Theorem 17.23 The Petri net persistence problem is decidable Problem 17.22 is decidable.

Proof: Let $N=\left(S, T, F, M_{0}\right)$ be an arbitrary marked Petri net. The idea is to approximate the reachability set of N set "from below" and to test, at each step, whether a violation of persistence has already been found or whether the semilinear set \mathcal{R} from (17.2) has been reached. To this end, let us define for each $k \in \mathbb{N}$ the set of extended markings

$$
\mathcal{E} \mathcal{R}_{k}=\left\{(\mathcal{P}(\sigma), M)\left|\exists \sigma \in T^{*}: M_{0} \xrightarrow{\sigma} M \wedge\right| \sigma \mid \leq k\right\}
$$

All the markings in the second components of $\mathcal{E} \mathcal{R}_{k}$ are reachable from M_{0} in at most k steps (they correspond, in some sense, to a breadth first exploration of the reachability graph of N), and therefore the reachability set of N is underapproximated by them. This set is finite and may effectively be constructed.
Consider some stage at which

$$
\mathcal{E} \mathcal{R}_{n}=\left\{\left(0, M_{0}\right),\left(x_{1}, M_{1}\right), \ldots,\left(x_{m}, M_{m}\right)\right\}
$$

has been computed thus far. Let S_{n} be the semilinear set

$$
\begin{aligned}
& S_{n}=\bigcup_{0 \leq i \leq m}\left\{\left(x_{i}, M_{i}\right)+\mathbb{N} \cdot F_{i}^{(n)}\right\} \quad \text { where } \\
& F_{i}^{(n)}=\min \left(E_{i}^{(n)}\right) \quad \text { and } \\
& E_{i}^{(n)}=\left\{(\mathcal{P}(\xi), C \cdot \mathcal{P}(\xi))\left|\xi \in T^{*} \wedge\right| \xi \mid \leq n \wedge M_{i} \xrightarrow{\xi} \wedge C \cdot \mathcal{P}(\xi) \geq 0\right\}
\end{aligned}
$$

Since T is finite, $E_{i}^{(n)}$ and $F_{i}^{(n)}$ are also finite and can be constructed effectively. Moreover, since the sequence of sets $\mathcal{E} \mathcal{R}_{n}$ is weakly increasing, $F_{i}^{(n)} \subseteq F_{i}^{(n+1)}$. Indeed, if (x_{i}, M_{i}) belongs to $\mathcal{E} \mathcal{R}_{n}$, it also belongs to $\mathcal{E} \mathcal{R}_{n+1}$ and $E_{i}^{(n)} \subseteq E_{i}^{(n+1)}$. In general, min is not monotonic, since it may happen that $A \subseteq B \subseteq \mathbb{N}^{|T|+|S|}$ while $\neg(\min (A) \subseteq \min (B))$, if $B \backslash A$ contains a member smaller than a minimal one in A. But this does not occur here since the extra members in $E_{i}^{(n+1)}$ have larger Parikh vectors than the ones in $E_{i}^{(n)}$.
Referring back to Definition 17.16, $\lim _{n \rightarrow \infty} F_{i}^{(n)}=F_{M_{i}}$ since any non-decreasing firing sequence from M_{i} will eventually occur in some $E_{i}^{(n)}$. Since $F_{M_{i}}$ is finite and composed of integer vectors, we even have that, for some $n_{i}, F_{i}^{\left(n_{i}\right)}=F_{M_{i}}\left(=F_{i}^{(l)}\right.$ for $l \geq n_{i}$). Note that, while $F_{M_{i}}$ is finite, it may not in general be constructed effectively (we know that n_{i} exists, but we cannot compute it easily: it may in particular happen that $F_{i}^{(n)}=F_{i}^{(n+1)} \neq F_{i}^{(n+2)}$).
As a consequence, we also have that $\bigcup_{0 \leq i \leq m} F_{i}^{(n)} \subseteq \bigcup_{M \in \mathbb{N}|S|} F_{M}=F$ and, since F is finite (see Lemma 17.18) and composed of integer vectors, for some \widehat{n} and the corresponding $\widehat{m}, \bigcup_{0 \leq i \leq \widehat{m}} F_{i}^{(\widehat{n})}=\lim _{n \rightarrow \infty} \bigcup_{0 \leq i \leq m} F_{i}^{(n)}=\bigcup_{M \in\left[M_{0}\right\rangle} F_{M}$. But in
general, it is not guaranteed that $\bigcup_{0 \leq i \leq m} F_{i}^{(n)}$ grows to F since the latter uses all the possible markings while the first one only uses the markings reachable from M_{0}. For each n, S_{n} may be infinite, of course, but it is semilinear and can effectively be constructed from $\mathcal{E} \mathcal{R}_{n}$ and the various $F_{i}^{(n)}$'s. Moreover, $\mathcal{E} \mathcal{R}_{n} \subseteq S_{n}$, for all n, since $0 \in \mathbb{N}$.
The second components of $F_{i}^{(n)}$ are the effects of minimal, nondecreasing firing sequences firable from M_{i} with a length bounded by n. Thus, S_{n} is the finite union of the linear sets having $\left(x_{i}, M_{i}\right)$ as a base and all linear combinations of pairs from $F_{i}^{(n)}$ as corresponding periods. Since all sequences $\xi \in F_{M_{i}}$ are firable from M_{i}, and M_{i} is reachable from M_{0}, all markings occurring as the second components of S_{n} are reachable from M_{0}, so that again they approximate the reachable set of N from below. In effect, they are a subset of the set \mathcal{R} in (17.2).
Now the extended markings in S_{n} will be tested by means of two Presburger formulae, (17.3) and (17.4). The sentence

$$
\begin{align*}
& \exists(x, M) \in S_{n} \exists M^{\prime} \in \mathbb{N}^{S} \exists t \in T: \\
& \left(M \xrightarrow{t} M^{\prime}\right) \wedge \neg\left(\left(x+\mathcal{P}(t), M^{\prime}\right) \in S_{n}\right) \tag{17.3}
\end{align*}
$$

is a Presburger formula. It checks whether some marking $M^{\prime} \notin S_{n}$ can be reached by firing a single transiton t from a marking $M \in S_{n}$. By Theorem 17.6, (17.3) is decidable. The sentence

$$
\begin{align*}
& \exists(x, M) \in S_{n} \exists\left(x^{\prime}, M^{\prime}\right) \in S_{n} \exists t \in T \exists t^{\prime} \in T: \\
& t \neq t^{\prime} \wedge(M \xrightarrow{t}) \wedge\left(M \xrightarrow{t^{\prime}} M^{\prime}\right) \wedge \neg\left(M^{\prime} \xrightarrow{t}\right) \tag{17.4}
\end{align*}
$$

is also a Presburger formula. It checks whether, within S_{n}, there is a transition t which is enabled at some marking M but becomes disabled at M^{\prime} by the firing of another transition t^{\prime}.
If (17.4) is true, then we can conclude that " N is not persistent" and stop the algorithm. This is justified by the definition of persistence, since we just identified a situation of non-persistence amongst reachable markings.
If both (17.3) and (17.4) are false, this means that the second components of S_{n} already comprise all reachable markings, amongst which no situation of nonpersistence has been identified. Thus we may conclude that " N is persistent" and stop the algorithm.
If (17.3) is true and (17.4) is false, the algorithm proceeds by producing $\mathcal{E} \mathcal{R}_{n+1}$.
Finally, we show that for any Petri net N, one of the first two cases must arise.
If N is not persistent, its non-persistence will eventually be detected by the sentence (17.4); indeed, the witness M of non-persistence belongs to some $\mathcal{E} \mathcal{R}_{n}$ so that (17.4) will detect the non-persistence at last at step n.
If N is persistent, then (17.4) never becomes true. However, from the remarks above and from (the proof of) Theorem 17.21, at some point S_{n} contains all reachable markings, sentence (17.3) evaluates to false, and the algorithm terminates with the output " N is persistent".
17.23

