be tight! And effi cient to compute!

Euler's Method

Taylor Series

Exact solution $x(t)$ has slope determined by f in each point: $\frac{d x}{d t}=f(x(t))$
Taylor expansion of exact solution:

$$
\begin{aligned}
x\left(t_{0}+h\right)=x\left(t_{0}\right) & +\frac{h^{1}}{1!} \frac{d x}{d t}\left(t_{0}\right) \\
& +\frac{h^{2}}{2!} \frac{d^{2} x}{d t^{2}}\left(t_{0}\right)+\ldots \\
& +\frac{h^{n}}{n!} \frac{d^{n} x}{d t^{n}}\left(t_{0}\right) \quad \text { (LAGRANGE REMAIN } \\
& +\frac{h^{n+1}}{(n+1)!} \frac{d^{n+1} x}{d t^{n+1}}\left(t_{0}+\theta h\right), \text { with } 0<\theta<1
\end{aligned}
$$

Taylor Series

$$
\begin{aligned}
& x\left(t_{0}+h\right)=x\left(t_{0}\right)+\frac{h^{1}}{1!} \underbrace{\frac{d x}{d t}\left(t_{0}\right)}_{f\left(x\left(t_{0}\right)\right)} \\
& +\frac{h^{2}}{2!} \underbrace{\frac{d^{2} x}{d t^{2}}\left(t_{0}\right)}+\ldots \\
& \frac{d f}{d t}\left(x\left(t_{0}\right)\right) \cdot f\left(x\left(t_{0}\right)\right) \\
& +\frac{h^{n}}{n!} \frac{d^{n} x}{d t^{n}}\left(t_{0}\right) \\
& +\frac{h^{n+1}}{(n+1)!} \underbrace{\frac{d^{n+1} x}{d t^{n+1}}\left(t_{0}+\theta h\right)}_{\text {unknown }} \text {, with } 0<\theta<1
\end{aligned}
$$

Can use interval arithm. to evaluate $f\left(x\left(t_{0}\right)\right)$, etc., if $x\left(t_{0}\right)$ is set-valued!

Bounding Box

x

$$
\begin{aligned}
& \frac{d x}{d t}(t) \leq \max (f(B)) \text { for all } t \in\left[t_{0}, t_{0}+h\right] \\
& \frac{d x}{d t}(t) \geq \min (f(B))
\end{aligned}
$$

If we only knew B...

Bounding Box [Lohner]

Given: Initial value problem:

$$
\frac{d x}{d t}=f(x), x\left(t_{0}\right)=x_{0} \text { may also be a box }
$$

Theorem (Lohner): If

$$
\left[B^{1}\right]:=u_{0}+[0, h] \cdot f\left(\left[B^{0}\right]\right)
$$

and

$$
\left[\mathrm{B}^{1}\right] \subseteq\left[\mathrm{B}^{0}\right]
$$

then the initial value problem above has exactly one solution over $\left[\mathrm{t}_{0}, \mathrm{t}_{0}+\mathrm{h}\right]$ which lies entirely within $\left[\mathrm{B}^{1}\right] \rightarrow$ Bounding Box.

Algorithm

To get an enclosure ...

- Determine bounding box and stepsize
- Evaluate Taylor series up to desired order over startbox
- Evaluate remainder term over bounding box

Bounding Box

Algorithm

- Find bounding box with greedy algorithm
- Generate derivatives symbolically
- Simplify expressions to reduce alias effects on variables
- Evaluate expressions with interval arithmetic
- Taylor series
- Lagrange remainder

Example

Example II: Stable Oscillator

Wrapping Effect

$$
\frac{d x}{d t}=y, \frac{d y}{d t}=-x, x_{0}=[10,12], y_{0}=[-1,0]
$$

Fight Wrapping Effect

Lohner, Stauning, use coordinate transformation

Stable Oscillator

Damped Oscillator

$$
\frac{d x}{d t}=y-0.8 \cdot x, \frac{d y}{d t}=-x+0.3 \cdot y, x_{0}=[10,15], y_{0}=[-2,1]
$$

Use in ICP: Tighten Target Box

- Given target box (including phase space and time)
- Intersect target box with enclosure
- Remove elements with empty intersection (narrows also time-window of interest)

Backward Propagation

- Use temporally reversed ODEs
- Use start box as target box and do normal forward propagation
- Intersect resulting target box with original start box

Fwd. and bwd. propagation do

- narrow the start box B and target box E - also iteratively!
- narrow the time window for both B and E,
- thus give fresh meat to constraint propagation along adjacent parts of the transition sequence!

Controlling Complexity: Partitioning

- Partition ODEs: Group together ODEs with common variables
- Deduction process alternates between different partitions and between forward and backward pruning:

Summary

- Taylor-based numerical method with error enclosure
- Tightly integrated with non-linear arithmetic constraint solving:
- provides an interval contractor, just like ICP

- temporally symmetric (fwd. and bwd. contraction), unlike traditional image computation
- refutes trajectory bundles based on partial knowledge
- experimental: fi rst proof-of-concept implemented.

Summary

Verification Flow

Strictly symbolic approach, exemplifi ed on an SMT-based tool set.

Summary

- These were just some appetizers shedding light on principles.
- Haven't touched major topics in hybrid systems, e.g.
- Data structures (and related image computation procedures) for more precise representation of images:
- polytopes (e.g., [Henzinger, Ho, Wong-Toi 1995, Chutinan, Krogh 1998, Frehse 2005]), zonotopes [Girard 2005, Girard, le Guernic, Maler 2006, ...], ellipsoids [Kurzhanski, Varaiya 2000], level sets of functions [Tomlin], ...
- AIG(LP) [Damm et al. 2006], hybrid restriction diagrams [Wang 2004], ...
- Stability theory
- Lyapunov and Lyapunov-like functions
- discharging the related proof obligations; synthesizing these witness functions
to name just a few.

Perspectives for researchers

- Approximation theories and decidability issues
- Safe approximation is essential; under which circumstances do they provide decision procedures; what are the appropriate notions of approximate decision?
- Robust systems and "almost decidability" [Fränzle 1999, Asarin, Bouajjani 2001, Collins 2006, Platzer, Clarke 2006, Girard, Pappas 2006, Girard 2007]
- Scalability and performance issues
- All current algorithms are quite confi ned
- Massively branching behavior of non-deterministic hybrid systems together w. intricate continuous dynamics
- Better algorithms and data structures; maybe tailored to specifi c analysis goals and system types
- Modeling issues
- Adequate modeling languages for the variety of hybrid phenomena
- Currently, most modeling is simulation-oriented
- Languages should concisely model system dynamics (including non-determinism, probabilism, etc., were adequate) and the input domain of open systems (shapes of inputs, controllability attributes, ...)
- to the collaborators within AVACS project area hybrid systems:
A. Eggers ${ }^{\text {a }}$, A. Mikschla ${ }^{\text {a }}$, A. Platzer ${ }^{\text {a }}$, A. Podelskib ${ }^{\text {b }}$, A. Rybalchenko ${ }^{\text {b }}$,
B. Badban ${ }^{\text {a }}$, B. Becker ${ }^{\text {b }}$, B. Nebel ${ }^{\text {b }}$, B. Westphal ${ }^{\text {a }}$, B. Wirtza ${ }^{\text {a }}$, C. Herde ${ }^{\text {a }}$,
C. Scholl ${ }^{\text {b }}$, E. Abraham ${ }^{\text {b }}$, E.-R. Olderog ${ }^{\text {a }}$, F. Eisenbrand ${ }^{\text {d }}$, F. Klaedtke ${ }^{\text {f }}$,
F. Pigorsch ${ }^{\text {b }}$, H. Burchhardta ${ }^{\text {a }}$ H. Dierks ${ }^{\text {a }}$, H. Hermanns ${ }^{\text {c }}$, H. Hungar ${ }^{\text {a }}$,
I. Polian ${ }^{\text {b }}$, J. Eisinger ${ }^{\text {b }}$, J. Oehlerking ${ }^{\text {a }}$, J.-G. Smaus ${ }^{\text {b }}$, Jun Pang ${ }^{\text {a }, ~ M . ~ B e h l e ~}{ }^{\text {d }}$,
M. Herbstritt ${ }^{\text {b }}$, M. Lewis ${ }^{\text {b }}$, M. Swaminathan ${ }^{\mathrm{a}}$, N. Kalinnik ${ }^{\text {b }}$, O. Theel ${ }^{\text {a }}$,
P. Maier ${ }^{\text {d }}$, R. Wimmer ${ }^{\text {b }}$, S. Disch ${ }^{\text {b }}$, S. Jacobs ${ }^{\text {d }}$, S. Kupferschmied ${ }^{\text {b }}$,
S. Ratschane ${ }^{\mathrm{e}}$, S. Wagner ${ }^{\mathrm{b}}$, T. Schubert ${ }^{\mathrm{b}}$, T. Teige ${ }^{\mathrm{a}, ~ U . ~ W a l d m a n n ~}{ }^{\mathrm{d}}$,
V. Sofronie-Stokkermanns ${ }^{\text {d }}$, W. Damm ${ }^{\text {a }}$, Zhikun She ${ }^{\text {d }}$
- and to the contributing institutions:
${ }^{\text {a }}$ Carl von Ossietzky Universität Oldenburg, Germany
${ }^{\text {b }}$ Albert-Ludwigs-Universität Freiburg, Germany
${ }^{\text {c }}$ Universität des Saarlandes \& ${ }^{d}$ MPII, Saarbrücken, Germany
${ }^{e}$ Academy of Sciences of the Czech Republic, Prague, Czech Rep.
${ }^{\text {f }}$ Eidgenössische Technische Hochschule Zurich, Switzerland and to Deutsche Forschungsgemeinschaft for funding AVACS.

