
'.\-lt'1"..:::,. r+--jl.1;: n

.,.. : i. !'-+ l -'

..f, i

:a
t:4.

!-i',':r. ,

IC
'i:1.

is,,+J:l
*.;T,+

: _.

i+1';

REPRESENTING SEMANTIC KNOWLEDGE WITH 2-DTMENSIONAL RULES

IN THE DOMAIN OF FUNCTIONAL PROGRAMMING

Claus Möbus & Olaf Schröder

Project ABSYNTT

FB 10, lnformatik

Unit on Tutoring and Learning Systems2

University of Oldenburg

D-2900 Oldenburg, FRG

0. Abstract

One of the many difficult problems in the development of intelligent computer aided
instruction (lCAl) is the appropriate design of instructions and helps, This paper adresses the
question of optimizing instructional and help material concerning the operational knowledge
for the visual, functional programming language ABSYNT (ABstract SYNtax Trees). The
ultimate goal of the project is to build a problem solving monitor (PSM) for this language and
the corresponding programming environment. The PSM should analyse the blueprints of the
students, give comments and proposals (SLEEMAN & HENDLEY, 1982). First, we will explain
our motivation for choosing this domain of discourse. Second, we will shortly present the
programming environment of ABSYNT. Third, we represent the development of two
alternative 2-D-rulesets (appendix A, B), which describe the operational semantics of the
ABSYNT interpreter. The d'evelopment of the 2-D-rules was guided by cognitive psychology
and cognitive engineering aspects and results of an empirical study. The study showed that
the rules were comprehensible even for computer novices.

1. lntroduction

The main research goal of ABSYNT is the construction of a PSM. We chose the domain of
computer programming because the main activity of the programmer is problem solving, a
very relevant research area from a cognitive science point of view. Because our PSM will
have to analyse the_ planning processes of novices in depth, we decided to use a simple
programming language, the syntax and semantics of which can be learned in a few hours. We
propose a purely functional language. From the view of cognitive science functional
languages have some beneficial characteristics. So less working memory load on the side of
the programmer is obtainable by their properties, "referential transparency" and "modularity".
Furthermore, there is some evidence that there is a strong correspondency between

lThis research was sponsored by the Deutsche Forschungsgemeinschaft (DFG) in the SPP Psychology of
Knowledge under Contract No. MO 293/3-2
2We are gratelulthat Gabi Janke & Klaus Kohnert implemented ABSYNT in INTERLISP and LOOPS, that Heinz-
Jürgen Thole did part of the rule-based programming in LPA-PROLOG and that Klaus-Dieter Frank assisted in
empirical research and did the first"implementation of the help.system in HYPERCARD.

,

1

programmer's goals and use of functions (PENNINGTON, 1987: SOLOIVAY, 1986;
JOHNSON & SOLOWAY, 1985, 1987). This correspondence helps to avoid the difficult
problem of interleaving plans in the code which shows up in imperative programming
languages. SOLOWAY(1986) has argued that this kind of interleaving makes the diagnosis of
programme/s plans rather difficult and time consuming. lf we take for granted that a goal can
be represented by a function, we can gain a great deal of flexibility in the PSM concerning the
programming style of the student. We can offer him facilities to program in a bottom-up, top-
down or middle-out style. The strategy of building up a goal hierarchy corresponds to the
development of the functional program.

There are similar psychological reasons for the use ol a visual programming language.
There is some evidence that less working memory load is obtainable through the use of
diagrams if they support encoding of information or if they can be used as an external memory
(FITTER & GREEN, 1981; GREEN, SIME & FITTER, 1981 ; PAYNE, SIME & GREEN, 1984;
LARKIN & SIMON, 1987). Especially if we demand the total visibility of control and data flow
the diagrams can serve as external memories.

The diagrammatic structuring of information should also reduce the amount of verbal
information, which is known to produce a higher cognitive processing load than "good"
diagrams (LARKIN & SIMON, 1987). "Good" diagrams enable automatic control of attention
with the help of the location of objects. These are in our case object icons of two sorts: straight
connection lines and convex objects. lconic objects of these types are known to control
perceptual grouping and simultaneous visual information processing (POMERANTZ, 1985;
CHASE, 1986).

A very crucial point concerning the "intelligence" of a PSM lies in the quality of the
feedback system design. In this paper we are restricting ourselves to an instructional and
feedback system based on 2-D-rules describing the operational semantics of ABSYNT. Other
more formal approaches specifying the semantics of a language (ALBER & STRUCKMANN,
1988; PAGAN, 1981) are suited for computer scientists but not for programming novices.

When should an lCAl system administer feedback? Our tutorial strategy is guided by "repair
theory" (BROWN & VanLEHN, 1980) and follows the "minimalist design philosophy"
(CARROLL, 1984a,b). The latter means, that if the learner is given /ess(lessto read, /ess
overhead, /ess to get tangled in), the learner will achieve more. Explorative learning should
be supported as long as there is preknowledge on the learner side. Only if an impasse occurs
feedback becomes necessary and information should be given for error recovery.

According to repair theory an impasse occurs, when the student notices that his solution
path shows no progress or is blocked. ln that situation the person tries to make local patches
in his problem solving strategy with general weak heuristics to "repair" the problem situation.
ln our tutorial strategy we plan to give feedback and helps only, when this repair leads to a
follow-up error.

2. The Programming Environment of ABSYNT

The programming environment of ABSYNT was developed in our project, using ideas from
the "calculation sheet machine" (BAUER & GOOS, 1982). The complete programming
environment was implemented in INTERLISP and the object-orientated language LOOPS
(JANKE & KOHNERT, 1988; KOHNERT & JANKE, 1988) to 99! ? programming- enviro.nment
witn direct manipulation capabilities. Following SHU's (1986) and CHANG's (1987)
dimensional analysis, ABSYNT is a language with high visual extent, low scope and medium
level. The ABSYllT-environment comprises three modes: a programming mode, a trace
mode, and a prediction mode (l(OHNERT & JANKE, 1988).

2.1 The Programming Mode

The programming mode is shown in FIGURE 1. The screen is split into several regions. On
the right and below we have a menu bar for nodes. A typical node is divided into three stripes:
an input stripe (top), a name stripe (middle) and an output stripe (bottom). These nodes can
be specialised to constants or variables (with black input stripe) or are language supplied
primitive operators or user defined functions.

FIGURE 1: The programming mode of ABSYNT

ln the upper half of the screen the programmer sees the main worksheet and in the lower
half a subordinated one. Each worksheet is called frame. Frames are split into a left part
"head" (in German: "Kopf") and into a right part "body" (in German: "Körper"). The head
contains the local environment with parameter-value bindings and the function name. The
body contains the body of the function.

Programming is done by making up trees from nodes and links. The programmer enters the
menu bar with the mouse, chooses one node and drags the node to the desired position in

the frame. Beneath the frame is a covered grid which orders the arrangements of the nodes
so that everything looks tidy. Connections between the nodes are drawn with the mouse. The
connection lines are the "pipelines" for the control and data flow. lf a node is missed the
programmer is reminded with a shaded grey node that there is something missing. The editor
warns with flashes if unsyntactic progranns are going to be constructed: crossing of
connections, overlapping of nodes etc. The function name is entered by the programmer with
the help of pop-up-menus in the root node of the head. Parameter names and values for
constants are entered in the leaves of the head and the body by pop-up-menus, too.

lf the function is syntactically correct, the name of the function appears in the frame title and
in one of the nodes in the menu bar so that it can be used as a higher operator. When a
problem has to be solved a computation is initialized by the call of a function. This call is
programmed into the "Start"-Tree. lnitial numbers are entered by pop-up-menus in constant
nodes in the start tree. This tree has a frame without a name, so that the iconic bars are
consistent

The design of the programming mode is motivated by regarding the operational knowledge
of ABSYNT as a necessary prerequisite for the development of planning and programming
knowledge. That is, features which are necessary for the understanding of the computational
process are visqalized in the programming mode as well as in the other modes of the
programming environment.

2.2 Trace Mode and Prediction Mode

lf the user has programmed a start tree for his program, he can run the program and get a
trace for it (FIGURE 2). The design of the trace is a result

FIGURE 2: The trace mode of ABSYNT

of our iterative specification.cycle in the de.velopment of abstract rules and process icons
(MOBUS & THOLE, 1988; MOBUS & SCHRODER, 1988). ln the case of recursive programs,
the frame actually computed is in the upper half of the screen. The lower half shows the frame
one level deeper in the stack, so that the recursive call stays visible.

As an experimental tool of the ABSYNT environment, there is also a pre^diction mode. Here

the user cdn predict the actions of the interpreter, tha! is, compule AqqYN.I-programs by

himself, so that he can smoothly acquire the operational knowledge for ABSYNT.

3. Preliminary lnstructional Material and Semantic Bugs

Our starting point for developing a functional visual programming language was a paper
and-pencit stüdy where we did söme exploration_s without a,ny computer i.mplementations.
part'of this feaSability study was a verbal specificatiol g!!l_e gyltgl3nqltr oper?tional

knowledge, illustrated Oy siinple programs and trees (MOBUS & SCHRODER, 1988). The

goals of the Pilot study were:

- to get suggestions for the design of the language and the interface
- to öotlect-Jyntactic and semantic bugs in order to find reasons for bugs and conditions

under which they occur
- to study the mernory representations of example programs

A detailed description of the feasability study iq p1o^vi9q!-'I 99^[T9DER,.FRANK &

COLONTUS (1997) änd COLON|US, FRANIK, JANKE, KOHNERT, MOBUS, SCHRODER &

iiör-e (19d7). Ämong other things the subjects had to compute the value of various
prolramö, sir{rulating-the ABSYNT interpr-eter. Then we analysed the observable
computational errors.

However, this collection of semantic bugs gave rise to the following problems:

, lt was unclear whether the bugs arose because of ambiguities in the instructional material

(tne verOal description of theäperational kno.wledge). T.herefore, we could not be certain

whetner this desöription could'actually be viewed as the semantic "expert" knowledge,

which in our opiniön is a prerequisitb lor a user of our language to plan and debug

efficiently.

- The verbal description of the operational knowledge is a po-or base for a more detailed

and systematiö döscription of the observed bugs in terms of missing or wrong pieces of

knowledge.

- lt seems unnatural to construct a verbal specification of the operational knowledge for a
visual prograrming language. The design of a visual language.has to be based on the

concärit of"gäneralüeo iöonö (oHANG, t-oez;, which can be divided into object icons and

pioceäs icöns. Object icons'define the representation of static language constructs,

whereas process icbns specify the representation of data flow and control flow.

Therefore, we decided to use a runnable specification (DAVIS, 1982) of the language as a

foundation for constructing process icons. Thöse process icons were then. programmed in the

HiFECCnRD-system and'used as instructional and help material tor teaching purposes.

4. Construction of improved instructional material: process icons

The specification gf üe 9p9r?ligqal -fnoryl^e.Qge-lvas
achieved in an iterative specification

cvcräirvröbüS a iHor-r, r gba; MöBUS & scHhöDER, 1e88). The first step consisted of the

Lää*fäOg"acquisition phase. Ttr.e next step led to.a rule set A of 9 main Horn clauses (plus

some opirator-specitii rules). The set contained the minimal abstract knowledge about the

intärpr.i"tion of jieSvNr programs. The abstract structure_ol q plggj"m was formalized by a

I.icji FnöLoG fäcts similär tö an approach of GENESERETH & NILSSON (1987, ch. 2.5).

ln the next step of the specification cycle we tried a 2-D-representation of the facts and

Horn clauses of iute set""A. tnereby, we k'ept in. mind design principles which are motivated by

4

results of POMERANTZ (1985) and LARKIN & SIMON (1987). POMERANTZ made some
careful studies about selective and divided attention in information processing. One
consequence for our design was that time-i"ndexed information had to be spatially indexed by
locations, too. lnformation with the same time index should have the same spatial index, that
is appear in the same location. ln our design a location is a visual object. These insights were
supported by the formal analysis of LARKIN & SIMON (1987). They showed under what
circumstances a diagrammatic representation of information consumes less computational
resources than an informational equivalent written representation.

ln the course of time we realized that a visual representation of the facts and Horn clauses
of rule set A according to the recommendations of POMERANTZ and LARKIN & SIMON was
only possible if we "enriched" the 2-D structure. This means that we had to add 2-D elements
which were not present in the abstract structure.

A second reason for an enrichment and, thereby, a modification of rule set A, was that the
set led to 2-D-representations with disjunctive rules. 2-D-rules with disjunctive conditions
require selective attention, which causes matching errors and longer processing time
(BOURNE,1974; HAYGOOD & BOURNE, 1965; MEDIN, WATTENMAKER & MICHALSKI,
1987). Thus rule set A was modified in such a way such that

- any undesired perceptual grouping of information in operator nodes,
- 2-D-rules with disjunctive conditions,
and

- visual hiding of dynamic successor frames already put on a stack

was avoided.

We came up with a relaxed rule set B with 14 main rules (plus operator-specific
rutes)(MÖBUS & THOLE, 1988; MÖBUS & SCHRÖDER, 1988). The behavior of these rules
led to a new visual trace. Time-indexed information was now location-indexed so that
undesired perceptual grouping could not occur any longer.

But these rules still had some defects from a cognitive point of view. Computational goals
and intermediate results are kept visible only as long as they are absolutely necessary for the
ongoing computation. lntermediate results "die" before the corresponding frame "dies". This is
not optimal for humans, Qecause a programmer who wants to recapitulate the computation
history has to reconstruct former computations mentally. This leads to higher working memory
load for the programmer.

So we were forced to relax the minimum assumption a second time and introduce even
more visual redqndancy. This was i.e. in accordance with the third principle of FITTER &
GREEN (1e7e).

Another reason for a further modification of the rule set was the recursiveness of the rules.
lnstructional and help material derived from such rules should enforce a higher mental
working memory load because of the maintenance of a goal stack with return points.

The third rule set C with 29 (plus operator-specific) rules was motivated by the postulate,
that the extent of the intermediate result should not end before the life of a frame ends. We
have included examples for abstract rules of rule set C in FIGUREs 3 and 4. They are
represented in visual 2-D-rules 8 and g in the state-specific rule set (appendix B).

Then the computational behavior of rule set C was "frozen" in our INTERLISP/LOOPS-
lmplementation (KOHNERT & JANKE, 1988). This completed the specification cycle.

output :-

node(frame_name(Frame_name),trame_no(Frame_no),tree_type(Tree_type),
instance_no(lnstance-no),input_stripe(lnput_stripe),name_stripe(Name_stripe),
output_st ripe(output_st ripe)),

higher_operator(name(Name_stripe)),
Tree_type = stärt,
not(inverted_name_stripe (f rame_name (Frame_name),lrame_no(Frame_no),

tree_type(Tree_type), instance_no(Any_instance_no))),
Output_stripa = ? ,

forall(on(Element, lnput_stripe),value(Element)),
assert(inverted_name_stripe(lrame_name(Frame_name),frame_no(Frame_no),

tree_type (Tree_type),instance_no(l nstance_no))),
copy_frame_on_top(frame_name(Name_stripe),top_frame_no(Top_frame_no)),

. root(lrame_name(Name_stripe),lrame_no(Top_frame_no),tree_type(head),
instance_no(lnstance_no_root_head)),

modily(lrame_name(Name stripe),frame_no(Top_lrame_no),tree_type(head),
instance_no(lnstance_no_root_head), input_stripe(I nput_stripe)),

bind_parameter_ofJop_lrame(input_stripe(I nput_stripe)),
modify(f rame_name(Name_stripe),frame_no(Top_frame_no),tree_type(head),

instancs_no (I nstance_no_root_head),outpul_stripe (?)),
output.

l" lF there is a node which has lhe following features:
(1) The node name is a higher operator.
(2') The node is located in the start tree.
(3) There is no node in the slart tree with an inverted name stripe.
(4) The output_stripe of the node contains a "?".
(5) The input5tripe of the node contains all input_values.

THEN
lnvert the name_stripe ol the node.
Create a frame with the operator's name and place it on top of the frame stack.
Determine it's head root.
Transfer the input_stripe ol the node to the head root.
Bind lhe parameters.
Put a "?" intoilhe output_stripe ol the head root. 'l

FIGURE 3: Abstract Rule 8 of Rule Set C (First part ol Call-by-Value, call in start tree;
corresponds to 2-D-rule I in the "state-specific" rule set in appendix B)

output :-

node(frame_name(Frame_name),lrame_no(Frame*no),tree_type(Tree_type),
instance_no(lnstance_no),input_stripe(lnput_stripe),name stripe(Name_stripe),
output_st ripe (Output_st ripe)),

higher_operato(name(Name_stripe)),
Tree_type = st6rrt,

inve rted_name_stripe(f rame_name(Frame_name),lrame_no(Frame_no),
tree_type(Tree_type), instance_no (I nstance_no)),

OutPut-stripg = ? ,

lorall(on(Element, lnpul_stripe),value(Element)),
value_of_upper_visible_f rame(Output_stripe_root_head),
not_ex isl_lowe r_visible_frame,
modif y(f rame(Frame_name),f rame_no(Frame_no),tree_type (Tree_type),

instance_no (I nstance_no),output_stripe(Output_stripe_root_head)),
de lete_frame_from_top,
retract(inverted_name_stripe(frame_name(Frame_name),frame_no(Frame_no),

tree_type(Tree_type),instance_no(lnstance_no))),
output.

:

6

l" lF there is a node which has the lollowing features:
(1) The node name is a higher operator.
(2) The node is located in the start tree.
(3) The name stripe ol the node is inverted.
(4) The output_stripe of the node contains a "?".
(5) The input stripe ol the node contains all input values'
(6) The head root of the upper visible frame contains a value.
(7) There is no olher visible lrame

THEN transfer this value into the output5tripe ol the node.
Delete lhe upper visible lrame.
Undo the inversion of the name stripe of lhe node. 'l

FIGURE 4: Abstract rule 9 ol Rule Set C (Second part of Call-by-Value, call in start tree; corresponds to
2-D-rule 9 in the "state-specific" rule set in appendix B)

ln the visual trace, intermediate results now live as long as their frame. As with rule set B,

there is no undesired perceptual grouping. Process icons derived from rule set C would not

be applied recursively, and there would be no disjunctions.

On the basis of rule sets B and C we developed 2-D-rules to describe the operational
behavior of the ABsYNT-interpreter so that it can be predicted by a student. We got two
different 2-D-rule sets B and C with I respectively 16 2-D-rules. The 2-D-rules are visual
representations of only the most important rules of the abstract rule sets. Additional rules of
thb abstract rule sets (i.e., for testing if a node is a root or a leaf) as well as the operator-
specific rules are expiained in a separate glossary. The glossary also contains a short
introduction to the syntax of the 2-D-rules.

5. Empirical Evaluation of the two 2-D-rule Sets

We did a study in. which programming novices computed ABSYNT-plograms with. the aid of
earlier versions (fUÖnUS & THOLE, 1988) of the two 2-D-rule sets. One of the aims of the
study was to evaluate the learnability of the 2-D-rules. We wanted to detect rules or parts of
rules which led to misunderstandings and errors.

Procedure: 12 programming novices (6 subjects working with each rule set) computed
ABSYNT-Programs of increasing difficulty. This was done in the prediction mode of the
ABSYNT-Environment (section2.2 and KOHNERT & JANKE, 19BB). ln this mode the user
computed. ABSYNT-Programs by himself without any help from the interpreter. The subjects
worked in pairs (cf. MIYAKE, 1986). So three pairs of subjects worked with each rule set.
Beside the 2-D-rule set, they were provided with the glossary, that is additional explanations
of basic concepts mentioned in the rules. Therefore, complete instructional material was
given.

Each pair of subjects computed 33 ABSYNT-programs. The sequence of programs was
ordered by the number of 2-D-rules needed. So the most difficult program contained
abstraction as well as recursion. The subjects computed each ABSYNT-Program once
without being interrupted by the experimentator. ln case of correct computation, the next
program was presented. ln case of a bug, the program was presented again. This time, if bugs
occurred, the experimentator gave immediate feedback.

Preliminary results; The evaluation of the study is not completed as yet, but some results
related to the aim oJ the study mentioned above will be presented.

First, some concepts are explained:

1. A " computational step" denotes the following actions:
- changing the content of an input field or an output stripe
- creating or deleting a frame (choosing the corresponding menu item)
- typing a frame number

2. A "rule-consistent computational step" is any computational step which is part of a correct
rule application. lt is consistent with the part of an "action" description of a rule the "situation"
description of which is satisfied. !t is not regarded whether the computational step is made in
the right context. So parts visible on the screen but not mentioned in the rule may be faulty.

3. A "deviafion" is any computational step which is not part of a correct rule application. There
are the following possibilities:

3.1 Faulty rule application: The computational step is not consistent with any part of the
action description of any rule.

3.2 Omission: The computational step is consistent with a part of an action description of a
rule the situation description of which is not yet satisfied, but is satisfiable by
intermediate computational steps.

3.3 tnbrterence: The computational step is consistent with a part of an action description of
a rule the situation description of which is not satisfied and not satisfiable.

3.4 Shortcuf.'This is an optimizing devialion since it leads to the same result (or the same
intermediate result) as the correct sequence of computational steps, while
simultaneously saving computational steps. Shortcuts may occur because of the
visual redundancy on the screen. So the visible results of sequences of earlier
computational steps may be used for handling later situations.

3.5 Correction: Recovering omissions, undoing computational steps, and replacing values
by other values are corrections.

Faulty rule applications, interferences and omissions are "bugs". Table 1 shows the absolute
frequencies and percentages (in brackets) of types of computational steps for both rule sets:

Computational steps
rule- bugs shortcuts correc-
consistent tions

operator- 7096 71 (0.97%) 42 (0.58%) 45 (0.62/")
Rule- centered (97.82%)

set state- 7815 96 (1 .19%) 38 (0.47%) 96 (1.19%)
centered (97.14%)

Table 1: Absolute frequencies and percentages (in brackets) of types of computational
steps for both rule sets

Within both rule sets, more than 97o/" ol all computational steps were rule-consistent, and
only aboul 1"/" wer.e bugs. Although the subjects did not receive any feedback during the first
computation of a program, the error rate was small. Moreover, there were no typical bugs. 1

There are few examples of bugs for almost every 2-D-rule.

,"8

tlr* rcr;ults indicate that there is no need to redesign the 2-D-rule sets or to change specific
rrrtt;:; Moreover, the hypothesized differences between the two alternative 2'D-rule sets did
rrr)r :;r)*nr to show up in the behavior of the subjects. So they possibly used the rules 1o

(:on$truot a menlal representation which did not correspond to the different structure of the twc
-' [\ ltrlu sets.

Sonre more observations should be mentioned though, which initiated some sligltt
t:lrernges of the rules:

- 25 bugs altogether (= 15%) consisted of typing a wrong frame number. This supported
the decision to drop the frame number, which was possible because the interpreter uses
a linear stack, and there is at most one pending call in function bodies and in the start
tree.

- 40 bugs altogether l= 24"/o) were omissions occurring with rules containing several
computational steps in their action description, (i.e., rules for creating and deleting
frames). This motivated a clarification of the structure and an improvement ol the
readability of the action descriptions of these rules.

- 97 more bugs (= 22%) were interferences occuring when the subjects worked in the
head of a newly made frame. This caused us to clarify the structure and improve the
readability of the situation descriptions of the rules for creating a new frame.

6. Representing operational semantic knowledge of ABSYNT with 2-D-rules

We tried to make the 2-D-rules as self-explaining as possible. Appendix A shows the rules
from the "operator-specific" 2-D-rule set which is based on the abstract rule set B. Furthermore
Appendix B shows the rules from the "state-specific" 2-D-rule set which is based on the
abstract rule set C. Two examples of state-specific rules (rule 8 and 9) are shown in FIGUREs
3 and 4.

The operator-specific rules in appendix A are to be interpreted according to the following
rough guidelines. The thick arrows on the lett side of the rules indicate that this rule may be
entöred here. The thick arrows to the right side indicate that the rule may be left here. So, il
the first situation description is true, the first action can be executed. Now the user may
temporarily have to leave the rule in order to produce the computational state which satisfies
the second situation description. He will have to do this with the help of other rules. lf the
second situation,description is true, the second action can be performed. The same is true for
a third situation-action pair.

ln contrast to this, the state-specific rules (appendix B) are individual situation-action pairs.
Like production rules they are not reentered a second time.

7. Summary

With the 2-D-rule sets at hand, we are now able to overcome the shortcomings of purely
verbal or example based instructions. Now there is precise and unambiguous instructional
and help material concerning the operational knowledge. We can be confident that the
student acquires very easily and rapidly operational knowledge as a solid'base for his
programming and debugging activities which will be a fufiher topic in our research.

8. References

ALBER, K. & STRUCKMANN, W., Einführung in die Semantik von Programmiersprachen,
Mannheim : Bl-Wissenschaftsverlag, 1 988

BAUER, F.L.& GOOS, G.: lnformatik, 1.Teil. Berlin, Springer, 1982 (3. Edition)
BOURNE, L.E.: An lnference Model of Conceptual Rule Learning. ln: SOLSO, R. (ed):

Theories in Cognitive Psychology. WASHINGTON, D.C.: ERLBAUM, 1974,231-256
BROWN, J.S.; van LEHN, K.: Repair Theory: A Generative Theory of Bugs in Procedural

Skills. Cognitive Science, 1980, 4, 379-426
CARROLL, J.M.: Minimalist Design lor Active Users. ln: SHACKLE, B. (ed): lnteract 84, First

lFlP Conference on Human-Computer-lnteraction. Amsterdam: Elsevier/North
Holland, 1984a

CARROLL, J.M.: Minimalist Training. Datamation, 1984b, 125-136
CHANG, S.K., Visual Languages: A Tutorial and Survey, in: P.GORNY & M.J.TAUBER (eds),

Visualization in Programming, Lecture Notes in Computer Science, Heidelberg:
Springer , 1987, 1- 23

CHASE, W. G., Visual lnformation Processing, in: K.R. BOFF, L. KAUFMAN & J.P. THOMAS
(eds), Handbook of Perception and Human Performance, Vol. ll, Cognitive
Processes and Performance, New York: Wiley, 1986, 28-1 - 28-71

COLONIUS, FRANK, JANKE, KOHNERT, MOBUS, SCHRODER & THOLE, Stand des DFG-
Projekts "Entwicklung einer Wissensdiagnostik- und Fehlererklärungskomponente
beim Erwerb von Programmierwissen für ABSYNT", in: R. GUNZENHAUSER & H.

MANDL (Hrsgb), "lntelligente Lernsysteme", S. 80 - 90, 1987, lnstitut für lnformatik
der Universität Stuttgarl & Deutsches lnstitut für Fernstudien an der Universität
Tübingen

COLONIUS, FRANK, JANKE, KOHNERT, MOBUS, SCHRODER & THOLE, Syntaktische
und semantische Fehler in funktionalen graphischen ProErammen, ABSYNT Report
2187, 1987

DAVIS, R.E., Runnable Specification as a Design Tool, in: K.L. CLARK & s.A. TARNLUND
(eds), Logic Programming, New York: Academic Press, 1982, 141 - 149

FITTER, M; GREEN, T.R.G.: When Do Diagrams Make Good Computer Languages? lnt.
Journal of Man-Machine Studies, 1979, 11,235-261, and in: COOMBS, M.J.; ALTY,
J.L. (eds): Computing Skills and the User lnterface. New York: Academic Press,
1981, 253-287

GENESERETH, M.R.; NILSSON, N..J.: Logical Foundations of Artificial lntelligence. Los
Altos, California: Morgan Kaufman, 1987

GREEN, T.R.G.;SIME, M.E.;FITTER, M.J.:The Art of Notation. ln:COOMBS, M.J.;ALTY, J.L.
(eds): Computing Skills and the User lnterface. New York: Academic Press, 1981,
221-251

HAYGOOD, R.C.; BOURNE, L.E.; Attribute- and Rule Learning Aspects of Conceptual
Behaviour. Psychological Review, 1 965, 72, 175-1 95

JANKE,G. & KOHNERT,K., lnterface Design of a Visual Programming Language: Evaluating
Runnable Specifications According to Psychological Criteria, paper presented at
MACINTER, 1988, Berlin/GDR, ABSYNT-Report 5

JOHNSON, W.L.; SOLOWAY, E: PROUST: An Automatic Debugger for PASCAL Programs.
BYTE, 1985, April, 179-190, and in KEARSLEY, G.P. (ed): Artificial lntelligence and
lnstruction. Reading, Mass.:Addison Wesley, 1987, 49-67

KOHNERT, K. & JANKE, G.: The Object-Oriented lnplementation of the ABSYNT-
Environments. ABSYNT-Report 4188, Project ABSYNT, FB 10, Unit on Tutoring and
Learning Systems, University of Oldenburg, 1988

LARKIN, .1.H.; SlnAÖN, H.A.:Why a Diagram is (Sometimes) Worth More Than Ten Thousand
Words. Cognitive Science, 1987,11, 65-99

MEDIN, D.L.; WATTENMAKER, W.D.; MICHALSKI, R.S.: Constraints and Preferences in

lnductive learning: An Experimental Study of Human and Machine Performance.
Cognitive Science, 1987, 1 1, 299-339

MIYAKE, N.: Constructive lnteraction and the lterative Process of Understanding. Cognitive
Science, 10, 1986-, 151-177

10

MOBUS, C., Die Entwicklung zum Programmierexperten durch das Problemlösen mit
Automaten, in: MANDL & FISCHER (Hrsgb), Lernen im Dialog mit dem Computer,
München: Urban & Schwarzenberg, 1985, 140-154

MÖBUS, C. & SCHRÖDER, O., Knowlädge Specification and lnstructions for a Visual
Computer Language, to appear in: F.KLIX, H.WANDKE, N.A.STREITZ & Y.WAERN
(eds), Man-Computer lnteraction Research, MACINTER ll, 1988, Amsterdam: North-

.. Holland (in press)
MOBUS, C. & THOLE, H.J., Tutors, lnstructions and Helps, ABSYNT-Report 3/88, to appear

in: CHRISTALLER, Th. (ed), Künstliche lntelligenz. KlFS87, Heidelberg: Springer,
Computer Science Lecture Series (in press)

PAGAN, F.G., Formal Specification of Programming Languages, Englewood Cliffs, N.J.:
Prentice-Hall, 1981

PAYNE, S.J.; SIME, M.E.; GREEN, T.R.G.: Perceptual Structure Cueing in a Simple
Command Language. lnt. Journal of Man-Machine Studies, 1984, 21, 19-29

PENNINGTON, N.: Stimulus Structures and Mental Representations in Expert
Comprehension of Computer Programs. Cognitive Psychology, 1987,19, 295-341

POMERANTZ, J.R.: Perceptual Organization in lnformation Processing. ln: AITKENHEAD,
A.M.; SLACK, J.M. (eds): lssues in Cognitive Modeling. Hillsdale: Erlbaum, 1985,
127-158

SCHRÖDER, O., FRANK, K.D. & COLONIUS, H., Gedächtnisrepräsentation funktionaler,
graphischer Programme, ABSYNT-Report 1 /87, Universität Oldenburg, 1987

SHU, N.C., Visual Programming Languages: A Perspective and a Dimensional Analysis, in:
CHANG, T., ICHIKAWA & LIGOMENIDES, P.A.(eds), Visual Languages, New York:
Plenum Press, 1986, 1 1-34

SLEEMAN, D.H. & HENDLEY, R.J., ACE: A system which Analyses Complex Explanations, in:
D.SLEEMAN & J.S.BROWN (eds), lntelligent Tutoring Systems, New York: Academic
Press, 1982, 99 - 1 18

SOLOWAY, E.: Learning to Program - Learning to Construct Mechanisms and Explanations.
Communications of the ACM, 29, 9, 1986, 850-858

11

t[llffi- fl ililtiilil t'I il| t

ßx

ffi

*,-
-lll

ffitffi il

I

l.
I

5

,

I
t

lil

-1
a
co

o
ooo
E
o,c.E

E
(d
L
(J)
o
L
o-
o
F
;
tu
E
f
(5
IL

q-.

12

l=1 Itlililtffiilltlt I'llil
-t-

---ilt

lolo
lolo
l\<

T

i,t

l.
I

I
t
+

lil

FIGURE 2: The Trace Mode of ABSYNT

o
o)
U)
co
(s

=o
Eo
O
-(U

E
o
.C

hiN
IU
tr.3g
lJ.

n-'

13

I
Lo
(d
!
(l)
o-o

o
co(f)
6o(gP
u=aorf

ooo-c o-FA
I

og)*(s
@U,
o3
öoo.coo(D'=
!.- o
ö(0oo

-co-#(Do
a

o_
rAöE
E*
:foo-=gJ
8.e

=+O(,}(l)(üo-
JA

ö
c\l
Lu
E
fg
LL

n-'
14

I
Lo
(U

o
o-o

o
c
O(f'

fro(0=
€3a<)r-E

ooocova
I

a(D;6
U'A
1J=
5öo-caoo'EF()
ä(doo
o-#oo
(t

o.
eAöE
E"if,o
O-=
tr-
8 .'9
*'6
U'(J,

-5*
rj
N
LU
tr:)g
LL

15

t,l

LI
(U
L
q)
o_
o

b
c
.9 !ü6o(df,

L

EbNE
e8Eq,
og#ct
(r, FE'
5Eoc@o
EE
ä3

-co-*
99oo-
eU)
öE.F
gN
f,oo-=
E=
8e
*'6(llo'
(U0_
Ja
ü
N
IU
tr3
(5
tr

16

;-"

trH

L

J-
o
(g
Lo
o-
9ror
f,o
cP
O=
E3
tU .5

E8-N?
o.95g
vU)o3
EO(d-
o-ö
9E
sD(so(l)Cc
C)P

8a(l)r-
c(docL
3.s9aOO
-O
.o
6€o
=(l)o-P
h=oooE
sOo(l)(U0_
JO

ö(\I
I.IJ
tr3
E
IL

17

il-f,

I
Lo
(d
Lo
o-
Pror
o(l)
rlf
.0 =-?i()
(d=

C)
E(I)co-c!(,

Ioo
=NE9
L^(I,_
o-b
o '.F#(J
o(d9o
L-FotO-*ao9r
äEo*
o-99aqA
rO
o-
E@
=oo_J
oc)o=
+O(/)(l)
(g0_
-Ja

C{
LU
tr
:lg
LL

.n -.

18

J-o
(d
Looo
o
co(o'6o
(u:l

L

E 3..

oI
e8E?
oP#ct
a_AE-
boocaO
E6
ä(d
C)q)

-co--
P9ao
-AöE.F
(d(f)
3(l)o-=
br-
8e
*'6(/)o
No_JA
iö(\I

LUtr
f
(5
tr

t--{H

19

j.
o
(d
Lo
o_
-o qo

r
oo
e)

ö_-
.= -c)

tE
Tfo
ö*
qö
J- +{#(It

bF
EEo_c
o€# il)
(/)(U
9o
o!
O-+uro9c
:(d
Eo-
o-9
(l)

6*
r(D
ö-
Eco
=oo_J
E=-ooo=
s(Joo(do_
JA
;(\I
TIJ(r
:f
CI
LL

20

il-{H

io
(d
Lo
o_
_o 19

Eo
cPo--
E€
E(l)
,b8
o{1
.t- +{#(U
EF
Hboc
o€#o
(/)N
9oL-o=O-rU'O9r
gä
o-9
(I)

6*
rOö-
E@
=oo-P
E=-ooo=
vO(/)(l)(so-
JU,

N
tu
tr
)g
LL

21

il-fi

I
Lo
(U
L
q)
o-o

o
c
.o (o
6o(d3
1) i.
c -rr.,NE
e8_io
oJi|-g
@ _uttt-
5öo-cao
EE
ä(oC)o

!-
o-#g9(/,d
rOöE.F

$arJO
CLEgi
8e
+O
CDq)
fit o_JA

ö
LU
E,fg
LL

22

i_o
(d
L
c)
o-
_o 19

oo
-Eö_-
H€
E(l)
ö*
oö

-l.- fP (I'

bF
EEoc
og#o
(,(s
9o
o!
O-+ao9c
b8.
o-9
(l)
6*
r(l)o-
Eco
=oo-=
E=ooo=
+O(/)(l)
(d0_
JA
j
(\I
uJtr)
E
TL

n--H

23

ä
(6

ö
o_
9co
Eo
ö_-
E€
E(I)ög
qö

-I- #*(g
EF
EEo_c
ogHO
(,)(d
Eo
OF
Q--(/)o
9c
ä8.
o-9o6*
rG)
ö-
E@
=oJ-
o- :J
E=-oooE
*O
U'(JD(00-
JO

N
tU
(E
3
CI
LLil--{H

24

I
L
o
(d
Lo
o-o

o
c
.9 co()o(U5

I-
1)=cc,
GJ=
o8E*
oö
.,Si _u,5;o--
Ut t-
oO
gö

q)
o-c
q)#
69
cciou,
F9

=(r)9o
L-=
oL(J=

o6EqE
.. o
E
C\I

IIJ
fr
f
o
trtrH

25

L()
(s
L
(I)
o-
-o 6l

oo
-Jo_
E€
E(l)
00ä
,gsP (It

EF
EboE
oE#io
(n(s
9o
o!
O+ao9c
bE
o-9
(l)6t
a0)()-
E@
=oo_J
E=-ooo=
v()(ll(l)
(!0_
J@

ä
C{
I.U
tr
:f
E
IL

;-.

26

J.o
(6
Lo
o-
9<o
bo
cJo_
E€
E(l)öa
oö

l-flts(E

bF
Hbo-c
o€#iJ
(/)(d
9o
o=
O-+@o9r
ä8
o-9
(I)6t
r(l)
ö-
E@
=oo-p
E=-ooo=
*O(/)(l)
(U0_
JA
öN

LU
tr
fg
LL

;'.

27

I
Lo
(g
L
o
o"o

o

.ot
6-s(d:l

L

E .'9NE
e8_ä?
o.9-g
A _U,E-
5bocaO
EE
b3

-co-*g9(/)d
eA
öE.F
gc.r
f,oo-=
LL
8E
*'6o(l)(I'o-
JA
ä
c\l
LUc3
CI
tr

28

J-o
(d
Lo
o-o=o)
oo
-Jö-.-3
ö.o(!E
ooög
o{y
l-€PCU
bp
Ebo,c
o€#o
U'(6
Po
o=
r'l hoo9r!(U
Eo-
o-9o6*
eOö-
Ero
=oo_J
E=oooE
sO
@@

-58
ö(\I
ul
tr3g
lril--{H

29

J-
o
(d
L
(I)
o-o
"o)
oo
CJo:
E.e(üE
lCo
ö*
o{1

-l- ts#ct
öF
Hbo_c
oE#i)
(/)(g
Po
o!O-sU'O9cäs(J*
o-.9o6t
e0)ö-
Ero
=oo-P
E=-ooo=
*(J(/)(l)(u0_
J@

u
c\J

l'U
E3
E
lJ-

30

;-"

: Appendix
äo"l"",3',"3??:11fl" i-3:lllä3:ionar

Knowredge for ABSYNT with

:

Rute 1: Ig _rgqpute the- outputvalue of primitive operator nodes (except lF-
THEN-ELSE-nodes !)

Rule 2: To fetch the input value for an operator node

Rule 3: To compute the outputvalue of the root of head

Rule 4: To fetch parameter bindings from the head for leafs in the body

Rule 5: ' To compute the outputvalue of a higher operator node (= us€l
defined function) in the start tree

Rule 6: To compute the outputvalue of the IF-THEN-ELSE node in case ol a
true predicate

Rule 7: To compute the outputvalue of the IF-THEN-ELSE node in case of a
false predicate

Rule 8: To compute the outputvalue of a higher operator node in a body tree

:

;-.

Fule l: computing ol pdmitive operalornode [Ho lF-THEH-ELSE-rode !f -

l st Situation
tJThe output stdpe of a primitive
o peral or n o d e c ontains a "?".

2JThe pdmitive operalornode is not an lF-
THEN-ELSEtode.

SlThe input stdpe of the primitive
operalornode is empty.

lnstruction .0ugysigruf Hction I+f +I{!

Fule l: Computing of pdmitive operalor node [Ho lF-THEH-ELSErode !f .
-]

l st Action
Wite a"?" in everyinput lield of the
pdmitive o penat ornode.

I nstruction 0ueruieurl Situatinn | + f + I 4!

Fule l: Computing of pdmitivc operttornode [Ho lF-THEH-EL$E-node !f .

Znd Situation
lJThe output stdpe of a primitive

o p erol or n o d e c ontains a "?".

?JThe primitive operalortrode is not sn lF-

THEN-ELSE+tode.

SlThe input stripe ol the primitive

operalorn o de contains va.lues only.

I nstruction 0ueruieurf Hction I + I +I#J

Fulc l: Computing of pdmitive operttor node [Ho lF-THEN-ELSE-node lf - '-']

Znd Action
I J Compute the primitive operolorno de.

2JWite the wlua into the ogtput stripe of

the primitive op eral ornode.

I nstruction tlueruieuf $ituationf €I +I+J

Hule 2: Fetching rn input vrlue lor an openalor node-

l st Situation
lJ,Anyinput field of an operalornode
contains a"?".

2]The input field of the operalornod e is

connected vith anothernode vhose
output stripe is empty.

I nstruction oueruieurf Hrtion f +I+I{!

Hule 2: Fetchirig arr input tulue f or tn operalor node- ---+
1 st Act io n
lvltite a"?" into the output stripe of the
node connected vith the input field.

lnstruction 0rreruieurf $ituationf +I +I#J

I

Hule 2: Fetching an input trrlue f or tn operttor node-

2nd Situation
lJAnyinput lield of an operelornode
c ontains a "?".

2lThe input field of the operatornode is
connected vith anothernode vhose
output stripe contains awlue.

lnstruction 0ueruieuf Hction I+I +I4J

Fule 2: Fetching rn input ralue f or nn operalor node. --tF
Znd Action
\tlite the output value of the node
connected vith the input field into the
input field. \

lnstruction 0ueruieru I $ituation I ö f + I dJ

Rulc 3: Fetching output vrlue f or herd root.

l st Situation
lJThe output stripe of the'head root of a
frame contains a"?".

ZJThe output stripe ol the bodyroot of the
lmme is empty.

I nstruction Oueruieuf ffction I{rI +I4J

Huls 3: Fetching output vrlue f or head root-
-fF

I st Action
Wite a"?" into the output stripe ol the
bodyroot ol the frame.

lnstruction üueruieur f Situation I € I + I 45

Fulc 3: Fetching output ttlue f or hetd rout-

2nd Situation
llThe outFut stripe of the head root of a
frume contains a"?".

2JThe output stripe af the bodyroot of the
frame contains auajue.

I nstruction 0ueruieuf Hction I+I +IqJ

trule 3: Fetching output vtlue f or hetd rnot. ->
2nd Action
Wite the output'value of the bodyroot of

the frame into the output stdpe of the
head root. \

I nstruction 0ueruieurf $ituationf €I +I4J

Hule t: Fetching pürmeter tdue lrom herd f or body-

Situation
The output stdpe of a bodyleal of alrame
contains a"?".

lnstruttion 0ueruieur I Hction I € I + I f,J

trule {: Fetching partmeter vtlue fron hetd f or bod}t-

-|}
Act io n

Wite the output rnalue of the head leaf

vith the same nüme into the output stdpe

of the bodyleaf. \

I nstruction 0ueruieur I $ituation | € I + I qJ

Hule 5: Computing of highrr operdor nade in *tart tree-

1 st Situation
lJThe output stripe of a higher operalor
node in the stzut tree contains a"?".

2JThere is no node vith inveded narne
stripe in the stslt tree.

3JThe input stripe uf the higher operolor
node in the *tart tree is enrpty.

lnstruction oueruieur! flction I+I +I4!

Hule 5: Computing of higher operalor node in stut tre e . -+F
1 st Act io n

Strt

Wite a"?" into everyinput field of the
higher operatornr:de.

I nstruction 0ueruieuf $ituationf fiI +I4!

Hule 5: Computing of higher operalor node in stüt tree-

2nd Situation
lJThe output stripe of a higher operalor
node in the stad tree contains a"?".

2JThere is no node vith inveded name

stripe in the staf tree.

SJThe input stripe ol the higher operalor
node in the stort tree contains ualues only.

lnstruction oueruieuf Hction I + I + I {!

Hute 5: Computing of higher operntor node in statt tree-

Znd Action
lJlnvert the name stripe of the higher
operatarnode.

ZlCreale afmme at the top tuith the name
of the higher operalornode.

SJWite eanh input wlue of the higher

op ernl orn od e irtto t he cnnesp ondin g

input field of the head root of the frame.

4llhlite each input wlue of the head rsot
into the output stripe ol the connected
head leoj.

SJWtite a"?" into the output stripe of the
head root.

Situatisn0ueruieurI nstruction

Hule 5: Computing of higher operator nude in start tree-

3rd Situation
llThe output stdpe of a higher operolor
node in the stzut tree contains a"?".

2JThe neme stripe of the higher operalor
node is inverted.

SJThe input stripe of the higher operalnr
node contajns ualues only.

4JThere is afmme at the top vith the narne
of the higher operuIornode.

SJThe output striFe of the head root
contains awlue.

lnstruction tlueruieur I Hction I fi I + I #J

trule 5: Computing of higher operalor node in stut tree-

3rd Action
llWite the output value of the head root
of the frarne into the output stdpe of the
higher operalornode vith the inveded
name stripe.

3JDelet e the upper fmrn e.

2JUndo the inversion of the norne stripe of

the higher operalornode.

I nstruction 0ueruieur I Situation I 0 I + I CJ

Hule 6: Computing ot IF-THEH-ELSE+rsde I lst rule]-

1 st Situation
lJThe output stripe ol an IF-THEN-ELSE-
node contains a"?".

2lThe input stripe of the lF-THEN-ELSE-
node is empty.

lnstruction 0ueruieul Hction I€I +IdJ

Fulc 6: Computing of lF-THEH-ELSE*tode Fst rulel.

l st Action
Wlite a"?" into the lst input lield of the lF-
THEN-ELSErode.

I nstruction Situation

Huls S: Computing of IF-THEH-ELSE-node flst rulef -

2nd Situation
lJThe output stripe of en lF-THEN-ELSE-
node contains a"?".

?JThe first input field of the lF-THEI'l-
ELSEtode contains the wlue "T" [= trueJ.

lnstructinn 0ueruieul Hction I{eI +I+J

Rule ü: Computing of lF-THEH-ELSE-node I lst rulef - +r
Znd Action
Wite a"?" into the 2nd input field of the lF-
THEN-ELSEtode.

I nstruction 0rreruieur f Situation I € I + I +J

Fule S: Computing of IF-THEH-ELSE*rode Il*t rulef.

3rd Situation
lJThe output stripe of an IF-THEN-ELSE-
node contains a"?".

2JThe 2nd input field of lF-THEN-ELSE-
node contains arnlue.

I nstruction 0ueruieur f Hction I + I + I +T

Rule t: Computing of lF-THEH-ELSE*rode I lst rulef .

3rd Action
Wite the w,lue into the output stripe of
the lF-THEN-ELSErode.

llueruieur $ituationI nstruction

Hule T: Computing of lF-THEH-ELSE-node [2nd rulef -

1 st Situation
lJThe output stripe of an lF-THEN-ELSE-
node cantains a"?".

lJThe input stdpe of the lF-THEN-ELSE-
node is empty.

I nstruction 0ueruieu, I Hction I4rI +I+J

Rule f : Computing of IF-THEH-ELSEttode [2nd rulef .

I st Acti0n
Wite a"?" into the lst input field of the lF'
THEN-ELSEtIode.

I nstruction 0ueruieur I $ituation I + I + I #J

Rulc f : Computing of lF-THEH-EL5E*rodr [2nd rulef .

2nd $ituation
lJThe outFut stripe of an I'F-THEN-ELSE-
node contains a"?".

2JThe first input field of the lF-THEN-
ELSEtode contains the ttalue "F" [= false]

lnstruction
-oueruierul Hction I+I +I{!

Eule 7: Computing ol lF-THEH-ELSE*todc'[2nd rulel.

2ntl Action
\!lite a"?" into the 3rd inFut field of the lF-
THEN-ELSErode.

Situntion0ueruieurI nstructinn

Rule ?: Computing of IF-THEH-ELSE*rode [2nd rulef -

3rd Situation
lJThe output stripe of an lF-THEN-ELSE-
node contains a"?".

2JThe 3rd input field of lF-THEN-EL$E-
node contains aralue.

I nstruction 0ueruieu I Hction I + I + I +J

Hule f : Computing of lF-THEH-ELSE-node [2nd rule].
-lF

3 rcl Act io n

Wlite the value into the output stdpe of

t he lF-THEN-EL 5E+rCI d e.

I nstruction Oueruieul Situation I € I + I +,

Hule S: Computing of higher aperetornode in bodytree-

l st $ituation
lJThe output stdpe of a higher operelor
node of a bodytree contains a"?".

tlT here is no hi gher op eral ornod e vith
inved ed narne strip e in the bodytree.

SJThe input stripe of the higher operalor
node is empty.

I nstruction 0ueruieu I Hction I {l I + I +J

Hule ü: Computing of higher operalor node in body tree- ---+
"1 st Act io n

Wfite a"?" into everyinput field.

lnstruttion oueruierx"f situation f ft I + I 4!

Bule $: Computing of higher operalor node in body tree.

2nd Situation
llThe output stripe of a higher operalor
node in a bodytree contains a"?".

?JThere is no higher operelornode with
inveded name stripe itt the bodytree.

SJThe input stripe of the higher operclor
node contains wlues ot'tlv.

lnstruction 0ueruieurf Hction I+I +I+J

Fule t: Computing of higher operalor node in body tree-

2nd Action
I Jlnved the name strip e of the hi gher
operalornode.

\

ZJCreale aframe at the top vith the name
of t he higher operal or no de.

SJWite each input relue of the higher
operal or no de into t he conesp ondin g

input field of the head root of the nev
fnme.

4JWtite each input wlue of the head root
into the output stripe of the connected
head lesl.

SJWite a"?" into the output stdpe ol the
head root of the nev,frame.

I nstruction tlueruieurf $ituationf +I +I+J

Rule ü: Computing nf higher operrtornude in bodytree-

3rd $ituation
lJThe output stdpe of a higher operalor
node in a bodytree contejns a"?".

2JThe narne stripe of the higher operalor
node is inveded.

3JThe input stripe of the higher operator
node contains wlues only.

4JThere is afrflrne al the top tpith the name
of the higher operalornode.

SlThe output stdpe ol the head root of the
fmme contains arnalue.

lnstruction 0ueruieur I flction I 4r I + I #J

Hule ff: Computing of higher operator node in body tree-

3rd Action
lJffiite the output ualue of the head roat
of the frame into the output stripe of the
higher operalornode vith thC inve*ed
narne stripe.

2JDelete t he upperfrarne.

3lUndo the inversian of the name stdpe
of the higher operatornode.

llueruieu SituationI nstruction

Appendix B: Representing Computational Knowledge for ABSYNT with State'
Specilic 2-D-ruleset

Rule 1: To move computation goals in an operator node to the inputstripe
of the node (except lF-THEN'ELSE'node !)

Rule 2: To compute the outputvalue of a primitive operator node (except lF-
TH EN-ELSE-node !)

Rule 3: To move a computation goal to an outputstripe of a connected node

Rule 4: To fetch an outputvalue lrom a connected node for the
corresponding inPut tield

Rule 5: To move a computation goal lrom the root of the head to the root of
the bodY of a function

Hule 6: To fetch the outputvatue from the root of the body for the root of the
head of a function

Rute 7: To fetch the binding of a parameter from the head for a leaf in the
body of a function

Rule 8: To compute the outputvalue of a higher operator node in the start
tree

Rute 9: To fetch the outputvalue of a higher operator node in the start tree
trom the root of the head of the called lunction

Rule 10: To move a computation goal to the predicate field in the IF'THEN'
ELSE operator

Rule 11: To move
"'.orprtation

goal to the THEN-inputfield in the case of a
true predicate

Rule '12: To fetch the outputvalue in the IF-THEN-ELSE operator in the case
of a true predicate

Rule 13: To move a computation goal to the ELSE-inputlield in the case of a
false predicate

Rule 14= To fetch the outputvalue in the IF-THEN-ELSE operator in the case
of a talse predicate

Rule 15: To move a computation goal from the outputstripe of a higher
operator node to the outputstripe of the root in the head of the
called function

Rute 16: To compute the outputvalue of a higher operator node in the body
of a.function

trule l: Prs*ing goals ta input stripe of operator node [Ho lF-THEH-ELSE-nodelf .

$ituation
1J The output stripe of an operalornode
conteins a"?".

2JThe operatornode is not an IF-THEN-

ELSE+rode.

SJThe input stripe of the operalortrode is

empty.

I nstruction 0ueruieru f Hction I + I + I {I

trule l: Frssing gorl* to input stripe of operator node [Ho lF-THEH-ELSE*tode!].

Act io n

Wtite a"?" in everyinput field of the
operatornode. \

$ituation0ueruieulnstruction

Rule 2: Computing primitive operulornode [Ho IF-THEH-ELSE*todelf .

Situation
lJThe outputstripe of aprimitive
o p erat or n o d e c ontajns a "?".

2JThe prinritive npetnlnrtrade is not nn lF-
THEN-ELSE-node.

SJTheinputstripe of the ptimitive

o p eretor no de cotttains t'nlues only.

I nstruction tlueruieurf Hction I+I +I+J

Hule 2: Computing primitivc operator node [Ho IF-THEH-ELSE-node!l-

Act io n

I J Compute the primitive operalorno d e.

2JWäte the ualue into the output stripe of

the primitive op eralor n od e.

I nstruction 0ueruieu J Situation I S I + I 4I

Hule 3: Pnssing Soal to output stripe of connected node-

Situation
lJThe output stripe of an operalornode
c ontains a "?l'.

2lAnyinput field of the operalornode
contains a"?".

SJThe input field al the operalornode is

connected vith anothernode vhose
output stdpe is empty.

lnstructinn tlueruieu I Hctisn I ft I + I #I

Eule 3: Prs*ing goal to output stdpe of connected node-

Act io n

\hlite a"?" into the output stdpe of the
node connected vith the in,out field.

I nstruction 0ueruieurf situationf +f +I{I

Fule 4: Fetching input vnlue f ar operalnr node-

Situation
llThe output stdpe of an operalornsde
c ontains a "?".

ZJ,anyinput field of the operalornode
contains a"?".

SlThe input field of the operulornode is

cCInnected vith anothernode vhose
output stdp e conteins awlue.

I nstruction oueruieur f Hction I + I + I {!

Rule {: Fetching input rulue f or opertlor node.

Act io n

Wite the output wJue ol the node
connected vith the input field into the
input field.

lnstruction 0ueruieuf Situationf +I +I4!

Hule 5: Pr,*ring goal to bodyroot-

$ituation
lJThe output stripe of the head root of a
frame contains a"?".

2JThe output stripe of the bodyroot of the
frame is empty.

lnstruction
-oueruierul fiction I+I +I{!

Rule 5: Passing g'oal tü badyroot-

Act io n
tillite a"?" into the outpu[stripe of the
badyroot of the lrarne. \

0ueruieu Situationlnstructinn

Bule S: Fetching nutput vrlue f or head root.

Situation
lJThe autFut stripe of the head root of a
frnme crrntains a"?".

2JThe output stripe of the bodyroot of the
fnarne contains awJue.

I nstruntinn 0ueruieuf Hction I€I +I+J

Fule fi: Fetching output value f or herd root-

Act io n

Wäte the output wlue of the bodyroot of

the frarne into the output stripe of the
head root.

I nstruction CIueruieur I $ituation f € I + I {!

Rule f : Fetching parametertalue from herd f or body.

Situation
The output stripe of a bodyleal of aframe
c ontains a "?".

I nstruction 0ueruieu f flction I + I + I +J

Rule ?: Fetching parameterralue from hetd f or body-

Act io n

ffiite the output wJue of the head leal
vith the Bflre nsme into thq output stripe
of the bodyleal.

0ueruieru $ituationI nstruction

Rule $: Computing higher opentor nodc in start tree-

$ituation
IJA higher operalornode is pzut of the
stslt tre e.

2lThere is no node u'ith inverted name
rtripe in the ststt tree.

SJThe output stripe ol the higher opetnlor
node contains a"?".

4JThe input stripe of the higher operelor
node cuntajns veiues only.

I nstruction
' oueruieruf Hction I + I + I 4!

Fule 8: Computing higher operrtor node in stut tree.

Action
lJlnve* the name stripe of the higher
operatornode. \

2JCreate aframe at the top vith the name
of the higher operalornode.

3JWäte each input wlue of the higher
operatorno de in(o th e conesp ondin g

input field of the head root of the fmme.

4J\'!lite each input wJue of the head root
into the output stripe of the connected
head leal.

SJltvlite a"?" into the output stripe of the
head root of the fmme.

lnstruction oueruieur f situation I + I + I {!

Hule $: Fetching output value f or higher operator node in *tart tree-

Situation
l.JA hi gher o peral ornode is part of the
stad tree.

2JThe name stripe of the higher operalor
node is invetted.

3IThe output stripe of the higher operator
node contains a"?".

4)The input stripe of the higher operalor
node contajns values onlY.

SJThere is alrame at the top vith the name

ol the higher operelornode.

filThe outpul stripe of the head root
contains awlue.

TlThere is no frflme d the bottom.

Hction0reruieulnstruction

trule $: Fetching output vtlue lor higher operalornodc in start tre e-

Act io n

llWite the output wlue of the head root

into the output stripe of the higher

operatornode vith the inverted nome

stripe in the steJt tree.

ZJDelet e the upp erframe.
!

3lUndo the invettion of the name stripe of

the hi gher np eral orno de.

Situationürreruieulnstruction

trule I tl: Passing goal to lst input field of IF-THEH-ELSEtode.

Situation
lJThe output stripe of an lF-THEN-ELSE-
node corrtains a"?".

2JThe input stripe r,f the lF-THEN-ELSE-
node is empty.

lnstruction 0ueruieuf Hction I€I +LqJ

Rule l0: Ptssing goal to lst input field of lF-THEH-ELSEtode-

Act io n

\tllite a"?" into the l*t input field of the lF-
THEN-ELSE+rode. \

lnstruction 0ueruieur I Situation I € I + I +J

Fule I l: Ptssing gorl to Znd input field of lF-THEH-ELSE-nods.

Situation
lJThe output stripe of an lF-THEN-ELSE-
node contsins a"?".

2llhe lst input field of the lF-THEN-ELSE-
node contains the wlue "T" [= trueJ.

SJThe 2nd input field of the IF-THEN-
EL$Etode is empty.

lnstruction 0ueruierul Hction I fr I + I {!

trule I l: Pr,ssing goal to 2nd input fielü of lF-THEtl-ELSE*ode"

Act io n

Wite a"?" into the 2nd input field 0f the lF-
THEN-ELSF*ode. \

I nstruction $ituation

Hule l2: Fetching output vnlue f or lF-THEN-ELSE*tade fron 2nd input field-

Situation
lJThe nutput stripe ol tn lF-THEN-ELSE-
node cr-rntsjns a"?".

llThe !nd input field nf the lF-THEN-
E L 5 Et o de rr ontsins * vd ue.

lnstructinn 0ueruieu I Rction I ft I + I dJ

Rule l2: Fetching output vnlue f or lF-THEH-ELSE*rode from 2nd input Jield-

Act io n

Wäte the wlue inta the output stripe of
the lF-THEN-ELSErode.

lnstruction 0ueruieu I Situation I ft I + I #J

Fule l3: Passing goal to 3rd inpul field of |F-THEH-ELSE*ode.

Situation
lJThe output stripe of an lF-THEN-EL5E-
node contains a"?".

ZJThe lst input field of the lF-THEN-ELSE-
node contajns the value "F" [=falseJ.

3JT h e 3rd in F ut f i eld is em pty.

lnstructinn 0ueruieu f Hction I + I + I +.f

Fulc l3: Passing goal to 3rd input field of IF-THEH-ELSE-node.

Act io n
lr\tite a"?" into the 3rd input field of the lF-
THEN-ELSE-node. \

0ueruieur Situationlnstrurtion

Fule l{: Fetching output rdue f or lF-THEH-EL$E*todc fram ilrd input field-

Situation
llThe output stdpe of an IF-THEN-ELSE-
node contrins a"?".

tJThe 3rd input field nf lF-THEN-ELSE-
nade contains a\äJue.

I nstruction oueruieurf Hction I+I +f {!

trule 14: Fetching output value f or IF-THEH-ELSE-node from 3rd input field-

Act io n

Wite the wlue into the output stdpe of

the lF-THEN-ELSErode.

I nstruction tlueruieuf Situationf €I +I{!

Hulc l5: Computing higher operator nude in body tree-

Situation
IJA higher operalornode is pad of the
bodytree of the fmme al the top.

2JThere is no inveded name stripe in the
bodytree.

SJThe output stripe of the higher operator
node contains a"?".

4lThe input stdpe of the higher operalor
node contains wlues only.

lnstructiun 0ueruieul Hction I#I+f dJ

trule l5: Computing higher operalor node in body tree-

Act io n

I

I

I

:
t,
I

I

lllnved the name stripe of the hi gh er
nperalornode. \

?lCreate afrarne al the top vith the name
of the higher opernlornode.

SJWite eachinpu(wlue nf the higher
op eral rrrno d e int o the c otrespondin g

input field of the head root of the nev
frsme.

4JWlite each input ualue of the head root
into the output stdpe of the connected
head lesJ.

SJ\{?ite a"?" into the output stripe of t he
head root ol the nevframe.

0rreruieur Situationlnstruction

Hule l6: Fetching autput mlue f or higher operalor node in body tree-

Situation
lJA higher operelornode is pzut ol the
bodytree in the fname at the bottam.

?lT he name stripe of t he hi gher operelor
nsde is inverted.

SJThe output stdpe r:f the higher opetator
nnde c'Strtnin$ a"r."

4lThe input stripe of the higher opernlor
no de contajns ualue* only.

SJThere is afreme of the top r+ith the narne
of the higher uperatornode.

6JThe outputstdpe olthe headroot ofthe
frrme contains arnlue.

I nstruction 0ueruieu I Hction I fi I + I +J

Rule lü: Fetching output mlue f or highcr operalornode in bodytret.

Action
llWäte the output ralue of the head root
in the upperframe into the,output stdpe of

the higher operalornode vith the
inveded name stdpe in the frame al the
bottr:m.

2JDelete the frame at the top.

3JUndo the inversion of the name stripe of

the hi gh er op eral ornode.

I nstruction tlueruieu f $ituation I ft f I dJ

2/87

1f87 SCHRÖDER, O., FRANK, K.D. & COLONIUS,H.,
Gedächtnisrepräsentation funktionaler graphischer
Programme, Oktober 1987

COLONIUS, H., FRANK, K.D., JANKE, G., KOHNERT, K.,

MÖBUS, C., SCHRÖDER, O. & THOLE, H.J., Syntaktische und
semantische Fehler in funktionalen, gräPhisch'en

, Programmen, .Oktober
1987

3187 MÖBUS, C. & THOLE, H.J., Tutors, lnstructions and Helps,
Februar:y 1988; to appear in: CHRISTALLER, Th. (ed),

Künstliche Intelligenz: KIFS V7, Computer Science Lecture

Series, Heidelberg: Springer (in press)

4/88 in preparation

5/88 JANKE, G. & KOHNERT, K., lnterf,ace Design of a Visual
Prograimming Language: Evaluating Runnable
'"Specifications, "to appear in: F.KhlX, H.WANDKE,
N.A.STREITZ & Y.WAERN (eds.), Man;Computer lnteraction

,Research, MACINTER ll, Amsterdam: North-Holland (in press)

