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ABSTRACT  

Traffic scenario simulations and risk-based design require Digital Human 
Models (DHMs) of human control strategies. Furthermore, it is tempting to 
prototype assistance systems on the basis of a human driver model cloning an expert 
driver. We present the model architecture for embedding probabilistic models of 
human driver expertise with sharing of behaviors in different driving maneuvers. 
These models implement the sensory-motor system of human drivers in a mixture-
of-behaviors (MoB) architecture with autonomous and goal-based attention 
allocation processes. A Bayesian MoB model is able to decompose complex skills 
(maneuvers) into basic skills (behaviors) and vice versa. The Bayesian-MoB-Model 
defines a probability distribution over driver-vehicle trajectories so that it has the 
ability to predict agent’s behavior, to abduct hazardous situations, to generate 
anticipatory plans and control, and to plan counteractive measures by simulating 
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counterfactual behaviors or actions preventing hazardous situations.  
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INTRODUCTION   

The Human or Cognitive Centered Design (HCD) of intelligent transport 
systems requires digital Models of Human Behavior and Cognition (MHBC) which 
are embedded, context aware, personalized, adaptive, and anticipatory. A special 
kind of MHBC is the driver model which is used mainly in traffic scenario 
simulations and risk-based design (Cacciabue, 2007).  

Modeling drivers is a challenging topic because no well established 
psychological theory about driving is at hand. Even simple maneuvers like braking 
are not well understood empirically. With the need for smarter assistance the 
problem of transferring human skills (Xu, 2005) without having a well-founded 
skill theory becomes more and more apparent.  

The conventional approach for driver modeling is the handcrafting of MHBC. 
An ex post evaluation of their human likeness or empirical validity and revision-
evaluation cycles is obligatory. We propose as a machine-learning alternative the 
estimation of Bayesian MHBCs from human behavior traces. The learnt models are 
empirical valid by construction. An ex post evaluation of Bayesian Autonomous 
Driver (BAD) models is in principle not necessary when the statistical relations and 
conditional independencies between the pertinent variables in the data are mapped 
into the model.  

The advantage of probabilistic models is their robustness facing the irreducible 
incompleteness of knowledge about the environment and the underlying 
psychological mechanisms (Bessiere, 2008).  

A BAYESIAN MIXTURE OF BEHAVIORS MODEL 

BAYESIAN AUTONOMOUS DRIVER MODELS 

BAD models (Möbus et al., 2008; 2009a; 2009b, 2009c) are developed in the 
tradition of Bayesian expert systems (Pearl, 2009) and Bayesian (robot) 
Programming (Lebeltel et al., 2004, Bessiere et al., 2003, 2008). They describe 
phenomena on the basis of the joint probability distribution (JPD) and their 
factorization into conditional probability distributions (CPDs) of the observable 
pertinent variables.  This is in contrast to models in cognitive architectures (e.g. 
ACT-R) which try to simulate latent or hidden cognitive algorithms and processes 



 

 

on a finer granular basis.  
A BAD Mixture-of-Behaviors (BAD-MoB) model is a Bayesian Program (BP), 

which is able to decompose complex skills (scenarios, maneuvers) into basic skills 
(= behaviors, actions) and vice versa. The basic behaviors or sensory-motor 
schemas could be shared and reused in different maneuvers. Context dependent 
complex driver behavior will be generated by mixing the pure basic behaviors. The 
BAD-MoB-Model is embedded in a dynamic Bayesian network (DBN). If its 
template (Fig. 5) is rolled out (Fig. 6, 7) it defines a probability distribution over 
driver-vehicle trajectories so that it has the ability to predict agent’s behavior, to 
abduct hazardous situations (what could have been the initial situation), to generate 
anticipatory plans and control, and to plan counteractive measures by simulating 
counterfactual behaviors or actions preventing hazardous situations.  

BAYESIAN PROGRAMS AND DESCRIPTION COMBINATION 

A BP is defined as a mean of specifying a family of probability distributions 
(Bessiere et al., 2003, 2008; Lebeltel et al., 2004). On the basis of a BP it is possible 
to construct a BAD-MoB-model, which can effectively control a (virtual) vehicle.  

As Bessiere (2008) points out it is possible to combine or select single 
descriptions (= BPs) by a probabilistic if-then-else. “Description combination 
appears to implement naturally a mechanism similar to Hierarchical Mixture of 
Experts (Jordan and Jacobs, 1994) and is also closely related to mixture models … 
From a programming point of view, description combination can be seen as a 
probabilistic if-then-else construction. H is the condition. If H is known with 
certainty, then we have a normal branching structure. If H is known with some 
uncertainty through a probability distribution, then the two possible consequences 
are automatically combined using weights proportional to this distribution.” 
(Bessiere, 2008).   

We embedded description combination (Lebeltel et al., 1999, 2004; Bessiere et 
al. 2003) in our DBN-based BAD-MoB-model. The condition variable H is a 
generalized case-statement like a Lisp cond and one of the root variables in our 
template model (Fig. 5), especially the variable Behaviors. The marginal probability 
distribution P(Behaviors0) or P(Behaviorst-1)  corresponds to the weighting or 
mixing coefficients of the description combination. The number of CPDs P(Action | 
behavior, States, Percepts) equals to the cardinality Behaviors variable. For each 
behavior we have to establish a local CPD P(Action | behavior, States, Percepts). 
The collection of these local CPDs is the envisioned behavior library summarized in 
the total CPD P(Action | Behaviors, States, Percepts). 

LEVELS OF EXPERTISE AND MIXTURES OF BEHAVIORS  

BAD-MoB-models are dynamic Bayesian networks (DBNs) which can be 
considered as a subtype of a Bayesian Program (BP) (Bessiere, 2003). Under the 
assumption of stationarity their template models are specified as 2-time-slice 



 

 

Bayesian networks (2-TBNs). The template model can be unrolled so that their 
interface variables (Koller and Friedman, 2009) Behaviors and State are glued 
together producing an unrolled DBN over T time slices (T-TBN) like the 3-TBN in 
Fig. 6, 7. Learning data are time series of the pertinent domain-specific variables 
goals, behaviors, actions, observable states, and actions combined with posthoc 
annotations of maneuvers and scenarios. Information can be propagated within the 
T-TBN in various directions. When working top-down, goals emitted by higher 
cognitive layers of the agent activate a corresponding behavior which propagates 
actions, relevant areas of interest (AoIs), and expected perceptions. When working 
bottom-up, percepts trigger AoIs, actions, behaviors, and goals. When the task or 
goal is defined and there are percepts, evidence can be propagated simultaneously 
top-down and bottom-up, and the appropriate behavior can be activated.  

Our DBN-based MoB model is influenced by the visual attention allocation 
model of Horrey et al. (2006) and the Bayesian filter and action selection model of 
Koike (2008). The BAD-MoB-model we present here is tailored to a virtual 
highway scenario assuming a hierarchy of driving skills or expertise.  

A Virtual Highway Scenario 

For the proof of concept we developed a 2-TBN for a simple scenario with three 
areas of interest (AoIs) and maneuvers (Fig. 1-3) (Möbus, et al., 2009c). The driver 
is sitting in the ego vehicle (ev).  Sometimes an alter vehicle (av) or the roadside is 
occupying the AoIs depending on the state of the car (State = left, middle, or right 
lane). 

 

 

FIGURE 1. Areas of Interest (AoIs) and Ego Vehicle Positions 

 



 

 

 

 

FIGURE 2. Driving Maneuvers LeftLaneChange LLC (left) and RightLaneChange 
RLC (right) with two sequences of Driving Behaviors each (above, below) 

 

FIGURE 3  Pass Vehicle Driving Maneuver with a sequence of 4 Driving Behaviors 

The levels of expertise, the model components (layer, sequence) and a partial 
grammar of expertise are shown in Fig. 4.  



 

 

 

FIGURE 4 Levels of Expertise, Model Components, and part of Expertise Grammar 

Dynamic Reactive BAD-MoB-model 

For our BAD-MoB-model we propose partially inverted dynamic Bayesian 
networks (DBNs) of the 2-TBN-type (Fig. 5). We call the model Dynamic Reactive 
MoB Model. The model is reactive because AoIs directly influence actions. The 
model embeds two naïve Bayesian classifiers: One for the Behaviors and one for the 
States. This simplifies the structure of the architecture. Time slices are selected so 
that in each new time slice a new behavior is active. A sequence of behaviors 
implements a single maneuver. When we replace the reactive submodel for the 
Actions variable in Fig. 5 by a third classifier we can simplify the model and reduce 
the number of parameters by 79%. 

 
 



 

 

 

FIGURE 5 Dynamic Reactive BAD-MoB-model with Behavior and State Classifiers 

The top layer consists of behavior nodes. There are behaviors for each main part 
of a maneuver (Fig. 2-4): left_lane_in,…. The next layer describes the actions the 
model is able to generate: left_check_lane,…. Below that appears the node state of 
the vehicle (is_in_left_lane, …). Then there are three bottom layers contain nodes 
for the three AoIs with values is_occupied and is_empty. 
 

 

FIGURE 6 Expected behavior of the 3-TBN model with the goal behavior left_lane_in 
(the left-upper part of time-slice t-1 is expanded on the right of the figure) 



 

 

An implementation in NETICA with artificial but plausible data is shown in Fig 
6. When the model is urged to be in the left_lane_in behavior by e.g. goal setting 
from a higher cognitive layer, we expect in the same time-slice primarily that the 
left lane is checked and that the driver decelerates the vehicle. For the AoIs we 
expect that the middle AoI is occupied and the left AoI is empty. For the this time 
slice we expect the vehicle in the right or middle lane. The expected behavior 
changes between the time-slices. So the expected behavior in time-slice t is the 
left_lane_out behavior. We have higher beliefs in acceleration, attention forward 
and in checking the left and right lane.  

When the state is known (e.g. State = is_in_middle_lane) we can include this as 
a single evidence in the model and infer the appropriate expectations (e.g. left and 
right lane check, looking forward, and both (ac|de)celerations). 

When the model perceives a combination of AoI evidence, we can infer the 
behaviors. For instance, when the left AoI is empty and the middle and right AoI is 
occupied. We expect that the vehicle is in the middle or right lane, that the 
behaviors left_lane_in and pass_in are ambiguous, and that their appropriate mixed 
behavior (left_lane_check, deceleration) is activated. In the case, when all AoIs are 
occupied the model is decelerating with main attention to the middle AoI 
(middle_straight_look). 

 

 

FIGURE 7 Conditional distributions in Dynamic Reactive MoB Model when receiving 
a combination of Behavior (goal) and blocking AoI evidence (Action-node expanded)  

What will happen, if a goal is blocked? In Fig. 7 this is modeled by the 
appropriate evidence. The lane-in behavior is activated as a goal and at the same 
time the perception in the left and middle AoIs is set to is_occupied. This situation 
blocks the left lane in and the pass vehicle in behaviors. The expected actions are 



 

 

looking forward, checking left and right lanes, and deceleration. These are typical 
behavioral indicators for helplessness and stress. 

This architecture has the ability to predict agent’s behavior, to abduct hazardous 
situations (what could have been the initial situation), to generate anticipatory plans 
and control, and to plan counteractive measures by simulating counterfactual 
behaviors or actions preventing hazardous situations. For these applications we have 
to provide the model with appropriate evidence and questions.  

For instance when planning counteractive measures by simulating 
counterfactual behaviors or actions preventing hazardous situations we need a 3-
step procedure (Pearl, 2009): (1) abduction of a hazardous situation backwards with 
the full state-based BAD-MoB-model, (2) mutilate the full model to a reduced 
model, that is able to predict intervention effects, (3) experiment with 
counterfactual actions (= countermeasures) by providing action evidence in the 
reduced model and predicting the action effects.  

 

FIRST MODELING RESULTS WITH REAL DATA 

BAD-models with Mixed Behaviors are expressive enough to describe and predict a 
wide range of phenomena. In Möbus & Eilers (2009a) we presented a BAD model 
for lateral and longitudinal control without behavior mixing. The model showed 
nearly perfect behavior on the Aalborg course in the racing simulation game 
TORCS, though some suboptimal driving maneuvers could be observed. This is due 
to the fact that we used a fixed set of parameters in our model on a track with 
different segments like hair-needle curve, straight line segments etc. We modified 
the BAD-model architecture introducing concepts of the theory of ambient vision 
(Horrey et al., 2006). This led to a slightly simplified version of a BAD-MoB-model 
with two behavior and steer-action classifiers (Fig. 8).  

The results are very promising as can be seen from Figs. 9 and 10.  In Figure 9 
the driver is driving in a right bended curve. His ambient vision field is sampled by 
20 sensors (Fig. 9, left). Provided this perceptional evidence the conditional 
distribution for the action variable Steer (= steering angle) and the behavior variable 
Behaviors (= Experts) are inferred (Fig. 9, middle, right). As can be seen only the 
right-turn behavior (expert) is recognized and the corresponding angle of the 
steering-action is inferred. Sampling a concrete steering action from this conditional 
probability distribution gives the generated action of the BAD-MoB-model. 
Leaving the right-bended curve (Fig. 10) activates actions which are a mixture of 
the two behaviors (experts) straight and right (Fig. 10, right). 

CONCLUSION AND OUTLOOK 

We demonstrated that the DBN-based BAD-MoB-model has the ability to 
predict agent’s behavior, to abduct hazardous situations (what could have been the 



 

 

initial situation), to generate anticipatory plans and control, and to plan 
counteractive measures by simulating counterfactual behaviors or actions 
preventing hazardous situations. In Eilers and Möbus (2010) we present an efficient 
implementation. The next research steps will work on the vertical refinement of 
models interfacing single actions with more concrete behaviors. 
 

 

FIGURE 8 Dynamic BAD-MoB-model with Bayesian Classifiers Behavior and Steer 

 

Fig. 9 Ambient perceptional evidence (left) and conditional distributions (middle, 
right) in Dynamic Partial Inverted BAD-MoB-model with 2 Bayesian Classifiers when 
driving in a right bended curve 

 

Fig. 10 Ambient perceptional evidence (left) and conditional distributions (middle, 
right) in Dynamic Partial Inverted BAD-MoB-model with 2 Bayesian Classifiers when 
leaving a right bended curve 
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