ABSYNT-Report 6/88

REPRESENTING SEMANTIC KNOWLEDGE
WITH 2-DIMENSIONAL RULES
IN THE DOMAIN OF
FUNCTIONAL PROGRAMMING

Claus Mobus & Olaf Schroder

August 1988

Project ABSYNT
FB 10, Informatik
Unit on Tutoring and Learning Systems
University of Oldenburg
D-2900 Oldenburg, FRG

This research was sponsored by the Deutsche Forschungsgemeinschaft (DFG) in the SPP Psychology of
Knowledge under Contract No. MO 292/3-2

-

REPRESENTING SEMANTIC KNOWLEDGE WITH 2-DIMENSIONAL RULES
IN THE DOMAIN OF FUNCTIONAL PROGRAMMING

Claus Mobus & Olaf Schroder

Project ABSYNT!
FB 10, Informatik
Unit on Tutoring and Learning Systems?2
University of Oldenburg
D-2900 Oldenburg, FRG

0. Abstract

One of the many difficult problems in the development of intelligent computer aided
instruction (ICAl) is the appropriate design of instructions and helps. This paper adresses the
question of optimizing instructional and help material concerning the operational knowledge
for the visual, functional programming language ABSYNT (ABstract SYNtax Trees). The
ultimate goal of the project is to build a problem solving monitor (PSM) for this language and
the corresponding programming environment. The PSM should analyse the blueprints of the
students, give comments and proposals (SLEEMAN & HENDLEY, 1982). First, we will explain
our motivation for choosing this domain of discourse. Second, we will shortly present the
programming environment of ABSYNT. Third, we represent the development of two
alternative 2-D-rulesets (appendix A, B), which describe the operational semantics of the
ABSYNT interpreter. The development of the 2-D-rules was guided by cognitive psychology
and cognitive engineering aspects and results of an empirical study. The study showed that
the rules were comprehensible even for computer novices.

1. Introduction

The main research goal of ABSYNT is the construction of a PSM. We chose the domain of
computer programming because the main activity of the programmer is problem solving, a
very relevant research area from a cognitive science point of view. Because our PSM will
have to analyse the planning processes of novices in depth, we decided to use a simple
programming language, the syntax and semantics of which can be learned in a few hours. We
propose a purely functional language. From the view of cognitive science functional
languages have some beneficial characteristics. So less working memory load on the side of
the programmer is obtainable by their properties, "referential transparency" and "modularity".
Furthermore, there is some evidence that there is a strong correspondency between

1This research was sponsored by the Deutsche Forschungsgemeinschaft (DFG) in the SPP Psychology of
Knowledge under Contract No. MO 293/3-2

2We are grateful that Gabi Janke & Klaus Kohnert implemented ABSYNT in INTERLISP and LOOPS, that Heinz-
Jurgen Thole did part of the rule-based programming in LPA-PROLOG and that Klaus-Dieter Frank assisted in
empirical research and did the first implementation of the help system in HYPERCARD.

1.

o

programmer's goals and use of functions (PENNINGTON, 1987; SOLOWAY, 1986;
JOHNSON & SOLOWAY, 1985, 1987). This correspondence helps to avoid the difficult
problem of interleaving plans in the code which shows up in imperative programming
languages. SOLOWAY(1986) has argued that this kind of interleaving makes the diagnosis of
programmer's plans rather difficult and time consuming. If we take for granted that a goal can
be represented by a function, we can gain a great deal of flexibility in the PSM concerning the
programming style of the student. We can offer him facilities to program in a bottom-up, top-
down or middle-out style. The strategy of building up a goal hierarchy corresponds to the
development of the functional program.

There are similar psychological reasons for the use of a visual programming language.
There is some evidence that less working memory load is obtainable through the use of
diagrams if they support encoding of information or if they can be used as an external memory
(FITTER & GREEN, 1981; GREEN, SIME & FITTER, 1981; PAYNE, SIME & GREEN, 1984,
LARKIN & SIMON, 1987). Especially if we demand the total visibility of control and data flow
the diagrams can serve as external memories.

The diagrammatic structuring of information should also reduce the amount of verbal
information, which is known to produce a higher cognitive processing load than "good"
diagrams (LARKIN & SIMON, 1987). "Good" diagrams enable automatic control of attention
with the help of the location of objects. These are in our case object icons of two sorts: straight
connection lines and convex objects. Iconic objects of these types are known to control
perceptual grouping and simultaneous visual information processing (POMERANTZ, 1985;
CHASE, 1986). !

A very crucial point concerning the "intelligence” of a PSM lies in the quality of the
feedback system design. In this paper we are restricting ourselves to an instructional and
feedback system based on 2-D-rules describing the operational semantics of ABSYNT. Other
more formal approaches specifying the semantics of a language (ALBER & STRUCKMANN,
1988; PAGAN, 1981) are suited for computer scientists but not for programming novices.

When should an ICAI system administer feedback? Our tutorial strategy is guided by "repair
theory" (BROWN & VanLEHN, 1980) and follows the "minimalist design philosophy"
(CARROLL, 1984a,b). The latter means, that if the learner is given /ess (l/ess to read, less
overhead, less to get tangled in), the learner will achieve more. Explorative learning should
be supported as long as there is preknowledge on the learner side. Only if an impasse occurs
feedback becomes necessary and information should be given for error recovery.

According to repair theory an impasse occurs, when the student notices that his solution
path shows no progress or is blocked. In that situation the person tries to make local patches
in his problem solving strategy with general weak heuristics to "repair" the problem situation.
In our tutorial strategy we plan to give feedback and helps only, when this repair leads to a
follow-up error.

2. The Programming Environment of ABSYNT

The programming environment of ABSYNT was developed in our project, using ideas from
the "calculation sheet machine" (BAUER & GOOS, 1982). The complete programming
environment was implemented in INTERLISP and the object-orientated language LOOPS
(JANKE & KOHNERT, 1988; KOHNERT & JANKE, 1988) to get a programming environment
with direct manipulation capabilities. Following SHU's (1986) and CHANG's (1987)
dimensional analysis, ABSYNT is a language with high visual extent, low scope and medium
level. The ABSYNT-environment comprises three modes: a programming mode, a trace
mode, and a prediction mode (KOHNERT & JANKE, 1988).

2

o

2.1 The Programming Mode

The programming mode is shown in FIGURE 1. The screen is split into several regions. On
the right and below we have a menu bar for nodes. A typical node is divided into three stripes:
an input stripe (top), a name stripe (middle) and an output stripe (bottom). These nodes can
be specialised to constants or variables (with black input stripe) or are language supplied
primitive operators or user defined functions.

FIGURE 1: The programming mode of ABSYNT

In the upper half of the screen the programmer sees the main worksheet and in the lower
half a subordinated one. Each worksheet is called frame. Frames are split into a left part
"head" (in German: "Kopf") and into a right part "body" (in German: "Kérper"). The head
contains the local environment with parameter-value bindings and the function name. The
body contains the body of the function.

Programming is done by making up trees from nodes and links. The programmer enters the
menu bar with the mouse, chooses one node and drags the node to the desired position in
the frame. Beneath the frame is a covered grid which orders the arrangements of the nodes
so that everything looks tidy. Connections between the nodes are drawn with the mouse. The
connection lines are the "pipelines" for the control and data flow. If a node is missed the
programmer is reminded with a shaded grey node that there is something missing. The editor
warns with flashes if unsyntactic programs are going to be constructed: crossing of
connections, overlapping of nodes etc. The function name is entered by the programmer with
the help of pop-up-menus in the root node of the head. Parameter names and values for
constants are entered in the leaves of the head and the body by pop-up-menus, too.

If the function is syntactically correct, the name of the function appears in the frame title and
in one of the nodes in the menu bar so that it can be used as a higher operator. When a
problem has to be solved a computation is initialized by the call of a function. This call is
programmed into the "Start"-Tree. Initial numbers are entered by pop-up-menus in constant
nodes in the start tree. This tree has a frame without a name, so that the iconic bars are
consistent.

The design of the programming mode is motivated by regarding the operational knowledge
of ABSYNT as a necessary prerequisite for the development of planning and programming
knowledge. That is, features which are necessary for the understanding of the computational
process are visualized in the programming mode as well as in the other modes of the
programming environment.

2.2 Trace Mode and Prediction Mode

If the user has programmed a start tree for his program, he can run the program and get a
trace for it (FIGURE 2). The design of the trace is a result

FIGURE 2: The trace mode of ABSYNT

of our iterative specification cycle in the development of abstract rules and process icons
(MOBUS & THOLE, 1988; MOBUS & SCHRODER, 1988). In the case of recursive programs,
the frame actually computed is in the upper half of the screen. The lower half shows the frame
one level deeper in the stack, so that the recursive call stays visible.

3

D

As an experimental tool of the ABSYNT environment, there is also a prediction mode. Here
the user can predict the actions of the interpreter, that is, compute ABSYNT-programs by
himself, so that he can smoothly acquire the operational knowledge for ABSYNT.

3. Preliminary Instructional Material and Semantic Bugs

Our starting point for developing a functional visual programming language was a paper-
and-pencil study where we did some explorations without any computer implementations.
Part of this feasability study was a verbal specification of the syntax and the operational
knowledge, illustrated by simple programs and trees (MOBUS & SCHRODER, 1988). The
goals of the pilot study were:

- to get suggestions for the design of the language and the interface

- to collect syntactic and semantic bugs in order to find reasons for bugs and conditions
under which they occur

- to study the memory representations of example programs

A detailed description of the feasability study is provided in SCHRODER, FRANK &
COLONIUS (1987) and COLONIUS, FRANK, JANKE, KOHNERT, MOBUS, SCHRODER &
THOLE (1987). Among other things the subjects had to compute the value of various
programs, simulating the ABSYNT interpreter. Then we analysed the observable
computational errors.

However, this collection of semantic bugs gave rise to the following problems:

- It was unclear whether the bugs arose because of ambiguities in the instructional material
(the verbal description of the operational knowledge). Therefore, we could not be certain
whether this description could actually be viewed as the semantic "expert” knowledge,
which in our opinion is a prerequisite for a user of our language to plan and debug
efficiently.

- The verbal description of the operational knowledge is a poor base for a more detailed
and systematic description of the observed bugs in terms of missing or wrong pieces of
knowledge.

- It seems unnatural to construct a verbal specification of the operational knowledge for a
visual programming language. The design of a visual language has to be based on the
concept of generalized icons (CHANG, 1987), which can be divided into object icons and
process icons. Object icons define the representation of static language constructs,
whereas process icons specify the representation of data flow and control flow.

Therefore, we decided to use a runnable specification (DAVIS, 1982) of the language as a
foundation for constructing process icons. These process icons were then programmed in the
HYPERCARD-system and used as instructional and help material for teaching purposes.

4. Construction of improved instructional material: process icons

The specification of the operational knowledge was achieved in an iterative specification
cycle (MOBUS & THOLE, 1988; MOBUS & SCHRODER, 1988). The first step consisted of the
knowledge acquisition phase. The next step led to a rule set A of 9 main Horn clauses (plus
some operator-specific rules). The set contained the minimal abstract knowledge about the
interpretation of ABSYNT programs. The abstract structure of a program was formalized by a

set of PROLOG facts similar to an approach of GENESERETH & NILSSON (1987, ch. 2.5).

In the next step of the specification cycle we tried a 2-D-representation of the facts and
Horn clauses of rule set-A. Thereby, we kept in mind design principles which are motivated by

4

S

results of POMERANTZ (1985) and LARKIN & SIMON (1987). POMERANTZ made some
careful studies about selective and divided attention in information processing. One
consequence for our design was that time-indexed information had to be spatially indexed by
locations, too. Information with the same time index should have the same spatial index, that
is appear in the same location. In our design a location is a visual object. These insights were
supported by the formal analysis of LARKIN & SIMON (1987). They showed under what
circumstances a diagrammatic representation of information consumes less computational
resources than an informational equivalent written representation.

In the course of time we realized that a visual representation of the facts and Horn clauses
of rule set A according to the recommendations of POMERANTZ and LARKIN & SIMON was
only possible if we "enriched" the 2-D structure. This means that we had to add 2-D elements
which were not present in the abstract structure.

A second reason for an enrichment and, thereby, a modification of rule set A, was that the
set led to 2-D-representations with disjunctive rules. 2-D-rules with disjunctive conditions
require selective attention, which causes matching errors and longer processing time
(BOURNE, 1974; HAYGOOD & BOURNE, 1965; MEDIN, WATTENMAKER & MICHALSKI,
1987). Thus rule set A was modified in such a way such that

- any undesired perceptual grouping of information in operator nodes,
- 2-D-rules with disjunctive conditions,

and
- visual hiding of dynamic successor frames already put on a stack

was avoided.

We came up with a relaxed rule set B with 14 main rules (plus operator-specific
rules)(MOBUS & THOLE, 1988; MOBUS & SCHRODER, 1988). The behavior of these rules
led to a new visual trace. Time-indexed information was now location-indexed so that
undesired perceptual grouping could not occur any longer.

But these rules still had some defects from a cognitive point of view. Computational goals
and intermediate results are kept visible only as long as they are absolutely necessary for the
ongoing computation. Intermediate results "die" before the corresponding frame "dies". This is
not optimal for humans, because a programmer who wants to recapitulate the computation
history has to reconstruct former computations mentally. This leads to higher working memory
load for the programmer.

So we were forced to relax the minimum assumption a second time and introduce even
more visual redundancy. This was i.e. in accordance with the third principle of FITTER &
GREEN (1979).

Another reason for a further modification of the rule set was the recursiveness of the rules.
Instructional and help material derived from such rules should enforce a higher mental
working memory load because of the maintenance of a goal stack with return points.

The third rule set C with 29 (plus operator-specific) rules was motivated by the postulate,
that the extent of the intermediate result should not end before the life of a frame ends. We
have included examples for abstract rules of rule set C in FIGUREs 3 and 4. They are
represented in visual 2-D-rules 8 and 9 in the state-specific rule set (appendix B).

Then the computational behavior of rule set C was "frozen" in our INTERLISP/LOOPS-
Implementation (KOHNERT & JANKE, 1988). This completed the specification cycle.

5

e

output :-

node(frame_name(Frame_name),frame_no(Frame_no),tree_type(Tree_type),
instance_no(Instance_no),input_stripe(Input_stripe),name_stripe(Name_stripe),
output_stripe(Output_stripe)),

higher_operator(name(Name_stripe)),

Tree_type = start,

not(inverted_name_stripe(frame_name(Frame_name),frame_no(Frame_no),
tree_type(Tree_type),instance_no(Any_instance_no))),

Output_stripe = ?,

forall(on(Element,input_stripe),value(Element)),

assert(inverted_name_stripe(frame_name(Frame_name),frame_no(Frame_no),
tree_type(Tree_type),instance_no(Instance_no))),

copy_frame_on_top(frame_name(Name_stripe),top_frame_no(Top_frame_no)),

root(frame_name(Name_stripe),frame_no(Top_frame_no),tree_type(head),
instance_no(Instance_no_root_head)),

modify(frame_name(Name_stripe),frame_no(Top_frame_no),tree_type(head),
instance_no(Instance_no_root_head),input_stripe(Input_stripe)),

bind_parameter_of_top_frame(input_stripe(input_stripe)),

modify(frame_name(Name_stripe),frame_no(Top_frame_no),tree_type(head),
instance_no(Instance_no_root_head),output_stripe(?)),

output.

/* IF there is a node which has the following features:

(1) The node name is a higher operator.

(2) The node is located in the start tree.

(38) There is no node in the start tree with an inverted name stripe.
(4) The output_stripe of the node contains a "?".

)

The input_stripe of the node contains all input_values.

THEN
Invert the name_stripe of the node.
Create a frame with the operator's name and place it on top of the frame stack.
Determine it's head root.
Transfer the input_stripe of the node to the head root.
Bind the parameters.
Put a "?" into the output_stripe of the head root. */

FIGURE 3: Abstract Rule 8 of Rule Set C (First part of Call-by-Value, call in start tree;
corresponds to 2-D-rule 8 in the "state-specific" rule set in appendix B)

output -

node(frame_name(Frame_name),frame_no(Frame_no),tree_type(Tree_type),
instance_no(Instance_no),input_stripe(Input_stripe),name_stripe(Name_stripe),
output_stripe(Output_stripe)),

higher_operator(name(Name_stripe)),

Tree_type = start,

inverted_name_stripe(frame_name(Frame_name),frame_no(Frame_no),
tree_type(Tree_type),instance_no(lnstance_no)),

Output_stripe = ?,

forall(on(Element,Input_stripe),value(Element)),

value_of_upper_visible_frame(Output_stripe_root_head),

not_exist_lower_visible_frame,

modify(frame(Frame_name),frame_no(Frame_no),tree_type(Tree_type),
instance_no(lnstance_no),output_stripe(Output_stripe_root_head)),

delete_frame_from_top,

retract(inverted_name_stripe(frame_name(Frame_name),frame_no(Frame_no),
tree_type(Tree_type),instance_no(lnstance_no))),

output. A

6 %

.

/¥ IF there is a node which has the following features:
(1) The node name is a higher operator.
(2) The node is located in the start tree.
(3) The name stripe of the node is inverted.
(4) The output_stripe of the node contains a “?".
(5) The input_stripe of the node contains all input values.
(6) The head root of the upper visible frame contains a value.
(7) There is no other visible frame

THEN transfer this value into the output_stripe of the node.

Delete the upper visible frame.
Undo the inversion of the name stripe of the node. */

FIGURE 4: Abstract rule 9 of Rule Set C (Second part of Call-by-Value, call in start tree; corresponds to

In the visual trace, intermediate results now live as long as their frame. As with rule set B,
there is no undesired perceptual grouping. Process icons derived from rule set C would not
be applied recursively, and there would be no disjunctions.

On the basis of rule sets B and C we developed 2-D-rules to describe the operational
behavior of the ABSYNT-interpreter so that it can be predicted by a student. We got two
different 2-D-rule sets B and C with 8 respectively 16 2-D-rules. The 2-D-rules are visual
representations of only the most important rules of the abstract rule sets. Additional rules of
the abstract rule sets (i.e., for testing if a node is a root or a leaf) as well as the operator-
specific rules are explained in a separate glossary. The glossary also contains a short
introduction to the syntax of the 2-D-rules.

5. Empirical Evaluation of the two 2-D-rule Sets

We did a study in which programming novices computed ABSYNT-programs with the aid of
earlier versions (MOBUS & THOLE, 1988) of the two 2-D-rule sets. One of the aims of the
study was to evaluate the learnability of the 2-D-rules. We wanted to detect rules or parts of
rules which led to misunderstandings and errors.

Procedure: 12 programming novices (6 subjects working with each rule set) computed
ABSYNT-Programs of increasing difficulty. This was done in the prediction mode of the
ABSYNT-Environment (section 2.2 and KOHNERT & JANKE, 1988). In this mode the user
computed. ABSYNT-Programs by himself without any help from the interpreter. The subjects
worked in pairs (cf. MIYAKE, 1986). So three pairs of subjects worked with each rule set.
Beside the 2-D-rule set, they were provided with the glossary, that is additional explanations
of basic concepts mentioned in the rules. Therefore, complete instructional material was
given.

Each pair of subjects computed 33 ABSYNT-programs. The sequence of programs was
ordered by the number of 2-D-rules needed. So the most difficult program contained
abstraction as well as recursion. The subjects computed each ABSYNT-Program once
without being interrupted by the experimentator. In case of correct computation, the next
program was presented. In case of a bug, the program was presented again. This time, if bugs
occurred, the experimentator gave immediate feedback.

Preliminary results: The evaluation of the study is not completed as yet, but some results
related to the aim of the study mentioned above will be presented.

First, some concepts are explained:

o

1. A " computational step” denotes the following actions:
- changing the content of an input field or an output stripe
- creating or deleting a frame (choosing the corresponding menu item)
- typing a frame number

2. A "rule-consistent computational step” is any computational step which is part of a correct
rule application. It is consistent with the part of an "action" description of a rule the "situation"
description of which is satisfied. It is not regarded whether the computational step is made in
the right context. So parts visible on the screen but not mentioned in the rule may be faulty.

3. A "deviation" is any computational step which is not part of a correct rule application. There
are the following possibilities:

3.1 Faulty rule application: The computational step is not consistent with any part of the
action description of any rule.

3.2 Omission: The computational step is consistent with a part of an action description of a
rule the situation description of which is not yet satisfied, but is satisfiable by
intermediate computational steps.

3.3 Interference: The computational step is consistent with a part of an action description of
a rule the situation description of which is not satisfied and not satisfiable.

3.4 Shortcut: This is an optimizing deviation since it leads to the same result (or the same
intermediate result) as the correct sequence of computational steps, while
simultaneously saving computational steps. Shortcuts may occur because of the
visual redundancy on the screen. So the visible results of sequences of earlier
computational steps may be used for handling later situations.

3.5 Correction: Recovering omissions, undoing computational steps, and replacing values
by other values are corrections.

Faulty rule applications, interferences and omissions are "bugs”. Table 1 shows the absolute
frequencies and percentages (in brackets) of types of computational steps for both rule sets:

Computational steps

rule- bugs shortcuts correc-
consistent tions
operator- 7096 71 (0.97%) 42 (0.58%) 45 (0.62%)
Rule- centered (97.82%)
set state- 7815 96 (1.19%) 38 (0.47%) 96 (1.19%)

centered (97.14%)

Table 1: Absolute frequencies and percentages (in brackets) of types of computational
steps for both rule sets

Within both rule sets, more than 97% of all computational steps were rule-consistent, and
only about 1% were bugs. Although the subjects did not receive any feedback during the first
computation of a program, the error rate was small. Moreover, there were no typical bugs.
There are few examples of bugs for almost every 2-D-rule.

8

o

I'her 1esults indicate that there is no need to redesign the 2-D-rule sets or to change specific
uless Moreover, the hypothesized differences between the two alternative 2-D-rule sets did
not seem to show up in the behavior of the subjects. So they possibly used the rules to
construct a mental representation which did not correspond to the different structure of the twc
2 D rule sets.

Some more observations should be mentioned though, which initiated some slight
changes of the rules:

25 bugs altogether (= 15%) consisted of typing a wrong frame number. This supported
the decision to drop the frame number, which was possible because the interpreter uses
a linear stack, and there is at most one pending call in function bodies and in the start
tree.

- 40 bugs altogether (= 24%) were omissions occurring with rules containing several
computational steps in their action description, (i.e., rules for creating and deleting
frames). This motivated a clarification of the structure and an improvement of the
readability of the action descriptions of these rules.

- 37 more bugs (= 22%) were interferences occuring when the subjects worked in the
head of a newly made frame. This caused us to clarify the structure and improve the
readability of the situation descriptions of the rules for creating a new frame.

6. Representing operational semantic knowledge of ABSYNT with 2-D-rules

We tried to make the 2-D-rules as self-explaining as possible. Appendix A shows the rules
from the "operator-specific" 2-D-rule set which is based on the abstract rule set B. Furthermore
Appendix B shows the rules from the "state-specific" 2-D-rule set which is based on the
abstract rule set C. Two examples of state-specific rules (rule 8 and 9) are shown in FIGUREs
3 and 4.

The operator-specific rules in appendix A are to be interpreted according to the following
rough guidelines. The thick arrows on the left side of the rules indicate that this rule may be
entered here. The thick arrows to the right side indicate that the rule may be left here. So, if
the first situation description is true, the first action can be executed. Now the user may
temporarily have to leave the rule in order to produce the computational state which satisfies
the second situation description. He will have to do this with the help of other rules. If the
second situation description is true, the second action can be performed. The same is true for
a third situation-action pair.

In contrast to this, the state-specific rules (appendix B) are individual situation-action pairs.
Like production rules they are not reentered a second time.

7. Summary

With the 2-D-rule sets at hand, we are now able to overcome the shortcomings of purely
verbal or example based instructions. Now there is precise and unambiguous instructional
and help material concerning the operational knowledge. We can be confident that the
student acquires very easily and rapidly operational knowledge as a solid base for his
programming and debugging activities which will be a further topic in our research.

.

8. References

ALBER, K. & STRUCKMANN, W., Einfiihrung in die Semantik von Programmiersprachen,
Mannheim: Bl-Wissenschaftsverlag, 1988

BAUER, F.L.& GOOS, G.: Informatik, 1.Teil. Berlin, Springer, 1982 (3. Edition)

BOURNE, L.E.: An Inference Model of Conceptual Rule Learning. In: SOLSO, R. (ed):
Theories in Cognitive Psychology. WASHINGTON, D.C.: ERLBAUM, 1974, 231-256

BROWN, J.S.; van LEHN, K.: Repair Theory: A Generative Theory of Bugs in Procedural
Skills. Cognitive Science, 1980, 4, 379-426

CARROLL, J.M.: Minimalist Design for Active Users. In: SHACKLE, B. (ed): Interact 84, First
IFIP Conference on Human-Computer-Interaction. Amsterdam: Elsevier/North
Holland, 1984a

CARROLL, J.M.: Minimalist Training. Datamation, 1984b, 125-136

CHANG, S.K., Visual Languages: A Tutorial and Survey, in: P.GORNY & M.J.TAUBER (eds),
Visualization in Programming, Lecture Notes in Computer Science, Heidelberg:
Springer , 1987, 1- 23

CHASE, W. G., Visual Information Processing, in: K.R. BOFF, L. KAUFMAN & J.P. THOMAS
(eds), Handbook of Perception and Human Performance, Vol. Il, Cognitive
Processes and Performance, New York: Wiley, 1986, 28-1 - 28-71

COLONIUS, FRANK, JANKE, KOHNERT, MOBUS, SCHRODER & THOLE, Stand des DFG-
Projekts "Entwicklung einer Wissensdiagnostik- und Fehlererklarungskomponente
beim Erwerb von Programmierwissen fir ABSYNT", in: R. GUNZENHAUSER & H.
MANDL (Hrsgb), "Intelligente Lernsysteme”, S. 80 - 90, 1987, Institut fir Informatik
der Universitat Stuttgart & Deutsches Institut fir Fernstudien an der Universitat
Tlbingen })

COLONIUS, FRANK, JANKE, KOHNERT, MOBUS, SCHRODER & THOLE, Syntaktische
und semantische Fehler in funktionalen graphischen Programmen, ABSYNT Report
2/87, 1987

DAVIS, R.E., Runnable Specification as a Design Tool, in: K.L. CLARK & s.A. TARNLUND
(eds), Logic Programming, New York: Academic Press, 1982, 141 - 149

FITTER, M; GREEN, T.R.G.: When Do Diagrams Make Good Computer Languages? Int.
Journal of Man-Machine Studies, 1979, 11, 235-261, and in: COOMBS, M.J.; ALTY,
J.L. (eds): Computing Skills and the User Interface. New York: Academic Press,
1981, 253-287

GENESERETH, M.R.; NILSSON, N..J.: Logical Foundations of Artificial Intelligence. Los
Altos, California: Morgan Kaufman, 1987

GREEN, T.R.G.; SIME, M.E.; FITTER, M.J.: The Art of Notation. In: COOMBS, M.J.; ALTY, J.L.
(eds): Computing Skills and the User Interface. New York: Academic Press, 1981,
221-251

HAYGOOD, R.C.; BOURNE, L.E.; Attribute- and Rule Learning Aspects of Conceptual
Behaviour. Psychological Review, 1965, 72, 175-195

JANKE,G. & KOHNERT,K., Interface Design of a Visual Programming Language: Evaluating
Runnable Specifications According to Psychological Criteria, paper presented at
MACINTER, 1988, Berlin/GDR, ABSYNT-Report 5

JOHNSON, W.L.; SOLOWAY, E: PROUST: An Automatic Debuggerfor PASCAL Programs.
BYTE, 1985 April, 179-190, and in KEARSLEY, G.P. (ed): Artificial Intelligence and
Instruction. Reading, Mass.: Addison Wesley, 1987, 49-67

KOHNERT, K. & JANKE, G.: The Object-Oriented Inplementation of the ABSYNT-
Environments. ABSYNT-Report 4/88, Project ABSYNT, FB 10, Unit on Tutoring and
Learning Systems, University of Oldenburg, 1988

LARKIN, J.H.; SIMON, H.A.: Why a Diagram is (Sometimes) Worth More Than Ten Thousand
Words. Cognitive Science, 1987, 11, 65-99

MEDIN, D.L.; WATTENMAKER, W.D.; MICHALSKI R.S.: Constraints and Preferences in
Inductlve Learning: An Expenmental Study of Human and Machine Performance.
Cognitive Science, 1987, 11, 299-339

MIYAKE, N.: Constructive Interaction and the lterative Process of Understanding. Cognitive
Science, 10, 1986, 151-177

10

N

MOBUS, C., Die Entwicklung zum Programmierexperten durch das Problemlésen mit
Automaten, in: MANDL & FISCHER (Hrsgb), Lernen im Dialog mit dem Computer,
Mdnchen: Urban & Schwarzenberg, 1985, 140-154

MOBUS, C. & SCHRODER, 0., Knowledge Specification and Instructions for a Visual
Computer Language, to appear in: F.KLIX, HWANDKE, N.A.STREITZ & Y.WAERN
(eds), Man-Computer Interaction Research, MACINTER Il, 1988, Amsterdam: North-
Holland (in press)

MOBUS, C. & THOLE, H.J., Tutors, Instructions and Helps, ABSYNT-Report 3/88, to appear
in: CHRISTALLER "Th. (ed), Kinstliche Intelligenz. KIFS87, Heidelberg: Springer,
Computer Science Lecture Series (in press)

PAGAN, F.G., Formal Specification of Programming Languages, Englewood Cliffs, N.J.:
Prentice-Hall, 1981

PAYNE, S.J.; SIME, M.E.; GREEN, T.R.G.: Perceptual Structure Cueing in a Simple
Command Language. Int. Journal of Man-Machine Studies, 1984, 21, 19-29

PENNINGTON, N.: Stimulus Structures and Mental Representations in Expert
Comprehension of Computer Programs. Cognitive Psychology, 1987, 19, 295-341

POMERANTZ, J.R.: Perceptual Organization in Information Processing. In: AITKENHEAD,
A.M.; SLACK, J.M. (eds): Issues in Cognitive Modeling. Hillsdale: Erlbaum, 1985,
127-158

SCHRODER, O., FRANK, K.D. & COLONIUS, H., Gedachtnisreprasentation funktionaler,
graphischer Programme, ABSYNT-Report 1/87, Universitat Oldenburg, 1987

SHU, N.C., Visual Programming Languages: A Perspective and a Dimensional Analysis, in:
CHANG, T., ICHIKAWA & LIGOMENIDES, P.A.(eds), Visual Languages, New York:
Plenum Press, 1986, 11-34

SLEEMAN, D.H. & HENDLEY, R.J., ACE: A system which Analyses Complex Explanations, in:
D.SLEEMAN & J.S.BROWN (eds), Intelligent Tutoring Systems, New York: Academic
Press, 1982, 99 - 118

SOLOWAY, E.: Learning to Program = Learning to Construct Mechanisms and Explanations.
Communications of the ACM, 29, 9, 1986, 850-858

11

INASEY 40 epow Buwwesboud ayj ;| 3HNDI4

Jadiaoy

®

Jadsaoy

12

FIGURE 2: The Trace Mode of ABSYNT

deig uoneindwo) [emu] 8yl Bg IHNOIL

Jadiaoy

Jadiaoy

13

€ 9|nJ ,oi1098ds-81elS, JO UOIOR 8Y) 0] "dsal ‘g ajnJ ,oy10ads
-l0jeiado, JO uoloe 1S} 8yl 0} spuodsanod dsls uoneindwod 1seT gz IUNHIL

Jadiaoy

!
|
_
T
_

!

180430y

-

14

€ 8N ,oy10ads-sjels, o uoloe ay) o} "dsal ‘Z ajnJ LOl0eds
-10jeiado, jo uolPE Is| 8y} 0} spuodsaiiod deis uoleindwod 1se7 :0g IHNDI4

Jadiaoy

Jadisoy

15

¥ 8|nJ ,o108ds-aels, Jo uonoe ayl o} “dsal ‘g sjni oyeds

-lojeiedo, jo uonoe puz ayl o} spuodseniod dels uoneindwod iseq ‘P2 IHNDIL

Jadiaoy

!

|

|
T
|
|

Jadiaoy

16

Gl 8|ru ,oy108ds-8iels, Jo uoioR ay) Jo ped o} ‘dsai ‘g 8|nJ ,oy108ds
-10jelado, jo uonoe pugz ey} jo ued o) spuodsa.i00 dals uonendwos jse :ez J4HNOI4

Jadiaoy

sadiaoy

17

Gl 8|ni ,oy108ds-8lels, J0 UONOE By} jo Ued o} "dsal ‘g ejni ,o0ads
-10jesedo, jo uonoe pug ayi jo ued o} spuodsaliod deis uonendwod 1se

-4¢ 3HNOI4

Jadiaoy

18

9 8|nJ ,ol108ds-81elS, 0 UOIOR By} 0} "dsal ‘g a|ni ,o1108ds
-lojesedo, jo uonoe puz eyl o} spuodsaiod dais uoneindwod jseq 6z IUNOI4

Jadssoy

— |
-~
Q|
Q
b¥4

19

|

Jadiaoy

91 8|ni ,oy1oads-8lels, JO uoloe oy} jo Led o} “dseu ‘g ajni ,ou108ds
-iojesado, 0 uonoe pig 8yl Jo Led 0] spuodsallod deis uoieindwod IseT Uz IYNOI4

Jadiaoy

Im:u:m_.:., i

Jadiaoy

-

20

-lo0jesado,,

91 8InJ ,oy108ds-ale)s, JO UOHOE By} Jo Led 0] ‘dsal ‘g a|nJ

Dlj1oads
JO uonoe pig 8y jo ued o} spuodsaliod deis uonendwod 1se

-Ie 3dNOId

|

|
|
T
|

|

Jaduaoy

21

9 8|nJ ,oy108ds-aje]lS
-i0jesado, JO uopoe puz a8y} 0} S

.+ JO uoloe ay) o1 'dsau *

£ 8jni ,oiy108ds
puodselioo dals uopeindwos jseq

e 3dnoi4

e e

'

J8diaoy

jderg

—

22

91 9|nJ ,olj108ds-8lels, JO UOIOE By} jo Led o} “dses ‘g sjni ,ol0ads
-iojesado, o uonoe pig 8y} jo Led o} spuodsesod deis uoneindwod 1Se7 g 34N

s s ===

| jdoy

Jadiaoy

T
T
Pt
@«

II :E.

m w 13d1a0y)

23

-10]eiado

91 e|nu ,oy10ads-slels, Jo uonoe ayj jo ued o} ‘dsa. ‘8 8|nJ ,oi100ds

« 40 UONOE pig 8y} o Wed o] spuodseiod deis uoneindwod ise |z JHNDI4

Qi

Jadiaoy

fill

Jadsaoy

24

9 8|nJ ,ol108ds-8lelS, JO UONOE BY} 0} “dsal ‘g ajni ,ol0ads
-101elado, J0 uoloe pug 8yl o} spuodssaiiod dals uofeindwood jseq :wg JIHNDI4

A

555 =y

HE0w

D)

(

aQ

E

3
lt"

S===

Jadiaoy

ydoy

25

ati

Jadsaoy

- — —ll= - —

jdoy

q!j

9l o|ni ,oyl0eds-slels, Jo uonoe ay} jo ued o} "dsas ‘g ajni ,ou08eds
-Jojesado, jo uonoe pig 8y} jo ued o} spuodsanod dais uoneindwod 1se ug IHNDIL

S s T

Ja8diaoy

1)

—
=Y
=

%

E

Jadiaoy

f

qy

26

91 8jni dytoads-aels, Jo uoioe 8y} jo Led o} ‘dsal ‘g ajnu JOy0ads
-iojesado, J0 uoloe pig 8y} jo ued o] spuodseliod deis uoneindwoo jse :oz 34NOI4

sadiaoy

et

"
i

jdoy

- — == = =

i

FH — — —i—- - —

== g

27

¥ 8In1 ,oy109ds-alels, o uoloe 8y} o} "dsas ‘g ajnu oioads

-i0lesado, jo uolOE puz 8yl 0} Spuodssliod deis uoneindwod iseq :dz 3unNoI4

Jadisoy

1adiaoy

28

6 8InJ ,oi10ads-alels, Jo uonoe ey} jo ped o} ‘dsal ‘G sjn1 ,oy0eds
-iojelado, jo uoioe pig 8y} jo ued o} spuodsesiod des uoneindwod 1seq :bz 3unoI4

Jadaoy

Jadiaoy

29

6 8Ini ,o10ads-sjels, Jo UoIoE By} Jo Wed o} “dsa. ‘S ajni ol0ads
-lojelado, 40 uooe pig 8y} Jo ued o} spuodseliod deys uoneindwod 1Se7 Uz 34NSI4

ladiaoy _ jdoy
|
|
|
|
|
|
£
: =
m* \Jelg
-~ |
l
|
T
_ -
|
Jadiaoy [jdoy
kN

30

I

Appendix A: Representing Computational Knowledge for ABSYNT with
Operator Specific 2-D-ruleset £

Rule 1: To compute the outputvalue of primitive operator nodes (except IF-
THEN-ELSE-nodes !)

Rule 2: To fetch the input value for an operator node

Rule 3: To compute the outputvalue of the root of head

Rule 4: To fetch parameter bindings from the head for leafs in the body

Rule 5: To compute the outputvalue of a higher operator node (= user

defined function) in the start tree

Rule 6: To compute the outputvalue of the IF-THEN-ELSE node in case of a
true predicate

Rule 7: To compute the outputvalue of the IF-THEN-ELSE node in case of a
false predicate

Rule 8: To compute the outputvalue of a higher operator node in a body tree

—h- Rule 1: Computmg of pnmltwe operalor node [No IF—THEN ELSE—node 1].

..................... SANLNANARAANAS, AOPANANNAAAA AN

1] The output stripe of a primitive
operatornode contains a"?".

2)The primitive operatornodeis not anlF-
THEN-ELSE-+ode.

3)Theinput stripe of the primitive
operatornodeis empty.

Mame>

%
AN NN NN PPN AN P P PPN E P I P PP P P I A P v

R

. Mwmmmmmmxmw T
Instruction B i e Overview Action = (=5 el

AN A A A AR A AN A AAAAAAT

Rule 1: Cumputmu of pnmltwe operator node [No IF-THEN-ELSE-node l] ——l.-

A A O B A e N N A P NP O N PN N N AN S AN N A AN A P AN ANV M AT AP A A VAR AN

Whtea ?"in everyinput field of the
primitive operatornode.

A A LN L P

P AEPN NN PN SN

:

: (")
§

H

Instruction] : g & Overview Situation = o el

-

e Rule 1: Cumputinu of primitive operator node [No IF-THEN—EL5E~nnde 1.
/ e
<
2nd Sltuatlon :
| e —————
1) The output stripe of a primitive

operatornode contains a™?".

2)The primitive operatornodeis not anIF-
THEN-ELSE-hode.

3)Theinput sttipe of the primitive

operatornode contains values only. Naxri >

AN PANN N BTN PPN OSSN IINII BN I P P N DN PP 5 2 P
% [

Pinstruction =% Overview Action & = £
Rule 1: Computlng of pnmltwe operatornnde [No IF-THEN-ELSE-node !). —P-

I]Cumputethe pnmltlve upenslornude

2)White the valueinto the oytput stripe of
the primitive operatornode.

Instructlon ot o Duermeu.l Situation

—.- Rule 2: Fetchmg an input value for an operalornode_

1]Any|nput fleld of an operalornode
contains a™?".

2)Theinputfield of the operatornodeis
conhected withanothernode whose
output stripe is empty.

Instruction Overview

Rule 2: Fetchlnq an lnput value for an operalornode. —h—

AN AR AN A AR AR A SRRV AT AN

Wnte a"?“ intothe nutput stripe of the
node connected withtheinput field.

PV L A A A WA A A VA A s VA VA A AAAAAARAAMA A A A AR VAR AN

grerview Situation

AR VAN AR AR AR ANV

Instruction

—h- Rule 2: Fetchmganmputvalueforan operator node.

..................................

1)&nyinput neld of an opemlornode
containga v,

A2 P R P

2]Theinputfield of the operatornodeis
connected with anothernode whose
output stripe contains avalue.

AP PE

Overview Hctmn

Instructmn

Rule 2: Fetching an input value for an operaturnnde. -—.-

A A P A A A A A A AN A AR

2nd Actlon]

White the output value of the node
connected withtheinput neld intothe
inputfield.

PN P PPN LSNPS L ENORELS G L L N A - o N PPN PSP B 2P

A AN RN AN P

o

Situation

Instruction Overview

1]The nutput stnpe orthe headroot of a
frame contains a"?".

2)The output stripe of the bodyroot of the
frameis emnpty.

N A P NN P N O N

Instruction

Rule 3: Fetching output value for head root.

Overview Action

White a"?" intothe output sttipe of the
bodyroot of the frame.

Instruction}

Rule 3: Fetchlng output value for head root. —-.n-

a.'.-.'.'«.VJ.v.r-«.v.-ﬂv.v\.v.-.ﬁ.-«.-”wﬂv&ﬂv'}.-a.rf.'.-

Overview Situation

—-.- Rule 3: Fetching output value for head root.

B A A A A A A B N NS N N AN AN P A SN A PSP PN N AN 2 N NN AN N NI NP 2 NN BRSNS

2nd Situation

,
2
H
H
i
s
3
i
H
b
H
- B
H
H
%
2
H
i
:
E
H
H
:

Moot

1IThe output stnpe oflhe head root ofa
frame contains a"'?".

2]The output stripe of the bodyroot of the
frame contains a value.

P AN NN & O P N

A A A A A A A A A A A AN A AN A A A AANALS

Action

Overview

Instructionf

Rule 3: Fetchlng uutput value for head root. —.-

..

Whtethe outputw]ue ofthe bodyroot of -
theframeintothe output stnpe of the
headroat.

Instructmn o u : Overview Situation

—-.- Rule 4: Fetchmg parameter value from head for body.

Sltuatln

A A A A AN A AN

The output stripe of abodyleaf of aframe
contains a"?".

AN AN I L NN DN NN NN NN BN,

Instruction

Overview

Rule 4: Felchmu parametervalue from head for body —.-

".-'-mte the output value ofthe headlesf
withthe samenameintothe output stripe
of the bodyleaf.

Instruction it Overview R Situation

—.- Rule 5: Cnmputmg of higher operatnr node in start tree.

o R B O R N A BN S SR A A T o AR PN AT N N NN NP 2 B A D PN NN P NN

15t Situation

A A A A A A B NN N N P PPN A AT A AN

1JThe output stripe of a hlgher operatar
nodeinthe starttree contains a™?".

2)Thereisnonode withinvetted name
stipeinthe starttree.

3)Theinput stripe of the higher operator
nodeinthe stattreeis empty.

LA B NS 2 LA P SN P NI & PR O 2P OB EOIPN O ONN DO DN NN PO PO RO PO A 0

B NN AN NN AN NN NN NN NN SN I

rren

AR AAA AR,

Instruction B

trevy

Overview Action § < =3 K<

Rule 5: Compuhng of higher operator node in start tree. —.'-

AT A A A L T B O S o N PN N A NN NP 0 A P N O N O N

1 St ACtIOI"I

A A A A T A AN A A A A A A A A A AT AN A A A Y

Whte a"?"into evemnput fleld of the
higher operatornode.

AR P N PSP P PPN

AN AN NN NN AN

wu-.vfmv.-ummm-mmwmmvwwm s
Instruction§ g Overview § Situation & =% -

e yyrerey

...................

..

1)The output stripe of a higher operat
nodeinthe start tree contains a™?".

2)Thereisnonode withinverted name
stipeinthe start tree.

3)Theinput stripe of the higher operator #
nade inthe start tree contains values only.

Start

;<¥x>§¢.’...>;

<Name>

Overview Action

Instructionft

<Mame>
operatornode. Head Body
2)Create aframe st the top withthe name |
of the higher operatornode. z

3)White eachinput value of the higher
operatornodeintothe comesponding
inputfield of the headroot of the frarme.

N AN AR BN AN PN

Fx>if >
4)\Wite eachinput value of the headroot ma;“’
intothe output striipe of the connected S

head leaf.

S)white a"7"intothe output stripe of the §
headroot.

A INNANAN NN NN

Instruction}

overview J Situation § <

.

——' Rule 5: Computmg of hlgher uperalor node in start tree.
) sy
3rd Situation ?
S e
1)The output stripe of a higher operator ; <Name>
nodeinthe statt tree contains a™?", ; Head Body

2)JThename stripe of the higher operator s
nodeisinverted.

3)Theinput stripe of the higher operator
node contains values only.

4)Thereisaframe at thetopwiththename
of the higher operatornode.

S)The output stripe of the headroot

NI AN NN NN PR IS NE DN LA P

contains avalue,
I i —————E— .
InstructionEE e Duerview Action e = &<
Rule 5: Computlng of hlgher operator node in start tree. sl

3I"d AC“OI’]

...

1JWhite the output value of the head rout
of theframeintothe output stripe of the
higher operatornode withthe inverted
name sttipe.

3)Deletethe upperframe.

2)Undotheinvetsion of the name stripe of
the higher operatornode. H

Sltuatmn

Instruction Overview

—h- Rule 6: Compuhng of IF-THEN-ELSE-mnode [lst rule}

..

..

1 St Sltuatlon

..

1]The output stripe of anIF-THEN ELSE-
node contains a™?". ;

2]Theinput stripe of the IF-THEN-ELSE-
nodeis empty.

Instructmn Overview Action

Rule 6: Cnmputmg of IF-THEN-ELSE-node [lst rule] o

Whte a"?“ intothe 13t mput fleld nftheIF-
THEN-ELSE-+ode.

Instruction , : Overview Sltuatmn

-+' Rule 6: Computing of IF-THEN-ELSE-node [1st rule).

A A A A AN NARRN NN AN

A A A A A A A A A A A AN A A A AN N NN AN

1]The output stnpe ofanIF -THEN- ELSE-
hode contains a™?".

2)The firstinput field of the [F-THEN-
ELSE+iode contains the value "T" [=true).

3
|
i
i
:
|
:
:
:
:
:
:
:
§
i
1
,
:
%
:
§
;
:
:
:
<
<
:
H

AN A AN AN SO u.wwwuwwmfmmv A A A N NN NN NN NN NN NN NN

Instructionk Overview Action

Rule 6: Computmg of IF-THEN- ELSE—node [lst rule] —-h-

Wnte a"?" intothe 2nd|nput fleld oftheIF-
THEN-ELSE+ode.

Instruction ' i v Overview @ Situation

—+ Rule B Compuhng of IF—THEN ELSE—node [1st rule]

A A A e T e SN A A AN o

3rd Sltuatlon

1IThe output sttipe of anIF-THEN-ELSE- §
node contains a"?". :

2]The 2ndinputfield of IF-THEN-ELSE-
hode contains avalue.

Overview Action

Instruction

Rule 6: Computing of IF-THEN- ELSE-nude[lst rule). | ——
' 3l"d AC“OI"I

Wntethevaluemtothe uutputstnpe of

the IF-THEN-ELSE-+ode.

Instructionlse = o ¥ overview § Situation

Rule ¥: Computlnu of IF-THEN- ELSE—node [an rule]

1]The output c=tnp|a of anIF-THEN ELSE- i
node contains a."?". §

NTheinput sttipe of the IF-THEW-ELSE-
nodeis empty.

Overview Action

Instructmn Fias

Rule 7: Computing of IF-THEN-ELSE-node (2nd rule).

15t Actlon

White a"?"lntothe 1st|nputf|eld oftheIF- i
THEM-ELSE-hode.

Overview Situation

Instruction

—+ Rule 7: Cumputmg of IF-THEN-ELSE-node [an rule]

2nd Sltuatlon

1)The output stripe of an IF-THEN-ELSE- §
hode contains a"?".

2)Thefirstinput field of the IF-THEN- :
ELSE+odecontainsthe value "F"[= faJse]

2O N PN LN

IS sty oS rr SV RO e e

Instruction R Overview Action =1 = §F)

A A A A A A A A A N NN AN NN AN

Rule 7: Cnmputmg of IF—THEN ELSEnode [an rule] —.r

Whtea e mtnthe ?rd lnput f|e|d ofthelF-
THEN-ELSE-+ode.

;
T
§
:
:
i

A

Overview § Situation § < § = J < |

Instructionf

Rule 7: Cnmputmg of IF-THEN- ELSE—node [an rule]

1]The output stnpe ofaan-THEN ELSE-
node contains a™?".

2]The 3rdinput field of IF-THEN-ELSE-
node contains avalue.,

Uuermew Action

Instruction

Rule 7: Computlng of IF-THEN- ELSE-node [2nd rule]

".’-mtethevaluemtnthe nutputstnpe of :
thelF-THEM-ELSE-+ode. i

Overview Situation

Instructionf

—b- Rule 8: Computmg of hluher operator node in bod',rlree-

.................................

1st Sltuatlon

1)The output stripe of a higher operator
node of a bodylree containg a"?".

2]Thereis nn'higher operatornode with
inverted name stripeinthe bodytree.

3)Theinput stripe of the higher operator
nodeis empty.

Instructmn ,

Rule §: Computmq of hlgher operator node in hodylree. —b-

RPN SR NN P S NN LI PN PN

PPN N NN N S
.
) g
L

AP

W-\'.MW‘-WVMM\WMWMWM\\\
Overview J Situation =5 =3 -

VAR AR AN NI

Instruction}

e Rule 8: Computmg of hlgher operalor node in body tree.

I]The output stripe of ahlgher operalnr
nodeinabodylree containsa™?".

2)Thereisno higher operatornode with
inveted name stripeinthe bodytree,

3)Theinput stripe of the higher operator
node contains values only.

[lueruiew Action

|nstruct|nn '

Rule &: Compuhng of hlgher nperatornode in hodytree. —.'-

1]lnvertthe name catnpe ofthe h|gher
operatornode.

2)Create aframeat thetop withthe name
of the higher operatornode.

3)White eachinput value of the higher N o>
operatornodeintothe corresponding <Hame k>
inputfield of the headroot of the new >

 WON (R

frame.

4)White eachinput value of the headroot
intothe output stripe of the connected
headleaf.

S)White a"?"intothe output stripe of the
headroot of the newframe.

l]ueruiew Sitatiun

Instructmn e

-—I.- Rule &: Computlng of hlgher operatornode in bod'ftree

...

<Name k>

3rdS|tuat|on

...... e A £ M mu

1]The outpulstnpe ofahmher operator §

nodeinabodytree contains a™?", § |
2]The name stripe of the higher operator I
nodeisinverted. '
3)Theinput stripe of the higher operator —— T
hode containg values only. <Hame k> |

\ <¥> J

41Thereis aframe atthetop withthe name
of the higher operatornode. £

5]The output stripe of the headroot of the
frame contains avalue.

Ouerview Action

Instruction

Rule 8: Computlng of hlgher 0peralor node in body tree. —.r
s
j >
3rd Actlon : Hamie:] bk
el UMY Head Body
<

I]Wntethe uutputva]ue. ofthe headroot

of the frameintothe output stripe of the §
higher operatarnode withtheinverted ;
hame stripe. ;

I
I
. I
2)Deletethe upperframe. = <Name k>
I
|

:
%
H
:
:
§
;
3
:
:
:

3)Undo theinversion of the name stripe
of the higher operatornode.

VAAAMAAA A AN AR AR, AN AN NN NSNS BNENIN R NN NN BN RO NN L

Instruction] Overview § Situation § < =

crrvrery

-

Appendix B: Representing Computational Knowledge for ABSYNT with State-

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

10:

11:

12:

13:

14:

15:

16:

Specific 2-D-ruleset

To move computation goals in an operator node to the inputstripe
of the node (except IF-THEN-ELSE-node !)

To compute the outputvalue of a primitive operator node (except IF-
THEN-ELSE-node !)

To move a computation goal to an outputstripe of a connected node

To fetch an outputvalue from a connected node for the
corresponding input field

To move a computation goal from the root of the head to the root of
the body of a function

To fetch the outputvalue from the root of the body for the root of the
head of a function

To fetch the binding of a parameter from the head for a leaf in the
body of a function

To compute the outputvalue of a higher operator node in the start
tree

To fetch the outputvalue of a higher operator node in the start tree
from the root of the head of the called function

To move a computation goal to the predicate field in the IF-THEN-
ELSE operator

To move a computation goal to the THEN-inputfield in the case of a
true predicate

To fetch the outputvalue in the IF-THEN-ELSE operator in the case
of a true predicate

To move a computation goal to the ELSE-inputfield in the case of a
false predicate

To fetch the outputvalue in the IF-THEN-ELSE operator in the case
of a false predicate

To move a computation goal from the outputstripe of a higher
operator node to the outputstripe of the root in the head of the
called function

To compute the outputvalue of a higher operator node in the body
of a function

o

Rule 1: Passmg goals to mput stripe of operator node [No IF-THEN- ELSE-nudel]-

AN AN

Sltuatlon

1]The output 3tnpe ofan nperatornode
contains a"?",

H
3
:
;
H

2]The operatornodeis not anlF-THEN-
ELSE+Hode.

AR AN P P

3)Theinput stripe of the operatornodeis

empty.
: MName>
?
(|)

'.MN-fA"MNv\M-W\Mvwwvv\.mwmmmWWMMMM“&WM““VA““MWM\“MWM

Instruction Overview Action & =Y

AN AN NN AN AT

Py

Rule 1: Passmg gnals to mput stnpe of operator node [No IF-THEN ELSE-nndell

Wnte a"?" in ever\,.fmput neld ofthe
operatornode.

overview § Situation § < § o

Instruction

&)

-

Rule 2: Computlng pnmltwe operalornude [No IF-THEN EI.SE-nodel]

NP

1] The output stnpe of& pnmltwe
operatornode contains a™?",

2)The primitive operatornodeisnotan[F-
THEN-ELSE-+ode.

3)Theinput stripe of the primitive
operatornode contains values only.

[luermeu.l Action

Instructmn

ACtIOI’\

1)Computethe pnmmve nperatornode

2)White the valueinto the output stripe of
the primitive operatornode.

Instruction g Overview Situation

.

Rule 3: Passmu goal to output stripe of connected node.

...

1]The nutput stnpe ofan opemtornode
contains a"?",

2)&nyinputfield of the operatornode
contains a"?",

3)Theinputfield of the operatornodeis
connected with anothernode whose
output stripeis empty.

...

Instruction Overview

Action

Rule 3: Passing goal to output stripe of connected node.

ACtIOﬁ

Writea"?"intothe nutput stnpe of the
node conhected withtheinput field.

lnstruction Overview

Sltuatlon

o

Rule 4: Fetching input value for operator node.

AP AN A AN A VA AR A A A A A A A A A VA A A A A A Y A A A A A e A A A A A B NN NN NN NN P N B N N NN R,

‘ Situation é
1]The output stripe of an operatornode §
containz a7, :
2l&nyvinputfield of the operatornode 3

contains a"?".

3]Theinputfield of the operatornodeis
connected withanathernode whose
output sttipe contains avalue.

2 N O N PPN BN DB N NN NN NN SN AP A

A PP NP

B A A A A AAAAAAAANAN AN mwnmmwwwm\uwwwmvwwwwwwﬁvéw\mmmmm& A A A A M Y S A P A M P P T A A A A A A A A AR AR

Instruction Overview Action = o el

Rule 4: Fetching mput value for operator node.

AN A AR AN AN N EE NN PN

Whtethe output vsJue nfthe node
connected withtheinputfieldintothe
input field. \

Instructlon : ; e Overview § Situation

|

Rule 5: Passing gnal to hndy root.

1]The output stnpe ofthe head root of a
frame contains a."?".

2]The output sttipe of the bodyroot of the
frame i3 empty.

Instructionf e = (Querview Action

Rule 5: Passing goal to bodyroot.

oo

Wnte a"?"intothe output stripe ofthe
bodyroot of the frame.

P AN

A A AV A AR A A A AN AAAA AR A A VR A AN

Overview Situation

Instruction

o

Situation

A A A A A A A A AAAA A A A AR A A AN A A AR A IAARANARAAAARA VAR,

1]The output stripe of the headroot of a
frame containz ™.

2]The output stripe of the bodyroot ofthe
frame contains avalue.

Instruction§

Rule 6: Fetching output value for head root.

mmmmwow\.-m-\.~.-ww.-\.\.-wo\w.-Muwmm.-.W\.ww\.-\.-f.-a.-\.-.wvwmmwmwmv.mwa.swwmmswm.»wvw.—mwvu-.wwwmm-.rM\.-,-.a.wwum.w;vwwwmwmw.’.v-».-.-.-.-.-.-.-a.-f.-hwuwmwwmmmm\-.

<Name>

Head

Body

i
T T T e Nw,.wa.w.w.mwé,m,..

ANNANAANN,

O NANAANANANAAANAANNAAANS

A A A A A AVAR®

Overview § Action N < = £

Wntethe outputvalue ofthe bodyruot of
theframeintothe output stripe of the
headroot.

A AN AR AT VA

Instruction

Rule &: Fetchmg uutput value for head root.

Overview

Situaton

|

Rule 7: Fetching parameter value from head for body.

A A A R B B B N N N R NN SN DN NN NN SN S

Situation

AN A AV A A AN AV AN AN A VA VAN SR AN A A ANA AN A ANA S AN

The output stripe of a bodyleaf of aframe
contains a"?",

<Name i>»

a,'.'.-.m')q‘Mﬁ'.W.IML\V.'.'(.'M'.‘-'szﬁ‘(Msvaﬁ'nﬁ.\wﬂ[wéﬂ.f.w.vh'

oo

AN AN LN N SO NN NN N NSO P

v

Instruction

%

Overview Action & = R <D

Rule 7: Fetching parameter value from head for body.

AT AP £ D P AN NN e o P e e, A A A A AN AN A AN AN AN AN NN AN RSN RN NN A ES
3

Action

AN A N P PN PP AN AN A AN PN NN PN A

Wite the output value of the head leaf
withthe same narmeintothe output stiipe
of the bodyleaf.

<Name i>

<Name a>

T T e e
[R—

A AR AV ARAAAARS

Overview R Situation § <a [o I O

TYrvrvrererrreYY

Instruction

[

...............

Rule 8: Cnmputlng hlgher nperalor node in start tree.

1]A hlgheroperatornodms part orthe
starttree. i

2]Thereis nonode withinverted name
stiipeinthe start tree.

3]The output stripe of the higher operator E

4)Theinput stipe of the higher operator
node contains values only.

Instruction Overview Action

Rule 8: Computmg hlgher nperalornode in start tree.

................................

...

1]lnvertthe name stnpe of the higher
operatarnode.

2)Create aframeatthetopwiththename
of the higher operatornode.

3)White eachinput value of the higher
operatornodeintothe coresponding
input field of the headroot of the frame.

4}Write eachinput value of the headroot
intothe output stripe of the connected
headleaf.

S)Write a"?" intothe output stripe of the
headroot of the frame.

Overview § Situation

Instruction

-

Rule 9: Fetchmg outputvaluel‘orhlgheroperalornodemstarttree

...

2, Sltuatlon

R e P N A A A o A AN NN AN AN T N

1]A higher opemlurnode is part ol‘the
starttree.

<Name>»

2)The name stripe of the higher operator
nodeisinverted.

3]The output stripe of the higher operator
node containg a"?". {

4)Theinput sttipe of the higher operator
node ¢contains values only.

Y

S)Thereisaframe atthetop withthe name
of the higher operatornode. §

B6)The output stripe of the head root
contains avalue.

7)Thereiznoframe atthe bottom.

Overview Action

Instructmn

Actlon
1]".'-."|1tethe outputvalue ofthe headmut :
intothe output stripe of the higher
operatornode withthe inverted name
stripeinthe start tree.

2)Deletethe upperframe.

3lUndotheinversion of the name stripe of
the higher operatornode.

S A A NN N NN AN 0

Start
:
H ;<¥x>§<¥...>;
; <{Name>
%>
: Cl)
AAAAAAARMAAAAAAAA, WMWWW AAAAAANVAAN AL AAAAAAAA ARV ARAAAAAAAAAAN

Instruction

overview § Situation § <& = &=

[

Rule 10: Passing goal to 1stinput field of IF-THEN-ELSEnode.

T T P S R s

. Sltuatlon

AN A A A AN A NA A A VAN AN A A A A AAAT AN AAAASA A vé
’C

§
§
§
|
|
:
;
|
H
:
:
3
§

1]The output stripe of an [F-THEN-ELSE-
hode contains a"?".

2)Theinput stripe of the IF-THEN-ELSE-
nodeis empty.

AN NN NI ENP NN DN,

= & &

Tvrvrers

PAPANANARR

Overview Action

v

ARANAARR

Instructionf®

Rule 10: Passmg goalto 1st mput field of IF—THEN ELSE-node.

A A A AN A TR AR AR AR S AR A A P AN NN APPSR AR AT AN AP N N A AN A A N N A A A A A A A A A NN AN NSNS

Actlon

................ AN NS S P PN i N L P PN

'\’Mpa ?“intothe st lnputneld ofthelF-
THEN-ELSE+ode.

,,.~.-,.vmwwmmm-..mm.-.-M-.-,.-.“-Mti.\..»...-.w.\.,..g

-~
"~
St

02 RPN AN AR A P P

—— WWWMM
Overview

AAANMAAAAAMAAAAAAANAAANAS

= e

A AN

Instruction

AATAAANANAS

Situation

QA

.

Rule 11: Passmg gual to 2nd mput field of IF-THEN- ELSE-nnde

...

Sltuatlon

1)The output stnpe of aan-THEN ELSE-
node contains a"?".

2)The 1stinputfield nflheIF-THEN-ELSE-
node contains the value “T" [=true). ;

3]The 2ndinputfield of the IF-THEN-
ELSE+nodeis empty.

...........................

Action

Instruction Overview

Rule 11: Passmg uoal to 2nd mput field of IF-THEN-ELSE-node.

T T P T PR T o A e e S NN

............................ AR

Whtea e mtothe 2ndmput fleld ofthF«lF
THEMN-ELSE-hode. \

2
H
:
%
H
H
E
§
;
i
H
H
H
i
H
H
H

AARAARAAAARAARA AN Ww-mxmmuwmwm

Instructiong Overview Situation

T]?
if—then—else
N
)

....................

&

=

&)

|

Rule 12: Fetching output value for IF-THEN-ELSE-node from 2nd input field.

AV AAAAAAAMAAARIAMAA VANV AT WAV A AVARAAAMAAAAAAAA AR TARAAAMAAA AR AR AAAAAVA AN AL TAMAA MM AR A A A A A AN AN A A A A A A A
by

b Situation

E, AAAAANAAAAAAMAAAMAAR MR AAA AR AMAA A VAN AL AN ARAMMA AR AW

1)The autput stripe of anIF-THEN-ELSE-

AN

noade contains a ™™™,

S

=

T

2The 2ndinputfield of the IF-THEN-
ELSE+ode contains avalue.

T j<¥>
if-then—eise

2
(l)

022} FIR PP PIENIENIEIIN ENELE OO DIOTONILE NN PN L UL EERIIIIE FOTEI NI P 2P 000000 7,

AR A AR VAN AR VAR A A A VA M A P A M AR AN VAR VR AR VAR A VA A VAV AN AN AAMAAAAAAAM?

Instructionf Overview Action

White the velueintothe output stripe of
the IF-THEN-ELSE+ode.

ANAR

Situation

Instruction Oeruiew

-

Rule 13: Passmg goal to 3rd mput field of IFF-THEN-ELSE-node.

1]Theoutput3tnpe ofaan-THEN EL E- §
hode containg a™?".

2)The 1stinputfield oftheIF-THEN—ELSE-
node contains the value "F" [=false).

3)The 3rdinput field is empty.

Overview Action

Instruction

Rule 13: Passmg goal to 3rd mput field of IF-THEN-ELSE-node.

Actlon

AN ANANARASNNDANE IS AP

White 82" into the Srdlnputfleld of thelF-
THEN-ELSE+ode. \

AR AN v?

A

AP,

A DA BN D

b3
vamwwv-M\'\-'-‘.v.A.-fA.-.!N.w.-JA'vwwv.AM.W.fﬁ‘vwww\-'W\Ngw\WJM‘hwwwvwmwwv\lwwy%wvwvwwwl\.vww\A.v;ﬁs\‘N.r.mvwvswvvame\'.m'-vvwwh““vw

Instruction B Overview Situation

T T T oy e
"

AP AR NN AN AR AN

&

NP A

IYYYYYTYYVYTVIYYYTITITIrY

D K

o

Rule 14: Fetching output value for IF-THEN-ELSE-node from 3rd input field.

A P R R o A R A A A A N A A N I e
H

;

A

= Situation

e e .Mg

1)The output sttipe of anIF-THEN-ELSE- :
hiode contains a."?". ;

2)The Srdinput field of IF-THEN-ELSE-
node containg avalue.

I

&>
if-them—else

-

)

A LT

A AN PO

A A I NN N NN N N NN NN NN NN NN N NN AN NN

Overview Action = =9 K-l

A AN A A AN AN AN AN DA NN SN DR NN

Instruction

Rule 14: Fetchlng uutput value for IF-THEN-ELSE-node from 3rd mput field.

*.’-mtethevaluemtothe outputstnpe of
the [F-THEN-ELSE+ode.

Instruction @ T Qverview Sltuatmn

o

Rule 15: Computmg hlgher nperalurnode in Imm.r tree.

............. S T —
Sltuatmn Hame o o
s, Head m“
1JA& higher operatornodels part of the
bodytree of the frame atthetop. I
2]Thereis noinverted name sttipeinthe l “\r:_ "ww
bodytree. ' Wx>i. o
= Mame k>
3)The output stripe of the higher operator § | F
node contains a™?". | T‘J
4)Theinput stripe of the higher operator '
node contains values only. |

A A A A A A AARAAAAAAAAAAAAAARAAAMANAAAAA wmm%wm

Instructiong

Overview Action = < § <D

Rule 15: Cnmputmg hlgher operalornnde in body tree.
B I,
Actlon tName k>
............ e T mt Body
1]Invertthenamestnpe of the higher :
operatornode. z
2Create aframe atthe top viththe name |
of the higher operatornode. 3
3)White eachinput value of the higher &
operatarnodeintothe corresponding :
inputfield of the headroot of the new :
frame.
4)Write eachinput value of the headroot : .
intothe output stripe of the connected : e L
head lef. ; N CTI R
: . “<Name k>
S)Write a"?"intothe output stiipe of the § =
headroot of the newframe. % I
: Head I Body
£ Name j or k>
mn'm.wmﬂwmwmmwmmwwmwwmmm“v

Instruction] Overview § Situation § < § < § <0

o

Rule 16: Fetching output value for higher operatornode in body tree.

B e

Head Body

B A A AN ARV AAN AR AN A AR A VAR A AR A AP A AN A WA AL AAASAR AAAPAN A

B A A A AV AV A A A AV VAN VATV A A

1)JA higher operatornodeis part of the
bodytreeinthe frame ak the bottom.

2)The name stripe of the higher operator
nodeizinverted.

3)The output stripe of the higher operator
node contains a ™" :

4]Theinput stripe of the higher operator
node containg values only.

A RN RIS RN I NN AP PN NN NP I I P PSP O PP P P
.
.
'
'
s

E)Thereisaframeatthetop withthe name

NP A PP AN

of the higher operatornode. : I
B)The output stripe of the headroot of the g =
frarne contains avalue. : |

: Head I

s <Mame j or k>

Instructionf Overview Action & =% K-

Rule 16: Fetchmg output value for hlgher operator node in bodytree

A AR A A SARA YA A AR AA A VAR S AN AN AN %mw T P A A O N e A N A NN NN NN NP NN AN SN NNV N

Achon : ~dHame 5 or 1>
A T Head Body
1)Writethe outputvalue ofthe headmot H
inthe upperframeintothe output stripe of § |
the higher operatornode withthe § ‘
inverted name sttipeinthe frame at the : “‘7_:_ ,,,@”“
bottorn. % | M x>i >
: = <Hame k>
2Deletethe frame atthetop. ; | . &> |
3)Undotheinversion of the name stripe of < l b
the higher operatornode. : |
|
b

PRI

AN NN NN A

ARV IAAARAAAAAAAAAAAARANA

mm\s-mwﬁwmmwmwmxmww ARSI
Instruction ' Duerview § Situation - &)

-

ABSYNT-Reports:

1/87

2/87

3/87

4/88

5/88

SCHRODER, O., FRANK, K.D. & COLONIUS,H.,
Gedédchtnisreprasentation funktionaler graphischer
Programme, Oktober 1987

COLONIUS, H., FRANK, K.D., JANKE, G., KOHNERT, K.,
MOBUS, C., SCHRODER, O. & THOLE, H.J., Syntaktische und
semantische Fehler in funktionalen, graphischen
Programmen, Oktober 1987

MOBUS, C. & THOLE, H.J., Tutors, Instructions and Helps,
February 1988; to appear in: CHRISTALLER, Th. (ed),
Kiinstliche Intelligenz: KIFS 87, Computer Science Lecture
Series, Heidelberg: Springer (in press)

in preparation

JANKE, G. & KOHNERT, K., Interface Design of a Visual
Programming Language: Evaluating Runnable

‘Specifications, 'to appear in: F.KLIX, H.WANDKE,

N.A.STREITZ & Y.WAERN (eds.), Man-Computer Interaction

Research, MACINTER Il, Amsterdam: North-Holland (in press)

