SWIM 2012
Existence Tests for uncertain functions with parameters

Clément Aubry, Luc Jaulin
clement.aubry@ecole-navale.fr, luc.jaulin@ensta-bretagne.fr

IRENAV - Institut de Recherches de l’Ecole Navale
French Naval Academy Research Institute

June, 5th 2012
1 Introduction

2 Existence Tests

3 Testcase

4 Discussion
A mobile robot is moving on an horizontal plane:

Figure: Redermor underwater robot.

Detecting Loops is an important topic in SLAM!

Figure: Tube enclosing the trajectory p of the robot.
Algorithm LOOP [ADJ] explore the t-plane to find inner/outer approximation of the set:

$$\mathbb{T}^* = \left\{ (t_1, t_2) \in [0, t_{\text{max}}]^2, p(t) = \int_0^t v(\tau) d\tau \text{ and } t_1 < t_2 \right\} \quad (1)$$

The algorithm return t-boxes classified in $\mathbb{T}^{out}, \mathbb{T}^{in}$ and $\mathbb{T}^?$.

$$\mathbb{T}^{in} \subset \mathbb{T} \subset (\mathbb{T}^{in} \cup \mathbb{T}^?) \quad (2)$$

with \mathbb{T} enclosing \mathbb{T}^*
Introduction

Figure: Tube enclosing the trajectory p of the robot.

Figure: t-plane
1 Introduction

2 Existence Tests
 - Newton test
 - Krawczyc test
 - Miranda test

3 Testcase

4 Discussion
Consider a smooth function $f : \mathbb{R}^n \to \mathbb{R}^n$ and $[x] \in \mathbb{R}^n$. Denote by J_f is Jacobian Matrix.

Definition (Newton test, Moore [MKC09])

$$\mathcal{N}(f, [J_f], [x]) = \hat{x} - [J_f]^{-1}([x]) \cdot f(\hat{x})$$ \hspace{1cm} (1)

If $\mathcal{N}([x]) \subset [x]$ then $[x]$ contains a unique zero x^* of f. It is also in $\mathcal{N}([x])$.

The Newton test applied in LOOP algorithm prove the unicity and existence of 14 loops over 28. And we wants more!
Consider a smooth function $f : \mathbb{R}^n \to \mathbb{R}^n$ and $[x] \in \mathbb{R}^n$.

Theorem (Krawczyk test, Moore [MKC09])

Let Y be a nonsingular matrix approximating $J_f(\text{center}([x]))^{-1}$. Let $\hat{x} \in [x]$ a real vector.

$$K([x]) = \hat{x} - Y \cdot f(\hat{x}) + \{ I - Y \cdot J_f([x]) \} \cdot ([x] - \hat{x}) \quad (2)$$

If $K([x]) \subseteq [x]$ then $[x]$ contains a zero x^* of f. It is also in $K([x])$.

Krawczyk test

Clément Aubry
Consider a smooth function $f : \mathbb{R}^n \to \mathbb{R}^n$

Theorem (Miranda[Mir40])

Define: $[x]^{i\pm} = ([x_1], \ldots, [x_{i-1}], \inf / \sup([x_i]), [x_{i+1}], \ldots, [x_n])$.

If

$$
\begin{align*}
 f_i(x) &\geq 0 \forall x \in [x]^{i-}, \\
 f_i(x) &\leq 0 \forall x \in [x]^{i+},
\end{align*}
$$

then $[x]$ contains a zero x^* of f.

(3)
When the functions involved are not well conditionned, Miranda can’t prove anything.
Even if we’re well conditionned, Miranda can fail as in the example at the left where:

\[f_2([x_1], \inf([x_2])) \not\leq 0 \]

That happens cause of small variations of \(\nabla f_2 \) (in magenta) and \(\text{width}([x]) \). If we can’t change \(\nabla f_2 \), we can work on \([x]\).
The idea is to bissect \([x]\) in Miranda test.
1. Introduction

2. Existence Tests

3. Testcase
 - On A Robot Trajectory

4. Discussion
A mobile robot is moving on a trajectory defined by:

\[
f(t, [p]) = \begin{pmatrix} x(t, [p]) \\ y(t, [p]) \end{pmatrix} = \begin{pmatrix} \sin(t + p_1 * t) \cdot \cos(2t + p_2 * t) \\ \sin(t^2 + p_3 * t) \cdot \cos(t + p_4 * t) \end{pmatrix}
\]

with

\[
p = ([0.0050, 0.015][0.105, 0.115][−0.095, −0.085][0.205, 0.215])^T
\]

Now assume LOOP algorithm on the velocity tubes of this trajectory return t-boxes \(([t_1], [t_2])\) \(\in [0, t_{max}]^2\) that satisfies:

\[
g(t_1, t_2) = f(t_2) - f(t_1) = 0
\]

and

\[0 < t_1 < t_2\]

We want to prove the existence and uniqueness of \(g(t_1, t_2) = 0\) with \(t_1 \in [t_1], t_2 \in [t_2]\).
Figure: Trajectory of the mobile robot.
We apply existence tests presented before to our trajectory and the following table answer to the question "Did the test guarantee the existence of \(f(x) = 0 \) for the \(i_{th} \) intersection?"

<table>
<thead>
<tr>
<th>intersection</th>
<th>(\mathcal{N}([x]))</th>
<th>(K([t]))</th>
<th>Miranda</th>
<th>Miranda B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
More and more test for Miranda-Bissection method.
More and more test for Miranda-Bissection method.
The Question is : How Bissection Could Improve Existence Tests?
More and more test for Miranda-Bissection method.
The Question is: How Bissection Could Improve Existence Tests?
What about Uniqueness?
C. Aubry, R Desmare, and L. Jaulin.
Loop detection of a mobile robot using interval analysis.
second submission to Automatica.

A. Frommer, B. Lang, and M. Schnurr.
A comparison of the moore and miranda existence tests.

C Miranda.
Un’ osservazione su un teorema di brouwer.
Bollettino dell’Unione Matematica Italiana, (5-7), 1940.

R.E. Moore, R.B. Kearfott, and M.J. Cloud.
Introduction to Interval Analysis.