Existence and uniqueness tests to solve image evaluation problem.

Clément Aubry\(^1\), Luc Jaulin\(^2\)

\(^1\) IRENav, École navale, BCRM Brest CC 600, 29240 Brest.
\(^2\) ENSTA Bretagne, LABSTICC, 2 rue François Verny, 29806 Brest.

clement.aubry@ecole-navale.fr, luc.jaulin@ensta-bretagne.fr

May 7, 2012

Abstract. The problem to be considered is the characterization of the set

\[S = \{ p \in \mathbb{R}^m, \exists x \in [x] \subset \mathbb{R}^n, f(p, x) = 0 \}. \]

where \(\dim(x) = \dim(f) \). We shall consider the case where \([x]\) is small but where \(\dim x \) is large whereas \(\dim p \) is small. As a consequence, we want to avoid any bisection over the \(x \)-space. The set \(\mathbb{R}^m \) will be partitioned into four zones. The first zone contains points that are outside \(S \). The second zone contains \(p \in S \) such that there exists a unique \(x \) that satisfies the equations. The third zone contains \(p \in S \) such that the unicity of the corresponding \(x \) is not proved. The last zone contains \(p \) for which nothing has been proved.

Exemples from [MB79], [JKDW01], [GJ06] are presented in order to show the efficiency of the approach.

References

