
Automatic Verification of Hybrid Systems
An arithmetic constraint solving perspective

Martin Fränzlea

together with the hybrid systems group of the

Transregional Collaborative Research Center “AVACS”abcdef

a Carl von Ossietzky Universität Oldenburg, Germany
bAlbert-Ludwigs-Universität Freiburg, Germany

cUniversität des Saarlandes, Saarbrücken, Germany
dMPII, Saarbrücken, Germany

eAcademy of Sciences of the Czech Republic, Prague
fETH Zurich, Switzerland

CAV ’07: Verification of Hybrid Systems – p.1/111

Apologies

Due to serious health problems last week induced by a relapse, I
haven’t been able to prepare and print handouts. Pls. drop me an
email under

fraenzle@informatik.uni-oldenburg.de

and I will supply you with an electronic version asap.

Sorry for the inconvenience caused!

CAV ’07: Verification of Hybrid Systems – p.2/111

What is a hybrid system?

Hybrid (griech.) bedeutet überheblich, hochmütig,
vermessen.
Weitere Inhalte [insbes. im wiss. Sprachgebrauch] sind
später hinein interpretiert worden.

Hybrid (from Greece) means arrogant, presumptuous.
Other interpretations [in particular, in scientific jargon] have
been added later.

After H. Menge: Griechisch/Deutsch, Langenscheidt 1984

⇒ when you try to verify hybrid systems,

be prepared that they may act like a prima donna!

CAV ’07: Verification of Hybrid Systems – p.3/111

Hybrid Systems

Loads of
continuous
computations

interleaved
with discrete
decisions

Plant

ControlAnalog
switch

Continuous
controllers

D/A

Discrete
supervisor

A/D

Plant

observable
state

environmental
influence

disturbances ("noise")

control

selection

setpoints

active control law

setpoints
part of
observable
state

task selection

CAV ’07: Verification of Hybrid Systems – p.4/111

Hybrid systems
are ensembles of interacting discrete and continuous subsystems:

• Technical systems:
• physical plant + multi-modal control
• physical plant + embedded digital system
• mixed-signal circuits
• multi-objective scheduling problems (computers / distrib. energy

management / traffic managemant / ...)
• Biological systems:

• Delta-Notch signaling in cell differentiation
• Blood clotting
• ...

• Economy:
• cash/good flows + decisions
• ...

• Medicine/health/epidemiology:
• infectious diseases + vaccination strategies
• ...

CAV ’07: Verification of Hybrid Systems – p.5/111

Discrete vs. continuous

A discrete system E.g., a program

• operates on a state, Prog. variables, position

• performs discontinuous state changes at dis-
crete time points,

Computation steps:
assignments, ctrl. flow

• state is constant in between Stable states

[2,5[
]0,10]

x=0

x=1

[2,5[
]0,10]

0

1
x

5 100 15 20 25 t

x=0

x=1

[2,5[
]0,10]

0

1
x

5 100 15 20 25 t

x=0

x=1

[2,5[
]0,10]

0

1
x

5 100 15 20 25 t

x=0

x=1

[2,5[
]0,10]

0

1
x

5 100 15 20 25 t

x=0

x=1

[2,5[
]0,10]

0

1
x

5 100 15 20 25 t

x=0

x=1

[2,5[
]0,10]

0

1
x

5 100 15 20 25 t

x=0

x=1

[2,5[
]0,10]

0

1
x

5 100 15 20 25 t

x=0

x=1

[2,5[
]0,10]

0

1
x

5 100 15 20 25 t

x=0

x=1

[2,5[
]0,10]

0

1
x

5 100 15 20 25 t

x=0

x=1

[2,5[
]0,10]

0

1
x

5 100 15 20 25 t

x=0

x=1

[2,5[
]0,10]

0

1
x

5 100 15 20 25 t

x=0

x=1

[2,5[
]0,10]

0

1
x

5 100 15 20 25 t

x=0

x=1

Validation by

- Program
verification

- State exploration

CAV ’07: Verification of Hybrid Systems – p.6/111

Discrete vs. continuous

a continuous system E.g., a ball

• operates on a continuous state, Height, speed

• which evolves continuously. Newtonian mechanics

−10

−20

0 5 10 15 20

0

h

v

−10

−20

0 5 10 15 20

0

h

v

−10

−20

0 5 10 15 20

0

h

v

−10

−20

0 5 10 15 20

0

h

v

Validation:

- Analytically

- Simulation +
continuity

CAV ’07: Verification of Hybrid Systems – p.7/111

Coupled Dynamics: Forced Pendulum

Freely osc.

x

v Magnet on v

x

Freely osc.

x

v Switched v

x

Magnet on v

x

Freely osc.

x

v Switched v

x

Magnet on v

x

Freely osc.

x

v Switched v

x

Magnet on v

x

Freely osc.

x

v Switched v

x

Magnet on v

x

Freely osc.

x

v Switched v

x

Magnet on v

x

Freely osc.

x

v Switched v

x

Magnet on v

x

Freely osc.

x

v

Switched v

x

Magnet on v

x

Freely osc.

x

v

Interaction of continuous dynamics and discrete mode switch
destroys global convergence!

CAV ’07: Verification of Hybrid Systems – p.8/111

A Formal Model: Hybrid Automata

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

y < 0

y > 0

x :

y :

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

ball is moving down

ball is moving up

vertical position of the ball

velocity

0

10

20

0 2 4 6 8 10

-20

-10

0

10

20

0 2 4 6 8 10
y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0
x(t)

y(t)

CAV ’07: Verification of Hybrid Systems – p.9/111

A Formal Model: Hybrid Automata

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

y < 0

y > 0

x :

y :

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

ball is moving down

ball is moving up

vertical position of the ball

velocity

−10

0

−20

10

0 5 10 15 20

20
y

x

y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0

ball is moving down

ball is moving up

vertical position of the ball

velocity

0

10

20

0 2 4 6 8 10

-20

-10

0

10

20

0 2 4 6 8 10
y < 0

y > 0

x :

y :

•
x= y

x ≥ 0

•
y= −9.81

x = 0.0 ∧ y ≤ 0.0 /

y ′ = −0.8 · y

x = 20.0 ∧ y = 0.0
x(t)

y(t)

CAV ’07: Verification of Hybrid Systems – p.9/111

Hybrid automata

Hybrid systems = Coupled digital & analog systems

↓
Hybrid automata = Finite automata with

• immediate transitions that are
• triggered by predicates on the (continuous)

plant state

+ evolution of the continuous plant
• real-valued variables governed by
• a set of (restricted) differential equations that

are
• selected by the current automaton state

CAV ’07: Verification of Hybrid Systems – p.10/111

Hybrid Automata

The formal model

CAV ’07: Verification of Hybrid Systems – p.11/111

Hybrid Automaton (w/o input) [after K.H. Johansson]

Def: a hybrid automaton H is a tuple H = (V, X, f, Init, Inv, Jump), where :
• V is a finite set of discrete modes.

The elements of V represent the discrete states.
• X = {x1, . . . , xn} is an (ordered) finite set ofcontinuous variables.

A real-valued valuation z ∈ R
n of x1, . . . , xn represent a continuous

state.
• f ∈ V × R

n → R
n assigns a vector fieldto each mode.

The dynamics in mode m is dx
dt

= f(m, x).
• Init ⊆ V × R

n is the initial condition.
Init defines the admissible initial states of H.

• Inv ⊆ V × R
n specifies themode invariants.

Inv defines the admissible states of H.
• Jump ∈ V × R

n → P(V × R
n) is the jump relation.

Jump defines the possible discrete actions of H. The jump relation may
be non-deterministic and entails both discrete modes and continuous
variables.

CAV ’07: Verification of Hybrid Systems – p.12/111

Generalizations

This definition of a HA is not the most general one. Obvious
extensions include

• Input / disturbances in the vector field.

• Labeled jumps.

• Nondeterministic continuous evolutions.

• Stochastic effects.

CAV ’07: Verification of Hybrid Systems – p.13/111

Semantics: Two-Dimensional Time

Discrete activity:
no progress of physical time involved;
continuous activity frozen

discrete activity ceases,
progress of physical
time starts again

No. of discrete
computation

steps

Physical time
0

5

10

A discretely perceptible event (threshold, elapse of clock)
occurs, starting discrete activity

Continuous phase:
Phys. time advances,
no discrete steps

An idealization partially justified by differing speeds of ES and environment!

CAV ’07: Verification of Hybrid Systems – p.14/111

Hybrid time [after K.H. Johansson]

Def: A hybrid time frame is a finite or infinitesequence
τ = 〈I1, I1, . . .〉 of time intervals Ii, where
• each Ii is a non-empty convex subset of R≥0, i.e. a

non-empty interval in R≥0,
• inf Ii ∈ Ii for each i, i.e. the intervals are left-closed,
• sup Ii ∈ Ii for each i < len τ, i.e. all intervals excepts perhaps

the rightmost are right-closed,
• max Ii = min Ii+1 for each i < len τ, i.e. the intervals are

adjacent and overlap exactely in one point.

t

x

CAV ’07: Verification of Hybrid Systems – p.15/111

Hybrid trajectories [after K.H. Johansson]

Def: A hybrid trajectory E is a tuple E = (τ, v, x) such that
• τ is a hybrid time frame,
• v ∈ V∗ ∪ Vω with len v = len τ is a sequence of discrete

modes,

• x ∈ (R≥0
part.,cont.
−→ R

n)∗ ∪ (R≥0
part.,cont.
−→ R

n)ω with len x = len τ

and dom xi = τi is a sequence of continuous flows of the
variables in X.

t

x

CAV ’07: Verification of Hybrid Systems – p.16/111

Executions of a HA [after K.H. Johansson]

Def: A run E = (τ, v, x) is an execution of the hybrid automaton
H = (V,X, f, Init, Inv, Jump) iff
• Initiation: (v1, x1(min τ1)) ∈ Init,
• Consecution: Jump ((vi, xi(max τi)) 3 (vi+1, xi+1(min τi+1))

holds for all i < len τ,
• Continuous evolution: xi is a solution of dx

dt
= f(vi, x) for

each i ≤ len τ,
• State consistency: (vi, xi(t)) ∈ Inv for each t ∈ dom τi and

each i ≤ len τ

hold.

t

x

CAV ’07: Verification of Hybrid Systems – p.17/111

Hybrid systems

• Proof obligation: Can the
system be guaranteed to
show desired behaviour, even
under disturbances? E.g.,
• remains in safe states?
• eventually reaches a

desired operational
mode?

• stabilizes, i.e., converges
against a setpoint / stable
orbit / region of phase
space?

! involves co-verification of con-
troller and continuous envi-
ronment.

CAV ’07: Verification of Hybrid Systems – p.18/111

State and Dimension Explosion
Number of continuous variables linear in number
of cars

• Positions, speeds, accelerations,
• torque, slip, ...

Number of discrete states exponential in number
of cars

• Operational modes, control modes,
• state of communication subsystem, ...

Size-dependent dynamics
• Latency in ctrl. loop depends on number of

cars due to communication subsystem.
• Coupled dynamics yields long hidden chan-

nels chaining signal transducers.

• Need a scalable approach
• Let’s try to achieve this through strictly symbolic methods.

CAV ’07: Verification of Hybrid Systems – p.19/111

Outline

1. Translation of high-level models
• Simulink + Stateflow
• Compositional translation
• based on predicative encoding of block invariants

2. Basic principles of state-exploratory analysis of HA
• Finite-state abstraction vs. hybridisation vs. image computation of ODEs
• iterating a FO-definable map

3. A sample tool set
• SAT-modulo-theory based
• three (increasingly experimental) levels:

• linear hybrid automata vs. LinSAT
• non-linear assignments
• non-linear differential equations

• under development in AVACS subprojects H1 and H2

CAV ’07: Verification of Hybrid Systems – p.20/111

Verification Frontend

Translation of hybrid systems
to arithmetic constraints

CAV ’07: Verification of Hybrid Systems – p.21/111

Translation

Hybrid System Effective VerificationModel
BackendEncoding

component

component
continuous

A/D, D/A

component
discrete

formula

FOL(R,Z,+,...)

Boolean

FOL(R,+,*,...)
Discrete/

Reach set

Existential

BMC/IV

Reach set

Iterated FOL(R,...)EA / AEA

pr
ec

isi
on

sy
st

em
 s

ize

FOL(R,...)

Timed abstr.

• Compositional translation into many-sorted logics

CAV ’07: Verification of Hybrid Systems – p.22/111

Analogy: Combinatorial Circuits

Circuit
level

Formula
level

Valuation
− of propositional variables
− of circuit nodes
level

Translator

Combinational
Circuit I

Combinational
Circuit II

Logical
formula

Prove engine

Approval/
counterexample

CAV ’07: Verification of Hybrid Systems – p.23/111

Mapping circuits to formulae
A gate is mapped to a propositional formula formalizing its invariant:

z
x

y
& 7→ x ∧ y ⇔ z

z
x

y
>= 1 7→ x ∨ y ⇔ z

z< 1x 7→ ¬x ⇔ z

... 7→ combinations thereof.

Circuit behavior corresponds to conjunction of all its gate formulae.

CAV ’07: Verification of Hybrid Systems – p.24/111

Generalizing the concept: Simulink+Stateflow

CAV ’07: Verification of Hybrid Systems – p.25/111

‘Algebraic’ blocks

outputinput
f

• time-invariant transfer function output(t) = f (input(t))

• made 1st-order by making time implicit: Flow ≡ output = f (input)

• no constraints on initial value: Init ≡ true,

• discontinuous jumps always admissible Jump ≡ true,

All the formulae are elements of a suitably rich
1st-order logics over R.

CAV ’07: Verification of Hybrid Systems – p.26/111

Integrators

outputinput 1/s
init

• integrates its input over time: output(t) = init +
∫t

0
input(u) du.

• made semi-1st-order by using derivatives: Flow ≡ doutput
dt

= input

• initial value is rest value: Init ≡ output = init,

• discontinuous jumps don’t affect output Jump ≡ output =
↼

output,

CAV ’07: Verification of Hybrid Systems – p.27/111

Use in Model Exploration

Given: Transition pred. trans(x, x ′), initial state pred. init(x), conj. invar. φ(x).

E.g., Bounded Model Checking (BMC) algorithm:
1. For given i ∈ N check for satisfiability of

¬

(

init(x0) ∧ trans(x0, x1) ∧ . . . ∧ trans(xi−1, xi)

⇒ φ(x0) ∧ . . . ∧ φ(xi)

)

.

If test succeeds then report violation of goal.

2. Otherwise repeat with larger i.

Can we use the predicates off-the-shelf?

No, as dynamics is not in terms of pure pre-/post-relations.

CAV ’07: Verification of Hybrid Systems – p.28/111

Images of ODEs: Approaches
1. Safe finite-state abstraction:

E.g., discretization through quantization
(and overapproximation); yields finite-state
system.

exponential in dimension of system

coarse abstractions give many false nega-
tives CEGAR

δ

δ

δ
δ

δ

y

x

2. Hybridization: chop the phase space; do piece-
wise safe approximation by tractable dynamics
(e.g., maps definable in decidable logics over R)

potentially more concise,

yet still exponential in dimension of system

3. (Safely approximate) on-the-fly computation of ODE images.

CAV ’07: Verification of Hybrid Systems – p.29/111

Hybridization
Will not elaborate on into this issue here: approaches range from

• approximation by piecewise (i.e., in a grid element) constant
differential inclusions obtained via interval-based safe approx. of
upper and lower bounds on individual derivatives:

dx

dt
= x2 + 2y ∧ x ∈ [1, 2] ∧ y ∈ [5, 7]

dx

dt
∈ [11, 18]

a.o. [Henzinger, Kopke, Puri, Varaiya 1998] [Stursberg, Kowalewski 1999]
• to approximation by piecew. affine / multi-affine vector fields

[Asarin, Dang, Girard 06]
• and to Taylor approximations [Piazza et al. 05, Lanotte, Tini 05]

For Lipschitz-continuous ODEs, imprecision generally is

• linear in grid width (though with different constants),
• exponential in length of time frame.

e.g., [Girard 2002; Asarin, Dang, Girard 2006]

CAV ’07: Verification of Hybrid Systems – p.30/111

Impact on decidability

Due to the (worst-case) exponential deviation over time, such
hybridizations are not sufficient for approximate (up to some ε)
computation of the reachable state space over unbounded time
frames.

Hence, questions like

• "If the distance of the reachable state space from a set of bad
states larger than ε then provide a proof of this fact.”

for flows lacking a closed-form solution are i.g. not “decidable” by
hybridization and related approximation schemes.

[Platzer, Clarke 2006]

...unless the flow is attracting such that it cancels the accumulating
error.

[Asarin, Dang, Girard 2006]

CAV ’07: Verification of Hybrid Systems – p.31/111

Principles of hybrid state-space exploration:

Iterating a 1st-order definable map

CAV ’07: Verification of Hybrid Systems – p.32/111

Checking safety

...in a finite Kripke structure:

1. For increasing n, calculate the
set Reach≤n of states reachable
in at most n steps.

2. Chain Reach≤1 ⊆ Reach≤2 ⊆ . . .

has only a finite ascending sub-
chain due to finiteness of state-
space.

⇒ Set
⋃

n∈N
Reach≤n of reachable

states can be constructed in
finitely many steps.

3. Check for intersection with set of
unsafe states.

...in a hybrid automaton:

Similar fixpoint construction

InitInitUnsafe InitUnsafe InitUnsafe InitUnsafe

InitUnsafe

need not terminate,
but yields an effective pro-
cedure for falsification.

CAV ’07: Verification of Hybrid Systems – p.33/111

Making the idea operational: the ingredients

Idea: Iterate transition relation and continuous dynamics until an unsafe state is
hit:

Initial Step 1 Step 2 Step 3 Step 4

unsafe

initial

Result: Terminates iff HA is unsafe.

Requires: Effective representations of transition relation, continuous dynamics, and
initial, intermediate, and unsafe state sets s.t.
1. Calculation of the state set reachable within n ∈ N steps is effective,
2. Emptiness of intersection of unsafe state set with the state set

reachable in n steps is decidable.
(implemented in, e.g., HyTech [Henzinger, Ho, Wong-Toi, 1995–])

CAV ’07: Verification of Hybrid Systems – p.34/111

From hybrid automata to logic

A: A:

σσ

∃∆t.

x =
↼
x +∆t

y <
↼
y +2∆t

x ≤ 10

↼
x= 10 ∧ x = 0 ∧ y =

↼
y

2
− 1

x = 0 ∧ y = 0x := 0, y := 0

x = 10 → x := 0, y := y
2
− 1

x ≤ 10

dy
dt

< 2

dx
dt

= 1

Convexity of behaviors required, continuity is not FO-expressible!

CAV ’07: Verification of Hybrid Systems – p.35/111

Essentials of polynomial HA
• Finite set Σ of discrete states, finite vector x of cont. variables
• An activity predicate actσ ∈ FOL(R,=,+,×) defines the possible

evolution of the continuous state while the system is in discrete
state σ

• A transition predicate transσ→σ ′ ∈ FOL(R,=,+,×) defines guard
and effect of transition from discrete state σ to discrete state σ ′

• A path is a sequence 〈(σ0, y0), (σ1, y1), . . .〉 ∈ (Σ × R
d)?|ω

entailing an alternation of transitions and activities:

• (
↼
x := yi, x := yi+1) |= transσi→σi+1

if i is odd

• (
↼
x := yi, x := yi+1) |= actσi

and σi = σi+1 if i is even
• (x := y0) |= initialσ0

Decidability of FOL(R,=,+,×) yields decision procedures for tem-
poral properties of paths of finitely fixed length

CAV ’07: Verification of Hybrid Systems – p.36/111

Reachability

of a final discrete state σ′ from an initial discrete state σ and through
an execution containing n transitions can be formalized through the
inductively defined predicateφn

σ→σ ′ , where

φ0
σ→σ ′ =

{
false , if σ 6= σ ′ ,

actσ , if σ = σ ′ ,

φn+1
σ→σ ′ =

∨

σ̃∈Σ

∃ x1, x2 .

φn
σ→σ̃[x1/x]∧

transσ̃→σ ′ [x1, x2/
↼
x , x]∧

actσ ′ [x2/
↼
x]

CAV ’07: Verification of Hybrid Systems – p.37/111

Safety of hybrid automata

⇒ An unsafe state is reachable within n steps iff

Unsafen =
∨

σ ′∈Σ

Reach≤n
σ ′ ∧ ¬safeσ ′

is satisfiable, where

Reach≤n
σ ′ =

∨

i∈N≤n

∨

σ∈Σ

φi
σ→σ ′ ∧ initialσ[

↼
x /x]

characterizes the continuous states reachable in at most n steps
within discrete state σ ′.

⇒ An unsafe state is reachable iff there is some n ∈ N for which
Unsafen is satisfiable.

CAV ’07: Verification of Hybrid Systems – p.38/111

The semi-decision procedure

1. FOL(R,=,+,×) is decidable. [Tarski 1948]

2. Unsafen is a formula of FOL(R,=,+,×).

⇒ For arbitrary n ∈ N it is decidable whether an unsafe state is
reachable within n steps.

3. By successively testing increasing n, this yields a semi-decision
procedure for reachability of unsafe states:

(a) Select some n ∈ N,
(b) check Unsafen.
(c) If this yields true then an unsafe state is reachable.

Report this and terminate.
(d) Otherwise select strictly larger n ∈ N and redo from step (b).

CAV ’07: Verification of Hybrid Systems – p.39/111

The semi-decision procedure — contd.

Note that in general the semi-decision procedure
can only detect being unsafe, yet does not termi-
nate iff the HA is safe. Hence, it

can be used for falsifying HA,

but not for verifying them.

However, there are cases where Reach≤n+1
σ ′ ⇒ Reach≤n

σ ′ holds for
some n ∈ N s.t. the reachable state set can be calculated in a finite
number of steps.

But the reachability problem is undecidable in general!

CAV ’07: Verification of Hybrid Systems – p.40/111

Decidability

The problem is undecidable already for very restricted subclasses of hybrid
automata:

• Stopwatch automata [Čerāns 1992; Wilke 1994;
Henzinger, Kopke, Puri, Varaiya 1995]

• 3-dimensional piecewise constant derivative systems
[Asarin, Maler, Pnueli 1995]

• ...

Decidable subclasses tend to abandon interplay between changes in continuous
dynamics and transition selection/effect, or the dimensionality is extremely low:

• Timed automata [Alur, Dill 1994] and initialized rectangular automata
[Henzinger, Kopke, Puri, Varaiya 1995]

• multi-priced timed automata [Larsen, Rasmussen 2005], priced timed
automata with pos. and neg. rates [Boyer, Brihaye, Bruyère, Raskin 2007]

• 2-dimensional piecewise constant derivative systems [Maler, Pnueli 1994],
also non-deterministic [Asarin, Schneider, Yovine 2001]

• ...
CAV ’07: Verification of Hybrid Systems – p.41/111

Iterating over the state-space

...how do we do this in practice

• on very large state spaces, both continuous and discrete?

• for non-polynomial assignments / pre-post-relations?

• for non-linear differential equations?

CAV ’07: Verification of Hybrid Systems – p.42/111

SAT modulo theory
as an engine for

bounded model checking of
linear hybrid automata

CAV ’07: Verification of Hybrid Systems – p.43/111

Bounded Model Checking (BMC)

1 2 2 3 3 40 1I P

Method:

• construct formula that is satisfiable ifferror trace of length k

exists
• formula is a k–fold unrolling of the systems transition relation,

concatenated with a characterization of the initial state(s) and
the (unsafe) state to be reached

• use appropriate decision procedure to decide satisfiability of the
formula

• usually BMC is carried out incrementally for k = 0, 1, 2, . . . until
an error trace is found or tired

CAV ’07: Verification of Hybrid Systems – p.44/111

Bounded Model Checking (BMC) algorithm

1. For given i ∈ N check for satisfiability of

¬

(

init(x0) ∧ trans(x0, x1) ∧ . . . ∧ trans(xi−1, xi)

⇒ φ(x0) ∧ . . . ∧ φ(xi)

)

.

If test succeeds then report violation of goal.

2. Otherwise repeat with larger i.

CAV ’07: Verification of Hybrid Systems – p.45/111

Linear hybrid automata
• In this part, we will concentrate on hybrid automata where the

initiation and transition predicates are linear and the activities
give rise to polyhedral pre-post-relations:
• initialσ ∈ FOL(R,+,≤) with free(initialσ) ⊆ {x1, . . . , xd}

for each σ,
• actσ = diffσ ∧ invσ ∈ FOL(R,+,≤) for each σ, where

• diffσ is purely conjunctive and free(diffσ) ⊆ { dx1

dt
, . . . , dxd

dt
},

• invσ is conjunctive and

free(invσ) ⊆ {x1, . . . , xd} ∪ {
↼
x1, . . . ,

↼
xd},

• transσ→σ ′ ∈ FOL(R,+,≤) with

free(transσ→σ ′) ⊆ {x1, . . . , xd} ∪ {
↼
x1, . . . ,

↼
xd}

for each σ, σ ′.

• N.B.: Such continuous activities give rise to linear

pre-/post-relations.

CAV ’07: Verification of Hybrid Systems – p.46/111

Linear Hybrid Automata (LHA)

−6

0

6

12

0 10 20 30

x ′ = −6

x ≤ 0 /

2 ≤
dx

dt
≤ 3

x = 0

x ′ = 1
2
· x

x ≥ 12 /

x ≤ 12

x ≥ 0

−2 ≤
dx

dt
≤ −1

CAV ’07: Verification of Hybrid Systems – p.47/111

BMC of Linear Hybrid Automata

−6

0

6

12

0 10 20 30

Parallel composition corresponds to conjunction of formulae

constraints over the reals

Quantifier−free Boolean combinations of linear arithmetic

No need to build product automaton

Initial state:

Jumps:

σ0
1 ∧ ¬σ0

2 ∧ x0 = 0.0

σi
1 ∧ σi+1

2 → (xi ≥ 12) ∧ (xi+1 = 0.5 · xi) ∧ ti = 0

Flows:

σi
1 ∧ σi+1

1 →

(xi + 2 ti) ≤ xi+1 ≤ (xi + 3 ti)

∧ (xi+1 ≤ 12)

∧ (ti > 0)

−2 ≤
dx

dt
≤ −1

x ′ = −6

x ≤ 0 /

2 ≤
dx

dt
≤ 3

x = 0

σ1

σ2

x ′ = 1
2
· x

x ≥ 12 /

x ≤ 12

x ≥ 0

CAV ’07: Verification of Hybrid Systems – p.48/111

Ingredients of a Solver for BMC of LHA

BMC of LHA yields very large boolean combination of linear
arithmetic facts.

Davis Putnam based SAT-Solver:

tackle instances with � 10.000 variables

efficient handling of disjunctions

Boolean variables only

Linear Programming Solver:

solves large conjunctions of linear arithmetic inequations

efficient handling of continuous variables (> 106)

no disjunctions

Idea: Combine both methods to overcome shortcomings.
 SAT modulo theory

CAV ’07: Verification of Hybrid Systems – p.49/111

Davis–Putnam Procedure

Deduce

Decide

Decide

Deducey, z, z̄

z, z̄ z

(x ∨ y ∨ z)

∧ (x̄ ∨ y)

∧ (ȳ ∨ z)

∧ (x ∨ ȳ ∨ z̄)

x x̄

∧ (x̄ ∨ ȳ ∨ z̄)
y ȳ

CAV ’07: Verification of Hybrid Systems – p.50/111

Satisfiability solving for decidable theories:

Lazy theorem proving & DPLL(T)

CAV ’07: Verification of Hybrid Systems – p.51/111

The Lazy TP Scheme: LinSAT

Learned conflict clause:

A
D

B

Deduce

Deduce

Deduce

Deduce from conflict cl.

DeduceDeduce

Davis Putnam Linear Programming

y

x

e e

C, D

f f

A, B g, g

g, f, A, B

C

D

A + B + C ≥ 1

DPLL search

1. traversing possible truth-value assignments of Boolean part
2. incrementally (de-)constructing a conjunctive arithmetic constraint system
3. querying external solver to determine consistency of arithm. constr. syst.

CAV ’07: Verification of Hybrid Systems – p.52/111

Deciding the conjunctive T -problems

For T being linear arithmetic over R, this can be done by linear
programming:

n
∧

i=1

m∑

j=1

Ai,jxj ≤ bj iff Ax ≤ b

 Solving LP maximize cT x

subject to Ax ≤ b

with arbitrary c provides consistency information.

CAV ’07: Verification of Hybrid Systems – p.53/111

Deciding the conjunctive T -problems (cntd.)

To cope with systems C containing strict inequations
∑m

j=1 Ai,jxj<bj,
one

classically: introduces a slack variable ε,
• then replaces

∑m

j=1 Ai,jxj<bj by
∑m

j=1 Ai,jxj+ε ≤bj,
• solves the resultant LP L, maximizing the objective function ε

 C is satisfiable iff L is satisfiable with optimum solution > 0.

more elegantly: treat ε symbolically:
• use 1 and ε as fundamental units of the number system,
• represent all numbers and coefficients in inequations as

linear combinations of 1 and ε

[Dutertre, de Moura 2006: Yices]

CAV ’07: Verification of Hybrid Systems – p.54/111

Extracting reasons for T -conflicts

Goal: In case that the original constraint system

C =

(

∧k

i=1

∑n

j=1 Ai,jxj ≤ bi

∧
∧n

i=k+1

∑n

j=1 Ai,jxj < bi

)

is infeasible, we want a subset I ⊆ {1, . . . , n} such that
• the subsystem C|I of the constraint system containing only

the conjuncts from I also is infeasible,
• yet the subsystem is irreducible in the sense that any proper

subset J of I designates a feasible system C|J.
Such an irreducible infeasible subsystem (IIS) is a prime
implicant of all the possible reasons for failure of the constraint
system C.

CAV ’07: Verification of Hybrid Systems – p.55/111

Extracting IIS
Provided constraint system C contains only non-strict inequations,

• extraction of IIS can be reduced to finding extremal solutions of a dual
system of linear inequations, similar to Farkas’ Lemma (Gleeson & Ryan
1990; Pfetsch, 2002)

• to keep the objective function bounded, one can use dual LP

maximize wT y

subject to AT y = 0

bT y = 1

y ≥ 0

where wi =

{
−1 if bi ≤ 0,

0 if bi > 0

• choice of w guarantees boundedness of objective function
=⇒ optimal solution exists whenever the LP is feasible.

! For such a solution, I = {i | yi 6= 0} is an IIS.

CAV ’07: Verification of Hybrid Systems – p.56/111

Extensions & Optimizations

DPLL(T): If the T solver can itself do fwd. inference, it cannot only
prune the search tree through conflict detection, but also
through constraint propagation:
1. SAT solver assigns truth values to subset C ⊂ A of the set A

of constraints occurring in the input formula,
2. T solver finds them to be consistent and to imply a truth

value assignment to further T constraints D ⊆ A \ C,
3. these truth-value assignments are performed in the SAT

solver store before resuming SAT solving.

CAV ’07: Verification of Hybrid Systems – p.57/111

SAT modulo theory for LinSAT
• SAT modulo theory solvers reasoning over linear arithmetic as a theory are

readily available: E.g.,
• LPSAT [Wolfman & Weld, 1999]
• ICS [Filliatre, Owre, Rueß, Shankar 2001], Simplics [de Moura, Dutertre

2005], Yices [Dutertre, de Moura 2006]
• MathSAT [Audemard, Bertoli, Cimatti, Kornilowicz, Sebastiani, Bozzano,

Juntilla, van Rossum, Schulz 2002–]
• SVC [Barrett, Dill, Levitt 1996], CVC [Stump, Barrett, Dill 2002], CVC

Lite [Barrett, Berezin 2004], CVC3 [Barrett, Fuchs, Ge, Hagen,
Jovanovic 2006]

• HySAT [Herde & Fränzle, 2004]
• ...

• Their use for analyzing linear hybrid automata has been advocated a
number of times (e.g. in [Audemard, Bozzano, Cimatti, Sebastiani 2004]).

• They combine symbolic handling of discrete state components (via SAT
solving) with symbolic handling of continuous state components.

• Formulae arising in BMC have a specific structure, which can be exploited
for accelerating SAT search [Strichman 2004]

CAV ’07: Verification of Hybrid Systems – p.58/111

Pimp my SMT Solver: Isomorphy Inference

1 2 2 3 3 40 1I P

• learning schemes employed in SAT solvers account for a major
fraction of the running time

• creation of a conflict clause is even more expensive in a
combined solver as it entails the extraction of an IIS

• idea: exploit symmetric structure to add isomorphic copies of a
conflict clause to the problem

• thus multiplying the benefittaken from the time–consuming
reasoning process

CAV ’07: Verification of Hybrid Systems – p.59/111

Pimp my SMT Solver: Decision Strategies

General–Purpose Decision Heuristics:

• distant cycles of the transition relation are being satisfied
independently

• until they finally turn out to be incompatible, often entailing the
need to backtrack over long distances

For BMC we can use smarter decision strategies !

CAV ’07: Verification of Hybrid Systems – p.60/111

Pimp my SMT Solver: Decision Strategies

Forward–Heuristics:

• select decision variables in the natural order induced by the
linear structure of the BMC formula

• e.g. starting with variables from cycle 0, then from cycle 1, 2, etc.

• thereby extending prefixes of legal runs of the system

• allows conflicts to be detected and resolved more locally

CAV ’07: Verification of Hybrid Systems – p.60/111

Pimp my SMT Solver: Knowledge Reuse

k = 3 :

k = 4 :

1 2 2 30 1I

1 2 2 3 3 40 1I P

P

• when carrying out BMC incrementally the consecutive formulas
share a large number of clauses

• thus, when moving from instance k to k + 1 (or doing them in
parallel), we can conjoin the conflict clauses derived when
solving the k–instance to the k + 1–instance (and vice versa)

• only sound for conflict clauses inferred from clauses which are
common to both instances

CAV ’07: Verification of Hybrid Systems – p.61/111

Case Study: Elastic Distance Control

System Overview:

• n cars running on the same lane
• each car has a collision avoidance controller
• controller has four control modes:

• free running ↔ front or/and back intrusion into safety envelope
• elastic coupling in case of intrusion

CAV ’07: Verification of Hybrid Systems – p.62/111

Sample Trace

t

s(t)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 40 80 100 120 140 160 20 60

CAV ’07: Verification of Hybrid Systems – p.63/111

Case Study: Elastic Distance Control

Results: (total time needed to solve all 22+1 instances until error
trace is found)

iso
.in

f.

re
us

e

he
ur

.

un
op

t.

iso
.in

f.

re
us

e

he
ur

.

un
op

t.

iso
.in

f.

re
us

e

he
ur

.

un
op

t.

n = 5n = 4n = 3

0

5

10

15

20

t

[min]

Methods yield factor 3 to 5 each

CAV ’07: Verification of Hybrid Systems – p.64/111

but...

• what to do if assignments are non-linear?

x := sin y + ex

• what to do if continuous behavior is more general:
• linear differential equations?

dx

dt
= Ax + b

• non-linear differential equations?

dx

dt
= sin y

CAV ’07: Verification of Hybrid Systems – p.65/111

Satisfiability solving in
undecidable arithmetic domains

iSAT algorithm

CAV ’07: Verification of Hybrid Systems – p.66/111

Classical Lazy TP Layout

DPLL−SAT

+ conflict−driven learning
+ non−chronol. backtrack.

reasoner

Arithmetic

arithmetic
constraint system

explanation:
(minimal) infeasible
subsystem

consistent:
yes / no

Problems with extending it to richer arithmetic domains:
• undecidability: answer of arithmetic reasoner no longer

two-valued; don’t know cases arise

• explanations: how to generate (nearly) minimal infeasible
subsystems of undecidable constraint systems?

CAV ’07: Verification of Hybrid Systems – p.67/111

The Task
Find satisfying assignments (or prove absence thereof) for large
(thousands of Boolean connectives) formulae of shape

(b1 =⇒ x2
1 − cos y1 < 2y1 + sin z1 + eu1)

∧ (x5 = tan y4 ∨ tan y4 > z4 ∨ . . .)

∧ . . .

∧ (dx
dt

= − sin x ∧ x3 > 5 ∧ x3 < 7 ∧ x4 > 12 ∧ . . .)

∧ . . .

Conventional solvers

• do either address much smaller fragments of arithmetic
• decidable theories: no transcendental fct.s, no ODEs

• or tackle only small formulae
• some dozens of Boolean connectives.

CAV ’07: Verification of Hybrid Systems – p.68/111

Algorithmic basis:

Interval constraint propagation
(Hull consistency version)

CAV ’07: Verification of Hybrid Systems – p.69/111

Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂ h1 + y

∧ h2 ≤ 6

• “Forward” interval propagation yields justificationfor constraint satisfaction:

x ∈ [−2, 2]

∧ y ∈ [−2, 2]

2

6

y

≤

+

∧

x

[−2, 2]

[0, 4]

[−2, 6]

[−2, 2]

h2

h1

satisfied in box

h2 ≤ 6 is

⇓

CAV ’07: Verification of Hybrid Systems – p.70/111

Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂ h1 + y

∧ h2 ≤ 6

• Interval propagation (fwd & bwd) yields witness for unsatisfiability:

2

6

y

≤

+

∧

x

[3, 4]

[9, 16]

[9, 19]

[0, 3]

h2

h1

unsat. in box

h2 ≤ 6 is

⇓

x ∈ [3, 4]

∧ y ∈ [0, 3]

CAV ’07: Verification of Hybrid Systems – p.70/111

Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂ h1 + y

∧ h2 ≤ 6

• Interval prop. (fwd & bwd until fixpoint is reached) yieldscontraction of box:

2

6

y

≤

+

∧

x

[−10, 10]

[0, 100]

[−10, 110]

[−10, 10]

h2

h1

∧ y ∈ [−10, 10]

x ∈ [−10, 10]

CAV ’07: Verification of Hybrid Systems – p.70/111

Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂ h1 + y

∧ h2 ≤ 6

• Interval prop. (fwd & bwd until fixpoint is reached) yieldscontraction of box:

2

6

y

≤

+

∧

x

[−4, 4]

[0, 16]

[−10, 6]

[−10, 6]

h2

h1

⇓

∧ y ∈ [−10, 10]

x ∈ [−10, 10]

∧ y ∈ [−10, 6]

x ∈ [−4, 4]

CAV ’07: Verification of Hybrid Systems – p.70/111

Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂ h1 + y

∧ h2 ≤ 6

• Interval prop. (fwd & bwd until fixpoint is reached) yieldscontraction of box:

Constraint is not satisfied

by the contracted box!

2

6

y

≤

+

∧

x

[−4, 4]

[0, 16] [−10, 6]

h2

h1

∧ y ∈ [−10, 6]

x ∈ [−4, 4]

[−10, 22]

CAV ’07: Verification of Hybrid Systems – p.70/111

Interval contraction

Backward propagation yields rectangular overapproximation of
non-rectangular pre-images.

Thus, interval contraction provides a highly incomplete deduction
system:

x ∈ [0, ∞)

∧ h =̂ x · y

∧ h > 5

=⇒ x ∈ (0, ∞)

∧ y ∈ (0, ∞)
=⇒ h ∈ (0, ∞) 6=⇒ h > 5

 enhance through branch-and-prune approach.

CAV ’07: Verification of Hybrid Systems – p.71/111

Schema of Interval-CP based CS Alg. / DPLL
Given: Constraint / clause set C = {c1, . . . , cn},

initial box (= cartesian product of intervals) B in R
|free(C)| / B

|free(C)|

Goal: Find box B ′ ⊆ B containing satisfying valuations throughout
or show non-existence of such B ′.

Alg.: 1. L := {B}

2. If L 6= ∅ then take some box b :∈ L, (LIFO)
otherwise report “unsatisfiable” and stop.

3. Use contraction to determine a sub-box b ′ ⊆ b. (Unit Prop.)
4. If b ′ = ∅ then set L := L \ {b}, goto 2.
5. Use forward interval propagation to determine whether all

constraints are satisfied throughout b′; if so then report b ′ as
satisfying and stop.

6. If b ′ ⊂ b then set L := L \ {b} ∪ {b ′}, goto 2.
7. Split b into subboxes b1 and b2, set L := L \ {b} ∪ {b1, b2},

goto 2.
CAV ’07: Verification of Hybrid Systems – p.72/111

Observation

DPLL-SAT and interval-CP based CS are inherently similar:
DPLL-SAT Interval-based CS

Propagation: contraction in lattice

{false,true}

{false}

{}

{true} contraction in lattice
of intervals over R

of Boolean intervals

Split: split of Boolean interval [false,true] split of interval over R

This suggests a tighter integration than lazy TP:
common algorithms should be shared,
others should be lifted to both domains.

CAV ’07: Verification of Hybrid Systems – p.73/111

Lazy TP: Tightening the Interaction

propagation

Arithmetic

constraint
+ conflict−driven learning
+ non−chronol. backtrack.propagation

Boolean

constraint

DPLL−SAT
control flow

enters / removes constraints &
triggers individual constraint propagations

reports narrowing results

Arithmetic

reasoner

DPLL−SAT

+ conflict−driven learning
+ non−chronol. backtrack.

arithmetic
constraint system

consistent:
yes / no

explanation:
(minimal) infeasible
subsystem

CAV ’07: Verification of Hybrid Systems – p.74/111

Properties of Modified Layout

propagation

Arithmetic

constraint
+ conflict−driven learning
+ non−chronol. backtrack.propagation

Boolean

constraint

DPLL−SAT
control flow

triggers individual constraint propagations

reports narrowing results

enters / removes constraints &

• SAT engine has introspection into CP
• thus can keep track of inferences and their reasons

can use recent SAT mechanisms for generalizing reasons of

conflicts and learning them, thus pruning the search tree

CAV ’07: Verification of Hybrid Systems – p.75/111

Optimizations inherited from modern prop. SAT:

• conflict-driven learning
• non-chronological backtracking
• watched literal scheme
• restarts

→ have been instrumental to thousand-fold
increase in tractable formula size for
prop. SAT.

CAV ’07: Verification of Hybrid Systems – p.76/111

Conflict-driven learning in multi-valued case

Works like a charme w/o fundamental modifications:

• Decision variables coincide to interval splits;
the assigned values to asserted bounds x ≥ c, x > c, x < c,
x ≤ c;

• Implications correspond to contractions;

• Reasons to sets of asserted atoms giving rise to a contraction.

Through embedding into SAT, we get

conflict-driven learning and non-
chronological backtracking for free!

CAV ’07: Verification of Hybrid Systems – p.77/111

Deduction and Learning

z

y

x

x > 0
x < 3
y > 2
y < 5
z > 0
z < 2
x > y
z = x*y
y = z+x
...

x > y

y > 2

x > 2

z = x*y

x > 2

z < 2

y > 2

Refutes other candidate boxes and constraint combinations immediately.

CAV ’07: Verification of Hybrid Systems – p.78/111

The impact of learning: runtime

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out Examples:
BMC of

• platoon ctrl.
• bounc. ball
• gingerbread

map
• oscillatory

logistic map

Intersect. of geo-
metric bodies

Size:
Up to 2400 var.s,
� 103 Boolean
connectives.

[2.5 GHz AMD Opteron, 4 GByte physical memory, Linux]

CAV ’07: Verification of Hybrid Systems – p.79/111

The competition: ABsolver

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1e-04 0.001 0.01 0.1 1 10 100 1000

ru
nt

im
e

A
B

so
lv

er
 [s

]

runtime iSAT [s]

> 1:5> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 500k:1

time out

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1e-04 0.001 0.01 0.1 1 10 100 1000

ru
nt

im
e

A
B

so
lv

er
 [s

]

runtime iSAT [s]

> 1:5> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 500k:1

time out

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1e-04 0.001 0.01 0.1 1 10 100 1000

ru
nt

im
e

A
B

so
lv

er
 [s

]

runtime iSAT [s]

> 1:5> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 500k:1

time out

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1e-04 0.001 0.01 0.1 1 10 100 1000

ru
nt

im
e

A
B

so
lv

er
 [s

]

runtime iSAT [s]

> 1:5> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 500k:1

time out

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1e-04 0.001 0.01 0.1 1 10 100 1000

ru
nt

im
e

A
B

so
lv

er
 [s

]

runtime iSAT [s]

> 1:5> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 500k:1

time out

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1e-04 0.001 0.01 0.1 1 10 100 1000

ru
nt

im
e

A
B

so
lv

er
 [s

]

runtime iSAT [s]

> 1:5> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 500k:1

time out

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1e-04 0.001 0.01 0.1 1 10 100 1000

ru
nt

im
e

A
B

so
lv

er
 [s

]

runtime iSAT [s]

> 1:5> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 500k:1

time out

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1e-04 0.001 0.01 0.1 1 10 100 1000

ru
nt

im
e

A
B

so
lv

er
 [s

]

runtime iSAT [s]

> 1:5> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 500k:1

time out

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1e-04 0.001 0.01 0.1 1 10 100 1000

ru
nt

im
e

A
B

so
lv

er
 [s

]

runtime iSAT [s]

> 1:5> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 500k:1

time out

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1e-04 0.001 0.01 0.1 1 10 100 1000

ru
nt

im
e

A
B

so
lv

er
 [s

]

runtime iSAT [s]

> 1:5> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 500k:1

time out

small conjunctive systems
linear systems

non-linear systems

ABsolver : Bauer, Pister, Tautschnig, “Tool support for the analysis
of hybrid systems and models”, DATE ’07

CAV ’07: Verification of Hybrid Systems – p.80/111

Discussion
Approach: Unification of ICP-based constraint solving and DPLL-based
propositional SAT solving in order to

• maintain the excellent reasoning power of ICP for robust constraints over R,
• boost the performance on complex Boolean compositions of constraints

[Fränzle, Herde, Ratschan, Schubert, Teige 2006/07]

First experimental results:
• conflict-driven learning and other SAT optimizations of ICP yield enormous

pruning of proof tree
⇒ corresponding growth in size of tractable formulae

Consequences:
• can solve large boolean combinations of non-linear arithmetic constraints:

non-linear time-discrete hybrid systems
(no differential equations, only difference equations)

appropriate hybridisations of ODEs

direct support for ODEs missing.

CAV ’07: Verification of Hybrid Systems – p.81/111

Direct reasoning over
images and pre-images of ODEs

CAV ’07: Verification of Hybrid Systems – p.82/111

Motivation

dx
dt

= 0

active

inactive
dy

dt
= c1x − c2y

dx
dt

= − sin y

dy

dt
= c3

• Linear and non-linear ordinary Differential Equations (ODEs)
describing continous behaviour in the discrete modes of a hybrid
system

• Want to do BMC on these models w/o prior hybridisation

CAV ’07: Verification of Hybrid Systems – p.83/111

The Problem
Given: a system of time-invariant ODEs

dx1

dt
= f1(x1, . . . , xn)

...
dxn

dt
= fn(x1, . . . , xn)

plus three boxes B, I, E ⊂ R
n.

Problem: determine whether E is reachable from B along a trajectory
satisfying the ODE and not leaving I.

Added value: Prune unconnected parts of B and E:

E’
B’

B

E

CAV ’07: Verification of Hybrid Systems – p.84/111

Special case: adjacent boxes

Stursberg,Kowalewski et. al. [1997]:
Check sign of relevant derivative at box border:

•
x∈ [−5, 1]

use interval arithmetic for evaluating the ODE over the box border.

CAV ’07: Verification of Hybrid Systems – p.85/111

Towards Pre-Post-Constraints

Lemma (n-dimensional mean value theorem): If
(y1, . . . , yn) ∈ E ∩ I is reachable from (x1, . . . , xn) ∈ B ∩ I via a flow
in I satisfying dx

dt
= f then

∃t ∈ R≥0 :
∧

1≤i≤n

∃a ∈ I : yi = xi + fi(a) · t

xi

yi

ta
time

0 t

HSolver [Ratschan, 2004–]

CAV ’07: Verification of Hybrid Systems – p.86/111

Problem: Safely determine whether E is unreachable from B along a
trajectory satisfying the ODE and not leaving I.

Some approaches:

1. Interval-based safe numeric approximation of ODEs
[Moore 1965, Lohner 1987, Stauning 1997]

(used in Hypertech [Henzinger, Horowitz, Majumdar, Wong-Toi 2000])

2. CLP(F): a symbolic, constraint-based technology for
reasoning about ODEs grounded in (in-)equational
constraints obtained from Taylor expansions
[Hickey, Wittenberg 2004]

CAV ’07: Verification of Hybrid Systems – p.87/111

Safe Approximation

t

x

ti ∈ TOI

flowbox

postbox

startbox

Should also be tight! And efficient to compute!

CAV ’07: Verification of Hybrid Systems – p.88/111

Euler’s Method

t

x

CAV ’07: Verification of Hybrid Systems – p.89/111

Taylor Series

Exact solution x(t) has slope determined by f in each point:
dx
dt

= f(x(t))

Taylor expansion of exact solution:

x(t0 + h) =x(t0) +
h1

1!

dx

dt
(t0)

+
h2

2!

d2x

dt2
(t0) + . . .

+
hn

n!

dnx

dtn
(t0)

(LAGRANGE REMAINDER)
+

hn+1

(n + 1)!

dn+1x

dtn+1
(t0 + θh), with 0 < θ < 1

CAV ’07: Verification of Hybrid Systems – p.90/111

Taylor Series

x(t0 + h) =x(t0) +
h1

1!

dx

dt
(t0)

︸ ︷︷ ︸
f(x(t0))

+
h2

2!

d2x

dt2
(t0)

︸ ︷︷ ︸
df
dt

(x(t0))·f(x(t0))

+ . . .

+
hn

n!

dnx

dtn
(t0)

+
hn+1

(n + 1)!

dn+1x

dtn+1
(t0 + θh)

︸ ︷︷ ︸
unknown

, with 0 < θ < 1

Can use interval arithm. to evaluate f(x(t0)), etc.,
if x(t0) is set-valued!

CAV ’07: Verification of Hybrid Systems – p.91/111

Bounding Box

t

x

B

t0

for all t ∈ [t0, t0 + h]
dx
dt

(t) ≤ max(f(B))
dx
dt

(t) ≥ min(f(B))

t0 + h

x(t)

dx
dt

(t) = f(x(t))

If we only knew B...

CAV ’07: Verification of Hybrid Systems – p.92/111

Bounding Box [Lohner]

Given: Initial value problem:
dx
dt

= f(x), x(t0) = x0 may also be a box

Theorem (Lohner): If
[B1] := u0 + [0, h] · f([B0])

and
[B1] ⊆ [B0]

then the initial value problem above has exactly one solution
over [t0, t0 + h] which lies entirely within [B1] → Bounding Box.

CAV ’07: Verification of Hybrid Systems – p.93/111

Algorithm

To get an enclosure . . .

• Determine bounding box and stepsize

• Evaluate Taylor series up to desired order over startbox

• Evaluate remainder term over bounding box

CAV ’07: Verification of Hybrid Systems – p.94/111

Bounding Box

 0 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

t

y

x

CAV ’07: Verification of Hybrid Systems – p.95/111

Algorithm

• Find bounding box with greedy algorithm

• Generate derivatives symbolically

• Simplify expressions to reduce alias effects on variables

• Evaluate expressions with interval arithmetic
• Taylor series
• Lagrange remainder

CAV ’07: Verification of Hybrid Systems – p.96/111

Example

dx
dt

= −x + 3, dy

dt
= x, x0 = [2, 4], y0 = [1, 1]

x

y

t

0
1

2
3

4
5

2

2.5

3

3.5

4

0

2

4

6

8

10

12

14

16

18

CAV ’07: Verification of Hybrid Systems – p.97/111

Example II: Stable Oscillator

dx
dt

= y, dy

dt
= −x, x0 = [10, 12], y0 = [−1, 0]

−30
−20
−10

 0
 10
 20
 30
 40
 50

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−40
−30

−20
−10
 0

 10
 20

 30
 40

x

y

t

CAV ’07: Verification of Hybrid Systems – p.98/111

Wrapping Effect

dx
dt

= y, dy

dt
= −x, x0 = [10, 12], y0 = [−1, 0]

 8.5 9 9.5 10 10.5 11 11.5 12
 0 0.1 0.2 0.3 0.4 0.5

−6

−5

−4

−3

−2

−1

 0

tx

y

t0

t1

t2

CAV ’07: Verification of Hybrid Systems – p.99/111

Fight Wrapping Effect

Lohner, Stauning, . . . : use coordinate transformation

[r, s]

[t, u]

p

q

x[a, b]

y

[c, d]

CAV ’07: Verification of Hybrid Systems – p.100/111

Stable Oscillator

dx
dt

= y, dy

dt
= −x, x0 = [10, 12], y0 = [−1, 0]

−15

−10

−5

 0

 5

 10

 15

−15 −10 −5 0 5 10 15
x

y

t = 6.00748

t = 0.286473

t = 0.593339

t = 0.900205

t = 1.20707

t = 0

CAV ’07: Verification of Hybrid Systems – p.101/111

Damped Oscillator

dx
dt

= y − 0.8 · x, dy

dt
= −x + 0.3 · y, x0 = [10, 15], y0 = [−2, 1]

−25
−20

−15
−10

−5
 0

 5
 10

 15

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

−30

−20

−10

 0

 10

 20

 30

x

y

t

CAV ’07: Verification of Hybrid Systems – p.102/111

Use in ICP: Tighten Target Box

−20
−15

−10
−5

 0
 5

 10
 15

 0
 2

 4
 6

 8
 10

 12
 14

−20
−15
−10
−5
 0

 5
 10

 15

tightened postbox and TOI

y

x
tinitial postbox

• Given target box (including phase space and time)
• Intersect target box with enclosure
• Remove elements with empty intersection

(narrows also time-window of interest)

CAV ’07: Verification of Hybrid Systems – p.103/111

Backward Propagation

• Use temporally reversed ODEs

• Use start box as target box and do normal forward propagation

• Intersect resulting target box with original start box

Fwd. and bwd. propagation do

• narrow the start box B and target box E — also iteratively!

• narrow the time window for both B and E,

• thus give fresh meat to constraint propagation along adjacent
parts of the transition sequence!

CAV ’07: Verification of Hybrid Systems – p.104/111

Controlling Complexity: Partitioning

• Partition ODEs: Group together ODEs with common variables

• Deduction process alternates between different partitions and
between forward and backward pruning:

backward propagation

forward propagation

context P2 context P3

P1 P2 P3

-P3-P2-P1

TOI TOI

TOI TOI

TOI

TOI

. . .

. . .

context P1

TOI: [0, horizon]

CAV ’07: Verification of Hybrid Systems – p.105/111

Summary

• Taylor-based numerical method with error enclosure

• Tightly integrated with non-linear arithmetic constraint solving:
• provides an interval contractor, just like ICP

E’
B’

B

E

• temporally symmetric (fwd. and bwd. contraction), unlike
traditional image computation

• refutes trajectory bundles based on partial knowledge

• experimental: first proof-of-concept implemented.

CAV ’07: Verification of Hybrid Systems – p.106/111

Summary

CAV ’07: Verification of Hybrid Systems – p.107/111

Verification Flow

Hybrid System Effective VerificationModel
BackendEncoding

component

component
continuous

A/D, D/A

component
discrete

formula

FOL(R,Z,+,...)

Boolean

FOL(R,+,*,...)

Yes/No

Hybrid System Effective VerificationModel
BackendEncoding

component

component
continuous

A/D, D/A

component
discrete

formula

FOL(R,Z,+,...)

Boolean

FOL(R,+,*,...)
Discrete/

Reach set

Existential

BMC/IV

Reach set

Iterated FOL(R,...)EA / AEA

pr
ec

isi
on

sy
st

em
 s

ize

FOL(R,...)

Timed abstr.

Hybrid System Effective VerificationModel
BackendEncoding

component

component
continuous

A/D, D/A

component
discrete

formula

FOL(R,Z,+,...)

Boolean

FOL(R,+,*,...)

H2

H1
H2 H3

H2
H1

Discrete/

Reach set

Existential

BMC/IV

Reach set

Iterated FOL(R,...)EA / AEA

pr
ec

isi
on

sy
st

em
 s

ize

FOL(R,...)

Timed abstr.

Strictly symbolic approach,

exemplified on an SMT-based tool set.

CAV ’07: Verification of Hybrid Systems – p.108/111

Summary

• These were just some appetizers shedding light on principles.

• Haven’t touched major topics in hybrid systems, e.g.
• Data structures (and related image computation procedures)

for more precise representation of images:
• polytopes (e.g., [Henzinger, Ho, Wong-Toi 1995, Chutinan,

Krogh 1998, Frehse 2005]), zonotopes [Girard 2005,
Girard, le Guernic, Maler 2006, ...], ellipsoids [Kurzhanski,
Varaiya 2000], level sets of functions [Tomlin], ...

• AIG(LP) [Damm et al. 2006], hybrid restriction diagrams
[Wang 2004], ...

• Stability theory
• Lyapunov and Lyapunov-like functions
• discharging the related proof obligations; synthesizing

these witness functions
to name just a few.

CAV ’07: Verification of Hybrid Systems – p.109/111

Perspectives for researchers
• Approximation theories and decidability issues

• Safe approximation is essential; under which circumstances do they
provide decision procedures; what are the appropriate notions of
approximate decision?

• Robust systems and “almost decidability” [Fränzle 1999, Asarin,
Bouajjani 2001, Collins 2006, Platzer, Clarke 2006, Girard, Pappas
2006, Girard 2007]

• Scalability and performance issues
• All current algorithms are quite confined
• Massively branching behavior of non-deterministic hybrid systems

together w. intricate continuous dynamics
• Better algorithms and data structures; maybe tailored to specific

analysis goals and system types
• Modeling issues

• Adequate modeling languages for the variety of hybrid phenomena
• Currently, most modeling is simulation-oriented
• Languages should concisely model system dynamics (including

non-determinism, probabilism, etc., were adequate) and the input
domain of open systems (shapes of inputs, controllability attributes, ...)

CAV ’07: Verification of Hybrid Systems – p.110/111

Thanks
• to the collaborators within AVACS project area hybrid systems:

A. Eggersa, A. Mikschla, A. Platzera, A. Podelskib, A. Rybalchenkob,
B. Badbana, B. Beckerb, B. Nebelb, B. Westphala, B. Wirtza, C. Herdea,
C. Schollb, E. Abrahamb, E.-R. Olderoga, F. Eisenbrandd, F. Klaedtkef,
F. Pigorschb, H. Burchhardta, H. Dierksa, H. Hermannsc, H. Hungara,
I. Polianb, J. Eisingerb, J. Oehlerkinga, J.-G. Smausb, Jun Panga, M. Behled,
M. Herbstrittb, M. Lewisb, M. Swaminathana, N. Kalinnikb, O. Theela,
P. Maierd, R. Wimmerb, S. Dischb, S. Jacobsd, S. Kupferschmiedb,
S. Ratschane, S. Wagnerb, T. Schubertb, T. Teigea, U. Waldmannd,
V. Sofronie-Stokkermannsd, W. Damma, Zhikun Shed

• and to the contributing institutions:
a Carl von Ossietzky Universität Oldenburg, Germany

b Albert-Ludwigs-Universität Freiburg, Germany
c Universität des Saarlandes & d MPII, Saarbrücken, Germany
e Academy of Sciences of the Czech Republic, Prague, Czech Rep.
f Eidgenössische Technische Hochschule Zurich, Switzerland

• and to Deutsche Forschungsgemeinschaft for funding AVACS.

CAV ’07: Verification of Hybrid Systems – p.111/111

	Apologies
	Hybrid systems
	Hybrid automata
	
	Generalizations
	Semantics: Two-Dimensional Time
	Hybrid time hspace {4.7cm} {smallerfont [after K.H. Johansson]}
	Hybrid trajectories hspace {3cm} {smallerfont [after K.H. Johansson]}
	Executions of a HA hspace {3cm} {smallerfont [after K.H. Johansson]}
	Outline
	
	Translation
	Analogy: Combinatorial Circuits
	Mapping circuits to formulae
	Generalizing the concept: Simulink+Stateflow
	
	Making the idea operational: the ingredients
	Essentials of polynomial HA
	Reachability
	Safety of hybrid automata
	Decidability
	Iterating over the state-space
	
	hypertarget {bmc}{Bounded Model Checking (BMC)}
	Bounded Model Checking (BMC)
algorithm
	Ingredients of a Solver for BMC of LHA
	
	Deciding the conjunctive T-problems
	Extracting reasons for T-conflicts
	Extracting IIS
	Extensions & Optimizations
	Case Study: Elastic Distance Control
	Sample Trace
	but...
	
	
	Observation
	Properties of Modified Layout
	
	Conflict-driven learning in multi-valued case
	The impact of learning: runtime
	The competition: ABsolver
	
	Motivation
	Towards Pre-Post-Constraints
	
	Algorithm
	Bounding Box
	Algorithm
	Example
	Example II: Stable Oscillator
	Wrapping Effect
	Stable Oscillator
	Controlling Complexity: Partitioning
	Summary
	
	Summary
	Perspectives for researchers
	Thanks

