
Master Thesis

DMCD

A Distributed Multithreading Caching D Compiler

Author: Supervisor:
Robert Schadek Prof. Dr.-Ing. Oliver Theel

Dipl.-Inform. Eike Möhlmann

12. September 2012

Abstract
Nearly thirty years have passed since the release of the infamous Dragon Book by Aho,
Lam, Sethi, and Ullman. Since then the available memory and CPU power has grown
by a factor of at least 1000 and 10000 respectively. The use of Multiprocessors and fast
networks has become the rule rather than the exception. Even though compiler and
programming language have advanced greatly in this period of time, their basic design
has not been adjusted to reflect the enormous hardware improvements. In this Master
thesis, I will present a D compiler that is exploits these tremendous hardware advances.
The compiler is split into two parts, a front-end and a daemon. The daemon is started

only once and runs until it is terminated manually. The front-end accepts jobs and
delivers them to the daemon. These jobs are compiled by the daemon. Parallelisms is
realized by organizing lexing, parsing, and semantic analysis in three communicating
threads. In order to speed up compilation even more results are cached within the
daemon. For further speedup, jobs and results are automatically distributed by the
daemons within a network. Results are stored in a cache and network friendly matter.
Besides the conceptual architecture of this new compiler, I will report on the library,

that was written to build this compiler.

iii

Contents

I Introduction 1

1 Introduction . 3
1.1 Introducing D . 5
1.2 D Crash Course . 8

1.2.1 Parts of C . 8
1.2.2 Classes . 8

1.2.2.1 Inheritance . 10
1.2.2.2 Interfaces . 10

1.2.3 Type Casts . 11
1.2.4 Templates . 12

1.2.4.1 Template Functions . 12
1.2.4.2 Template Parameter Type Deduction 14
1.2.4.3 Template Aggregations 14

1.2.4.3.1 Template Structs 14
1.2.4.3.2 Template Interfaces 15
1.2.4.3.3 Template Classes 15

1.2.4.4 Template Restrictions 17
1.2.5 Compile Time Control Flow and Execution 18

1.2.5.1 Static If Statements . 18
1.2.5.2 Version Statements . 18
1.2.5.3 Debug Statements . 19

1.2.6 Pure Functions . 19
1.2.7 Function Pointer and Delegates 20
1.2.8 Advanced Loop Statements . 21
1.2.9 Modules and Imports . 22

II Theory 25

2 The Lexer . 27
2.1 Introduction . 27
2.2 From Regular Expression to Finite State Machines 27

2.2.1 How Finite State Machines are Created 28
2.2.2 Basic Operations of Regular Expression 28
2.2.3 Regular Expression to Non Deterministic Finite State Machines . 29

v

Contents

2.2.4 NFA to DFA . 31
2.2.5 DFA Minimization . 37
2.2.6 Minimizing the Transition Table of the Minimized DFA 39
2.2.7 From Multiple Regular Expression to a Lexer 39

3 The Parser . 41
3.1 Introduction . 41
3.2 Parser Types . 41

3.2.1 Top-Down Parsing . 41
3.2.1.1 Recursive Decent Parser 41
3.2.1.2 LL Parser . 42

3.2.1.2.1 LL(1) parser 43
3.2.1.2.2 LL(k) parser 43

3.2.2 Bottom-Up Parsing . 43
3.2.3 Lalr(1) Parsing . 44
3.2.4 Parsing all of Chomsky Type-2 45

3.2.4.1 Glr Parsing . 46
3.2.4.1.1 Elkhound . 46

3.2.4.2 Earley Parsing . 46
3.2.4.3 CYK . 47

3.2.5 Comparison . 47
3.3 Parse Table Construction . 47

3.3.1 Itemset Construction . 48
3.3.2 Transition Table Construction . 51
3.3.3 Creation of Extended Grammars 52
3.3.4 First Set Computation . 52
3.3.5 Follow Set Computation . 53
3.3.6 Extended Follow Set Reduction 55
3.3.7 Action and Goto Table Construction 57

4 The Compiler . 59
4.1 Introduction . 59
4.2 The Frontend . 59

4.2.1 Parts of the Frontend . 59
4.2.1.1 Lexical Analysis . 59
4.2.1.2 Syntactical Analysis . 59

4.2.1.2.1 Parse Trees . 60
4.2.1.2.2 Abstract Syntax Trees 60
4.2.1.2.3 Symbol Table 61

4.2.1.3 Semantic Analysis . 61
4.3 The Backend . 61

vi

Contents

III Implementation 63

5 The library Libhurt . 65
5.1 Insert Search Remove interface . 65

5.1.1 The insert search remove specification 66
5.1.2 Implementation . 67

5.1.2.1 Tree based container . 67
5.1.2.1.1 Binary Search Tree 67
5.1.2.1.2 Red-Black trees 68

5.1.2.2 Hashtables . 68
5.1.2.3 Binary vector . 70

5.1.3 Comparison . 70
5.1.4 Using ISR types . 72

5.1.4.1 Maps . 72
5.1.4.2 Sets . 74
5.1.4.3 MultiMaps . 75
5.1.4.4 MapSets . 76
5.1.4.5 MultiSets . 77

5.2 Random Access Containers . 77
5.2.1 Vectors . 77
5.2.2 Deques . 78
5.2.3 Random access container performance comparison 79

5.3 List based containers . 80
5.3.1 Double linked list . 80
5.3.2 Single linked list . 80

5.3.2.1 Fast double linked list 82
5.3.3 List performance comparison . 82

5.4 Miscellanies functionality . 84
5.4.1 Logger . 84
5.4.2 Main argument parser . 85

6 The D lexer generator Dex . 87
6.1 Flow of Execution . 87

6.1.1 Parsing the Input File . 87
6.1.2 Preprocessing the Regular expression (regex) 88
6.1.3 Building a NFA . 89
6.1.4 Transforming the Non-deterministic finite state machine (NFA) to

a Deterministic finite state machine (DFA) 89
6.1.5 Minimizing the DFA . 90
6.1.6 Minimizing a Transition Table . 91
6.1.7 Input Mapping Optimization . 92
6.1.8 Writing the Transition Table and Other non-static Parts 93

6.2 Additional Functionality . 95
6.2.1 Creating Graphs . 95

vii

Contents

6.2.2 Writing a Lexer Template . 96

7 The D glr parser generator Dalr . 97
7.1 Introduction . 97
7.2 Parse Table Construction . 97
7.3 Parser Templates . 97
7.4 Implementation of the Parse Table Generator 98

7.4.1 Parse Table Construction . 98
7.4.1.1 Input File Language . 98
7.4.1.2 Input File Parsing . 99
7.4.1.3 Input File Validation . 99
7.4.1.4 Grammar Rule Preprocessing 100
7.4.1.5 Itemset Construction . 100
7.4.1.6 Extended Grammar Construction 100
7.4.1.7 First Set Generation . 102
7.4.1.8 Follow Set Generation 102
7.4.1.9 Final Parse Table Construction 102

7.4.1.9.1 Transition Table 102
7.4.2 Additional Functionality . 103

7.4.2.1 Parser Template Printing 103
7.4.2.2 Itemset Printing . 103
7.4.2.3 Log File Printing . 104

7.5 Implementation of the Parser . 104
7.5.1 Lalr(1) Parser . 104
7.5.2 Glr(1) Parser . 105

7.5.2.1 A Single Parse . 105
7.5.2.2 Running in Parallel . 106

8 The D compiler DMCD . 109
8.1 Introduction . 109

8.1.1 The Lexer . 109
8.1.2 The Parser . 109

8.2 Intermediate Representation . 109
8.2.1 Symbol Table . 110
8.2.2 Abstract-Syntax-Tree . 110

8.2.2.1 Flattening the Tree . 110
8.2.2.2 Restructuring the Tree 112
8.2.2.3 Speed comparison . 113

8.3 Distribution . 113
8.4 Multithreading . 114

8.4.1 Lexer Parser Communication . 115
8.4.1.1 Push back token . 115
8.4.1.2 Get token . 116
8.4.1.3 Benchmark . 116

viii

Contents

8.4.2 Semantic-Analyzer . 118
8.4.2.1 Benchmark . 118

8.5 Caching . 120
8.5.1 Cached Data . 120
8.5.2 Performance . 120

8.6 Overview . 122

IV Conclusion 123

9 Future work . 125
9.1 Difference Compiler . 125
9.2 Recursive parser . 125
9.3 Binding to llvm . 125
9.4 Integrating Libhurt Containers into phobos 125
9.5 Thread Pool for Semantic Analysis . 126
9.6 Combining Parts of the Semantic Analysis with the Parser 126
9.7 Make Replacement . 126

10 Conclusion . 127

Appendix . 129
List of Figures . 129
List of Listings . 131
List of Tables . 133
Acronyms . 135
Glossary . 137
Bibliography . 141

ix

Part I.

Introduction

1

1. Introduction
Compiler have not change much since their invention in 1950. They read input, write
executables and exit. CPUs and computer in general have not really changed either. A
program is still loaded into memory and executed instruction by instruction. Computers
might not have changed that much, but they got much faster, they have incredibly
amounts of RAM nowadays and the speed of networks has increased tremendous. Not
only did the CPUs got faster, they also have increased in numbers. Multicore CPUs are
widely adopted. Current compilers have not adapted to this changes.
This thesis will present a way of adapting a compiler to the performance changes and

therefore speed up the compile process. This includes the caching of data, running things
in parallel and distributing the work among multiple computers in a network.
Choosing the right programming language is an important factor for this thesis. D

was selected as it is a modern, feature rich language with a familiar C style syntax. As
D is a relative new languages not all tools or libraries are present that are required to
efficiently create a compiler. To fill this gap a lexer as well as a parser generator have
been created. As these tools require container data structures and additional functions
that are currently not offered by Ds standard library phobos, a library has been created
that implements the needed functionality. The library in combination with the two tools
have been used to create a prototype compiler that compiles D. This compiler will be
used to test the effectiveness of architectural changes.
This thesis begins by introducing D and presenting the basics of lexing and parsing.

The second part describes the implementations of the library, the lexer generator and the
parser generator. This is followed by the implementation and evaluation of the compiler.
A concluding chapter gives ideas for future projects.

3

1.1. Introducing D

1.1. Introducing D

D is a statically typed, compiled, multi-paradigm programming language. The primary
author, Walter Bright, started developing D as a re-engineered C++. In January 2007
the first version of D was released after eight years of developing. Version one of D,
later commonly referred to as D1, marked a stabilization of the imperative and object
oriented features. Hardly half a year later the first version of D2 was released. D2 broke
compatibility with D1 by introducing features like const-correctness, purity and closures.
Today, D normally refers to D2.1

D is not only a successor of C++ it also borrows features from other object oriented,
functional and generative programming language. Some of these features are described
here, to give a short overview of the capabilities of D and why it yields an interesting
choice for this thesis.
One feature is called compile time function execution (ctfe), this allows functions to

be executed at compile time. By itself, this idea is nothing new. C++ allows this by
template meta programming. D introduces a new way of doing this. Every normal
function, as long as a certain criteria are met, can be executed at compile time. One of
those criteria is for example, that the function must be free of side-effects. That means no
global or function static variables are to be read and no IO must be performed. Another
criteria is that no inline assembler can be used. To execute a function at compile time,
all values of its parameter must be known and the variable taking the return value must
be mark as static or be of type enum.
As D does not offer defines, another way was devised to allow source code manipulation

at compile time. The methods used are string mixin and conditional compilation.
Mixins take strings and pass them to the compiler at compile time. This means is that
in combination with ctfe, the source code can be generated at compile time to met
requirements. Conditional compiling is used to manipulate the compile process through
passing values to the compiler. This means that depending on these values different code
block are compiled. Mixins in combination with ctfe and conditional compiling allows
the programmer to create arbitrary source code and compile it at compile time. Because
defines are not present the lexer only has to process the input file only, in contrast to,
for example, C where the lexer has to resolve defines and rescan the file afterwards.
Ds object oriented approach follows that of Java, its templating mechanism follow that

of C++. The syntax of Ds template instantiating differs from that of C++ and Java in
that it does not use the greater and lesser tokens for grouping the template parameter.
Instead it uses another pair of parentheses to group the template parameter. Such a
parentheses block is prefixed by an exclamation mark. This was done to reduce some
ambiguity in C++ and Java grammar. Listing 1.1 shows such a ambiguity in C++ and
Java [dla12a].

1From this point forward we refer to D2 simply as D.

5

1. Introduction

Listing 1.1: C++ parsing error through greater and lesser token.

1 template <int i> class Foo
2 {
3 ...
4 };
5 Foo <3 > 4> f; // error: expected unqualified -id before numeric

constant

The 3 > 4 part of listing 1.1 should evaluate to false, which is defined as numerical 0.
Therefor the template parameter int i should be set to 0. Instead the compiler yields
an error. 2 This error arises because the compiler does not know that it has to treat the
first greater token as comparison operator rather than a template parameter list margin.

Listing 1.2: D equivalent of listing 1.1.

1 class Foo(int i) {
2 ...
3 }
4 Foo f = new Foo !(3 > 4)();

Listing 1.2 shows the same templated class of listing 1.1 in D . Notable differences are:
• the template parameter are placed after the class name
• the template parameter instantiation is grouped by !(and)
• the class is created on the heap 3

The ambiguity problem in the C++ code is avoided because the greater token is not
used to group the template parameter. Another reason for modifying the syntax is that
multiple nested template instantiations could lead to unfortunate parse errors. The
problematic C++ and Java syntax is shown in listing 1.3.

Listing 1.3: C++ Token semantic error

1 template <class T> class Foo {
2 ...
3 };
4

5 template <class T> class Bar {
6 ...
7 };
8

9 Foo <Bar <int >> f;

The lexer has to recognize that the right shift token shortly before the identifier f are
actually two greater token. This means that token recognition is no longer a problem
of Chomsky Type-3, instead it is now a problem of Chomsky Type-2. From a practical

2The version 4.7 of gcc returns with an error. The error reads: ”error: expected unqualified-id before
numeric constant”.

3In contrast to C++ all classes in D are created on the heap.

6

1.1. Introducing D

perspective this leads to an even bigger problem. The problem is that we can no longer
use a DFA to generate the tokens from the source code, because DFA can only parse
languages of Chomsky Type-3. 4

Another notable quality of D is its approach to multithreaded programming. The two
main concepts to this are:
• immutability
• thread local storage

Thread local storage (tls) allows thread to see their own copy of global and static variables.
That means, by default, nothing is shared by threads. This removes the possibility of
accidental race conditions. This also means the programmer is forced to use other
mechanics for thread communications. One way would be to use two functions defined in
the D standard library. These functions are called send and receive and they implement
message passing capabilities. Another more crude way of doing things, would be to use
the keyword gshared that disables thread local storage for the marked variable.
Semaphores needed to be marked as gshared.
Immutability makes a variable assignable only once. A variable is declared immutable by

the keyword immutable. The benefit of this is that any thread that reads immutable data
can be sure that no one can change it. With that knowledge in mind no synchronization
primitives are required to provide a race condition free view of the data. The immutable
keyword can also be used to modify member function behaviour of structs and classes.
The effect of this is similar to that of const member functions in C++. A member
function that has been marked immutable only sees an immutable this reference. This
way the statements of the function and all subsequent functions calls cannot modify
members that belong to the this reference. Using immutable to modify member functions
is important in a way that normal member function or even const member functions
could not guarantee immutability correctness.

Listing 1.4: Nessarity of immutability correctness

1 class Foo {
2 int a;
3

4 this(int a) immutable { this.a = a; }
5

6 void setA(int newA) { this.a = newA; }
7

8 int getA () immutable { return this.a; }
9 }

10

11 void func(immutable Foo foo) {
12 immutable int a = foo.getA ();
13 assert (a == 33);
14 foo.setA (44); // compiler reports an error
15 }

4From C++11 forward this problem is addressed. The use of the right shift as a token for template
grouping is no longer prohibited.

7

1. Introduction

16

17 void func2 () {
18 immutable Foo foo = new Foo (33);
19 func(foo);
20 }

Listing 1.4 shows why immutable member function are necessary. At line 20 an immutable
instance of class Foo is created with a value of 33. At line 14 in function func2 the
member function setA has write access the this reference of the class. It can therefore
change the value of this.a. The assertion on line 13 holds, but when in line 14 the setA
function is called an mutable this reference would be needed. As this is not the case the
compiler reports an error.
Immutability is used for another purpose. It is used to mark the elements of an array

immutable. By doing so the array itself stays mutable, but its elements are immutable.
The most prominent usage of this is the definition of string types. They are defined as
immutable(char)[]. This allows assign a new string to a variable, but assign certain
characters in the string is forbidden.

1.2. D Crash Course

As much of this thesis evolves around the programming language D , understanding some
D characteristics is important. The following sections will give an introduction into the
language.

1.2.1. Parts of C

As D is in some parts based on C D behaves in many ways as C. The differences are
discussed here. The first major difference is that D does not allow textual includes, instead
declarations are imported symbolically. Functions can be overloaded. The overloading is
based on the different function parameters. D removes the need for forward references.
Defines are removed as well. The procedural parts of C are directly copied to D. A, now
deprecated, feature of D that is present in C are typedefs. The alias expression is used
to replace typedef expression.

1.2.2. Classes

Classes in D follow the classes of Java in most ways. D classes follow a single inheritance
model similar to Java[Sun12a]. Methods can be synchronized and a reference to the
instance of the class is provided through the this keyword[Sun12b]. The constructor
methods are named this and have no return values. The listing 1.5 shows some of the
basic constructors.

8

1.2. D Crash Course

Listing 1.5: An exemplary D class

1 class Foo {
2 public int bar;
3 protected float tzz;
4

5 this(int bar) {
6 this.bar = bar;
7 }
8

9 this(int bar , float tzz) {
10 this(bar);
11 this.tzz = tzz;
12 }
13

14 invariant () {
15 assert (bar < 100 && bar >= 0);
16 }
17

18 synchronized void increment () {
19 this.bar ++;
20 }
21

22 synchronized int getBar () const {
23 return bar;
24 }
25

26 private :
27 string name;
28

29 string getString () {
30 return this.name;
31 }
32 }

Lines five to seven show a basic constructor that assigns the value of bar to the member
bar. The second constructor on lines nine to twelve delegates the bar value to the
first constructor. D allows constructors to call other constructors or member function,
much like Java. A feature nearly unique to D is show on lines 14 to 16. The invariant
statements runs before and after every member function call. This allows to check
whether or not the given invariants hold true. This way it can be enforced that a given
class always honours certain specifications. Two methods are marked as synchronized,
this serializes possible parallel calls to the class. One method is marked as const, methods
marked this way can not modify the members of the class. As the member declaration
at the beginning and end of the class show, protection attribute can be set in the Java
as well as the C++ way.

9

1. Introduction

1.2.2.1. Inheritance

As mentioned earlier, classes in D follow a single inheritance model similar to Java.
The syntax follows that of C++. Unless marked final every member function is to be
considered virtual. To actually override a member function the override keyword needs
to be used. The example in listing 1.6 shows a simple inheritance use case.

Listing 1.6: Simple inheritance

1 class Triangle {
2 float x1 , x2 , x3;
3 float y1 , y2 , y3;
4

5 this(float x1 , float x2 , float x3 ,
6 float y1 , float y2 , float y3) {
7 this.x1 = x1; this.x2 = x2; this.x3 = x3;
8 this.y1 = y1; this.y2 = y2; this.y3 = y3;
9 }

10

11 void draw () {
12 ...
13 }
14 }
15

16 class Box : Triangle {
17 float x4;
18 float y4;
19

20 this(float x1 , float x2 , float x3 , x4 ,
21 float y1 , float y2 , float y3 , float y4) {
22 super(x1 , x2 , x3 , y1 , y2 , y3);
23 this.x4 = x4;
24 this.y4 = y4;
25 }
26

27 override void draw () {
28 super.draw ();
29 ...
30 }
31 }

Important to note in this example is that the member function of the parent class can
still be accessed through the super keyword.

1.2.2.2. Interfaces

As the inheritance model does not allow a class to inherit from multiple classes, interfaces
where introduced as in Java. Interfaces only define methods but do not supply imple-
mentations. What they however can do is to provide contracts. An example interface is
given in listing 1.7.

10

1.2. D Crash Course

Listing 1.7: Interface example

1 interface FancyMathFunctions {
2 int calculatePi ();
3 float calculateE ();
4 float calculateEpsilon (float input)
5 in { assert (input > 0.0); }
6 out(result) { result > 0.0; }
7 }

Only classes can implement interfaces in D , structs are considered to be pure value
types. To make a class implement an interface the interface identifier needs to be placed
behind the class identifier in the same way an inherited class identifier is placed. Should
a class or interface already be inherited or implemented the interface is appended to the
list comma separated. Listing 1.8 shows the process of implementing an interface.

Listing 1.8: Interface implementation

1 class SimpleMathClass {
2 int addInteger (int a, int b) { return a + b; }
3 }
4

5 class AdvancedMathClass : SimpleMathClass , FancyMathFunctions {
6 int calculatePI () { return 3; }
7 float calculateE () { return 2.7; }
8 float calculateEpsilon (float input) {
9 return doCalculation (input);

10 }
11 }

The AdvancedMathClass does not only inherited the member function of the SimpleMath-
Class it only implements the interface FancyMathFunctions defined in listing 1.8. As
discussed, the inherited class and the interface are listed comma separated [dla12c].

1.2.3. Type Casts

Type casts are a way of forcefully changing the type of values. Explicit type casts are
usually considered bad practice, even though they are needed in most modern program-
ming languages. D features a complex implicit type propagation scheme, particularly for
integer types.

Listing 1.9: Cast operator

1 real veryBigValue = -999999999.234234234234;
2 ubyte verySmallStore = cast(ubyte) veryBigValue ;

The above listing 1.9 shows how the cast expression is used.

11

1. Introduction

1.2.4. Templates

Template programming plays a big role in D. Templates can be used to create generic
functions as well as generic aggregations. This allows the behavior of code to be changed
by their instantiation, without any code duplication. Templates are defined by placing
the function or aggregation in a template block. Such a block is shown in listing 1.10.

Listing 1.10: Template block

1 template Foo(T) {
2 ...
3 }

The T enclosed by the parentheses defines a type that is not yet defined. Another way
to define templates is the shorthand notation that will be introduced later. We will now
first present template functions, followed by template aggregations.

1.2.4.1. Template Functions

A template function is a function where one or more variable types are not defined at the
declaration stage. The template example of listing 1.10 could hold a function that would
return the default initialize value of the given type. Listing 1.11 shows such a function
and its instantiation.

Listing 1.11: Get default init value with templates

1 template Foo(T) {
2 T getInitValue () {
3 return T.init;
4 }
5 }
6

7 int init = Foo !(int). getInitValue ();
8 assert (init == 0);
9

10 float init2 = Foo !(float). getInitValue ();
11 assert (init2 == NaN);

The property init returns the value that is assigned as default value to a given type. This
value is, for example, zero for all integer value types. The template function getInitValue
returns the given init value for the type of T. On line seven the function is instantiated
with type int. If we were to do the instantiation manually, we would replace every
occurrence of T with int. This is exactly what the compiler does. The second example
makes the same replacements only with the float type. The init value for all float types
is the NaN value. NaN abbreviates for not a number. It may not always be desired to
write so much code for a single template function. A shorthand notation for the given
getInitValue function is given in listing 1.12

12

1.2. D Crash Course

Listing 1.12: Get default init value with templates, shorthand

1 T getInitValue (T)() {
2 return T.init;
3 }
4

5 int init = getInitValue !(int)();
6 assert (init == 0);
7

8 float init2 = getInitValue !(float)();
9 assert (init2 == NaN);

In this example the template block is omitted and the variable type declaration is moved
between the function name and the parameter declaration. A function that has two
parameter blocks is always a template function. The first grouping consists of values that
are known at compile time. To distinguish the two blocks at instantiation the template
parameter grouping is proceeded by an exclamation mark. The process of instantiation
is the same as for the more verbose version. If there is only a single template parameter
the grouping parenthesis can even be omitted. Template parameter can also be used to
represent function parameter. The listing 1.13 shows a minimum function that works for
all types that work with the < operator.

Listing 1.13: Generic minimum function

1 T minimum (T)(T l, T r) {
2 return l < r ? l : r;
3 }

Again, doing the instantiation with the int type, we will see a function that is equal to
what is shown in listing 1.14.

Listing 1.14: Generic minimum function instantiated with the int type

1 int minimum (int l, int r) {
2 return l < r ? l : r;
3 }

Template functions are not limited to simply placing types, values can be placed also.
This allows to create function that do highly specific tasks, but stay generic till instantiated.
For instance, the template function shown in listing 1.15 adds a value to a given integer
and returns the sum. The clue is that the compiler creates a separate function for every
different template parameter and can therefore apply specific optimization.

Listing 1.15: Add value to integer

1 int addN(int staticValue)(int nonStaticValue) {
2 return staticValue + nonStaticValue ;
3 }
4

5 assert (10 == addN !(5) (5));

13

1. Introduction

6 assert (1337 == addN !(1330) (7));

[dla12f]

1.2.4.2. Template Parameter Type Deduction

In special cases D even allows to omit the template type parameter. This is called
template parameter type deduction. Considering we use the template function minimum
defined in listing 1.13, we could omit the first parameter grouping, because the compiler
can deduce the type of T. As the rules for template parameter type deduction are rather
complicated a more complex explanation is left to the official D reference [dla12f].

1.2.4.3. Template Aggregations

Template aggregations enclose everything that creates types depended on one or more
template parameter. This means templated interfaces, structs and classes. The idea
behind templated aggregations is the same as behind templated functions, the type or
value of a specific variable is defined when the template is instantiated.

1.2.4.3.1. Template Structs

Listing 1.16: Templated struct

1 template Bar(T) {
2 struct PairOfT {
3 T first;
4 T second ;
5 }
6 }
7

8 Bar !(int). PairOfT instance1 ;

The above listing 1.16 shows a templated struct where the type of the two members is
fist defined at the stage of instantiation. A shorthand notation exists as well, it is shown
in listing 1.17.

Listing 1.17: Templated struct shorthand

1 struct PairOfT (T) {
2 T first;
3 T second ;
4 }
5

6 PairOfT !(int) instance1 ;

14

1.2. D Crash Course

Aggregations do not have a parameter list the first grouping. The exclamation mark is
still required to make the syntax similar.
1.2.4.3.2. Template Interfaces
Interfaces can be templated. The template parameter allows the same interface to
represent different functional characterics depending on the type.

Listing 1.18: Template interface example

1 interface FancyMathFunctions (T) {
2 T calculatePi ();
3 T calculateE ();
4 T calculateEpsilon (T input)
5 in { assert (input > 0.0); }
6 out(result) { result > 0.0; }
7 }

The interface from listing 1.7 is changed into a template interface in listing 1.18.

1.2.4.3.3. Template Classes
As the existence of template interface suggests template classes exists as well. Through
the use of template type parameter the member function can be defined generically. This
way they can apply for a bigger number of problems. All container implementation
by libhurt, the library created for this thesis, make excessive use of template classes.5
Similar to template structs, the template type parameters are passed as a grouping after
the class identifier. This is the shorthand notation, the more verbose version is omitted.

Listing 1.19: Simple fixed size buffer

1 class Buffer (T) {
2 T[128] buffer ;
3 size_t idx;
4

5 this () { this.idx = 0; }
6

7 void append (T value) {
8 this. buffer [idx ++] = value;
9 }

10

11 T[] getContents () {
12 return this. buffer [0 .. idx];
13 }
14 }
15

16 Buffer !(int) intBuf = new Buffer !(int)();
17 Buffer !(float) floatBuf = new Buffer !(float)();
18 Buffer !(string) stringBuf = new Buffer !(string)();

5Compare to chapter 5 on page 65 and following.

15

1. Introduction

The example of a template class in listing 1.19 shows how simple it is to create a buffer
for different size, without duplication parts of the implementation. The lines 16 to 18
show the usage of the Buffer class. Creating different kinds of buffers simply requires as
changing a type.
Template classes can implement template interfaces. The listing 1.18 defines a template

interface. To implement that interface we not only have to implement the methods
defined in it, we also have to propagate template parameter to it. Listing 1.20 shows the
process. The interface FancyMathFunctions was defined in listing 1.18 on page 15. The
type T will be passed to the interface on instantiation.

Listing 1.20: Template interface implementation

1 class AdvancedMathClass (T) : FancyMathFunctions !(T) {
2 T calculatePI () { return cast(T)3.14; }
3 T calculateE () { return cast(T)2.7; }
4 T calculateEpsilon (T input) {
5 return doCalculation !(T)(input);
6 }
7 }
8

9 AdvancedMathClass !(int) amc = new AdvancedMathClass !(int)();
10 int pi = amc. calculatePI ();

It is also possible to pass values at compile time, this allows to create even more specific
classes at compile time. The next listing 1.21 shows how this can be used to create a
more sophisticated buffer.

Listing 1.21: Variable length buffer

1 class Buffer (T, size_t bufsize) {
2 T[bufsize] buffer ;
3 size_t idx;
4

5 this () { this.idx = 0; }
6

7 void append (T value) {
8 this. buffer [idx ++] = value;
9 }

10

11 T[] getContents () {
12 return this. buffer [0 .. idx];
13 }
14 }
15

16 auto intBuf = new Buffer !(int ,32) ();

The buffer size is set at compile time. To save some typing work the auto keyword is
used in line 16 to automatically infer the type of the intBuf variable.

16

1.2. D Crash Course

1.2.4.4. Template Restrictions

Sometimes it makes sense to have template functions or aggregations that do not work for
all kinds of template parameters. As the template parameters are known at compile time
it would make sense to check them at compile time. One way to achieve this is to write
the code in a way that it only compiles for the allowed types and values. The problem
with that is that it might not always be clear why the given template should not work
for the given values. To generate clear error messages and to give the programmer good
information about the allowed types and values, D allows templates to be restricted. The
restriction is done through the well understood if statement. The only new thing about
it is the place where the if condition is located. To restrict a template the if condition is
placed after the name of the template or respectively after the last closing parenthesis
and before the opening curly brace. This can also be used to overload templates as listing
1.22 shows.

Listing 1.22: Template restriction

1 T fac(T,int value)() if(value == 1) {
2 return 1;
3 }
4

5 T fac(T,int value)() if(value > 1) {
6 return value * fac !(T,value -1) ();
7 }
8

9 int fac16 = fac !(int ,16) ();
10 assert (fac16 == 2004189184) ;

The listing calculates the faculty of a given value and returns the value in the defined
type. The compiler takes the first matching template and instantiates the call to the
templates till the recursion stops after instantiating the first template. This shows how
an if statement can be used to control template instantiation. The if condition needs to
be computable at compile time. Now that we can calculate the faculty of a given number
at compile through template restrictions, we might want limit the type of the returned
value to ulong or real. The next listing 1.23 shows how this is done.

Listing 1.23: More complex template restriction

1 T fac(T,int value)()
2 if((value == 1) && (is(T == ulong) || is(T == real))) {
3 return 1;
4 }
5

6 T fac(T,int value)()
7 if((value > 1) && (is(T == ulong) || is(T == real))) {
8 return value * fac !(T,value -1) ();
9 }

10 int r = fac !(int ,16); // does not compile
11 real r = fac !(real ,16); // compiles

17

1. Introduction

As the comments on the last two lines of the listing indicate, the first instantiation fails
and the second works. The first one fails, because the given type of int does not match
the second part of the restrictions, which states that the type must be either ulong or
real. The conditional statement can be any valid D code as long as they are computable
at compile time. The is keyword yields a boolean with the result of the type comparison.

1.2.5. Compile Time Control Flow and Execution

Restricting templates is not the only way to the control flow of templates. Three additional
ways exists in D to manipulate the control flow or the compile flow respectively.

1.2.5.1. Static If Statements

Static if statements are pretty close to what the if statement does when restricting
templates. Instead of writing them in the template declaration they are preempt with
the static keyword and placed within any block statement. Again the condition of the
if statement needs to be computable at compile time. Static if statements are equal
to normal if statements so much that they can even hold alternative branches and
conditional alternative branches. Listing 1.24 shows the faculty calculation implemented
by using a static if statement.

Listing 1.24: Static if faculty computation

1 T fac2(T,int value)() if(is(T == ulong) || is(T == real)) {
2 static if(value == 1) {
3 return 1;
4 } else static if(value > 1) {
5 return value * fac !(T,value -1) ();
6 } else {
7 assert (false);
8 }
9 }

10

11 ulong fac16 = fac2 !(ulong ,16) ();
12 assert (fac16 == 2004189184) ;

What happens here is that the compile looks at the static if statements and generates
the code for the branch whose condition evaluates to true.

1.2.5.2. Version Statements

The version statement can be seen as a specific #ifdef preprocessor macros in C. This
is, because the condition can be passed to the compiler as an argument. Similar to static
if statements, code is emitted only if the condition is matched. Version statements can
have an else branch. In contrast to static if statements the conditions are special values
that can be considered true or false. Listing 1.25 shows a simple example.

18

1.2. D Crash Course

Listing 1.25: Version statement

1 version (fancyversion) {
2 do_fance_stuff ();
3 }

If the compiler receives a -version=fancyversion option the given code block will be
emitted.

1.2.5.3. Debug Statements

The debug statement is very similar to the version statement but has a debug specific
property. The condition can be integer value. This integer value can be understood
as a debug level. The higher the level the more debugging needs to be done. If the
compiler finds a debug statement whose debug level is lower or equal the code or the
debug statement is emitted, listing 1.26 gives an example.

Listing 1.26: Debug level

1 debug (128) {
2 print_not_so_important_stuff ();
3 }
4 debug (64) {
5 print_not_more_important_stuff ();
6 }
7 debug (1) {
8 print_most_important_stuff ();
9 }

Depending on what the debug value is the compiler will generate code for one, two or
three of the debug statements.

1.2.6. Pure Functions

Pure functions are functions that only depend on their input parameter. They do not read
mutable global values and do not perform IO. They can only call other pure functions.
Pure function can ease debugging expenses as their results are only dependent on the
input and are therefore side effect free. Functions that are marked pure indicated by the
pure keyword can also easily be used for ctfe.

Listing 1.27: Pure static if faculty computation

1 pure T fac2(T,int value)() if(is(T == ulong) || is(T == real)) {
2 static if(value == 1) {
3 return 1;
4 } else static if(value > 1) {
5 return value * fac !(T,value -1) ();
6 } else {
7 assert (false);

19

1. Introduction

8 }
9 }

10

11 ulong fac16 = fac2 !(ulong ,16) ();
12 assert (fac16 == 2004189184) ;

The above listing 1.27 shows how a function or, in this case template function, is marked
as pure.

1.2.7. Function Pointer and Delegates

Function pointers exist already in C, but D introduces a more obvious syntax for them, as
well as a new kind of function pointer called delegates. The difference between function
pointer and delegates is that delegates not only point to an executable function, they
also carry a scope pointer. This scope pointer allows the function to access member of
the scope pointed to. Listing 1.28 shows a function pointer to a function called bar that
returns an integer and takes a float as parameter.

Listing 1.28: Function pointer

1 int bar(float toAdd) {
2 return cast(int)(1337 + toAdd);
3 }
4

5 int foo(int function (float) bar , float barv) {
6 return cast(int)(1337 + bar(barv));
7 }
8

9 void main () {
10 int function (float) bPtr = &bar;
11

12 int value = foo(bPtr , 3);
13 assert (value = 2677);
14 }

The function foo takes a function pointer and a float as input. Then it calls the function
pointer with the given float, adds another value and returns the result.
As mentioned earlier delegates are function pointer combined with a scope. This scope

can either be a struct, a class or a function. It is even possible to return a delegate from
a function and still refer to variables that were created on the stack of that function.
This particular feature is called closures. The following listing 1.29 shows an exemplary
usage of delegates.

Listing 1.29: Delegate example

1 struct Foo {
2 int a = 7;
3 int bar () { return a; }
4 }

20

1.2. D Crash Course

5

6 int foo(int delegate () dg) { return dg() + 1; }
7

8 void test () {
9 int x = 27;

10 int abc () { return x; }
11 Foo f; int i;
12 i = foo (& abc); // i is set to 28
13 assert (i == 28);
14 i = foo (&f.bar); // i is set to 8
15 assert (i == 8);
16 }

The listing also shows a nested function. The name of the function is abc. [dla12b]

1.2.8. Advanced Loop Statements

The foreach statement allows to simply iterate over an array and self defined structs or
classes. A simple foreach statement is presented in listing 1.30.

Listing 1.30: Basic foreach

1 int [] a = [1, 4, 5, 7, 11];
2 foreach (it; a) {
3 printfln ("%d", it);
4 }

The foreach statement iterates over the array a. The variable it holds one value of the
array after another. The type of these variable can be omitted, because the compiler can
easily infer them.
If a struct or class should be iterable it must implement the opApply member function.

This functions has one parameter of type int delegate. The parameter of the delegate
depends on the number of iterator variables of the foreach statement. Considering we
want to have a struct that stores an array and returns the index and the value on every
step of the iteration we need to accept a delegate that has two parameters. Such a struct
is shown in listing 1.31.

Listing 1.31: Struct opApply

1 struct Foo {
2 int [] arr;
3

4 this(int [] arr) {
5 this.arr = arr;
6 }
7

8 int opApply (int delegate (ref size_t , ref int) dg) {
9 int result = 0;

10 for(size_t i = 0; i < arr. length ; i++) {

21

1. Introduction

11 result = dg(i, arr[i]);
12 if(result)
13 break;
14 }
15 return result ;
16 }
17 }
18

19 Foo f = Foo ([10 , 9, 8, 7]);
20 foreach (idx , it; f) {
21 printfln ("%u:%d", idx , it); // prints 0:10 1:9 2:8 3:7
22 }

The block statement of the foreach is converted to a delegate. It is than checked if the
Foo struct implements any opApply member function that takes a delegate that matches
the created. The parameter of the delegate correspond to the iterator variables of the
foreach statement.

1.2.9. Modules and Imports

A module is what is called a package in Java. Every source file can have only one module
declaration. The main purpose for modules are encapsulating and avoiding name collision.
The identifier of the module declaration does not need to equal the name of the file.
The import statement is used to import the symbols defined in a module. The import
statement expects the module name not the file name. The following listings 1.32 shows
the import of two modules and the resolution of a name collision.

Listing 1.32: Module import

1 // file: fileA.d
2 module A;
3

4 int foo () {
5 return 1337;
6 }
7

8 // file: fileB.d
9 module B;

10

11 int foo () {
12 return 7331;
13 }
14

15

16 // file: importer .d
17 import A;
18 import B;
19

20 void main () {
21 assert (A.foo () == 1337);

22

1.2. D Crash Course

22 assert (B.foo () == 7331);
23 assert (foo () == 7331); // compile error
24 }

23

Part II.

Theory

25

2. The Lexer

2.1. Introduction

A lexer is typically used to generate tokens from a character stream. Usually, languages
accepted by a lexer are of Chomsky Type-3. Lexer implementation can be divided into
two main categories, generated and hand-written. Hand-written lexer are conceptionally
more powerful than generated, because they are not bound to Type-3 grammars. In
contrast generated lexer are easier to create and maintain.
To facilitate, the compiler written for this thesis, a lexer generator was created that

uses a table based finate state machine approach. Before the implementation of the
lexer generator, who is named dex, the general theory of lexing and lexer generation are
discussed.
For a theoretical standpoint DFAs are defined by a tuple of five elements (Q, Σ, δ, q0,

F).
Q is a finite set of states.
Σ is a finite set of input characters. This set is sometimes called the alphabet of the

machine.
δ defines a transition function from one state of Q to the next on input of a character of

Σ (δ : Q× Σ→ Q).
q0 is the start state.
F is a finite set of accepting states (F ⊆ Q).
NFAs are equal to DFA with the exception that they allow epsilon transition.

2.2. From Regular Expression to Finite State Machines

Finite state machines are able to accept all regular languages. Regex are another form
of defining regular languages. Within the Chomsky hierarchy regular languages are of
Type-3. Regular expressions are used from now on to describe the potential of regular
languages. This is done because regex are closer to how dex sees the languages.

27

2. The Lexer

r epsilon s

Figure 2.1.: nfa for regex rs

2.2.1. How Finite State Machines are Created

Even though the finate state machine could be created in a single regex expression, it is
basically split in several small regular expressions. Construction of the state machine
works in the following matter.

1. Create a NFA for every regular expression.
2. Create a start state.
3. Join the beginnings of all NFAs to the created start state by an epsilon transition.
4. Convert the obtained non-deterministic finite state machine into a DFA.
5. Minimize the DFA.

After the DFA has been minimized it can be stored as an array. Usually, a reduction
phase occurs after the table has been created. This is due to the fact, that in most cases
several rows and columns of the table are equal.

2.2.2. Basic Operations of Regular Expression

Regex consists of three basic operations. The basic operations are concatenation, Kleene
closure or star operation and union operation.
Concatenations are simply one character after another. For instance, the NFA for

the regex rs would lead to a NFA displayed in figure 2.1. For consistence reason the
epsilon is placed between the r and s state, even though it is strictly not necessary. That
NFA would only accept the word rs, nothing else.
The Kleene closure, which is also known as the star operator, creates a NFA that

accept 0 to n occurrences of the leading character. A regex like r* would lead to NFA
that is displayed in figure 2.2. A finate state machine modeled to match the NFA of
figure 2.2 would for example accept the words r, rrrr, rrrrrrrr or the empty word.
The last operation is the union operation. The purpose of the union operation is to

introduce a choice on which branch to choose. Figure 2.3 shows the NFA for the regular
expression of (r|s). The NFA displayed in figure 2.3 would either accept the words r or
s.
These basic operations can be mixed and concatenated in any possible way to allow

the accepting of far more complex regular expression. In order to achieve this regular

28

2.2. From Regular Expression to Finite State Machines

epsilon
epsilon

r

epsilon epsilon

Figure 2.2.: nfa for regex r*

1

2epsilon

3

epsilon

4r

5s

6

epsilon

epsilon

Figure 2.3.: nfa for regex (r|s)

expression is processed not unlike an arithmetic expression. Section 2.2.3 explains this
procedure in detail.
Some arithmetic operations have precedence before other operations, in regular expres-

sion this is also the case. Operator precedence are:
1. Star operator
2. Concatenation operator
3. Union operator

The star operator has the highest precedence, the union operator the lowest. The primary
reason for operator precedence is to remove parenthesis from the expression to make
them more human readable [ALSU06, p. 121].

2.2.3. Regular Expression to Non Deterministic Finite State
Machines

As mentioned earlier in section 2.2.2, a regular expression is evaluated in the similar
manner as an arithmetic expression. The procedure works as follows:

1. Convert regular expressions from infix notation into postfix notation.
2. Use basic operation to evaluate single postfix expressions and connect them through

epsilon transitions.

29

2. The Lexer

token action output operator stack
a to output a
| push a |
b to output a b |
* pop a b |
* to output a b | *
. push a b | * .
c to output a b | * c .
. pop a b | * c .
. push a b | * c . .
d to output a b | * c . d
$ pop a b | * c . d .

Table 2.1.: Shunting yard algorithm on (a|b)*cd.

The postfix notation is reached by applying the shunting yard algorithm on the regular
expression. Table 2.1 demonstrates this on the regular expression (a|b)*cd [Dij61]. The
dot represents the concatenation operator, it can be inserted while processing the input
or beforehand. A concatenation operator, represented as a dot, is placed between every
two input symbols that would result in an concatenation.The result of the shunting yard
algorithm is (a b | * c . d .). It is important to note at this point that the star operator
is an unary operator, concatenation and union on the other hand are binary operators
and therefore need two operands. The resulting postfix notation is a linear representation
of parse tree of the regular expression. In order to present the nfa construction in a
simpler manner figure 2.4 shows the parse tree. To get the non-deterministic finite state
machine for this tree it is now just a matter of taking the templates, displayed in figure
2.1, 2.2 and 2.3 and instantiating them at the operator nodes. This is shown in figure 2.5,
2.6, 2.7 and 2.8. The instantiation is done bottom up. First step is replacing the union
subtree with the template shown in figure 2.3. The tree nodes union, a, b are replaced
by nodes 1-6. Figure 2.5 shows the result of that replacement. The only difference to the
template of figure 2.3 is the input character for the transition between the nodes 2, 4
and 3, 5.
The next step is to apply the star operation. The result is shown in figure 2.6. Again

the result is pretty close to what the star operation template of figure 2.2 suggests. The
last two steps is to apply the two concatenation.
The results of these two steps are shown in 2.7 and 2.8. Considering the postfix notation

of and the parse tree of figure 2.4 no surprising result appear.
Now that we have created the NFA for the regular expression, we need to convert it

into a DFA.

30

2.2. From Regular Expression to Finite State Machines

concat

star c

concat

d

union

a b

Figure 2.4.: Tree representation of postfix expression

2.2.4. NFA to DFA

Converting the NFA into the DFA serves several purposes. The first reason is that DFAs
are easiert to execute, because they are not ambiguous. Another good reason converting
NFAs into DFAs is that the number of states in a DFA is considerably lower than in a
NFA. As every language that can be accepted by a NFA can be accepted by a DFA, it is
a matter of using an algorithm to convert the non-deterministic finite state machine to a
deterministic finite state machine. An algorithm for doing so is defined in [ASU86, p. 118].
Before we discuss the algorithm two helper functions are introduced. The epsilon-closure
computation in listing 2.1 returns a set of all states reached when following all epsilon
edges recursively. By doing so we can ignore the epsilon edges at a later state.
The move function returns a set of NFA states that is reached by the same input symbol

from any of the NFA states in T. Listing 2.2 shows the implementation of the function.
The implementation in listing 2.2 on page 36 is rather straight forward. The function
iterates over all nfa nodes in T. For every, of these elements, we get all transition on the
passed input character. All elements of these sets get inserted into a set that is return
from the function. The idea behind the listing 2.3 on page 36 is to simulate the NFA
in every state with every possible input in parallel [ASU86, p. 159]. Figure 2.9 shows
the resulting deterministic finite state machine, converted from the NFA of figure 2.8 on
page 35. The resulting graph is five nodes in contrast to 18 of the final NFA. This is a
reduction by a factor of at least three.

31

2. The Lexer

1

2

epsilon

3

epsilon

4

a

5

b

6

epsilon epsilon

concat

star c

concat

d

Figure 2.5.: Tree representation after insertion on union template

32

2.2. From Regular Expression to Finite State Machines

7

8

epsilon

10

epsilon

1

epsilon

9

epsilon

epsilon

2

epsilon

3

epsilon

4

a

5

b

6

epsilon epsilon

epsilon

concat

c

concat

d

Figure 2.6.: Tree representation after insertion of star template

33

2. The Lexer

11

7

epsilon

12

13

c

14

epsilon

8

epsilon

10

epsilon

1

epsilon

9

epsilon

epsilon

epsilon

2

epsilon

3

epsilon

4

a

5

b

6

epsilon epsilon

epsilon

concat

epsilon

d

Figure 2.7.: Tree representation after first concatenation

34

2.2. From Regular Expression to Finite State Machines

15

11

epsilon

16

17

d

18

epsilon

7

epsilon

12

13

c

14

epsilon

epsilon

8

epsilon

10

epsilon

1

epsilon

9

epsilon

epsilon

epsilon

2

epsilon

3

epsilon

4

a

5

b

6

epsilon epsilon

epsilon

Figure 2.8.: Tree representation after second concatenation
35

2. The Lexer

Listing 2.1: Computation of epsilon-closure

1 Set !(nfaNodes) epsilon_closure (set_of_nfa_nodes T) {
2 foreach (it; T) { stack.push(it); }
3 initialize epsCol (T) to T;
4 while (! stack. isEmpty () {
5 t = stack.pop ();
6 foreach (state u ; Set !(edge) fromTtoUepsilon) {
7 if(! epsCol (T). contains (u) {
8 add u to epsCol (T);
9 push u onto stack;

10 }
11 }
12 }
13 return epsCol ;
14 }

Listing 2.2: move function

1 Set !(nfaNodes) move(char a, Set !(nfa_nodes) T) {
2 foreach (nfa_node it; T) {
3 Set !(nfaNodes) s = next_states (it , a);
4 foreach (jt s) {
5 append (ret , jt);
6 }
7 }
8 return ret;
9 }

Listing 2.3: Subset construction

1 // initially , epsilon - closure (stateNum_0) is the only
2 // state in Dstates and it is unmarked ;
3 while ((T = Dstates .pop ()) !is null) {
4 T.mark ();
5 foreach (input symbol a) {
6 U = epsilon_closure (move(T,a));
7 if(! Dstates . contains (U)) {
8 U. unmark ();
9 Dstates .push(U)

10 }
11 Dtran[T, a] = U;
12 }
13 }

36

2.2. From Regular Expression to Finite State Machines

5

1

4

c

3b

2
a

d
c

b

a
c

b
a

Figure 2.9.: DFA graph of regular expression (a|b)*cd.

2.2.5. DFA Minimization

Now that we have converted the non-deterministic finite state machine into a deterministic
finite state machine we need to minimize the DFA to make it feasible for storing it into
an array that is used to run the lexing algorithm. The algorithm used was presented by
Hopcroft in 1971 [Hop71]. It runs in O(n log n). A good pseudocode implementation is
given in [Hol90, p. 143].

Listing 2.4: Hopcroft algorithm for DFA minimization

1 // Repeat until no new groups are added to groups
2

3 foreach (group; groups) {
4 auto new = Set !(State)();
5 auto first = the_first_state_in_the_current (group);
6 auto next = the_next_state_of_the_current_ (group);
7 while(next) {
8 foreach (character c) {
9 goto_first = state reached by making a transition on c

from first;
10 goto_next = state reached by making a transition on c

from next;
11

12 if(goto_first is not in the same group as goto_next) {
13 move next from the current group into new;
14 }
15 }
16 if(new is not empty) {
17 add it to groups ;
18 }
19 }
20 }

37

2. The Lexer

step group state a b c d
1 1 1 2 3 4 -1
1 1 2 2 3 4 -1
1 1 3 2 3 4 -1
1 1 4 -1 -1 -1 5
1 2 5 -1 -1 -1 -1
2 1 1 2 3 4 -1
2 1 2 2 3 4 -1
2 1 3 2 3 4 -1
2 2 4 -1 -1 -1 5
2 3 5 -1 -1 -1 -1

Table 2.2.: DFA minimization steps

state a b c d
1 1 1 4 -1
4 -1 -1 -1 5
5 -1 -1 -1 -1

Table 2.3.: Minimized deterministic finite state machine

The idea behind the algorithm of John Hopcroft, that is shown in listing 2.4, is to start
all states of the DFA in either of two groups. The first group contains all finishing states,
the second groups contains every other state. Figure 2.8 and figure 2.9 both contain a
double circular node, which means it is a final state. Then it is checked for every group,
if all its members lead to the same group using the same input symbol. If a state does
not lead to the same group, it is placed in the group called new. After a group has
been processed and the new group is not empty it is placed in the set of groups. This is
repeated till no new groups are created.
Running this algorithm on the DFA of figure 2.9 we get the steps shown in table 2.2
A transition labeled -1 means that the state has no transition on the given input, with

other words an error would occur on that specific input.
As shown in table 2.2 the first step is to partition the states in two groups, accepting

and normal states. The next step is to put state four into its own group, though its
transitions are different to that of the other states in group one.
The final step of the DFA minimization is to merge all states of one group into one

state. There are two steps to the finalization of a group.
1. Choose a state id.
2. Change the endpoint of all transition with any state in the finalized group to that

of the chosen state id.
Applying this steps to the groups in the last step of table 2.2 we get three groups that
are shown in table 2.3. A graphical representation is shown in figure 2.10. The number

38

2.2. From Regular Expression to Finite State Machines

51

a-b

4c d

Figure 2.10.: Minimized DFA

state a,b c d
1 1 4 -1
4 -1 -1 5
5 -1 -1 -1

Table 2.4.: Minimized table representation

of states has been reduced by 15 states which is a factor of five.

2.2.6. Minimizing the Transition Table of the Minimized DFA

Taking a look at table 2.3 we see that the columns for input a and b are equal therefore
these can be merged. This can also be done for equal rows in table, but as there are
no equal rows nothing can be done in this example. This table minimization does not
change the DFA, it merely minimizes its representation, by the cost of other redirection.
The redirection in this case is to map the input of a and b to the same column of the
reduced array. Table 2.4 shows the reduced table. This technique is particularly useful
when storing lexer tables that have groups of input character that are used for special
purposes. For instance a lexer, that allows utf characters to be part of a string token,
will properly have many rows that could be merged into one.

2.2.7. From Multiple Regular Expression to a Lexer

Above, the way of creating a deterministic finite state machine from a regular expression
has been shown. Lexer accept multiple regex to accommodate multiple words in a
language. The way of combining multiple regular expression is rather straight forward.

1. Create NFAs for every regex
2. Create new start state
3. Make an epsilon transition from the new start state to the beginning of every new

regex
After the NFAs are merged into a single NFA the process continued as described in
section 2.2.4 and earlier.

39

2. The Lexer

Another, rather practical, problem is to allow user supplied code to be run after a word
has been matched to a defined regex. This is done by marking the end state of every
created NFA with an unique identifier that points to the user code. This unique identifier
has to be accommodated to the created DFA as well as the minimized DFA.

40

3. The Parser

3.1. Introduction

A parser checks if a token stream is matched by a grammar [ASU86]. This is done,
because if a token stream is not well formed 1 it will be impossible to create a correct
running program of it. Parsing algorithms can be divided into two major categories.
The first category are top-down algorithms. The second category are bottom-up parsing
algorithms. Both algorithm categories work on context free grammars or an useful subset
of it.

3.2. Parser Types

3.2.1. Top-Down Parsing

Top down parser accept a word on the language from the top to the bottom.

3.2.1.1. Recursive Decent Parser

Recursive decent parsers usually define multiple functions that call each other recursively.
Every function accepts a different rule of the grammar. Recursive decent parser are used
by compilers like clang [com10] or gcc [fsf05].

Listing 3.1: Recursive decent parser example

1 void parseParameterList () {
2 parseTyp ();
3 Token token = nextToken ();
4 if(token.typ == TokenTyp . RParen) {
5 return ;
6 } else {
7 assert (token == TokenTyp . identifier);
8 }
9

10 token = nextToken ();
11 if(token == TokenTyp .comma) {
12 parseParameterList ();
13 }

1Well formed means, that the token is a word of the language.

41

3. The Parser

14 }
15

16 void parseTyp () {
17 Token token = nextToken ();
18 assert (token.typ == TokenTyp .void ||
19 token.typ == TokenTyp .int ||
20 token.typ == TokenTyp .float);
21 return ;
22 }
23

24 void parseSimpleFunctionPrototyp () {
25 parseTyp ();
26 Token token = currentToken ();
27 assert (token.typ == TokenTyp . Identifier);
28 token = nextToken ();
29 assert (token.typ == TokenTyp . Lparent);
30 parseParameterList ();
31 assert (token.typ == TokenTyp . Rparent);
32 token = nextToken ();
33 assert (token.typ == TokenTyp . Semicolon);
34 }

The listing 3.1 accepts all words described by the grammar shown in figure 3.1.

〈Proto〉 ::= 〈Typ〉 〈Identifier〉 ’(’ 〈ParameterList〉 ’)’ ’;’
| 〈Typ〉 〈Identifier〉 ’(’ ’)’ ’;’

〈Typ〉 ::= ’void’
| ’int’
| ’float’

〈ParameterList〉 ::= 〈Typ〉 〈Identifier〉
| 〈Typ〉 〈Identifier〉 ’,’ 〈ParamterList〉

Figure 3.1.: EBNF for function prototyp

As context free grammars (cfgs) usually require a push-down automata to be accepted,
recursive decent parser implement the stack implicitly by the use of the function call
stack. The transition table is stored in the function itself.

3.2.1.2. LL Parser

Left to right, left derivation parser (LL) parser parse a grammar from left to right. In
contrast to recursive descent parser, LL parsers keep an explicit stack and the grammar
is stored in a transition table. There are two common types of LL parser, these are LL(1)
and LL(k) parser. LL(1) parser use one token of lookahead to choose the production they

42

3.2. Parser Types

follow. LL(k) use an arbitrary number of lookahead tokens to choose which production
to follow. Both are described below.

3.2.1.2.1. LL(1) parser
The number in the parenthesis accounts for the number of lookahead token, in this case
one. The listing 3.2 shows the LL parse algorithm.

Listing 3.2: LL parser algorithm

1 Stack !(Token) stack ([eof , startSymbol]);
2 Token lookahead = empty;
3 do {
4 if(lookahead == empty) {
5 lookahead = nextToken ();
6 }
7

8 Token currentSymbol = pop(stack);
9

10 if(currentSymbol == lookahead) {
11 lookahead = empty;
12 } else if(currentSymbol == terminal && currentSymbol !=

lookahead) {
13 exit(ERROR);
14 } else if(currentSymbol == nonterminal) {
15 Token [] prod = Table[currentSymbol][lookahead];
16 foreach_reverse (it; prod) {
17 push(stack , it);
18 }
19 }
20 } while (! empty(stack));

Most programming languages can not be parsed by LL(1) grammars [oP05].

3.2.1.2.2. LL(k) parser
LL(k) parsers use as many lookahead symbols as needed to distinguish between produc-
tions. It was long thought, that because of the number of lookahead tokens is variable,
LL(k) parsers are impractical [?].

3.2.2. Bottom-Up Parsing

Button up parsers (LRs) works the opposite way to LL parsers. Each token is read first
and the productions are matched from the right to the left. This method of parsing is
also referred to as shift reduce parsing. Shift reduce parsers where invented by Donald
Knuth in 1965 [Knu65]. Even though LR parsers are more powerful than LL parsers
they can not accept the complete class of context free grammars. LR parsers usually
work with a lookahead of one. There are three types of LR parsers that use one token
in practice. The most powerful of the three are LR(1) parsers. On the other side of

43

3. The Parser

the spectrum are Simple button up parser (SLR)(1) parsers, they typically generate
smaller parse table than LR(1) parsers. The last and most widely used are Lookahead
bottom-up parser (LALR)(1) parsers. The parse table are equalent to that of SLR parser
but they are nearly as powerful as LR parser. As the created parsers generator uses
LALR(1) grammars and these combine parts of LR and glsaslr parser generator these
are not discussed in any more detail.

3.2.3. Lalr(1) Parsing

LALR parsers are commonly used, for instance in popular tools like yacc and bison.
While LALR(1) grammars can match languages like C they are unable to parse languages
like C++. Even though they are widely used since the 1970, the year yacc first released
in reference with Unix [JJ79]. The most important part of LALR(1) parsers is the parse
table that drives the parsing algorithm. The construction of this table is presented in
section 3.3.
The parser algorithm is shown as in listing 3.3.

Listing 3.3: Lalr(1) parsing algorithm

1 while(true) {
2 action = trantable [top_of_stack ,input];
3 if(action == Accept) {
4 break;
5 } else if(action == Error) {
6 reportError ();
7 } else if(action == Shift) {
8 stack. pushBack (action);
9 input = nextToken ;

10 } else if(action == Reduce) {
11 stack.pop(length (action));
12 stack. pushBack (goto[top_of_stack , left_side_of_reduction]);
13 }
14 }

The algorithm is table driven. Every round an action is selected depending on the current
top of stack symbol as well as the current lookahead character. Four types of action
exists:
Accept when reaching an accept action the parser accepts the parse.
Shift on a shift action a value is pushed on the stack and the next token is read from

the input.
Reduce when reaching a reduce action the number of items of the right hand side of the

action are popped from the stack.
Error should none of the first three action take, an error is produced.

44

3.2. Parser Types

3.2.4. Parsing all of Chomsky Type-2

Unfortunately not all context free grammars or grammar of Chomsky Type-2, can be
represented as an LALR(1) parse table. These grammars are ambiguous, as they have
two or more possible actions, for some states. The problem with ambiguity is that in a
traditional Bottom-up parser there must be exactly one action for every state lookahead
combination. Even though most grammars used are nearly free of ambiguities a single
ambiguity can pose serious problems and can lead to a considerable amount of work
making the grammar fit into LALR(1). Ambiguities do arise usually in bigger grammars,
nevertheless they can appear in very small grammars as well. Figure 3.2 shows a grammar

〈S〉 ::= 〈IfElse〉

〈IfElse〉 ::= ’if’ ’bool’ 〈IfElse〉
| ’if’ ’bool’ 〈IfElse〉 ’else’ 〈IfElse〉
| ’statement’

Figure 3.2.: Dangling else

that is known as the dangling else grammar. The problem with this grammar is that an
LALR(1) can not decide whether to shift the else or to reduce the if branch. The parse
table which shows the problem is table 3.1. In itemset 6 on input else the parser can

Action Goto
ItemSet $ if bool else statement S IfElse
0 s2 s3 g1
1 $
2 s4
3 r3 r3
4 s2 s3 g5
5 r1 s6,r1
6 s2 s3 g7
7 r2 r2

Table 3.1.: Dangling else parse table

either shift using rule six, which means as much as shift an else or it can reduce with rule
one, which is in this case IfElse→ bool IfElse rule. There are two types of conflicts
that can occur, we saw the first, which is called shift-reduce conflict. Shift-reduce conflicts
are usually solved by choosing the shift action over the reduce action 2. The other kind
of conflicts are reduce-reduce conflicts. The problem with those is that it is not clear
which rule is the right one to choose. Choosing the right rule can be a complex task.

2This is basic operation for yacc and bison[Joh12].

45

3. The Parser

Finding a sufficient solution for this is a critical if large and complex grammar are to be
used with parser generators. The following a selection of parsing algorithm, that are able
to parse the whole class of Chomsky Type-2 languages.

3.2.4.1. Glr Parsing

Generalized LR parsers are LR type parsers that are able to follow more than one rule
at a state. They were introduced by Masaru Tomita in 1984 [Tom84]. Whenever an
Generalized LR (GLR) parser sees more than one action it copies all information of
the current parse. This includes for example the parse stack and intermediary results
like the partially constructed abstract syntax tree. After enough copies are created to
process all action independently, one action is mapped to each copy. It is desirable that
at the end of parsing only one parse is left. If there are more than one parse left the
resulting program would be ambiguous and this is generally not correct behavior for a
programming language. To prevent this from happening there are multiple ways parses
can be removed. The first is a parse error occurs. Should an error occur in an parse and
there parses are present the parse gets removed silently. The other possibility is that two
or more parses reach the same state. The relation same state is defined as a state which
two or more parses have the same lookahead character and their parse stack is equal. At
that point a function needs to be called, this function needs to choose one parse, making
it the correct one. This merge function also needs to be called when more than one parse
accepts. The worst case time complexity is O(n3), but the less ambiguous the grammar
is the closer the complexity gets to O(n) [Tom84, Tom87].

3.2.4.1.1. Elkhound
Elkhound is a parser and parser generator that was developed by Scott McPeak in 2002.
Elkhound is basically a Glr parser. The difference to Tonita is that Elkhound does not
copy the whole parse tree or any other data. Whenever two or more new states are
created due to ambiguous rules, all new parse stack items will have the same parent node.
All user defined actions that are usually run when a production is reduced are stored
until a single parse is selected as the correct one. Another optimization of Elkhound
is to count the number of stack elements that do not contain a fork. This number is
used to calculate who long a simple LR parser algorithm can be used. This way the
speed of Elkhound is close to that of LR parser even on grammars that are not LR
[McP02, McP03].

3.2.4.2. Earley Parsing

The Earley parsers were invented by Jay Earley in 1970. They are part of the chart
parser class that apply dynamic programming.3 Earley parser have a runtime complexity
of O(n3), where n is the number of tokens. Like all parsing algorithms presented in this

3Chart parser store their temporary results in a chart, hence the name.

46

3.3. Parse Table Construction

section Earley parsers accept all languages of Chomsky Type-Two. As Earley parsers
parse the right hand side of the productions from left to right in a top down manner,
they can conceptional be compared to LL parsers [Ear70, JA].

3.2.4.3. CYK

CYK parsers have a runtime complexity of O(n3) sometimes even described as a com-
plexity of O(n3 ∗ |G|), where G is the length of the parsed string. The grammar has
to be presented in Chomsky normal form. They apply the production rules bottom up.
Instead of a stack, CYK parser require a triangle like data structure that has n(n+1)

2
elements storage capacity, where n is the length of the input string. CYK parsers are
named after there inventors John Cocke, Tadao Kasami and Daniel H. Younger. They
were invented in the late sixties [Mar12].

3.2.5. Comparison

Elkhound is the fastest way to parse GLR languages, but the speed comes with complex
data structures and user interaction. Earley parsers and CYK parsers have the worst
average runtime complexity of the four presented algorithm. The GLR parsers presented
by Tomita needs more memory than Elkhound as it does not share subtrees of the parse
trees. One the other hand this allows for simple user interaction, as all user defined actions
can be run directly after accepting a grammar rule. As the Tomita parser algorithm gives
good performance with relatively easy usage and are closely linked to simple LALR(1)
parsers they will be used for the parser generator in this thesis. Because of this the
following section will discuss how such a parse table is constructed.

3.3. Parse Table Construction

In this section we will discuss how we construct an LALR parse table. There are multiple
ways to construct the parse table. Here we present a method of constructing an LALR
parse table through an SLR parse table. The way of constructing the parse table works
through the following steps.

1. construct itemsets
2. transition table construction
3. creating an extended grammar
4. first set computation of an extended grammar
5. follow set computation of an extended grammar
6. action and goto table construction
7. extended follow set reduction
8. placing reduced follow set rules

47

3. The Parser

These steps are explained in the following sections. The grammar to explain the steps is
shown in figure 3.1 on page 42.

3.3.1. Itemset Construction

Itemsets are constructed by moving a dot through the productions. Whenever there is a
dot in front of a non-terminal all productions with that non-terminal for a start symbol
are added to the itemset. A dot is placed in front of the first token of every newly added
production. If that symbol is a non-terminal this process is repeated. The next step is to
create the follow itemsets. To achieve this, we group the productions the token following
the dot. For every group we create a new itemset. After we have created the new itemset
we move the dot to the next token. Then we complete the itemset as described earlier.
For easier insertion of the end of input symbol, we need to insert a new start production
into the grammar. Figure 3.3 shows this production. Completing the first itemset we get

〈S〉 ::= 〈Proto〉

Figure 3.3.: Start production

the itemset that is displayed in figure 3.4. Considering we start with the dot in front of
the first token of the first production, we get line (0) in figure 3.4. Doing the expansion
described earlier we get the rules one and two. The dot is in front of the first token of
these added rules. Now that we have a rule with a dot in front of a Typ token we need
to expand that group of rules as well, doing so leads to rules three to five shown in figure
3.4. As void, int, float are terminal, no more rules need to expand.
As we have now constructed the first itemset we can create the follow itemsets. To do

so, we first need to group the rules. Two or more productions are grouped together if the
dot is in front of the same token. In figure 3.4 this is the case for production one and
two. For every group in an itemset we create a new itemset. This is done by taking the
productions of the group and moving the dot one token to the right. These productions
are sometimes referred to as the kernel of an itemset. Nothing more needs to be done for
this newly created itemset because the dot is in both cases in front of Identifier token
and this token is a terminal. Should the dot be in front of a non-terminal we expand the
itemset as described in the beginning of this section. In figure 3.5 we see that the kernel
of the itemset is equal to the whole itemset. This is done for every production till there
is an itemset where the dot is at the of end of every production.
These itemsets basically span a graph, where the edges are labeled by the token that is

consumed by the movement of the dot from one itemset to the next. The whole graph is
shown in figure 3.6 on page 50. Even though the number of productions is rather small,
in comparison to a programming language like C, the number of itemsets growths rapidly.
So far the construction of the parse table does not differ from that of an SLR parse

table.

48

3.3. Parse Table Construction

State #0

(0) S -> •Proto

(1) Proto -> •Typ Identifier (ParameterList) ;

(2) Proto -> •Typ Identifier () ;

(3) Typ -> •void

(4) Typ -> •int

(5) Typ -> •float

Figure 3.4.: First completed itemset

State #2

(1) Proto -> Typ •Identifier (ParameterList) ;

(2) Proto -> Typ •Identifier () ;

Figure 3.5.: Second itemset

49

3. The Parser

S
t
a
t
e

#
0

(
0
)

S

-
>

•
P
r
o
t
o

(
1
)

P
r
o
t
o

-
>

•
T
y
p

I
d
e
n
t
i
f
i
e
r

l
p
a
r
e
n

P
a
r
a
m
e
t
e
r
L
i
s
t

r
p
a
r
e
n

s
e
m
i
c
o
l
o
n

(
2
)

P
r
o
t
o

-
>

•
T
y
p

I
d
e
n
t
i
f
i
e
r

l
p
a
r
e
n

r
p
a
r
e
n

s
e
m
i
c
o
l
o
n

(
3
)

T
y
p

-
>

•
v
o
i
d

(
4
)

T
y
p

-
>

•
i
n
t

(
5
)

T
y
p

-
>

•
f
l
o
a
t

S
t
a
t
e

#
1

(
0
)

S

-
>

P
r
o
t
o
•

,
$

P
ro
to

S
t
a
t
e

#
2

(
1
)

P
r
o
t
o

-
>

T
y
p

•
I
d
e
n
t
i
f
i
e
r

l
p
a
r
e
n

P
a
r
a
m
e
t
e
r
L
i
s
t

r
p
a
r
e
n

s
e
m
i
c
o
l
o
n

,
I
d
e
n
t
i
f
i
e
r

(
2
)

P
r
o
t
o

-
>

T
y
p

•
I
d
e
n
t
i
f
i
e
r

l
p
a
r
e
n

r
p
a
r
e
n

s
e
m
i
c
o
l
o
n

,
I
d
e
n
t
i
f
i
e
r

Ty
p

S
t
a
t
e

#
3

(
3
)

T
y
p

-
>

v
o
i
d
•

'v
oi
d'

S
t
a
t
e

#
4

(
4
)

T
y
p

-
>

i
n
t
•

'in
t'

S
t
a
t
e

#
5

(
5
)

T
y
p

-
>

f
l
o
a
t
•

'fl
oa
t'

S
t
a
t
e

#
6

(
1
)

P
r
o
t
o

-
>

T
y
p

I
d
e
n
t
i
f
i
e
r

•
l
p
a
r
e
n

P
a
r
a
m
e
t
e
r
L
i
s
t

r
p
a
r
e
n

s
e
m
i
c
o
l
o
n

(
2
)

P
r
o
t
o

-
>

T
y
p

I
d
e
n
t
i
f
i
e
r

•
l
p
a
r
e
n

r
p
a
r
e
n

s
e
m
i
c
o
l
o
n

'Id
en
ti
fi
er
'

S
t
a
t
e

#
7

(
1
)

P
r
o
t
o

-
>

T
y
p

I
d
e
n
t
i
f
i
e
r

l
p
a
r
e
n

•
P
a
r
a
m
e
t
e
r
L
i
s
t

r
p
a
r
e
n

s
e
m
i
c
o
l
o
n

(
2
)

P
r
o
t
o

-
>

T
y
p

I
d
e
n
t
i
f
i
e
r

l
p
a
r
e
n

•
r
p
a
r
e
n

s
e
m
i
c
o
l
o
n

(
3
)

T
y
p

-
>

•
v
o
i
d

(
4
)

T
y
p

-
>

•
i
n
t

(
5
)

T
y
p

-
>

•
f
l
o
a
t

(
6
)

P
a
r
a
m
e
t
e
r
L
i
s
t

-
>

•
T
y
p

I
d
e
n
t
i
f
i
e
r

(
7
)

P
a
r
a
m
e
t
e
r
L
i
s
t

-
>

•
T
y
p

I
d
e
n
t
i
f
i
e
r

c
o
m
m
a

P
a
r
a
m
e
t
e
r
L
i
s
t

'lp
ar
en
'

'v
oi
d'

'in
t'

'fl
oa
t'

S
t
a
t
e

#
8

(
6
)

P
a
r
a
m
e
t
e
r
L
i
s
t

-
>

T
y
p

•
I
d
e
n
t
i
f
i
e
r

,
I
d
e
n
t
i
f
i
e
r

(
7
)

P
a
r
a
m
e
t
e
r
L
i
s
t

-
>

T
y
p

•
I
d
e
n
t
i
f
i
e
r

c
o
m
m
a

P
a
r
a
m
e
t
e
r
L
i
s
t

,
I
d
e
n
t
i
f
i
e
r

Ty
p

S
t
a
t
e

#
9

(
1
)

P
r
o
t
o

-
>

T
y
p

I
d
e
n
t
i
f
i
e
r

l
p
a
r
e
n

P
a
r
a
m
e
t
e
r
L
i
s
t

•
r
p
a
r
e
n

s
e
m
i
c
o
l
o
n

,
r
p
a
r
e
n
P
ar
am
et
er
L
is
t

S
t
a
t
e

#
1
0

(
2
)

P
r
o
t
o

-
>

T
y
p

I
d
e
n
t
i
f
i
e
r

l
p
a
r
e
n

r
p
a
r
e
n

•
s
e
m
i
c
o
l
o
n

'rp
ar
en
'

S
t
a
t
e

#
1
1

(
6
)

P
a
r
a
m
e
t
e
r
L
i
s
t

-
>

T
y
p

I
d
e
n
t
i
f
i
e
r
•

(
7
)

P
a
r
a
m
e
t
e
r
L
i
s
t

-
>

T
y
p

I
d
e
n
t
i
f
i
e
r

•
c
o
m
m
a

P
a
r
a
m
e
t
e
r
L
i
s
t

'Id
en
ti
fi
er
'

S
t
a
t
e

#
1
2

(
1
)

P
r
o
t
o

-
>

T
y
p

I
d
e
n
t
i
f
i
e
r

l
p
a
r
e
n

P
a
r
a
m
e
t
e
r
L
i
s
t

r
p
a
r
e
n

•
s
e
m
i
c
o
l
o
n

'rp
ar
en
'

S
t
a
t
e

#
1
3

(
2
)

P
r
o
t
o

-
>

T
y
p

I
d
e
n
t
i
f
i
e
r

l
p
a
r
e
n

r
p
a
r
e
n

s
e
m
i
c
o
l
o
n
•

'se
m
ic
ol
on
'

S
t
a
t
e

#
1
4

(
3
)

T
y
p

-
>

•
v
o
i
d

(
4
)

T
y
p

-
>

•
i
n
t

(
5
)

T
y
p

-
>

•
f
l
o
a
t

(
6
)

P
a
r
a
m
e
t
e
r
L
i
s
t

-
>

•
T
y
p

I
d
e
n
t
i
f
i
e
r

(
7
)

P
a
r
a
m
e
t
e
r
L
i
s
t

-
>

T
y
p

I
d
e
n
t
i
f
i
e
r

c
o
m
m
a

•
P
a
r
a
m
e
t
e
r
L
i
s
t

(
7
)

P
a
r
a
m
e
t
e
r
L
i
s
t

-
>

•
T
y
p

I
d
e
n
t
i
f
i
e
r

c
o
m
m
a

P
a
r
a
m
e
t
e
r
L
i
s
t

'c
om
m
a'

S
t
a
t
e

#
1
5

(
1
)

P
r
o
t
o

-
>

T
y
p

I
d
e
n
t
i
f
i
e
r

l
p
a
r
e
n

P
a
r
a
m
e
t
e
r
L
i
s
t

r
p
a
r
e
n

s
e
m
i
c
o
l
o
n
•

'se
m
ic
ol
on
'

'v
oi
d'

'in
t'

'fl
oa
t'

Ty
p

S
t
a
t
e

#
1
6

(
7
)

P
a
r
a
m
e
t
e
r
L
i
s
t

-
>

T
y
p

I
d
e
n
t
i
f
i
e
r

c
o
m
m
a

P
a
r
a
m
e
t
e
r
L
i
s
t
•

,
r
p
a
r
e
n

P
ar
am
et
er
L
is
t

Figure 3.6.: Complete itemset graph50

3.3. Parse Table Construction

3.3.2. Transition Table Construction

The construction of the transition table is straight forward. As we have constructed the
complete itemset graph in section 3.3.1, show in figure 3.6, we now transform the graph
into a table. The algorithm for this procedure is shown in listing 3.4.

Listing 3.4: Transition table construction

1 int table[numberOfState][numberOfInputStrings];
2 foreach (itemset it; itemsets) {
3 foreach (string jt; inputStrings) {
4 table[it][inputString] = it. getFollowItemset (jt);
5 }
6 }

What is does is creating a two dimensional array and fills it with the id of the following
itemset4. The collection with the name inputString contains all terminals and non-
terminal. If an itemset has no follow itemset on a given input, the entry in the table is
an error.

ItemSet identifier () ; void int float , S Proto Typ ParameterList
0 3 4 5 1 2
1
2 6
3
4
5
6 7
7 10 3 4 5 8 9
8 11
9 12
10 13
11 14
12 15
13
14 3 4 5 8 16
15
16

Table 3.2.: Transition table for graph 3.6

This table will be used in a later stage to indicate the shift and goto symbols.

4Using the inputString as array index will likely not yield an index aligned to zero. The procedure of
aligning is omitted for simplicity reasons.

51

3. The Parser

3.3.3. Creation of Extended Grammars

The result of this step is used as a basis for the next two steps. The extended grammar
can be understood as the combination of the itemset graph and the given grammar.
For every production in every itemset that has a dot in front of the first right hand
token we create a new extended grammar production. Such an extended production
consist of so called extended items. An extended item consists of a token connecting two
itemsets and the ids of the connected itemsets. As an example we are going to do this
for production two of itemset zero. At first the dot is in front of the token labeled Typ.
Following that token we get into itemset two, so the first item of the extended grammar
rule is 0Typ2. Now the dot is in front the identifier token, following that token we get to
itemset six. The corresponding extended grammar item is 2identifier6, as we go from
itemset two to itemset six on token identifier. The next item we get is 6(7, because we
follow the left parenthesis token from itemset seven to itemset nine. The last two items
we get of that new production are 9)12 and 12;15. When we combine all created item
we get the right hand side of the first production of the extended grammar. This right
hand sides reads 0Typ2 2identifier6 6(7 7)10 10;12. The only thing missing at this point
is the left hand side of this production. The left hand side is created by treading the
left hand side of the original production as input to itemset zero. Doing so leads us to
itemset one. So the left hand side reads 0Proto1. Combining left and right hand side we
get the first complete extended grammar rule: 0Proto1 →0 Typ2 2identifier6 6(7 7)10 10;13

One special case exists for the dedicated start rule, as it has no transition out from
itemset zero on input S, because of this the left hand side always reads 0S$. This means
that this production is the accepting production. Doing this for all itemsets and all
productions we get the extended grammar shown in table 3.3 on page 53.

3.3.4. First Set Computation

At this stage we need to compute the first set for every non-terminal. The first set holds
the symbols that can be found as the first terminal on the right hand side of a production.
The first set can be computed considering the following three rules.

1. If x is a terminal First(x) = x
2. If V → x; First(V) = x, also if V → ε; First(V) = ε

3. If V → AB C where A,B,C are non-terminals we add First(A) minus ε to First(V).
If First(A) contains ε we do the same with B. Should we reach C and First(C)
contains ε we add ε to First(V).

These rules are applied as long as the first sets of the non-terminals change. After
applying the rules we get the following result shown in table 3.4 on page 54. All first
sets look the same, that is due to the fact that an extended grammar item of kind Typ
is, aside from Proto, the only non-terminal that starts a right hand side of an extended

52

3.3. Parse Table Construction

0S$ →0 Proto1

0Proto1 →0 Typ2 2identifier6 6(7 7ParameterList9 9)12 12;15

0Proto1 →0 Typ2 2identifier6 6(7 7)10 10;13

0Typ2 →0 void3

0Typ2 →0 int4
0Typ2 →0 float5
7Typ8 →7 void3

7Typ8 →7 int4
7Typ8 →7 float5
7ParameterList9 →7 Typ8 8identifier11

7ParameterList9 →7 Typ8 8identifier11 11,14 14ParameterList16

14Typ8 →14 void3

14Typ8 →14 int4
14Typ8 →14 float5
14ParameterList16 →14 Typ8 8identifier11

14ParameterList16 →14 Typ8 8identifier11 11,14 14ParameterList16

Table 3.3.: Extended grammar rules

rule. The first set of every Typ item is always followed by void, int, float, so all first
sets devised from that contain these three as well.
The first sets will be used in the follow set computation, which is described in section

3.3.5.

3.3.5. Follow Set Computation

Now that we have constructed the first sets for the extended grammar we can construct
the follow sets. Follow sets are used to define the reduce operation in the final parse
table. In layman’s terms a follow set is a set of terminals that follow a non-terminal in
the right hand side of a production. This needs to be done on the extended grammar,
because these sets can differ between extended grammar items even though they have the
same symbols as the normal grammar. Hence, 7Typ8, 0Typ2 are different non-terminals
for the parser.
To compute the follow sets we need four rules. For these rules to make sense some

definitions need to be made. The definitions read: 5

1. a,b and c represent terminal or non-terminal symbols
2. a* represents zero or more terminals or non-terminals

5At this point it is not present which symbols of the extended grammar are terminals or non-terminals.
These information need to be computed before follow sets can be created. To compute these
information’s we need to iterate over all productions of the extended grammar. Initially all symbols
are placed in the terminal set. While we iterate the productions we remove the left hand side of the
production from the terminal set and place it into the non-terminal set.This finally gives use two
non-intersecting sets of terminals and non-terminals.

53

3. The Parser

First(0S$) = void, int, float
First(0Proto1) = void, int, float
First(14Typ8) = void, int, float

First(7yp8) = void, int, float
First(0yp2) = void, int, float

First(8identifier11) = identifier
First(2identifier6) = identifier

First(6(7) = (
First(7ParameterList9) = void, int, float

First(14ParameterList16) = void, int, float
First(9)12) =)
First(7)10) =)
First(12;15) = ;
First(10;13) = ;

First(14void3) = void
First(7void3) = void
First(0void3) = void
First(14int4) = int
First(7int4) = int
First(0int4) = int

First(14float5) = float
First(7float5) = float
First(0float5) = float

First(11,14) = ,

Table 3.4.: First sets of the extended grammar

3. a+ represents one or more terminals or non-terminals
4. D is a nonterminal

Now for the rules:
1. An end of input symbol ($) is placed into follow set of the starting rule
2. Considering a rule R→ a∗Db. Every element of the first set of b, with exception of
ε is placed in Follow(D). In short Follow(D) = First(b)− ε. If First(b) contains ε
then everything in Follow(R) is put in Follow(D), too.

3. If a rule reads R→ a∗D then everything in Follow(R) is placed into Follow(D).
4. The follow set of all terminals are empty.

Similar to the first set computation these rules, expect rule one, are applied as long as
the follow sets change. Rule number one has the purpose of making the first rule been
able to accept input.
The end of input symbol ($) is returned by the lexer after no more characters can be

read from the input. The second rule which is does what the layman’s term description
implied.

54

3.3. Parse Table Construction

The third rule is introduced for clarity. The last sentence of rule two reads: If First(b)
contains ε then everything in Follow(R) is put in Follow(D). The ε has the meaning of a
not present token. If we remove the last b from the production in rule two we get the
production of rule number three. The idea by the back-referencing, through assigning the
follow set of R to D, is that after we are done with parsing D we continue with whatever
comes after R
Rule four simply means that the follow set of a terminal is of no interest, since it gets

merged into the follow sets of non-terminals.
Table 3.5 shows the follow set for the extended grammar of figure 3.3. The follow sets

Follow(0S$) = $
Follow(0Proto1) = $
Follow(14Typ8) = identifier
Follow(7Typ8) = identifier
Follow(0Typ2) = identifier

Follow(14ParameterList16) = (
Follow(7ParameterList9) = (

Table 3.5.: Follow set of extended grammar

for 0S$ and 0Proto1 depend only on rule one and three. The rest of the follow sets are
created through the use of rule two.
It is important to understand here, that the token in the follow sets are token of the

normal grammar, that means they don not have two numbers linking them to a specific
itemset. This is because these token need to match a token coming from the lexer.
The follow sets will be used, in a later step, to create the reduce operations in the final

parse table.

3.3.6. Extended Follow Set Reduction

Now having the follow sets and the extended grammar, we need to convert them into a
form that enables us to use them as reductions in the final parse table. The first step is
to merge the extended rules based on their base rule and the last itemset number of the
last extended item of the right hand side. 6 When merging one or more rules their follow
sets get merged as well and assigned to a newly merged rule. Finally we assign a final
set number to every rule. This final set number is again the itemset number of the last
token of the right hand side.
Before we merge the rules we combine the follow set of the extended grammar and their

matching production. The follow set gets selected based on the right hand side of the
production. Doing this gets us the combination shown in table 3.6. This table is used to
carry out the merge operation as described above.

6Base rule means in this case, the rule without the itemset numbers to the left and right of the actual
token.

55

3. The Parser

N
um

be
r

R
ul

e

Fo
llo

w
se

t

1 0S$ →0 Proto1 $
2 0Proto1 →0 Typ2 2identifier6 6(7 7ParameterList9 9)12 12;15 $
3 0Proto1 →0 Typ2 2identifier6 6(7 7)10 10;13 $
4 0Typ2 →0 void3 identifier
5 0Typ2 →0 int4 identifier
6 0Typ2 →0 float5 identifier
7 7Typ8 →7 void3 identifier
8 7Typ8 →7 int4 identifier
9 7Typ8 →7 float5 identifier
10 7ParameterList9 →7 Typ8 8identifier11 (
11 7ParameterList9 →7 Typ8 8identifier11 11,14 14ParameterList16 (
12 14Typ8 →14 void3 identifier
13 14Typ8 →14 int4 identifier
14 14Typ8 →14 float5 identifier
15 14ParameterList16 →14 Typ8 8identifier11 (
16 14ParameterList16 →14 Typ8 8identifier11 11,14 14ParameterList16 (

Table 3.6.: Combination of follow set and extended grammar productions.

Rules that can be merged are 4, 7, 12, 5, 8, 13, 6, 9, 14, 10, 15 and 11, 16 as they decent
from the same basic rules and share a common last itemset number. Running the merge
operation exemplary on the first tuple we get a new rule follow set combination that is
shown in table 3.7. As expected the new final number is three, due to being three the

Final number Pre merge rules Rule Follow set
3 4, 7, 12 Typ→ void identifier

Table 3.7.: Exemplary result of merge operation on rules 4, 7, 12

last itemset number of the right hand side. The column pre merge rules is inserted for
readability. The third column, labeled rule, shows the base rule the three productions
accent from. The last column finally shows the follow set, as all three rules have the same
elements in their respective follow set, the merged follow set only contains the identifier
token. Doing the merge operation for the rest of merge candidates as well as the single
rules we get table 3.8. The only thing that is interesting in the result is, that almost
all not merged rule got a final number that is unlike their pre merged number. This is
because their final number is selected by evaluating the right most itemset number of
the last token of the right hand side of each production. We will use this table in section
3.3.7 to obtain the reduction actions.

56

3.3. Parse Table Construction

F
in

al
nu

m
be

r

P
re

m
er

ge
ru

le
s

R
ul

e

Fo
llo

w
se

t

1 1 S → Proto $
3 4, 7, 12 Typ→ void identifier
4 5, 8, 13 Typ→ int identifier
5 6, 9, 14 Typ→ float identifier
11 10, 15 ParameterList→ Typ identifier (
13 3 Proto→ Typ identifier () ; $
15 2 Proto→ Typ identifier (ParameterList) ; $
16 11, 16 ParameterList→ Typ identifier ParameterList (

Table 3.8.: Merged extended rules and follow sets

3.3.7. Action and Goto Table Construction

This step constructs the final parse table. As its input we use the transition table shown
on page 51.
The construction of the action and goto table is done in four steps. These steps are:

1. Place accept actions
2. Create goto part
3. Place shift actions
4. Place reduction actions

The first thing that needs to be done is to create a column for the end of input token
$. After that we need to place an accept action in every row where the corresponding
itemset contains the start production with the dot at its end. As we can see in figure 3.6
that is only the case for itemset one. That means we have to place the accept action in
row one.
The next step is to create the goto part of the table. This step is as simple as copying

the non-terminal entries of table 3.2 into the new final parse table.
Placing the shift action is not much harder than creating the goto part of the table. To

create the shift entries we copy the terminal entries of the transition table and place an s
in front of them to indicate that they are shift operations. The numbers are not changed.
Finally we place the reduction action according to the merged extended rules of table

3.8. The final number indicates the row and the follow symbol is used as the column
index. At that position in the table a reduce action is placed, that corresponds to the
rule of the rule column of the table 3.8. To make the final parse table better readable
the productions are enumerated here:

57

3. The Parser

1. Proto→ Typ identifier (ParameterList) ;
2. Proto→ Typ identifier () ;
3. Typ→ void

4. Typ→ int

5. Typ→ float

6. ParameterList→ Typ identifier

7. ParameterList→ Typ identifier , ParameterList

A reduction action like a for example r4 means reduce with rule Typ→ int. The final
parse table is show in table 3.9. The only part different from the construction of an SLR

Action Goto

It
em

Se
t

$ id
en

tifi
er

() ; vo
id

in
t

flo
at

, S Pr
ot

o

T
yp

Pa
ra

m
et

er
Li

st

0 s3 s4 s5 1 2
1 accept
2 s6
3 r3
4 r4
5 r5
6 s7
7 s10 s3 s4 s5 8 9
8 s11
9 s12
10 s13
11 r6 s14
12 s15
13 r1
14 s3 s4 s5 8 16
15 r2
16 r7

Table 3.9.: Final parse table

parse table is the way the reduction actions are created and placed in the table. This
method of parse table construction is therefore sometimes called LALR by SLR.

58

4. The Compiler

4.1. Introduction

A compiler is an program that takes source code and creates an executable program of it.
To reduce complexity a compiler is usually split into two parts. These two parts consist
of three sub-parts each. The first part is called the frontend. The frontend analyses the
input for correctness.1 The second group is called the backend. The backend creates the
actual executable.

4.2. The Frontend

The frontend has to check the input for errors and to pass the backend all needed
information to create an executable.

4.2.1. Parts of the Frontend

The aim of the frontend is check if the source code form a word of the programming
language and to check if all semantic rules are abided. The parsing of the languages plays
a big rule in accepting the input. To facilitate this, the first two parts of the frontend
are tiddly coupled to achieve this.

4.2.1.1. Lexical Analysis

The lexical analysis reads the input character by character and forms tokens of it. This
process is discussed in section 2 on page 27 and following.

4.2.1.2. Syntactical Analysis

The syntactical analysis consists of a parser that reads one token after another from
the lexer. Different kinds of parsers are discussed in detail in section 3 on page 41 and
following. It is important to understand that a lexer only generates token when parser
requests them. While matching the input token to constructs of the languages the parser
usually generates a tree like representation of the input.

1Correctness in the sense that it matches the language’s definition.

59

4. The Compiler

4.2.1.2.1. Parse Trees
A parse tree are an one to one representation of the parsed token stream. Considering a
rule for a if condition in figure 4.1 we get the parse tree shown in figure 4.2. A parse

〈If 〉 ::= ’if’ ’(’ 〈Condition〉 ’)’ ’{’ 〈BlockStatement〉 ’}’

Figure 4.1.: Grammar rule for if condition

If

if (Condition) { BlockStatement }

Figure 4.2.: Parse tree for the if grammar rule

tree contains all tokens received the lexer. Parse trees can be generated very easily from
a grammar. The left hand side is the parent of all items on the right hand side of a
production. Unfortunately not all token are required for the following steps. For instance
the opening and closing parenthesis as well as the curly braces are not important as they
do not carry information that is not reconstructible from the other nodes.

4.2.1.2.2. Abstract Syntax Trees
To overcome the shortcomings of parse trees, abstract syntax trees are created. As the
name suggests the syntax is not converted one to one, instead all redundant information
are left. Figure 4.3 shows a possible abstract parse tree for the if grammar. Building an

If

Condition BlockStatement

Figure 4.3.: The abstract parse tree for the if grammar rule

abstract syntax tree is a bit more complex than building a parse tree. This is because

60

4.3. The Backend

depending on the rule different tokens can be omitted from the tree. Building an abstract
syntax tree one can remove a lot of nodes from the tree to represent the input. This
is important because the input can be arbitrary long and as parse trees are usually
generated on the heap fewer calls to the allocator procedures allows the tree to be build
faster. Another good side effect, of the reduced number of nodes in the tree, is that
traversing it in semantic analysis is faster, because less nodes have to be checked if they
match certain types of nodes.

4.2.1.2.3. Symbol Table
A symbol table is a data structure that stores symbols like functions or variables and
their visibility.2 This structure is usually built while parsing.

4.2.1.3. Semantic Analysis

A The semantic analysis verifies if rules, that could not be expressed by a grammar of
the language, are obeyed. These rules are for instance whether all called function are
visible or if all assignments are in agreement with the type system. The complexity as
well as the runtime of the semantic analysis can vary significantly depending on the
programming language. Depending on the semantic analysis the parse tree might be
modified in certain ways.

4.3. The Backend

After the semantic analysis is done, the abstract parse tree is passed to the backend. The
backend has the task to create an executable file. This is usually done in three steps.

1. Intermediary code generation
2. Optimization of the intermediary code
3. Executable generation

The intermediary code is usually represented in a programming language that could run
on an abstract central processing unit (CPU). These languages are normally designed to
be easily transferable into platform specific machine code. The reason for converting the
parse tree into a temporary representation is to run the same optimization strategies
for different programming languages. This way the complexity of the backend can be
reduced and or the same backend can be used for different compilers.
As already mentioned the optimization runs on the intermediary code. The code is

usually optimized for speed and space requirements.
The last step is to create the actual executable. Two ways are possible. The first is to

directly emit the machine code from the optimized intermediary code. The second is to
create assembler code for the CPU and call an assembler to create the machine code.

2Visibility in this context means whether or not a piece of program has a given symbol in its scope.

61

Part III.

Implementation

63

5. The library Libhurt

The default D compiler comes with a standard library. Due to historical reason the
library is split into two parts, druntime and phobos. For D1 two standard libraries exists.
Some members of the D community where unhappy with the scale of phobos for D1,
so they developed Tango. They did not stop at adding high level functionality. Over
time a complete new runtime was created, from garbage collection to string parameter
mapping. This has finally lead to incompatibility between the two libraries. At some
point programmers had to choose. To avoid this in D2 all low level functionality was
placed in druntime. High level functionality like math functions for stream- and file-
abstraction where placed in phobos.
Even though a library is present some vital functionality for compiler construction

is missing. Most of it are container classes. As mentioned earlier the idea developed
from studying different kind of std::vector implementations in D. Data structures take
a big role in compiler construction, they even marked the start of this project. Other
components of the library are logging, string formatting, string utilities, random number
generators, stream- and file-abstraction, algorithms and time handling. Random number
generators and stream-abstraction where ported from Tango respectively phobos. 1

The following chapters will explore the design and the implementation of the container
classes because they played a key role in the development of this project. These classes
include different kind of lists, array like types, maps, sets and multimaps.

5.1. Insert Search Remove interface

The idea behind the insert search remove interface is that containers like maps, multimaps
or even sets need underlying data structures that offer the three basic operations insert,
search and remove to work. Through the use of polymorphism the interface of these
containers can stay the same but the runtime properties can be changed by the passing
of an argument. This is good, because this allows the program to exchange the data
structures it uses at runtime. It is important to note here that the data structures
of container classes cannot change at runtime, instead a copy of the container can be
created using a different underlying data structure. To further facilitate this idea the
insert search remove (ISR) specification also introduces an interface for iterators and
storable types.

1Tango is licensed under a GPL compatibly BSD license and phobos is licensed under the Boost license,
which is also GPL compatible [Ige04] [com12a].

65

5. The library Libhurt

5.1.1. The insert search remove specification

Listing 5.1: ISR specification

1 enum ISRType { // This enumerates all available underlaying
2 BinVec , // data structures
3 BinarySearchTree ,
4 HashTable ,
5 RBTree
6 }
7

8 abstract class ISRNode (T) {
9 T getData ();

10 }
11

12 interface ISR(T) {
13 public bool insert (T data);
14 public bool remove (T data);
15 public bool remove (ISRIterator !(T) data , bool dir = true);
16 public ISRIterator !(T) begin ();
17 public ISRIterator !(T) end ();
18 public ISRNode !(T) search (T data);
19 public ISRIterator !(T) searchIt (T data);
20 public bool isEmpty () const;
21 public size_t getSize () const;
22 }
23

24 abstract class ISRIterator (T) {
25 public void opUnary (string s)() if(s == "++") { increment (); }
26 public void opUnary (string s)() if(s == "--") { decrement (); }
27 public T opUnary (string s)() if(s == "*") { return getData (); }
28 public T getData ();
29 public bool isValid () const;
30 public ISRIterator !(T) dup ();
31 public void increment ();
32 public void decrement ();
33 }

The ISR specification consists of four parts. The first, the ISRType enum listing all
available ISR implementation. At the moment libhurt provides four implementations
which are presented later. In practice this enum gets used to control the control flow of
the data structure construction.
The second part of the specification presents an abstract template class called ISRNode.

Derivations of this class are what is actually stored by the ISR implementations. The
template parameter T indicates the type of data the data structure stored. The only
thing this class enforces is that there is a getData function. This function returns the data
stored by the node. Everything else is up to the specific data structures. For instance
the tree implementations would also store the child and parent pointers in this class.

66

5.1. Insert Search Remove interface

The interface ISR defines all functions a ISR data structure needs implement. On top of
the insert, search and remove function some more functions are defined. These functions
don not change the basic idea, but are merely convince functions. The only function
that are new and interesting are begin and end, both return an ISRIterator, which is an
iterator type class. The iterator, returned by begin, points to the first element of the ISR
data structure instance. As the name suggest, the iterator returned byend points to the
last element of the ISR data structure. The function getSize returns the number of stored
ISRNodes. The bool returned fromisEmpty indicates if no ISRNodes are stored. The
three main methods are defined as well. Remove and search are defined even twice. Insert
acts as expected, data is passed and a boolean indicating whether or not the insertion
where successful. An insertion returns false if the value was already present, this is
particularly interesting for the set container. Search and searchIt are basically the same
function the reason for two different names is that functions can not be overloaded on
return type in D , neither C. Both return a link to the searched data or null if the data is
not present. Remove is the exact opposite to insert, passing the data or an ISRIterator
to it removes the data from the data structure. The returned boolean indicates whether
the data was present before removal.
The last type of the ISR is the iterator type ISRIterator. As being an abstract class

ISRIterator already implements three methods. This is because all opUnary function
are overloaded on their template parameter value. These kinds of function cannot
be overloaded in a derivating class. The three methods call abstract functions of an
ISRIterator class. ISR data structures can be navigated with ISRIterator in the same
way iterator work in the standard template library of C++, with the exception that an
iterator knows by them self if it is no longer valid. The method isValid returns a boolean
that indicates whether an iterator is pointing to a valid entry. 2

5.1.2. Implementation

In the following sections the different ISR implementations are presented. The two tree
based types share big parts of the implementation. The only thing unique to both are
the insert and remove functionality. A good example for shared code in this case is the
tree traversal.

5.1.2.1. Tree based container

5.1.2.1.1. Binary Search Tree
A binary search tree is a data structure that builds a tree by placing new elements as so
called leafs. The first element inserted is the so called root node. Every other element is
inserted at a position defined by its value. The insertion procedure walks the tree from
the root to each leaf. The value of each new element is compared to every element on the
insertion path. Should the value be greater the right child of the current node is visited
next. If the value is smaller the left child is traversed instead. If any of these children

2The standard template library (STL) iterator are used in a manner that they are valid as long as the
compare unequal to a special end iterator that is defined by every container type.

67

5. The library Libhurt

are not yet defined the new element becomes that child. On average the complexity for
insert, search and remove operation is O(n log n), where n is the number of objects in
the tree structure. A drawback of binary search trees (bsts) is that their worst case time
complexity is O(n) [Knu98, Wal08a, Wal08b].

5.1.2.1.2. Red-Black trees
Every operation on a red-black tree takes O(n log n) time. To achieve this, some
constraints are added to the tree. Every node of the tree is colored either red or black.
This red-black coloring builds another structures in conjugation with the tree. This
structure requires that every black node only has red children and that every red node
only has black children, every leaf is colored black and every path to a descended node
has the same length[CLRS09, Wal08d].

5.1.2.2. Hashtables

A hash-table allows insertion, removal and searching to run on an average time complexity
of O(1). The idea behind this data structure is to compute a unique key from the given
data and use this key as an index to an array.3 The array does have a fixed size, but the
range of the key values is not fixed. This presents a problem, even when considering a
perfect hash function, the problem is that the integer value has to be trimmed to the
length of array by the euclidean division [Cic80]. The euclidean division will make every
hash function imperfect again, this means that key collision can occur. The resolution
algorithm implemented in libhurt is to place all colliding keys in a linked list for that
particular key. Even though this could lead to a O(n) runtime complexity tests have
shown that this possibility has virtually no influence on the performance of this hash-table.
Another way of counteracting the number of key collision is to only fill the array to a
certain level. Typically the fill level is between a value of 0.5 to 0.7[CLRS09, p. 253-280].
Libhurt uses a value of 0.7. As shown in table 5.2 the speed of the hash-table is good in
comparison to the other ISR containers and the implementation is considerable simpler.
Listing 5.2 shows the insertion implementation.

Listing 5.2: Hash-table insert methode

1 static void insert (Node !(T)[] t, size_t hash , Node !(T) node) {
2 Node !(T) old = t[hash];
3 t[hash] = node;
4 t[hash]. next = old;
5 t[hash]. prev = null;
6 if(old !is null) {
7 old.prev = t[hash];
8 }
9 }

10

11 bool insert (T data) {

3The unique key must be convertible into an integer type to be used as an array index.

68

5.1. Insert Search Remove interface

12 Node !(T) check = this. search (data);
13 if(check !is null) {
14 return false;
15 }
16

17 size_t filllevel = cast(size_t)(this.table. length *0.7);
18 if(this.size + 1 > filllevel) {
19 this.grow ();
20 }
21

22 size_t hash = this. hashFunc (data) % table. length ;
23 insert (this.table , hash , new Node !(T)(data));
24 this.size ++;
25

26 return true;
27 }

Lines 12 to 15 check if the data to be inserted already exists. Should that be the case
false is returned to indicate the failure of the operation. The next two statements test
whether the array needs to be grown. As mentioned earlier the threshold is 0.7. The last
three statements in combination with the static insert function implements the actual
insertion. In line 20 the index or hash, is computed from the data. The index and a
newly constructed node, are passed to the static function.4 To keep track of the number
of saved values the size is incremented and finally a boolean is returned to indicate a
successful insertion. The static insert function is, at its core, an insert function for a
double linked list, with the exception, that all nodes are inserted at the beginning. New
nodes are inserted at the beginning of the list, as shown in line three. Lines four to eight
build the link structure of the double linked list. The conditional statement of line six is
needed to prevent segmentation faults due to null pointer dereferencing. Inserting takes a
total of 45 lines5, in comparison to 72 lines in a red-black tree. The total number of lines
in combination with the complexity of the control flow makes the insertion function of
the hash-table easier compared to the tree ISR implementations. 6 7 The grow function
is trivial, as it simply iterates over all elements in the hash-table and inserts them into a
new array via the static insert function. The other functions defined by the ISR interface
are implemented in a similar, simple manner[Wal08c].

4The current array is also passed. The name of that array is table. This is done because the static
insert function is also used when the hash-table is grown. To prevent code duplication, in these two
functions, the insertion logic is implemented statically and all used data is passed explicitly to it.

5Both insertion methods take 27 lines plus 18 for the grow function.
6The insertion method for the red-black tree is implemented in file

libhurt/hurt/container/rbtree.d.
7For completeness the insertion function of the bst has a total of 31 lines and the insertion function of

the binary vector has 16 lines.

69

5. The library Libhurt

5.1.2.3. Binary vector

The binary vector is the most unusual container of the ISR implementations. It uses a
vector, a sort function and binary search to implement the ISR interface.
The idea is to have a sorted array and use binary search for finding data. When data is

inserted it is simply appended to the back, as a vector does implement this on average
in O(1). After appending the new data to the vector it gets sorted. As libhurt has an
implementation of quicksort, this sorting function is used. Because the array is sorted
before every insertion, the time for sorting is not high. 8 To get a unique key for sorting
the data items, the same hash function used in the hash-table implementation is used.
Searching data is done, as discussed earlier, by means of the binary search algorithm.
Removing objects is the simplest operation. The index of the value in the vector is

obtained trough the search method. This index is passed to the remove method of the
vector.

5.1.3. Comparison

The availability of four ISR interface implementations offers the ability to choose the
best suited for a specific purpose. To make this choice, one must now the theoretical and
practically properties of the implementations. Table 5.1 shows the theoretical runtime
complexity. Even so the binary vector works in general without any heap allocation it

Name Insertion Searching Removal
average worst average worst average worst

BST O(log n) O(n) a O(log n) O(n) a O(log n) O(n) a

RB tree O(log n) O(log n) O(log n) O(log n) O(log n) O(log n)
Hash-table O(1) O(n) b O(1) O(n) b O(1) O(n) b

Binary vector O(n log n) O(n2) c O(log n) O(log n) O(log n) O(log n)
a In the worst case a binary search tree has the complexity of a linked list. Viewing a

graphical representation of such a tree would show a linked list as well.
b In the worst case a hash-table has the complexity of a linked list. In this case all

entries yield the same hash.
c The worst time complexity is O(n2), this is due to the worst time complexity of

quicksort being O(n2).

Table 5.1.: Runtime complexity four ISR implementations.

is very slow in comparison to the other ISR implementations as table 5.2 shows. As
table 5.2 shows, the hash-table is in general the fastest ISR implementation. The binary
vector does fail to compete against the other ISR implementations. Inserting 8192
elements in the binary vector takes over half a minute, which is nearly 1000 times slower
than the fastest. The table 5.2 on page 71 shows, that the properties of the different

8This is empirically gained data. Theoretical the sorting time can be O(n2) as this is the worsted case
complexity of quick sort [CLRS09].

70

5.1. Insert Search Remove interface

Insertion b,c

BST RB Tree Hash Bin-Vec a

64: 0 0 0 1
128: 0 0 0 5
256: 0 0 0 22
512: 0 0 0 101

1024: 0 0 0 444
2048: 1 1 1 1946
4096: 2 4 3 8499
8192: 5 7 4 36510

16384: 11 16 12 −
32768: 27 39 29 −
65536: 69 91 71 −

131072: 170 196 238 −
262144: 368 515 330 −
524288: 822 975 998 −

1048576: 1883 2563 2942 −

Searching b,c

BST RB Tree Hash Bin-Vec a

64: 0 0 0 0
128: 0 0 0 0
256: 0 0 0 0
512: 0 0 0 0

1024: 0 0 0 0
2048: 0 0 0 1
4096: 1 1 0 2
8192: 3 2 1 12

16384: 7 6 1 −
32768: 20 13 3 −
65536: 46 33 9 −

131072: 118 83 22 −
262144: 277 223 48 −
524288: 665 505 103 −

1048576: 1586 1232 213 −

Removal b,c

BST RB Tree Hash Bin-Vec a

64: 0 0 0 0
128: 0 0 0 0
256: 0 0 0 0
512: 0 0 0 1

1024: 0 0 0 1
2048: 0 0 0 4
4096: 1 2 0 13
8192: 2 4 1 53

16384: 5 9 1 −
32768: 13 23 3 −
65536: 35 58 8 −

131072: 87 147 19 −
262144: 207 347 41 −
524288: 518 759 92 −

1048576: 1288 1784 194 −
a Because of very long the runtimes the binary vector was only testes up to 8192 elements.
b The highlighted number mark the minimum runtime.
c Values are in microseconds. The test machine is a Intel Core 2 Duo with 1.3GHz and 4GiB RAM. BST stands

for binary search tree, RB Tree for Red-black trees, Hash for Hash-table and Bin-Vec for binary vector.

Table 5.2.: Performance tests of the different ISR implementations.

71

5. The library Libhurt

implementation result in no speed difference up to 2048 elements. With the exception
of the insertion operation the hash-table is always the fastest container. Insertion is on
average fastest with the binary search tree, followed by the hash-table.

5.1.4. Using ISR types

Now that we have seen the different incarnations of ISR type implementations, we will
discuss containers that use these data structures as a basis for their implementation. The
presented containers take the standard template library container of C++ as a model.

5.1.4.1. Maps

The map container implements an associative container that maps a value to a key. The
map allows the programmer to obtain values by searching for the corresponding keys.
Values or keys can not exist on their own inside the map. As the ISR interface only
allows single values to be stored a proxy type was introduced to be stored. This so called
MapItem, takes two values, the first representing the key, the second representing the
value. Listing 5.3 shows a shortened implementation of the MapItem. 9

Listing 5.3: MapItem implementation

1 class MapItem (T,S) {
2 T key;
3 S data;
4

5 override bool opEquals (MapItem !(T,S) f) const {
6 return this.key == f.key;
7 }
8

9 override int opCmp(MapItem !(T,S) f) const {
10 if(this.key > f.key)
11 return 1;
12 else if(this.key < f.key)
13 return -1;
14 else
15 return 0;
16 }
17

18 override hash_t toHash () const {
19 return this.key. toHash ();
20 }
21 }

The important part of this class are the three const methods opEquals, opCmp, toHash.
The methods opEquals allows for two instances to be compared through the == operator.

9The implementation shown omits some details, like necessary casts, the constructors and getter and
setter functions. This code was omitted to shorten the listing and make it easier to argument about.
The omissions will not change the general usage of the class.

72

5.1. Insert Search Remove interface

This operator is used in all ISR implementation to check whether a found object is
the searched object. Both tree implementations use the opCmp function through the
<,>, <=, >= operators to figure out where to store a node [dla12e]. All presented
functions in the implementation depend on the value of the member key for their result.
Concluding it can be said that the MapItem class acts like a tuple of two values whose
position within a data structure is depends only on the first tuple value, the key.
The map implementation is no surprises like the partial implementation in listing 5.4

shows.

Listing 5.4: Map container

1 class Map(T,S) {
2 private ISR !(MapItem !(T,S)) map;
3 ISRType type;
4

5 this(ISRType type= ISRType . RBTree) {
6 this.type = type;
7 this. makeMap ();
8 }
9

10 void makeMap () {
11 if(this.type == ISRType . RBTree) {
12 this.map = new RBTree !(MapItem !(T,S))();
13 } else if(this.type == ISRType . BinarySearchTree) {
14 this.map = new BinarySearchTree !(MapItem !(T,S))();
15 } else if (...)
16 }
17

18 size_t getSize ();
19 size_t isEmpty ();
20 void clear ();
21 bool contains (T key);
22 MapItem !(T,S) find(T key);
23 bool insert (T key , S data);
24 void remove (T key);
25 void remove (ISRIterator !(MapItem !(T,S)) it , bool dir = true);
26 S[] values ();
27 T[] keys ();
28 ISRIterator !(MapItem !(T,S)) begin ();
29 ISRIterator !(MapItem !(T,S)) end ();
30 }

The constructor on lines four shows the typical use of the ISR implementations. The
type of the underlying data structure is passed to the constructor. The value is stored
for later use. Then the makeMap member is called to construct the underlying data
structure. Depending on the ISRType a RBTree, a BinarySearchTree or any otherISR
implementation is created.
The following three member functions getSize, isEmpty and clear act quite literally.

The first returns the number of mappings stored in the container. The second checks

73

5. The library Libhurt

whether or not at least one mapping is present. The member clear is implemented by
calling the makeMap member. This can be done, because D is garbage collected and
therefore no memory leakage can occur.
The member function contains, remove and find share a common problem, the passed

parameter is of type T, the key type. This parameter can therefore not be passed to the
search or searchIt member function of the insert search remove data structures, because
they only accept values of type MapItem!(T,S) at this point.10 To overcome this problem
a MapItem is created whose key is the passed parameter. As described earlier the key is
the only important part when searching for a MapItem.
Inserting a new value is done by passing a key and value to the insert member function.

The function constructs a MapItem of these two parameters and passes it to the insert
function of the ISR implementation accessible through the map member. The returned
boolean indicates whether a mapping on that key was already present. If a mapping was
present false is return and true otherwise.
The next two functions, called values and keys, return arrays of either all keys or all

values. These arrays are created by iterating over the underlying ISR data structure.
The member functions begin and end return iterators. These iterators point either to

the beginning or the end of the maps. It is important to note here, that the ordering of
the MapItems depend on the used ISR data structure.11 Tree based ISRTypes are sorted
the other are not.

5.1.4.2. Sets

Set containers follow a mathematical set in the sense that every element can be present
exactly once. Listing 5.5 shows the class and some of its member functions.

Listing 5.5: Set implementation

1 class Set(T) {
2 public size_t getSize () const;
3 public size_t isEmpty () const;
4 public bool contains (T data);
5 public bool insert (T data);
6 public bool remove (ISRIterator !(T) it);
7 public bool remove (T data);
8 ISRIterator !(T) begin ();
9 ISRIterator !(T) end ();

10 public void clear ();
11 }

The constructor and the makeMap member function are omitted because they are equal
to those of the map implementation. The boolean returned by contains, insert and
remove indicates if the operation was successful or the data was contained. The member
10Compare to line two of listing 5.4 and listing 5.1.
11Compare this to the map and unsorted map implementations of C++.

74

5.1. Insert Search Remove interface

function clear works the same way it does in the map container.12 The member function
begin and end return iterators to the beginning and the end of the set, respectively.12

Again, getSize, and isEmpty return information about the number of elements stored in
the container.

5.1.4.3. MultiMaps

A multimap is an associative container allowing a one to many mapping. The implemen-
tation follows that of map very closely. Again a proxy class with the needed member
function is created to place it into the ISR data structures. This class also holds two
member variables. The first is the key variable. The difference to the MapItem, described
in 5.1.4.1 is that it, instead of a simply placing the value variable, has a double linked
list to take all the possible values. Whenever a new mapping is created and the key has
been placed previous, the new value is inserted into the already existing double linked
list. The listing 5.6 shows the available member function of a multimap.

Listing 5.6: Multimap implemenatation

1 class MultiMap (T,S) {
2 Map !(T, DLinkedList !(S)) mapping ;
3

4 Iterator !(T,S) insert (T key , S value);
5 Iterator !(T,S) begin ();
6 Iterator !(T,S) end ();
7 Iterator !(T,S) invalidIterator ();
8 Iterator !(T,S) lower(T key);
9 Iterator !(T,S) upper(T key);

10 Iterator !(T,S) range(T key);
11 bool contains (T key);
12 size_t getCountKeys () const ;
13 size_t getSize () const ;
14 bool isEmpty () const ;
15 bool remove (Iterator !(T,S) it);
16 DLinkedList !(S) removeRange (T key);
17 void clear () ;
18 }

On the first look it can be seen that iterators play a much bigger role than in any
other container present this far. The reason for this is to navigate the double linked list
efficiently and iterators are the only option. This leads to the question, why a double
linked lists is used instead of single linked list or vectors? Single linked list are dismissed
because they only allow iteration in one direction and removing elements from them
makes the iterator more complex. Vectors are not chosen, because they waste memory.
If our goal where to iterate over the mapped values of a certain key we have two choices.

The first choice, closely resembling the C++ approach, would be to get iterators. One
through the member functions lower and one through the function upper. Now we can
12Compare to map implementation in section 5.1.4.1.

75

5. The library Libhurt

simply use the iterator obtained through lower to iterate the values. When the iterator
compares equal to the iterator obtained through upper we have traveled all the values. A
less powerful, but easier, approach is to use the range member function. It returns an
iterator that can only travel a specific mapping, starting at the beginning.
The last two member function worth mentioning are the remove functions. The first

remove function takes an iterator as parameter. This allows to specify exactly which
mapping to remove. If we were to only pass the key as parameter we could not infer
which of the possible multiple mappings we want to remove. Earlier it was said that the
use of single linked list would make removal operations more difficult. This is because the
passed iterator actually must point to one element before the current element to remove
it. Doing so would make handling iterators more complex, because they actually don
not point to the expected location. The function removeRange, as the name suggests,
removes all mappings of the given key.

5.1.4.4. MapSets

A mapset is a container original to libhurt. Similar to a multimap it allows to represent
a one to many relations. The unique part about it is that the many part of the
relation follows the set restriction: Any element must appear only once. The actual
implementation builds on already implemented containers.

Listing 5.7: MapSet implemenatation

1 class MapSet (T,S) {
2 // data structure to store the mappings
3 private Map !(T, Set !(S)) map;
4

5 this(ISRType mapType , ISRType setType);
6 public bool insert (T t, S s);
7 public bool remove (T t, S s);
8 public bool contains (T t, S s);
9 }

Line 3 of listing 5.7 shows the actual data structure used to store the mapping. As
mentioned it uses already present data structures. The line quiet literally says the
variable map is a mapping from key type T to a set that stores elements of type S. The
operations follow a common pattern. First, the parameter t is used to get the correct set
out of the map. Then the parameter s is used to perform the action on the set. The set
property of the stored value is particularly useful with the lexer- and parser-generators.13

A good property of the mapset, in comparison to the multimap, is that look ups can be

13The origin of this data structure is the parser-generator dalr. After creating several instances of map
set combinations that looked similar to line 3 of listing 5.7, The mapset class was created to replace
those and to provide a uniform interface.

76

5.2. Random Access Containers

done in O(1), compared to O(n).14 This runtime behavior can be achieved because the
constructor of the mapsets, the prototype is shown on line five, allows to set the ISR
types used by the map and the set. This allows the programs to create mapsets that are,
best for its task, at runtime.

5.1.4.5. MultiSets

A multiset is, in a mathematical sense, not really a set, as it stores multiple instances
of a unique element. Even though it behaves like a set, apart from its insert member
function. Insertion also works when the passed element is already present. Should this
be the case, a counter is incremented that stores the number of insertions of the element.
Removing elements decrements this counter till no more elements are present. It shares
the same properties as every other container that is using the ISR data structures.

5.2. Random Access Containers

Arrays are nearly universal data structures that, offer a number of advantages like fast
access time, easy iteration and good caching properties. Unfortunately though, they are
fixed in size. This means whenever an element is inserted or removed it usually needs
to be reallocated, one element bigger or smaller and all elements need to be copied to
the new location.15 The usual way to counteract this is to create an array, that is bigger
than needed and carry an integer value that holds the number of placed elements.16 This
path was taken by the vector implementation shown in the next section. The following
section discusses the implementation of two random access containers in libhurt.

5.2.1. Vectors

The vector implementation in libhurt follows the above mentioned idea. The constructor
creates an array with an defined number of elements. Whenever an element is appended
it is stored at the next free position accessible through a stored index. Should the index
indicate that there are no more free elements, the array is reallocated with twice its
original size, the old entries copied and the new element appended.17 Listing 5.8 shows
the available member function of the vector container.

14The access time of O(1) results in the use of a hashtable, as underlying data structure, for the map as
well as the set. Accessing the multimap has the runtime complexity of O(n) because searching the
double linked list inside takes O(n) time.

15Copying the values is not always necessary when we consider the behavior of realloc of the C standard
library. As with runtime complexities, the worst case is considered.

16Compare this to the vector implementation of C++.
17The growth rate of two is empirically obtained value.

77

5. The library Libhurt

Listing 5.8: Vector implementation

1 class Vector (T) : Iterable !(T), RandomAccess !(T) {
2 Vector !(T) pushFront (T toAdd);
3 Vector !(T) pushBack (T toAdd);
4 T popBack ();
5 T popFront ();
6 T peekBack ();
7 T peekFront ();
8 Vector !(T) insert (in size_t idx , T toAdd);
9 T remove (in size_t idx);

10 T opIndex (size_t idx);
11 }

As the listing shows, the vector implements two interfaces, called Iterable and RandomAc-
cess. The Iterable interfaces defines two function prototypes with the name opApply. The
opApply functions are used by the D compiler to allow custom classes to use the foreach
statement. This interface was designed to easily exchange containers that only need
linear traversal. The RandomAccess interface, as the name suggests, supplies function
definitions that when implemented allow random access through the bracket operator.
If a class implements the function opIndex, the compiler converts the square bracket
operator into a call to opIndex. The opIndex function is used for implementing random
access to the vector and the deque as well. Removing the element with value 4 from

array: 3 1 4 1 5 9 2
index: ↑

Table 5.3.: Representation of vector data structure

the vector is shown in 5.3. To remove an element we need to copy the following four
elements one position to the left. As the number of copy operations is dependent of the
number of elements the runtime complexity is linear. As the operation popFront can be
understood as a remove of the first element, the same runtime complexity assumed. The
member function pushFront and insert are the opposite of remove and popFront, because
up to n elements need to be shifted to the right.

5.2.2. Deques

The goal for a deque implementation was to improve on the vector, so that more operations
run in average in O(1). To achieve this the deque implementation of libhurt is basically
a circular buffer implemented on an array. The implementation uses two indices, one
marking the beginning and one marking the end. Introducing a second index makes for a
more difficult implementation. Table 5.4 shows three possible states of the index. State
number one shows the empty state. The low and high index could point to any of the
array elements at this state. The second state shows something familiar to the vector.
The high index points to an array element with a higher index than the element pointed

78

5.2. Random Access Containers

State 1
array:
index: ↓ ↑

State 2
array: 3 1 4 1 5 9 2
index: ↓ ↑

State 3
array: 1 5 9 2 3 1 4
index: ↑ ↓

Table 5.4.: Example states of the deque

to by the low index. Even though the low index points to index zero, this does not mean
the low index must be zero. The last state shows the case, when the low index points to
an array element located at a higher position than the element pointed to by the high
index.18 By simply decrementing or incrementing the low index we can now pushFront or
popFront elements of the deque in an average runtime of O(1). If the low index, through
pushFront operation, reaches the logical position of −1 it is assigned the length of the
array −1. It continues at the back so to speak. Unfortunately, inserting and removing
from anywhere but the beginning or the end, still has a runtime complexity of O(n). A
disadvantage to the vector is, that the condition on which to grow the array is not as
trivial. Before every insertion, pushFront or pushBack it has to be checked whether or
not both indices point to the same element of the array. The calculation for this is more
complex, than simply checking if the high index +1 equals the array length.19

5.2.3. Random access container performance comparison

Table 5.5 shows the runtime complexity of the implemented random access containers in
libhurt: vector and deque. As expected the opIndex member function of vector always
runs in O(1) because the function simply delegates the index to its array and the array
access time is constant. So does pushBack on average. On average, because in the
worst case, a new array needs to allocated and all previously placed elements need to
be copied into it. The member function popBack always runs in constant time because
the implementation is as simple as decrementing the index. The runtime complexity of
popFront, pushFront, insert and remove is O(n), because all these operations change the
number of elements not even the end of the array but somewhere before. That means as
much as n elements might need copying one position down.

18The up arrow represents the high index and the down arrow the low index.
19As the deque implements the same member functions as the vector container, the listing of the class

prototype is omitted.

79

5. The library Libhurt

Container vector deque
Operation, Runtime worst average worst average

pushBack O(n) O(1) O(n) O(1)
pushFront O(n) O(n) O(n) O(1)

popBack O(1) O(1) O(1) O(1)
popFront O(n) O(n) O(1) O(1)

insert O(n) O(n) O(n) O(n)
remove O(n) O(n) O(n) O(n)

opIndex O(1) O(1) O(1) O(1)

Table 5.5.: Operation complexity for random access container vector and deque

Table 5.6 on page 5.6 shows empirically gained runtime benchmarks comparing the
vector and the deque. Operations that have equal theoretical performance are usually
faster in the vector. This is, because the deque has to calculate the actual position, of
the index passed to the internal array. The gain of a vector can be seen in the operations
pushBack, opIndex and popBack. Operations on the front of the deque are faster than on
a vector, this is due to the second index. Inserting and removing is faster in the deque.
This is, because of the two indices at maximal half of the nodes need to be copied, the
vector on the other hand can only move the index.

5.3. List based containers

List based containers offer the same operations as random access container. The difference
is the way they store the data. They store their elements in separate nodes that are
connected by references or pointers.

5.3.1. Double linked list

A double linked list is a heap based list implementation where every node has two
references: One to the next and one to the previous node. A double linked list container
holds references to the first and the last node. As table 5.7 on page 82 shows the runtime
complexity of a double linked list is always the fastest.20

5.3.2. Single linked list

A single linked list is a heap based list implementation where every node has exactly one
references to another node. The referenced node is the following node. The list container
holds only one reference pointing to the first element of the list. Table 5.7 shows that a

20The fast double linked list is always equally fast, because it is also a double linked list.

80

5.3. List based containers

pushBacka,b

vector deque
64: 0 0

128: 0 0
256: 0 0
512: 0 0

1024: 0 0
2048: 0 0
4096: 0 0
8192: 0 1

16384: 0 3
32768: 2 4

pushFronta,b

vector deque
64: 0 0

128: 0 0
256: 0 0
512: 2 0

1024: 6 0
2048: 26 0
4096: 104 0
8192: 411 0

16384: 1556 0
32768: 6138 1

opIndexa,b

vector deque
64: 0 0

128: 0 0
256: 0 0
512: 0 0

1024: 0 0
2048: 0 0
4096: 0 0
8192: 0 0

16384: 0 1
32768: 1 3

popBacka,b

vector deque
64: 0 0

128: 0 0
256: 0 0
512: 0 0

1024: 0 0
2048: 0 0
4096: 0 0
8192: 0 0

16384: 0 0
32768: 0 0

popFronta,b

vector deque
64: 0 0

128: 0 0
256: 0 0
512: 2 0

1024: 12 0
2048: 50 0
4096: 200 0
8192: 795 0

16384: 3097 1
32768: 12299 2

inserta,b

vector deque
64: 0 0

128: 0 0
256: 0 0
512: 1 0

1024: 3 2
2048: 13 12
4096: 52 45
8192: 208 177

16384: 803 673
32768: 3118 2573

removea,b

vector deque
64: 0 0

128: 0 0
256: 0 0
512: 0 0

1024: 3 2
2048: 12 10
4096: 48 41
8192: 195 157

16384: 771 633
32768: 3083 2533

a The highlighted number mark the minimum runtime.
b Values are in microseconds. The test machine is an Intel Core 2 Duo with 1.3GHz and

4GiB RAM.

Table 5.6.: Runtime complexity of random access implementation

81

5. The library Libhurt

Container double single fast
Operation, Runtime worst average worst average worst average

pushBack O(1) O(1) O(n) O(n) O(n) O(1)
pushFront O(1) O(1) O(1) O(1) O(n) O(1)

popBack O(1) O(1) O(n) O(n) O(1) O(1)
popFront O(1) O(1) O(1) O(1) O(1) O(1)

remove O(n) O(n) O(n) O(n) O(n) O(n)
get O(n) O(n) O(n) O(n) O(n) O(n)

Table 5.7.: Runtime complexity for list based container

single linked has performance problems accessing elements anywhere but the front. This
is, because the list has to walked every time at specific position is to accessed.

5.3.2.1. Fast double linked list

The so called fast double linked list tries to combine the speed of array with the flexibility
of linked lists. The speed bottleneck of linked lists is that for every insertion a new node
needs to be created on the heap and heap allocations are generally slow. The fast linked
lists avoids this by creating an array of structs. Instead of references the index of the
previous and following node is stored. These indices point to previous and following node.
In addition to an index to the first and an index to the last node, the fast double linked
list needs another index variable and a stack of indices. The additional index and the
stack is used to take track of the free nodes in the array.

5.3.3. List performance comparison

The tables 5.8 and 5.9 show empirically gained data comparing the speed of the different
list implementations. If new elements are added at the front or the back the fast double
linked list is the fastest. Adding elements to the end is particularly slow with the single
linked list, as it has to be traveled completely for every insertion. When elements are
added at the front a fast double linked list is also the fastest. The speed advantage
comes from the saved node allocation. Inserting anywhere, but the front or back, is
fastest with double linked list. Even though the algorithm for iterating to the position
is the same and creating a node is faster, the fast double linked list is still slower.21

The results of opIndex in table 5.9 shows iterating to a given position is faster with the
normal double linked lists. A single linked list falls behind again, because in average
more elements have to be traversed to reach a given position. This is, because there is
no way to traverse backwards in a single linked list. As both double linked lists allow for
backwards traversal, the fastest route to a given position can be computed, might it be
from the front or the back. This way the maximum longest way to traverse is always
21The reason for this could not be ascertained.

82

5.3. List based containers

pushBacka,b

double fast single
64: 0 0 0

128: 0 0 0
256: 0 0 0
512: 0 0 1

1024: 0 0 5
2048: 1 0 20
4096: 2 0 84
8192: 4 1 342

16384: 7 1 1424
32768: 17 8 6182

pushFront
double fast single

64: 0 0 0
128: 0 0 0
256: 0 0 0
512: 0 0 0

1024: 0 0 0
2048: 1 0 0
4096: 2 0 1
8192: 4 0 2

16384: 8 1 4
32768: 22 2 11

popBack
double fast single

64: 0 0 0
128: 0 0 0
256: 0 0 0
512: 0 0 0

1024: 0 0 4
2048: 0 0 17
4096: 0 0 73
8192: 0 0 297

16384: 1 1 1247
32768: 2 2 5435

popFront
double fast single

64: 0 0 0
128: 0 0 0
256: 0 0 0
512: 0 0 0

1024: 0 0 0
2048: 1 0 1
4096: 6 0 1
8192: 4 0 2

16384: 9 2 5
32768: 18 4 21

insert
double fast single

64: 0 0 0
128: 0 0 0
256: 0 0 0
512: 0 0 0

1024: 1 1 2
2048: 6 5 12
4096: 21 27 61
8192: 92 131 269

16384: 391 633 1326
32768: 1754 2882 8084

remove
double fast single

64: 0 0 0
128: 0 0 0
256: 0 0 0
512: 1 0 2

1024: 4 1 11
2048: 19 5 47
4096: 83 30 205
8192: 342 149 906

16384: 1515 653 4340
32768: 7040 3239 25879

a The highlighted number marks the minimum runtime.
b Values are in microseconds. The test machine is an Intel Core 2 Duo with

1.3GHz and 4GiB RAM.

Table 5.8.: Empirical runtime of list implementation 1/2

83

5. The library Libhurt

opIndexa,b

double fast single
64: 0 0 0

128: 0 0 0
256: 0 0 0
512: 0 0 0

1024: 2 2 4
2048: 7 9 19
4096: 33 37 81
8192: 131 150 332

16384: 528 603 1368
32768: 2134 2419 5981

a The highlighted number marks the minimum runtime.
b Values are in microseconds. The test machine is an Intel Core 2 Duo with
1.3GHz and 4GiB RAM.

Table 5.9.: Empirical runtime of list implementation 2/2

half of the length of the list. Removing elements from the back is again slowest with a
single linked list. Removing elements from the front is fast with all lists. A fast double
linked list is again fastest. As removing from anywhere but the front or the back is again
fastest with the fast double linked lists, it seems that the garbage collector has a negative
performance impact.

5.4. Miscellanies functionality

Even though the biggest use of libhurt are its container, some additional functionality is
needed. Some of these are presented in the following sections.

5.4.1. Logger

The implemented logger allows easy standard output message logging. The listing 5.9
shows the available functions. The minimal output of the logger should be the file and the
line it was called from, everything after that is subject to normal printf string formatting.

Listing 5.9: Logger prototyp

1 void log(string File = __FILE__ , int Line = __LINE__)(bool need);
2 void log(string File = __FILE__ , int Line = __LINE__)
3 (bool need , string format , lazy ...);
4 void log(string File = __FILE__ , int Line = __LINE__)();
5 void log(string File = __FILE__ , int Line = __LINE_)
6 (string format , ...);

84

5.4. Miscellanies functionality

The logger function make excessive use of D features. All functions are template functions.
The first two template parameter describe the file and the line the log function is called
from. This way the logger function can have a variable amount of parameter for string
formatting and still print the file and line without the help of the programmer. To allow
conditional logging, all possible log function prototypes are duplicated and the function
parameter are preempted with a boolean. If the boolean is true the log message is printed,
if it is false the message is not printed. The boolean version in combination with the
lazy variable arguments allows for interesting possibilities. The lazy argument property
means that all arguments are evaluated as late as possible.

Listing 5.10: Lazy example

1 void lazyFunction (bool cond , lazy float exp) {
2 if(cond) {
3 arr [99] = cast(int)exp ();
4 }
5 }
6

7 bool nextFunctionIsValid = checkIfNextFunctionIsValid ();
8 lazyFunction (nextFunctionValid , 10 / 0);

The listing 5.10 shows an example on how this becomes useful. The boolean returned by
the checkIfNextFunctionValid function indicates if the, for demonstration purposes static,
function passed to lazyFunction will compute a valid result or not. As the equation will
yield a divided by zero exception, it is not valid. If the argument to the lazyFunction
would not be marked lazy the exception will occur at calling the function. As the
function checks the passed cond boolean which indicates if the exp expression is valid or
not, the exception can be avoided.

5.4.2. Main argument parser

Listing 5.11 shows a common main function, common here means that important
information for the program is passed through a string array called args.

Listing 5.11: Main function

1 int main(string [] args) {
2 parse_args_variable_for_important_options (args);
3 ...

In theory parsing these arguments can be arbitrarily complex, in practice it comes down
to mostly setting values to variables and setting switches. Another important part about
these runtime arguments is documenting their meaning and presenting it.
Ds standard library phobos offers a parser for parameters, but this module lacks the

capability of creating and presenting documentation[com12b].
Over the course of this thesis a number of programs where created that require at lot

of parameters to function properly. To easily access their documentation, a new main

85

5. The library Libhurt

function argument parser where created and added to libhurt. This module is located in
hurt/util/getopt.d and is from now on referred to as getopt.

Listing 5.12: Getopt function prototype

1 Args setOption (T)(string opShort , string opLong , string desc ,
2 ref T value , bool last = false , string conflicts = null);

The function prototype in listing 5.12 shows the structure of the getOption function.
Before for we discuss the getOption function we need to introduce the basic idea behind
the work flow of that function.
The getopt module processes arguments in order of their definition not in their occurrence.

That means if the print help option is first in a long string of options, but it is defined last
in the source code, it is evaluated last. This is, because the option are not mapped against
the input string, but against a multimap that is created from them. This multimap is
constructed by the getopt struct constructor received the string array as its single input.
As an option is inserted the short and long version is looked up in the multimap. The
multimap stores each string of the string array and an index to its position in the array.
If an index is found either for the long or the short version of the option, the found index
+1 is checked if it can be converted to the type of the parameter value. An exception
to this is the type boolean. If the following string does resolve neither to true nor false,
true is assigned.
A special case is the options called -h and --help they are omitted from free use as

they force the getopt module to print the descriptions of all options after the last option
has been passed. To make this work the last parsed option is to be marked. This is done
by passing true as last parameter to the setOption member function.
An example on how to use the getopt parser is given in listing 5.13.

Listing 5.13: Getopt example

1 string [] args = [" fileone .d", " filetwo .d", "--bar", "1337", "-z"];
2 Args arguments = Args(args);
3 arguments . setHelpText ("a good example to the getopt module ");
4 int bar = 0;
5 bool tar = false;
6 arguments . setOption ("-b", "--bar", "bar option ", bar);
7 arguments . setOption ("-z", null , "tar option ", tar , true);
8

9 assert (bar == 1337);
10 assert (tar);

The arguments normally passed from the operating system are simulated through the
string array created on the first line. The string array created by the operating system is
of the same structure.22 Evaluating the string array args, by the getopt struct Args, will
make the assertions on line nine and ten valid. Line number three shows how to provide
additional information about the program, on top of the option description.
22The contents may vary depending on the command issued to start the program.

86

6. The D lexer generator Dex
The first usage of libhurt was the lexer generator Dex. Dex allows the user to create
lexer in a fast and flexibel manner. Using Dex follows a simple work flow.

1. Create the Dex input file
2. Run Dex
3. Compile Dex output into lexer
4. Use the lexer

The described work flow allows the programmer to create lexer without writing hand-
written token recognition. The only source code the user has to create, is the actions
that should be run if a token has been recognized.
The transition table is created in the way that was presented in chapter 2 on page 27

and following.

6.1. Flow of Execution

The following sections present the work flow of Dex.

6.1.1. Parsing the Input File

Parsing the input file presents a chicken egg problem, as Dex needs to parse an input file
that should lead to a parser. To break the cycle the parser for the input file is a simple
handwritten parser with integrated token recognition. The parser is implemented as a
simple state machine with four states. The grammar of the input file easily fits into type
three of the Chomsky hierarchy as the regexs in table 6.1 proofs. For every of those regex

Type regex
Token description "[ˆ"]+"

User action {:[.]*:}
Input error action {%[.]*%}

Table 6.1.: Regex definition of Dex input files

expression a dedicated state exists that adds characters to a buffer as long as the end
symbol combination has not been read. The fourth state represent the case when none of
the other states are set currently. This state is called None. Scanning for the start and

87

6. The D lexer generator Dex

end marker of specific action is implement with the help of the hurt.string.stringutil
module. All possible transitions of these states and the corresponding tokens are shown

None

InputError

UserCode Regex”

{%

:}

:} ”

:} {%

%} ”

{% %}

” {%

” {%

”

Figure 6.1.: Possible transition of dex input file parser

in figure 6.1. The figure shows that user code can only follow a regex. This allows binding
user code to a specific token. Input error code can follow all other three states. The
input error code will be placed in a user defined error recovery function. This function is
called whenever the lexer algorithm runs into an undefined state. The error code is not
specific to a token. The state None acts like a start state. A single regex and an user
defined action if present, is stored together in a class called RegexCode. All objects of
this type are stored in a vector.1

6.1.2. Preprocessing the Regex

Now that the regexs are parsed from the file they get fed into the createNfa member
function. The first thing done here is do prepare the regex for processing.
This requires converting whitespace representations into single char representations.

Single character, because the algorithm who is creating the NFA later should not bother
with variable length encoding. Therefor the characters of an regex are treated as utf-32
characters. The algorithm could not be simpler, it iterates over the input regex and
searches for any occurrences of a backslash. Whenever we find a backslash we look at
the next character to determine what to do. The backslash is widely used to escape
special character or to mark other actions. Four backslash character are treated as a
single backslash. The second case is the \t marking a tabular. The tabular character is

1Compare with vector description in section 5.2.1 on page 77.

88

6.1. Flow of Execution

passed as an int value 9 to the output string.2 The \n marks newline character. The
int value 10 is used to encode the character in the output value. The backslash \r
character is converted into the value of 13. The last specially treated character is the ”
character. This character is problematic as it marks the beginning or the end of regex.
But unfortunately this character is also often use to mark the start and the end of string
token. To make the character also usable as a input character it has to be prefixed by a
backslash. The algorithm eats the backslash and passes the tick to the output string.
The next step is to prepare the unions of the input regex. This is done by replacing the

opening and closing square bracket with \v and \f respectively. Between every member
of the union the character the value 6 is placed. Also the plus operator is converted to a
regex matching the same string by use of the star operator. When a plus operator is
found the output string is searched backwards and the characters are evaluated. Should
the character at the position −1 is a simple character it is appended another time to
the output string followed by a star operator. Should the character found be a closing
square bracket representation, the whole union is appended again, also followed by the
star operator.
The last step is to place a special character that marks the concatenation operation.
The returning result is a fully prepared easy to process regular expression. The source

code of these procedures is located in the file dex/dex/strutil.d.

6.1.3. Building a NFA

After a regular expression has been translated into an algorithm friendly version, we can
create a non-deterministic finite state machine from it. As presented in section 2.2.3 on
page 29 a regular expression needs to be converted to postfix notation. This is done by
the Shunting Yard algorithm exemplary shown in table 2.1 on page 2.1. This in done in
the eval member function of the regex module located in file dex/dex/regex.d. After
the shunting yard algorithm returns it calls the eval member function.
The eval member function builds the NFA tree similar to the example presented in

section 2.2.3. After the NFA tree is created, the last state must be marked with an
unique identifier. This identifier is later used to assign the correct user defined action to
an accepting state.
All regex are processed and joined to an unique start state by an epsilon transition.

6.1.4. Transforming the NFA to a DFA

Listing 6.1 shows the algorithm part of the member function converting a NFA to a DFA.

2Some of the lower numbers are not used neither in ascii nor utf encoding, so they can be misused to
allow an easier NFA creation algorithm later on.

89

6. The D lexer generator Dex

Listing 6.1: NFA to DFA algorithm used by dex

1 Set !(State) passAround = new
2 Set !(State)(theType); while (! unmarkedStates .empty ()) { State
3 processingDFAState = unmarkedStates . popBack ();
4

5 foreach (it;this. inputSet) { passAround .clear ();
6 Set !(State) moveRes = this.move(it ,
7 processingDFAState . getNFAStates (), passAround);
8 Set !(State) epsilonClosureRes = this. epsilonClosure (moveRes)

;
9

10 bool found = false;
11 State s;
12 foreach (jt; this. dfaTable) {
13 s = jt;
14 if(s. getNFAStates () == epsilonClosureRes) {
15 found = true;
16 break;
17 }
18 }
19

20 if(! found) {
21 State u = new State (++ this. nextStateId ,

epsilonClosureRes);
22 unmarkedStates . append (u);
23 this. dfaTable . pushBack (u);
24

25 processingDFAState . addTransition (it , u);
26 } else {
27 processingDFAState . addTransition (it , s);
28 }
29 }
30 }

As described in listing 2.3 on page 36 we continue as long as at least one state is not
marked. We take one of these states and traverse it for every character of the input set.
A simple optimization is made to not allocate all data structures new for every pass. The
passAround set is this optimisation. The last lines are the subset construction algorithm.
The result is a DFA representation of a NFA.

6.1.5. Minimizing the DFA

Now that we have a DFA we need to minimize it. The algorithm dex uses is the algorithm
of Hopcroft that is shown in listing 2.4 on page 37. The implementation is so close to
the pseudocode that the real source is omitted.

90

6.1. Flow of Execution

6.1.6. Minimizing a Transition Table

The more interesting minimization algorithm is the algorithm that minimize the transition
table. Interesting is that while iterating over a two dimensional vector we keep track of
the indices of duplications.
The actual implementation is divided in three parts.

1. Transition table construction
2. Column minimization
3. Row minimization

The result of the DFA minimization is a vector of states.
To make the algorithm for the row and column minimization easier we first need to

create a two dimensional vector of it. And two mappings from the state id to the row
and the input character to the column. The vector is of type Vector!(Vector!(int)).
The state id will donate the index for the row, and the sorted input character will
provide the index for the column. The mappings are of type Map!(int,Row) for the row
mapping and of type Map!(dchar,Column) for the input character mapping. The types
Row, and Column store the index of the row or column as well as the row and column
itself. This redundancy is used to update the state and input mappings in a later step.
The construction is straight forward for every state. We create a vector of integer that
is added to vector of integer vectors. Than we iterate over all the input characters and
place the id of each follow state at a specific position. Should no follow state be defined
we place the integer −1 to mark an error. Table 6.2 shows the two mappings and the
transition table before the reduction.
The minimization of either a row or a column requires three steps. The first step is to

identify equal rows or columns, the second step is to remove all but one duplication and
the third is to remap the column and row index. The row reduction algorithm works as

state mapping
state row

0 0
4 1
5 2
7 3

input mapping
input column

a 0
b 1
c 2
d 3

transition table
0 1 2 3

0 0 0 4 -1
1 -1 -1 -1 5
2 -1 -1 -1 5
3 -1 -1 7 -1

Table 6.2.: Transition table and mappings before reduction

follow. A global index is incremented every round, initially set to zero. In the next step
a temporary index is create that is initialized with the value of the global index plus
one. This temporary index iterates over all following rows. Every row is compared to the
row pointed to by the global index. Should two rows be equal the one pointed to by the
temporary index is removed. Two rows are equal if all stored values are equal. Whether
or not two rows are equal, the temporary index points to the next row afterwards. If

91

6. The D lexer generator Dex

the temporary index reaches the end of the rows the global index is incremented. This
process repeats till there are no more rows that need to be comparison.
Now that only unique rows are present, the state row mapping needs to be updated. To

achieve this the mappings are iterated and the rows stored in the iterator are compared
to the rows in the transition table. Table 6.3 shows the result of the row reductions. As

state mapping
state row

0 0
4 1
5 1
7 2

input mapping
input column

a 0
b 1
c 2
d 3

transition table
0 1 2 3

0 0 0 4 -1
1 -1 -1 -1 5
2 -1 -1 7 -1

Table 6.3.: Transition table and mappings after row reduction

the tables show a single row gets removed and two state mapping indices changed. The
changed row indices are that of state five and state seven. The removed row had the
index two.
Reducing the columns works similar to the rows reduction. But before the columns

can be reduced copies of them have to be created and stored in the input mappings, to
allow remapping of the indices at a later state, equal to that of the remapping of the
rows indices. The resulting transition table and mappings are shown in table 6.4. This

state mapping
state row

0 0
4 1
5 1
7 2

input mapping
input column

a 0
b 0
c 1
d 2

transition table
0 1 2

0 0 4 -1
1 -1 -1 5
2 -1 7 -1

Table 6.4.: Final transition table and mappings

transition table is stored to run the lexer algorithm later on.

6.1.7. Input Mapping Optimization

One last optimization is done at this stage. The input characters can not be used as indices
to the transition table, because they don not align to zero and more importantly, are
not necessarily continues. Continues in this case means that, when the input characters
are considered to be integer and for every but the last input character there would be
a character that is reachable through a valueOfChar + 1 calculation. Another reason
for the storing the input character mapping in the following data structure is presented
later. The first step is to store the character column mappings in a range. The ranges
are constructed by iterating over the input characters in a sorted manner. Internally

92

6.1. Flow of Execution

the input characters are stored as dchar the D equivalent to utf-32 characters. These
types take four bytes memory, the size of a integer.3 These dchars can be sorted simply
by passing them to a sort function that evaluates them as integers. The next step is
to either append a character to a range or to create a new range with it. A character
is appended to a range if they point to the same table column. As ranges are build by
iterating over sorted input characters, the ranges will be sorted as well. Being sorted
manner allows to search for entries using binary search. The other reason for storing
the character column mapping in the semantic value of the characters. In a normal
programming language, in this case D , not all characters have equal value with view on
the tokens. Only characters that were already present in the ascii encoding are used to
define keywords. Identifier and string literals on they other hand can be made of all utf
characters [dla12d]. Because of this, it can be deduced that these characters will share
the same column in the transition table in most cases and therefore can be stored as a
range. A range stores the highest and lowest character to mark the beginning and end
of a range. A simple calculation will show the usefulness of ranges. Currently 110181
character are defined in utf-8 [Con12]. Considering we ignore the printable ascii character
we still have 110087 mappings left. As simple mapping consist of one dchar with a size
of four bytes and one size_t with a size of four bytes as well. With a simple mapping
we have to store 110087 ∗ 8 = 880696 bytes or 0.83 MiB. Storing this in a range requires
1140 bytes.4 A range consist of two utf-32 characters, one size_t index and a bool. This
optimization allows us to create lexer for Unicode complete languages that need little
more memory than a pure ascii language lexer.
In order to get the correct column the lexer now uses binary search to get the character

range mapping.

6.1.8. Writing the Transition Table and Other non-static Parts

Writing the actual transition table to a file is an easy task. The string formatter function
and the stringbuffer of libhurt are used to create a string of comma separated integer
values. The array are enclosed by an opening and closing square bracket. The same goes
for the state mapping.

Listing 6.2: Exemplary transition table and state mapping

1 public static immutable (byte [][]) table = [
2 [1, 13, 13, 13, 2, -1, 2, 2, 10, 2],
3 [4, 4, 4, 4, 2, 5, 11, 2, 2, 12],
4 ...
5];
6

7 immutable byte [] stateMapping = [
8 0, 1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3];

3Normal in this context means the 32 bit int type.
4The size t type is four byte on 32 bit architectures and eight bytes on 64 bit architectures.

93

6. The D lexer generator Dex

Listing 6.2 shows an exemplary transition table and a state mapping.
More complicated is the mapping for the ranges to an array. Instead of simply writing

the values to an array, the ranges need to be build through their constructor.

Listing 6.3: Range array

1 immutable (Range !(dchar , size_t)[2]) ra = [Range !(dchar , size_t)(’1’,1)
, Range !(dchar , size_t)(’2’,’7’,2)];

Listing 6.3 shows such an array. Because a range can a have a length of one or more, two
different constructors are needed. The listings shows the use of both. The first range has
a length of one, with character ’1’. The second range spans from character ’2’ to ’7’.
The two last things to store in the output file are the actions the lexer has to run on

accepting a token and the switch case statement which holds the information whether
or not a state is an accepting state. The switch case also returns the number of the
action to run. As the actions are stored as strings in the RegexCode class instances, the
strings are copied into a switch statement. Indexed by a so called action number. The
action number is obtained by looking at the accepting switch case that returns a positive
integer or −1. The id of the current state is used to get the correct accepting action
number. The −1 return value indicates that the current state is not an accepting state.
The listing 6.4 gives an idea how these switch case statements look in practice.

Listing 6.4: Action ouput

1 public static byte isAcceptingState (stateType state) {
2 switch (state) {
3 case -1:
4 return -1;
5 case 0:
6 return -1;
7 case 1:
8 return 4;
9 case 2:

10 return 4;
11

12 ...
13

14 default :
15 assert (false , format ("an invalid state with id %d was

passed ",
16 state));
17 }
18 }
19

20 public static immutable (string) acceptAction =
21 ‘ case 1: {
22 printfln ("int %s", this. getCurrentLex ());
23 }
24 break;
25 case 2: {

94

6.2. Additional Functionality

26 printfln ("hex %s", this. getCurrentLex ());
27 }
28 break;
29 case 3: {
30 printfln ("bin %s", this. getCurrentLex ());
31 }
32 break;
33 case 4: {
34 printfln (" printable %s", this. getCurrentLex ());
35 }
36

37 ...
38 ‘;

The action evaluation works as follows. Considering the lexer finds that the next character
would lead to an error, it will pass the current state to the isAcceptingState function. If
the returned value is not −1 it will pass that value to a function where the acceptAction
string was mixed in. The accpetAction string needs to be mixed in rather than be a
sandal function, because this way the actions defined by the user has access to all data
structures managed by the lexer.
For example the lexer accepts in state number one. The isAcceptingState function

returns the integer four. The corresponding action is the print the string that lead to
this state.

6.2. Additional Functionality

6.2.1. Creating Graphs

Another important feature of dex is its ability to create graphs of the different stages of
lexer construction. Dex does not created these graphs directly, instead it creates textual
representations of them and calls a program called dot to create a images of the graph.
These graphs helps debugging.
The graph printing functionality of dex changed during development. First the in-

memory representation of the different graphs where simply written to files and dot was
called to create the image. When the graphs started to get bigger, the time dot took to
create these graphics increased quickly. Through testing it turned out the slowdown is
caused by the huge number of edges. To counteract that development ranges introduced.
These ranges grouped together edges together that lead from one node to another differing
only on the edge labeling. For this to work the values of the edge labels need to be
continuous. The figures 6.2a and 6.2b show two graphs once without ranges and once
with. The introduction of ranges allowed graphs to be visualized again.

95

6. The D lexer generator Dex

a

b

a b c d e f g h

(a) Lexer graph without ranges

a

b

a-h

(b) Lexer graph with ranges

Figure 6.2.: Lexer graph with and without use of ranges

6.2.2. Writing a Lexer Template

On top of writing the transition table, dex can write a generic lexer template that can
be used to implemented objective specific lexer.

96

7. The D glr parser generator Dalr

7.1. Introduction

Dalr is a parse table as well as parser generator for LALR(1) and GLR(1) grammars. Dalr
was developed to meat the requirements of the compiler dmcd developed in this thesis.
At the beginning the implementation followed the LALR(1) parse table construction
described in chapter 3 starting on page 41. If LALR(1) would have enough for parsing D
no additional work would have been required. When GLR was required these capabilities
were simply added to the LALR parts. This was possible, because the GLR parse table
generation algorithm only differs in the last step from the LALR parse table construction
algorithm.

7.2. Parse Table Construction

Dalr constructs parse tables for LALR(1) as well as GLR grammars. Allowing both
makes it possible for the programmer to use the appropriate parser for the given task. A
LALR parser for more restrictive languages and a GLR for languages that require more
task.
Lalr(1) Parse Table Dalr generates LALR(1) parse tables that follow yacc closely. Shift

reduce conflicts are solved in favor of the shift operation. Precedence can be defined
for symbols as well as production. User defined actions can be inserted after any
part of the right hand side of the production. Dalr differs from yacc in that the
stack items are defined to be tokens that come from dex.1

Glr(1) Parse Table The GLR parse table generator only differs in the construction of
the final transition table. GLR parse tables can store more than one action for
every given state.

7.3. Parser Templates

Dalr can not only create parse tables it can also create parser templates. In parallel as
in the parse table construction, Dalr can construct parser templates for LALR(1)- as
well as GLR(1)-parser.

1Every lexer using the same token struct can be used with Dalr.

97

7. The D glr parser generator Dalr

Lalr(1) Parser The LALR(1) parser template only implements the basic LALR parser
algorithm. The error recovery functionally is reduced to printing the current
state and the lookahead token. No functionality the for abstract syntax tree (ast)
construction is implemented not even for the simple parse tree construction.

Glr(1) Parser The template for the GLR(1) parser follows the LALR(1) template in
not defining any functionality other than simply parsing. The merge function is
defined to always select the first valid parse.

7.4. Implementation of the Parse Table Generator

7.4.1. Parse Table Construction

The parse table construction. The process of creating a parse table will be discussed in
the following sections. The construction which follows the LALR parse table construction
described in section 3.3 starting on page 47 is as follows:

1. Parsing the input file
2. Construction the itemsets
3. Construction of the extended grammar
4. First set construction
5. Follow set construction
6. Final table construction

Each step is implemented in a specific function or module. All steps are presented in the
following sections.

7.4.1.1. Input File Language

The parser generator will output a parse table for a context free grammar. The input
language must therefore be able to represent any context free grammar. Tools like yacc
or bison use languages for their input files are that close to the backus-naur form. The
grammar of the input language can be represented as a Backus-naur form (bnf). Figure
7.1 on page 108 shows the bnf for input language. A rule consists of the left hand side, a
separator and a right hand side.23 The right hand side consists of one or more ruleparts
separated by whitespace. A rulepart again expands to a string followed by an optional
action. The action is a D code block enclosed by two special tokens.

2In the bnf rule the left hand side is simply a string token.
3RHS stands for right hand side.

98

7.4. Implementation of the Parse Table Generator

7.4.1.2. Input File Parsing

The parser for the input file is implemented as a recursive decent parser. Similar to Dex
the input file reader of Dalr returns class instances that contain the production combined
with the action. The precedence symbol are directly stored in a MapSet.

7.4.1.3. Input File Validation

More interesting than the parsing of the input file are the automatic checks that are
run afterwards. These tests were introduced because large input files are error prone
to typing errors. These typing errors can lead to parse errors that are difficult to track
down.
Typing errors are same checked the way spell checkers work. Every token string is

permuted in different ways and checked against a dictionary containing all token strings.
Should a permutation match a dictionary entry, it is reported.
Another kind of errors are that subtrees of productions are not reached. This can

happen either through typing errors or through simply forgetting productions that needs
these productions.
To check for unreached subtrees, a grammar tree is build. Before the tree is created all

tokens that appear on the left hand side of a production are placed in a set. Whenever
a subtree is created and joined to the grammar tree, the left hand side symbol of the
production is removed from the set. Every symbol present in this set, after the tree is
completely constructed, is never reached. The remaining token names are printed to the
user.
The last type of error detected by Dalr, are errors within the user defined action. This

error checking breaks the boundary between the parser generator and the abstract syntax
tree build methods of the compiler. Even though this can be considered bad practice
it has shown its value in the creation of the parser for dmcd. The methods for the ast
generation use negative indices to get tokens from the token stack to construct the ast
nodes. This works, because instead of a regular stack the deque of libhurt is used and
the deque allows negative indexing. The problem arises if the indices are bigger than the
number of tokens of the right hand side of the production the ast build method is run
for. Listing 7.1 shows a single production and user defined action taken directly from the
used grammar in dmcd.

Listing 7.1: Erronous grammar production

1 LabeledStatement := identifier colon NoScopeStatement ;
2 {: ret = buildTreeWithLoc (termLabeledStatement , [-4,-1],
3 actionNum , this. tokenStack [-2]. getLoc ()); :}

These productions shows the instantiation of a LabeledStatement. The array of two
negative number, that is passed as the second argument to the buildTreeWithLoc
function in the user action, contains an error. The first index −4 points one element to
far, it should say −3. The −3 would get the identifier of the LabeledStatement. The −4

99

7. The D glr parser generator Dalr

gets an undefined token. To avoid these kinds of bugs Dalr checks indices to be equal or
less than the number of tokens on the right hand side of a production. Dalr would warn
the user that in this production an used index is out of bound. It also checks that the
index that is used to obtain the token that builds the root of the created subtree fulfills
the same requirements. The index −2 in this user action is good, as it is smaller than
the number of tokens on the right hand side.
The last check is that the first argument to thebuildTreeWithLoc function is the name

of a left hand side token prepended with the word term.

7.4.1.4. Grammar Rule Preprocessing

After the grammar has been read from the input file, the parse table is constructed.
Before we begin constructing the parse table the grammar rules are converted in a more
usable format. To this point they are strings separated by blanks and a special assign
symbol.
For this purpose every unique token gets assigned an integer value. A rule is stored as

a deque of integer. Additionally the type of the token is stored. Type in this case means
whether they are terminals or non-terminals.

7.4.1.5. Itemset Construction

The first step is, as described in section 3 on page 41, to construct the itemsets. Dalr
implements the itemset construction as follows. The first itemset is constructed from
dedicated start production. To store itemsets in an efficient way an abstraction for a
production with a dot is introduced. This abstraction is a class called Item. The name
originates from the idea that many items form an itemset. The Item class has two integer
members. The first is the index of the productions in the deque of production that form
up the language. The second integer indicates the position of the dot within the rule.
The method constructing the itemsets has a stack that holds the unprocessed itemsets.
For every item it is first checked if an itemset was already constructed. If that is the
case this itemsets is referenced. If that is not the case a new itemset is constructed and
pushed on the stack. To construct a new itemset the items, that have the dot in front of
the specific token, are copied and the dots are advanced to the next position.
The itemsets have maps that link them together. The keys of these maps are the tokens

that lead to the construction of the following itemset.4

7.4.1.6. Extended Grammar Construction

As discussed in section 3.3.3 on 52 the next step is to construct the extended grammar. The
construction is split in two parts. The basic algorithm, located in dalr/productionmanager.d,
does housekeeping and starts the recursive calls to the itemsets. The second part is

4The mappings use the map container implemented in libhurt.

100

7.4. Implementation of the Parse Table Generator

the recursive construction of the extended grammar rules by the itemsets, located in
dalr/itemset.d.

Listing 7.2: Extended Grammar construction part of productionmanager

1 Deque !(Deque !(int)) extendedGrammer = new Deque !(Deque !(int))(
2 this. itemSets . getSize () *2);
3 Iterator !(ItemSet) iSetIt = this. itemSets .begin ();
4 for(size_t jdx = 0; iSetIt . isValid (); iSetIt ++, jdx ++) {
5 foreach (size_t idx , Item it; (* iSetIt). getItems ()) {
6 if(it. getDotPosition () != 1) {
7 continue ;
8 } else {
9 Deque !(int) p = this. getProduction (it. getProd ());

10 Deque !(int) extProd = new Deque !(int)();
11 size_t s = (* iSetIt). makeExtendedProduction
12 (1, p, extProd);
13 (* iSetIt). makeFrontOfExtended (p[0], extProd , false);
14 extendedGrammer . pushBack (extProd);
15 }
16 }
17 }

Listing 7.2 shows the first part. It simply iterates over all itemsets and all their items.
Whenever the dot is in front of the first token of the right hand side a recursive call is
started to the current itemset. This call has the current dot position, the normal grammar
rule and the deque that will store the result as arguments. The member function of the
called itemset has the name makeExtendedProduction. The recursive part is shown in
listing 7.3.

Listing 7.3: Extended Grammar construction recursive call

1 size_t makeExtendedProduction (size_t pos , const Deque !(int) prod ,
2 Deque !(int) extProd) {
3

4 extProd . pushBack (conv !(long ,int)(this.id));
5 if(pos < prod. getSize ()) {
6 if(! this. followSets . contains (prod. opIndexConst (pos))) {
7 throw new Exception (
8 format ("no followSet present for input %d",
9 prod. opIndexConst (pos)));

10 } else {
11 MapItem !(int , ItemSet) next = this. followSets .find(
12 prod. opIndexConst (pos));
13 extProd . pushBack (prod. opIndexConst (pos));
14 next. getData (). makeExtendedProduction
15 (pos +1, prod , extProd);
16 }
17 }
18 return extProd . getSize ();
19 }

101

7. The D glr parser generator Dalr

The first thing done by the recursive member function of the itemset is to push its id to
the resulting deque. Then it checks whether the current token pointed to by the dot has
a follow itemset defined in the map of follow itemsets of the current itemset. If that is
not the case this is the error case an exception is thrown. If a mapping is present the
token is pushed back in the results deque and the following itemset is called. This call is
the recursive part, as the same member function is called for the following itemset. This
continues until the pos variable is no longer smaller than the length of the production
the extended grammar is constructed for. The pos variable stands for the position of the
dot.

7.4.1.7. First Set Generation

The first set construction by Dalr differs from the previously presented first set construc-
tion algorithm as it does not handle epsilon productions. This is no problem as every
grammar containing epsilon transitions can be rewritten as an epsilon transition free
grammar. This done simplifies the algorithm and therefore makes the algorithm faster.
The simplification allows the algorithm to not care for the second part of the second and
third rule.5 In order to fulfill the set property of the first set a MapSet is used to store
the mappings. This way the implementation does not have to check if the token tto been
inserted is already present.

7.4.1.8. Follow Set Generation

Not allowing epsilon token in productions has implications for the follow set generation
as well. The second part of second rule of the follow set rules can be ignored.6 Again a
MapSet is used to store the set. The implementation itself is not shown as it is a direct
implementation of the rules.7

Merging the rules follow sets is fast, because the MapSet allows for fast searching of the
extended rule items.

7.4.1.9. Final Parse Table Construction

Dalr generates parse table for LALR(1) and GLR(1) parser. The final step of the parse
table construction is the only step where the two parse table require different handling.

7.4.1.9.1. Transition Table
The first step is equal for both kinds of parse tables. The transition table is constructed
as discussed in section 3.3.2 on page 51. In the implementation the transition table
consists of a deque of deques of deques of FinalItems. In layman’s words, the transition

5Compare to first set construction rules in section 3.3.4 on page 52.
6Compare to rules in section 3.3.5 on page 53.
7The implementation can be found in file dalr/productionmanager.d.

102

7.4. Implementation of the Parse Table Generator

table is a three dimensional deque storing FinalItems. A FinalItem is a class that stores
an enum and an integer. The enum indicates the type of action the FinalItem describes
and the integer stores the value of the action. The third dimension is introduced to
store possible ambiguities as multiple FinalItems. Doing this already at the transition
table stage allows to share the same data structures and parts of the member functions
a longer way for both processes. The algorithm for constructing the transition table
simply traverses all itemsets and all terminals and non-terminals. It than checks if the
current itemset has a transition for the current token. If it has a transition a shift or goto
FinalItem is placed depending on the token type. A shift FinalItem is placed in case
that the token is a terminal. A goto FinalItem is placed if the token is a non-terminal.
Placing the reduction actions reveals the difference between Lookahead bottom-up

parser(1) and Generalized LR(1) parse tables. If the Lookahead bottom-up parser(1)
code path is confronted with an ambiguity it warns and checks if a precedence rule is
defined. If no rule is defined and the conflict is a reduce reduce conflict, an error is
printed and the program exists unsuccessfully. If the conflict involves a shift operation
that operation is chosen.
The Generalized LR path checks if there is a precedence rule defined. If one is, it uses

it to resolve the conflict. If no rule is present is simply executes both actions. Only in
the later case a warning is printed.

7.4.2. Additional Functionality

Dalr can not only generate parse tables, additional functionality like printing the itemset
graph is shipped with it. The three most important features are presented in the following
section.

7.4.2.1. Parser Template Printing

Generating a parse table is a very important task when writing a parser. Also important
is, to correctly implementing the actual parser algorithm. Dalr therefore allows to print a
template for a LALR(1), as well as GLR(1) parser. This templates can be integrated into
a compiler or to understand how to use the parse table. To print a template provide the
-d option followed by the wanted file name to Dalr. To change from a LALR(1) parser to
a GLR(1) template pass the --glr option to the parser generator. A detailed description
about the parser algorithm implemented can be found in section 7.5.1 and 7.5.2.

7.4.2.2. Itemset Printing

An itemset graph allows the programmer to spot errors in the grammar and get a feeling
for the tree that is described by the language. Dalr can be told to create such a graph by
simply passing the option -g, followed by a string. This string will be the name of the file
the graph is written to. The dot program, of the graphviz program suite, is again used
to layout the graph. Very large languages can not be printed in an acceptable time, due

103

7. The D glr parser generator Dalr

to the performance of dot. To counter act this problem, Dalr can generate dot files for
every itemset individually. To print a specific itemset the option -a or --printaround
followed by the id of the itemset can be used. Figure 3.6 on page 50 was created with
Dalr, except the layout. The layout was manipulated to fit the page.

7.4.2.3. Log File Printing

Properly the most important feature is the log file writer. It not only prints all warnings
and errors, it also prints the itemsets in a textually as well as the follow sets on given
input. In addition, the first and follow sets are printed as well as the extended grammar.

7.5. Implementation of the Parser

As actual parsers are a big part of any compiler, the available algorithm are important
to present. Like most parser generators Dalr does provide parser templates. As Dalr can
generate two different kinds of parse tables, two different parser templates are needed.
These will be presented below, with focus on the GLR parser as it is used in dmcd.

7.5.1. Lalr(1) Parser

The following listing 7.4 shows the LALR parser algorithm emitted by Dalr.

Listing 7.4: Dalr lalr(1) parser algorithm implementation

1 public void parse () {
2 // we start at state (zero null none 0)
3 this. parseStack . pushBack (0);
4

5 TableItem action ;
6 Token input = this. getToken ();
7

8 while(true) {
9 action = this. getAction (input);

10 if(action . getTyp () == TableType . Accept) {
11 this. parseStack . popBack
12 (rules[action . getNumber ()]. length -1);
13 this. runAction (action . getNumber ());
14 break;
15 } else if(action . getTyp () == TableType .Error) {
16 this. reportError (input);
17 assert (false , "ERROR");
18 } else if(action . getTyp () == TableType .Shift) {
19 this. parseStack . pushBack (action . getNumber ());
20 this. tokenStack . pushBack (input);
21 input = this. getToken ();
22 } else if(action . getTyp () == TableType . Reduce) {
23 // do action

104

7.5. Implementation of the Parser

24 // pop RHS of Production
25 this. parseStack . popBack
26 (rules[action . getNumber ()]. length -1);
27 this. parseStack . pushBack (
28 this. getGoto (rules[action . getNumber ()][0]));
29

30 // tmp token stack stuff
31 this. runAction (action . getNumber ());
32 }
33 }
34 }

The parse stack, first used in line three, is a deque of ints. The tokenStack is again a
deque, a deque of tokens. The token type is defined by the lexer generator dex. The
TableItem type assigned in line five is the actual type that populates the parse table. It
is an struct of an enum, a short integer and an additional single byte for aligning the
structure to 32bit.

7.5.2. Glr(1) Parser

The GLR parser is more complex. This is because different parses have to be kept in
sync. To make this feasible the parsing is split in two parts. A class that represents a
single parse. And the algorithm stepping all instances of this class. The two phases are
explained below.

7.5.2.1. A Single Parse

The class that represents a single parse is called Parse. The member of the Parse class
are almost completely the same as those of the LALR parser. This is because every parse
by itself is a simple LALR parser and only the combination of multiple parses lead to a
GLR capable parser. Instead of retrieving the action as shown on line nine of listing 7.4
on page 104 the action is passed to the parse algorithm. And as it makes a single step
with no while loop surrounding the parse logic. The main difference is that the Parse
class has an member function that returns an array of possible actions on specific input.
This is important in the stepper algorithm.

105

7. The D glr parser generator Dalr

7.5.2.2. Running in Parallel

Running the single parses step by step is the main work done by the GLR parser
algorithm.

Listing 7.5: GLR stepper algorithm

1 bool parse () {
2 while (! this. parses . isEmpty ()) {
3 log ();
4 // for every parse
5 for(size_t i = 0; i < this. parses . getSize (); i++) {
6 // get all actions
7 immutable (TableItem []) actions = this. parses [i].
8 getAction ();
9 // if there is more than one action we found a conflict

10 if(actions . length > 1) {
11 for(size_t j = 1; j < actions . length ; j++) {
12 Parse tmp = new Parse(this , this. parses [i],
13 this. nextId ++);
14 auto rslt = tmp.step(actions , j);
15 if(rslt.first == 1) {
16 this. acceptingParses . pushBack
17 (this. parses [i]);
18 this. toRemove . pushBack
19 (this. parses [i]. getId);
20 } else if(rslt.first == -1) {
21 this. toRemove . pushBack
22 (this. parses [i]. getId);
23 } else {
24 this. newParses . pushBack (tmp);
25 }
26 }
27 }
28

29 // after all one action is left
30 auto rslt = this. parses [i]. step(actions , 0);
31 if(rslt.first == 1) {
32 this. acceptingParses . pushBack (this. parses [i]);
33 this. toRemove . pushBack (this. parses [i]. getId);
34 } else if(rslt.first == -1) {
35 this. toRemove . pushBack (this. parses [i]. getId);
36 if(this. newParses . isEmpty () &&
37 this. acceptingParses . isEmpty ()) {
38 printfln ("%s", rslt. second);
39 }
40 }
41 }
42 // copy all new parses
43 while (! this. newParses . isEmpty ()) {
44 this. parses . pushBack (this. newParses . popBack ());
45 }
46

106

7.5. Implementation of the Parser

47 this. mergeRun (this. parses);
48

49 this. parses . removeFalse (delegate (Parse a) {
50 return this. toRemove . containsNot (a.getId ()); });
51

52 this. toRemove .clean ();
53 }
54

55 // this is necessary because their might be more than
56 // one accepting parse
57 this. mergeRun (this. acceptingParses);
58 return !this. acceptingParses . isEmpty ();
59 }

The above listing 7.5 shows the parser stepping method. The deque called parses stores
all currently active parses. It is iterated in the first for loop. Whenever a parse returns
more than one possible action it is copied as often as needed to run all actions.8 All
parses are than stepped. The step member function implemented in the Parse class
returns a value indicating the new properties of the parse. There are three possibilities.

1. The parse accepts. That means this particularly parse accepts the input. The parse
is than stored in a deque of accepting parses, because one parse has to be selected
as the final parse.

2. The parse yields an error. Unless this parse is the last parse no error message will
be printed. This is because no error occurs till the last parse failed.

3. The third possible outcomes, is a successful action.
Parses that return an error are not stored in the list of parses but get removed if they
were stored before.
Another important part is the merge function, that checks if there are parses that are

equal. This function is run after all parses are stepped. Two parses can be merged if
their parse stacks and lookahead tokens are equal. The two parses are passed to a user
defined, selection function.
After all remaining parses have accepted the selection function is run again to selects

the final result of the overall parsing process.

8The parse is actually copied one time less, as the original is still present.

107

7. The D glr parser generator Dalr

〈Dlr〉 ::= 〈Rules〉
| 〈Precs〉 〈Rules〉

〈Precs〉 ::= 〈Precs〉 〈Prec〉
| 〈Prec〉

〈Prec〉 ::= ’%left’ 〈TokenNames〉
| ’%right’ 〈TokenNames〉
| ’%nonassoc’ 〈TokenNames〉

〈TokenNames〉 ::= 〈TokenNames〉 〈string〉
| 〈string〉

〈Rules〉 ::= 〈Rules〉 〈Rule〉
| 〈Rule〉

〈Rule〉 ::= 〈string〉 ’:=’ 〈RHS〉
| 〈string〉 ’:=’ 〈RHS〉 ’|’ 〈RHS〉

〈RHS〉 ::= 〈RuleParts〉 ’;’

〈RuleParts〉 ::= 〈RuleParts〉 ’whitespace ’ 〈RulePart〉
| 〈RulePart〉

〈RulePart〉 ::= 〈RulePart〉 〈Action〉
| 〈string〉

〈Action〉 ::= ’{:’ 〈Any valid D code〉 ’:}’

Figure 7.1.: BNF for Dalr input language

108

8. The D compiler DMCD

8.1. Introduction

DMCD is the name of the compiler created for this thesis. It uses the lexer generator
dex and the parser generator Dalr for lexer respectively parser generation. The way they
are combined is unique to dmcd. This will be discussed later in detail. To facilitate the
new concepts dmcd is split into two parts: A frontend and a daemon. The frontend takes
compile directives from a shell and passes them to the daemon. The daemon runs in the
background till it is advised to quit. The reason for the background daemon is to provide
a consisted memory for the cache and to aid in the distribution of the work among a
network.1

8.1.1. The Lexer

Dex is used to generate the lexer table for dmcd. The lexer template generated by dex is
also used by dmcd. The input file for dex contains 192 regular expression. Only 15 of
them use for anything else than concatenations. The resulting minimized DFA has 569
nodes.

8.1.2. The Parser

The grammar for D is very complex, the input file is over 3000 lines long and has 813
rules. Dalr generates a parse table that is written to the file dmcd/src/parsetable.d.
The parser that resits in the file dmcd/src/parser.d was devised from a GLR parser
template that Dalr generated. The actions assigned to the productions build the ast and
the symbol table.

8.2. Intermediate Representation

The result of different compiler stages are an important step in deriving an executable.
The symbol table and the abstract syntax tree are the most prominent structures.

1The implementation used for testing, that is available on the dvd coming with this, is not split in two
parts, because the caching and the distributing is not implemented, but discussed theoretically.

109

8. The D compiler DMCD

8.2.1. Symbol Table

A symbol table is created as a map. This map uses the binary vector as an underlying
data structure. This way symbol table entries get stored in a cache friendly manner. The
symbol table entries contain the position of the symbol as well as access rights, derived
from the access modifier keywords and the symbol itself.

8.2.2. Abstract-Syntax-Tree

As the results of the different compiler stages are supposed to be cached they need to be
laid out in a cache friendly matter. Unfortunately, trees are usually stored on the heap
as structures linked by pointers. As a cache is in most cases just a continuous fixed size
block of memory, trees are not best to store it.
Two ways of storing a tree come to mind. The first is to convert the tree into an

encoding like json or XML. The second possibility is to build the tree of struct store
them within an array and link them by their array indices. This way the tree is flattened
into a cache friendly form.
The first solution has a significant drawback. Whenever a value is to be read from

the cache, it needs to be parsed and converted into a tree on the heap. Storing a tree
requires the tree to be walked and encoded in the used format. These conversations will
take time at least linear to the size of the tree as they require a parser.
The second method will be more suitable for caching, because converting the returned

data from the cache to something usable is as easy as casting to the specific array type.
Storing the array, building the tree, into the cache is easy as well. The array only needs
to be written byte by byte to the allocated memory in the cache.

8.2.2.1. Flattening the Tree

Mapping a tree to an array is easy as long as the number of children for every node is
known and constant.2 Unfortunately an ast does not provide this property. Considering
the exemplary tree in figure 8.1, that represents the listing 8.1, we see that every node
has as little as zero or as much as three children.

Listing 8.1: Simple main function

1 int main () {
2 return 1;
3 }

To store a tree with a variable number of children another array has to be created that
stores the indices of the children. The nodes of the tree only stores the index of index
of the first child and the total number of children.3 This way all members of the struct

2Compare to binary trees or heaps.
3This can be compared the pointer to pointer idiom of C.

110

8.2. Intermediate Representation

S

DeclDefs

DeclDef

Declarator

BasicType

int

Identifier

main

DeclDefs

DeclDef

ReturnStatement

1

Figure 8.1.: Ast of simple main function

can be simple values. And because the nodes are build of structs they can be placed
continuously within a chunk of memory. Tables 8.1 and 8.2 show the two arrays building
the tree.4

The index of the first child in table 8.1 is only valid if the number of children is at least
one. Otherwise the value is invalid and can be ignored. The structs of tree nodes as well
as the children indices are actually stored in a deque. The reason for this is that in a
deque new nodes to be appended fast and easily.5

Listing 8.2 shows the ASTNode struct without it member function.

Listing 8.2: ASTNode from dmcd

1 struct ASTNode {
2 private Token token;
3 private int typ;
4 private Pair !(size_t ,ubyte) childs ;
5

6 ...
7 }

4The array is filled, as it where, by a top down parser. Dmcd uses a bottom up parser and the resulting
arrays would show a significant different layout of the single nodes. This is however not important,
because the task of the example is to show how the tree can be mapped on two arrays.

5An array would require to be grown on insertion or a separate last index to be used. A deque abstracts
this logic.

111

8. The D compiler DMCD

Array of tree nodes

Name of node S D
ec

lD
ef

s
D

ec
lD

ef
D

ec
la

ra
to

r
Ba

sic
Ty

pe

in
t

Id
en

tifi
er

m
ai

n
D

ec
lD

ef
s

D
ec

lD
ef

R
et

ur
nS

ta
te

m
en

t

1

Index in array 0 1 2 3 4 5 6 7 8 9 10 11
Number of children 1 1 1 3 1 0 1 0 1 1 1 0
Index of first child 0 1 2 3 6 0 7 0 8 9 10 0

Table 8.1.: Tree as array representation

Children index array
Index 0 1 2 3 4 5 6 7 8 9 10
Child index 1 2 3 4 6 8 5 7 9 10 11

Table 8.2.: Children index array

It can be seen that the struct holds except for the token no more values than used in the
table 8.1.6 The two arrays are simply two deques one of type ASTNode and the other of
type size t.

8.2.2.2. Restructuring the Tree

One problem is left with the flattened tree. Removing or inserting nodes other than
behind the last leaf is difficult. This is because for every but the last added node every
child index, located in the children array, is not at the end. Forcefully inserting a new
index anywhere but the end, in either array, will render the indices to the right of that
index invalid. They are invalid stored indices rely on constant positions in the both
arrays.
A solution to this problem is to basically implement heap allocation. This is because

the solution to this problem, even if not implemented yet, is very close to what heap
allocation algorithms do. Whenever a new child is to be inserted, anywhere but the end,
the whole sub array containing the original children indices are copied to the end and
the new child index is appended. And the children index pair of the nodes father is
updated. By doing this a number of indices become unused somewhere in the middle
of the children index array. This can be understood as fragmentation. When new ast
nodes are created these fragments need to be considered first for possibly taking the
children indices. Selecting the fragmented areas can be done by well understood selection
algorithms like first- or best-fit [Bre89, Kno65].

6The complete struct can be found in dmcd/src/ast.d.

112

8.3. Distribution

Number of nodes Struct based Class based
7 0.748 0.427
15 0.167 0.869
31 0.263 0.225
63 0.819 0.154
127 0.167 0.297
255 0.335 0.590
511 0.697 0.117
1023 0.147 0.239
2047 0.164 0.184
4095 0.415 0.115
8191 0.824 0.238
16383 1.559 0.481
32767 2.639 1.569
65536 5.219 2.575
131072 10.354 6.124
262144 20.693 11.14
524288 41.497 20.86

Table 8.3.: Tree building speed comparison.

8.2.2.3. Speed comparison

Profiling the performance is an important part. Building the ast structure in an array
needs to be compared to the typical, heap structured, approach. Creating the ast building
facilities for both approaches is not practical because of the amount of required work.
To get an idea of the performance a syntactic test was created. Table 8.3 on page 113
shows the result of this syntactic test. The boldfaced entries mark the fastest entries.
The test builds a fully populated binary tree. The times are measured in seconds. The
size of the nodes in the created tree have the size of the ast nodes used by dmcd. As the
table shows the values dependent on the speed of the heap allocation algorithm. The
deque, which is used to store the ast nodes, uses an array internally and the allocation
algorithms seams to have problems finding large continues blocks. The struct based heap
does not appear much slower up to 215 elements.7

8.3. Distribution

Making dmcd a distributed compiler means to have compile jobs distributed in a network.
The idea behind this is that under a normal workload, development machines speed
most of their time in an Integrated development environment (IDE) idling. The rest of
the performance, of many core architectures, could be used to compile source files from

7The test can be found in the file libhurt/tests/structtreetest.d.

113

8. The D compiler DMCD

clients coming from somewhere in the network. This way the individual compile jobs
would take less time for every developer in the network.
This feature was not implemented for time reason, but the implementation would have

looked as follows. Every developer would start a daemon and join the compiler network
in the local area network.8 From this point onward he would accept compile jobs as well
as give them.
Compile jobs would have been distributed on a per file bases. This means that a daemon

would send a file to one or more other daemons in the network.9 At first the asked
daemon would probe into their caches to see whether there is already a result. The
caching is discussed in section 8.5 on page 120 in detail. If no result are present the file
would be compiled. After the file has been parsed but before the semantic analysis, the
import statements need to be resolved. To do this the compiling daemon would ask the
client for the hashes of the import files. After he received them, he would again probe
his cache. Whenever a result for a file is not present he would ask the client for it. The
client will than send the file. This is done recursively till all dependencies are fulfilled.
After the file is compiled the resulting intermediate code is returned to the client.
To understand at what point distributing work in the network becomes reasonable,

several things have to be considered. The first thing is the question how fast files can be
read from disk and send to other machines. To answer this question we need to consider
the speed of the harddisk or ssd and the speed of the ethernet. The current sata 3.0
standard aims at a transfer rate of 6Gbis/s [saio12]. Considering the local area network
(lan) is using GBit ethernet. The network is the limiting factor. The biggest file in the
project is dmcd/src/parsetable.d with a size of 3.5MiB, which is generated by Dalr,
transferring the file would take about 0.03 seconds. The official D compiler takes a little
over 7.6 seconds to compile the file.10 Assuming returning the result would again take
0.03 seconds and compile jobs are run in sequence on the client distributing the work
would result in a speedup from the first file on. Another advantage is that multiple
machines result in multiple caches to draw from.

8.4. Multithreading

Multicore CPUs are present in almost any current desktop pc. Even though, compilers
are, to this day, single threaded. Dmcd can use multiply CPU cores and divides the work
among them. How dmcd does this is explained in the following sections.

8The compiler network is meant to be restricted to a local area network to keep the management
overhead limited.

9The number of assigned daemons depends on a strategy that tries to give good availability. The
complexity of this strategy can be arbitrary as many design goals are to brought in for consideration.
These goals include availability, answer time, network traffic and number of daemons.

10The official D compiler was used because it implements the full semantic analysis as well as a backend
to create assembler code.

114

8.4. Multithreading

8.4.1. Lexer Parser Communication

Normally a lexer is driven by a parser. The parser asks the lexer for a new token and
the lexer reads as many characters from the file as needed to construct one.
Dmcd works completely different. The parser and the lexer life in different threads. The

lexer reads the file from top to bottom into buffer. The parser takes the token out of the
buffer. The only time the lexer and the parser interact is when synchronizing the push
and pop operations on the buffer. Below both ways through the synchronization are
described. The synchronization equals the producer consumer problem. The lexer, the
producer, generates one token after the other and places them in a buffer. The consumer,
the parser, copies the tokens out of the buffer. The parser does not copy the tokens one
at a time. It copies a specific amount of tokens, if less are present the parser waits on a
semaphore.
The idea behind this is that the lexer has to do IO and IO is generally slow. Especially,

reading from a harddisk can be very slow. But when data is present the lexer should
process as many as he can. If the lexer is to read token by token, it could happen that
the lexing algorithm or transition table is no longer present in the caches of the CPU
or even worse was swapped to harddisk. To avoid this the lexer is placed in a separate
thread and reads, greedily, as much of the input as the harddisk offers him. Another
consideration is that the parser will take longer to process a token than it takes the
create token from the input. If the lexer creates the token in parallel the parser does not
has to wait for a new token instead. It simply copies them. And as copying a token, into
an already allocated heap memory, is faster than lexing a new token from a file, another
speedup occurs.

8.4.1.1. Push back token

mutex wait

push back
token

bufferSize >
count OR
lastToken

isWaiting
OR

lastToken
empty notify

mutex notify

yes yes

no
no

Figure 8.2.: Multithreaded token pushBack

115

8. The D compiler DMCD

Tokens are pushed to the buffer by a lexer. Figure 8.2 shows the control flow. The first
step is to acquire the mutex that protects the buffer from race-conditions. The next step
is to push the token. If the token marks the end of the file or the buffer is filled to a
specific limit another test is run. This test checks if a thread is waiting for tokens. That
thread runs the parser. Should it be the case the semaphore is incremented to deblock
the thread. The last thing to do is to release the mutex.

8.4.1.2. Get token

Coping tokens from the buffer is a bit more complex. Figure 8.3 shows the process.
Again, the first thing to do is to create mutual exclusion. This is achieved by locking the

mutex wait

check if
size(buffer)
< min limit

setWaiting
mutex notify
empty wait

yes

mutex wait
copy and
remove

all token
from buffer

no

mutex notify

Figure 8.3.: Multithreaded token get

mutex. Then it is checked if there are more tokens present in the buffer than a defined
limit. If that is the case these token are copied and removed and the mutex is released.
If the buffer holds too few, the parser is marked as waiting, the mutex is released and
the parser begins to wait on a semaphore called empty wait. After it is awakened by the
lexer, the mutex is acquired again, the token are copied and removed and the mutex
is released. After it is awaken by the lexer no further checks on the buffers are needed
because of the condition for the lexer leading to the awakening.

8.4.1.3. Benchmark

The figures 8.4, 8.5 and 8.6 on pages 117 and 118 show a benchmark on files of different
sizes. The yellow line represent the multi threaded lexer parser combination. The green
line represents the single threaded lexer parser combination. The values are arithmetic

116

8.4. Multithreading

middle of 100 runs.11 Expect for the smallest and biggest file, the multi threaded

0 10 20 30 40 50
buffer size

0.20

0.25

0.30

0.35

0.40

0.45

ti
m

e
 i
n
 s

e
co

n
d
s

smain.dpp: 3 lines

single-threaded
multi-threaded

(a) Benchmark for 3 line file

0 10 20 30 40 50
buffer size

0.325

0.330

0.335

0.340

0.345

0.350

0.355

0.360

ti
m

e
 i
n
 s

e
co

n
d
s

examplearith.dpp: 33 lines

single-threaded
multi-threaded

(b) Benchmark for 33 line file

Figure 8.4.: Benchmark multi threading lexing parser 1/3

0 10 20 30 40 50
buffer size

0.80

0.81

0.82

0.83

0.84

0.85

0.86

ti
m

e
 i
n
 s

e
co

n
d
s

biggerexample.dpp: 59 lines

single-threaded
multi-threaded

(a) Benchmark for 59 line file

0 10 20 30 40 50
buffer size

0.9

1.0

1.1

1.2

1.3

1.4

1.5

ti
m

e
 i
n
 s

e
co

n
d
s

klines.dpp: 283 lines

single-threaded
multi-threaded

(b) Benchmark for 283 line file

Figure 8.5.: Benchmark multi threading lexing parser 2/3

combination is the fastest. The exception with the smallest file can be explained by the
overhead it takes to create the separate threads. The results for the biggest file, displayed
in figure 8.6a on 118, are based on the relative low number of samples taken.12 For the
rest of the files the multi threaded lexer parser is faster, usually a few hundreds up to a
few tens of seconds.

11The buffer size was iterated in steps of three. This was done to reduce the time the test suite takes to
complete.

12Only 100 samples per test where taken because the test suite took more than 8 hours to complete.

117

8. The D compiler DMCD

0 10 20 30 40 50
buffer size

10.2

10.3

10.4

10.5

10.6

10.7

10.8

ti
m

e
 i
n
 s

e
co

n
d
s

k2lines.dpp: 1051 lines

single-threaded
multi-threaded

(a) Benchmark for 1051 line file

Figure 8.6.: Benchmark multi threading lexing parser 3/3

8.4.2. Semantic-Analyzer

The output of the parser is a ast and a symbol table. The next step is to check semantic
restrictions of the language. These restrictions are for example:
Type checking verifies that all assignment expressions are done with correct types. That

means for example that a string is not assigned to a variable of type int.
Const correctness checks that values or objects marked as const are not modified. For

example that a const variable is not assigned.
Return statement reachability means that the control flow of a function reaches a

return statement. For instance, a function consists of an if statement that holds
a return statement, nothing else. In this case it depends on the if condition if
the return statement is executed. If the statement is false no return statement is
executed leading to undefined behavior.

All these verifications are independent of each other.13 Another observation is that they
do not modify the ast nor the symbol table. That means they do not even interact in
any way.

8.4.2.1. Benchmark

In traditional compilers these checks are run one after another or are integrated in parsing
process. The idea for dmcd is to run them in parallel on an abstract syntax tree and a
symbol table that is constant.14 Figure 8.7, 8.8 and 8.9 on page 119 and 120 show the
results of an benchmark comparing the speed of the semantic analysis. Several test where
run, the number of used threads varied from 1 to 16 and the number of semantic analysis
13Considering the mixin statement of D this is not completely true, as the statement changes the ast.

As the mixin statement was not implemented, no problems occur. To implement the mixin statement,
an additional single threaded traversal of the ast, need to be done.

14Compare to const-correctness.

118

8.4. Multithreading

0 10 20 30 40 50 60
number of jobs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ti
m

e
 i
n
 s

e
co

n
d
s

smain.dpp: 3 lines

one thread
two threads
four threads
eight threads
sixteen threads

(a) Benchmark for 3 line file

0 10 20 30 40 50 60
number of jobs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ti
m

e
 i
n
 s

e
co

n
d
s

examplearith.dpp: 33 lines

one thread
two threads
four threads
eight threads
sixteen threads

(b) Benchmark for 33 line file

Figure 8.7.: Benchmark multithreading semantic analysis 1/3

0 10 20 30 40 50 60
number of jobs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ti
m

e
 i
n
 s

e
co

n
d
s

biggerexample.dpp: 59 lines

one thread
two threads
four threads
eight threads
sixteen threads

(a) Benchmark for 59 line file

0 10 20 30 40 50 60
number of jobs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ti
m

e
 i
n
 s

e
co

n
d
s

klines.dpp: 283 lines

one thread
two threads
four threads
eight threads
sixteen threads

(b) Benchmark for 283 line file

Figure 8.8.: Benchmark multithreading semantic analysis 2/3

from 1 to 60. The tests where run on a quad core CPU. Every of those combinations
where run 250 times on all five test files. As the figures show the single threaded variant
of the semantic analysis has a so-so performance. Figure 8.9a on page 120 shows that
with growing number of jobs, more threads perform better. With eight threads nearly
four times as fast. Considering the CPU can run four threads in parallel that is the
possible expect speedup. On small files the speedup is smaller. This is due to the bad
ratio between the overhead of the thread creation and the runtime of the thread itself.

119

8. The D compiler DMCD

0 10 20 30 40 50 60
number of jobs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ti
m

e
 i
n
 s

e
co

n
d
s

k2lines.dpp: 1051 lines

one thread
two threads
four threads
eight threads
sixteen threads

(a) Benchmark for 1051 line file

Figure 8.9.: Benchmark multithreading semantic analysis 3/3

8.5. Caching

Caching results of the compile process builds on the idea that many compile units are
code dependent or are used in many places. This assumption can be made because most
build management tool like for example make, SConstruct or ant have special features to
build and resolve dependency graphs.
For example libhurt consists of 98 files, on average every of these files depend on ≈ 57

files. That means that after building only one files the first cache hits likely will occur.
Figure 8.10 shows the dependencies of the files of the parser generator Dalr. The gray
nodes have 0 − 1 files depending on them. The blue files have 2 − 3, the green nodes
with 6− 7 files depending on them. The yellow are imported by 8− 9 files and the red
by 10− 11. This, real life, example shows that even for small programs caching could
reduce the number of files to read from the harddisk dramatically.

8.5.1. Cached Data

The question occurs what to cache? It makes sense to cache everything from the source
code files to intermediate code. The reason for that is simple. The source could can be
required to be send offside. The tokens might be needed if the file is to be parsed again.
The abstract syntax tree might be needed if a whole file is mixed in. The symbol table
is needed if a module (file) is imported and the intermediate code is needed when the
executable is rebuilt.

8.5.2. Performance

To understand the value of a cache, the way the cache works needs to be understood
first. Libhurt brings a least recently used cache implementation. The properties are that
searching an entry is as fast as the map structure used. In general a hash-table is used,

120

8.5. Caching

dalr/symbolmanager.d

dalr/tostring.d

dalr/main.d

dalr/filewriter.d

dalr/grammerparser.d

dalr/extendeditem.d

dalr/productionmanager.d

dalr/finalitem.d

dalr/checker.d

dalr/prodtree.d

dalr/mergedreduction.d

dalr/itemset.d

dalr/dotfilewriter.d

dalr/filereader.d

dalr/item.d

Figure 8.10.: The import relations for Dalr

with a runtime complexity of O(1). A single search operation takes virtually no time at
all.15

15Compare to table 5.2 on 71.

121

8. The D compiler DMCD

8.6. Overview

Figure 8.11 gives a high level view of dmcd. The dotted red boxes represent processes.

lexer buffer parser ast and
symbols

semantic
analysis 1

semantic
analysis 2

semantic
analysis 3

semantic
analysis n

backend

termial
driver

Figure 8.11.: High level view of dmcd

The rectangle in the dotted blue boxes represent groups of threads. Different colored
rectangles represents different threads. The circle represent shared data structures. The
thick black line represents the control flow. Not shown is the cache. A cache would be
connected to all thread groups.

122

Part IV.

Conclusion

123

9. Future work

9.1. Difference Compiler

Programming languages are structured in blocks. A class is a block of functions. Functions
are blocks by itself. A function block can have blocks, like if statements for example.
The idea is to track changes on a block to block bases and only recompile these blocks.

For that to work, the compiler has to store results on a block bases.

9.2. Recursive parser

Building the parser with the parser generator Dalr takes a couple of minutes. Running
dmcd for every little change, for instance while debugging, takes a lot of time. Building
a recursive decent parser for an 800 rule grammar is a big task.
The benefits would be a faster build compiler. Another benefit is the language is no

longer restricted to Chomsky Type-2.

9.3. Binding to llvm

Initial dmcd was to bind to the Low Level Virtual Machine backend. This was deferred,
because actual emitting Low Level Virtual Machine (LLVM) intermediate code would give
no new information about the usefulness of multi threading and caching in a compiler.
This is because the intermediate code needs to be created single threaded after the
semantic analysis finishes.

9.4. Integrating Libhurt Containers into phobos

As mentioned earlier the D standard library, phobos, is still missing containers. Presenting
the container to the D community will properly lead to interesting input and might lead
to a second life of the containers implementation.

125

9. Future work

9.5. Thread Pool for Semantic Analysis

As the overhead for the thread creation in the semantic analysis is considerable, imple-
menting the dispatching as a thread pool can possible reduce this overhead. Implementing
the dispatching as a thread pool and comparing the result against the present method
could yield interesting results.

9.6. Combining Parts of the Semantic Analysis with the
Parser

Many semantic analysis can be run before the complete syntax tree has been build. The
parser could dispatch these task as threads while he is still parsing the input. This way
more of the available CPUs could be used in parallel.

9.7. Make Replacement

Having a daemon running in the background might be sometimes to be change. Replacing
make1 with a program that evaluates the dependencies and issues a call to the compiler
with all files that need to be rebuild could be a good compromise. Passing all the files,
that need compiling, at once would allow the compiler to cache and reuse all results.

1Make is used as a synonym for all automatic build tools.

126

10. Conclusion
The goal of this thesis was to build tools and library functions that are needed to create
a compiler for D in D and to create a compiler that ought to adapt to modern hardware,
this includes multicore CPUs as well as big amounts of RAM.
Libhurt fills the gaps left by phobos and druntime. On over 31000 lines all during this

thesis required functionality is implemented. Especially the container implementations
where used over and over again. The created interfaces, like for example the ISR interface,
gave the containers a new perspective on already well understood designs. Compare to
chapter 5 starting on page 65.
Dex generates efficient lexers that are even able to parse utf-8. In addition to the

productivity gain, through this lexer generator, excellent debugging facilities, which allow
a user to print transition graphs and tables were implemented. Compared to libhurt, dex
is a rather lightweight program with just over 4000 lines. This is because dex makes
excessive use of libhurt and uses many functions provided. See chapter 6.
The parser generator dalr, as presented in chapter 7, with its more than 7500 lines of

source, generates parsers from LALR(1) as well as GLR(1) grammars. Dalr showed its ca-
pabilities by providing the parser for the D grammar used in the compiler implementation.
Again libhurt was used exhaustinvly.
Considering only the hand-written parts of the compiler dmcd, it appears to be small

with only 3500 lines of code, but this is not the case, as the created lexer and parser
created big portions of the compiler. Counting these lines as well, the compiler exceeds the
100000 lines. Again libhurt was used extensively here as well, as describted in chapter 8.
The compiler presents four new ways of building a compiler. The separation of lexer and
parser into different threads shows a performance gain of up to 25%. The multithreaded
semantic analysis in combination with the array based tree presents an efficient way of
using a big number of CPU cores with nearly linear speedup. The distributing of work
and the caching of result gives another performance increase.

127

Appendix

List of Figures

2.1 nfa for regex rs . 28
2.2 nfa for regex r* . 29
2.3 nfa for regex (r|s) . 29
2.4 Tree representation of postfix expression 31
2.5 Tree representation after insertion on union template 32
2.6 Tree representation after insertion of star template 33
2.7 Tree representation after first concatenation 34
2.8 Tree representation after second concatenation 35
2.9 DFA graph of regular expression (a|b)*cd. 37
2.10 Minimized DFA . 39

3.1 EBNF for function prototyp . 42
3.2 Dangling else . 45
3.3 Start production . 48
3.4 First completed itemset . 49
3.5 Second itemset . 49
3.6 Complete itemset graph . 50

4.1 Grammar rule for if condition . 60
4.2 Parse tree for the if grammar rule . 60
4.3 The abstract parse tree for the if grammar rule 60

6.1 Possible transition of dex input file parser 88
6.2 Lexer graph with and without use of ranges 96

7.1 BNF for Dalr input language . 108

8.1 Ast of simple main function . 111
8.2 Multithreaded token pushBack . 115
8.3 Multithreaded token get . 116

129

List of Figures

8.4 Benchmark multi threading lexing parser 1/3 117
8.5 Benchmark multi threading lexing parser 2/3 117
8.6 Benchmark multi threading lexing parser 3/3 118
8.7 Benchmark multithreading semantic analysis 1/3 119
8.8 Benchmark multithreading semantic analysis 2/3 119
8.9 Benchmark multithreading semantic analysis 3/3 120
8.10 The import relations for Dalr . 121
8.11 High level view of dmcd . 122

130

Listings

1.1 C++ parsing error through greater and lesser token. 6
1.2 D equivalent of listing 1.1. 6
1.3 C++ Token semantic error . 6
1.4 Nessarity of immutability correctness . 7
1.5 An exemplary D class . 9
1.6 Simple inheritance . 10
1.7 Interface example . 11
1.8 Interface implementation . 11
1.9 Cast operator . 11
1.10 Template block . 12
1.11 Get default init value with templates . 12
1.12 Get default init value with templates, shorthand 12
1.13 Generic minimum function . 13
1.14 Generic minimum function instantiated with the int type 13
1.15 Add value to integer . 13
1.16 Templated struct . 14
1.17 Templated struct shorthand . 14
1.18 Template interface example . 15
1.19 Simple fixed size buffer . 15
1.20 Template interface implementation . 16
1.21 Variable length buffer . 16
1.22 Template restriction . 17
1.23 More complex template restriction . 17
1.24 Static if faculty computation . 18
1.25 Version statement . 19
1.26 Debug level . 19
1.27 Pure static if faculty computation . 19
1.28 Function pointer . 20
1.29 Delegate example . 20
1.30 Basic foreach . 21
1.31 Struct opApply . 21
1.32 Module import . 22

2.1 Computation of epsilon-closure . 36
2.2 move function . 36
2.3 Subset construction . 36

131

Listings

2.4 Hopcroft algorithm for DFA minimization 37

3.1 Recursive decent parser example . 41
3.2 LL parser algorithm . 43
3.3 Lalr(1) parsing algorithm . 44
3.4 Transition table construction . 51

5.1 ISR specification . 66
5.2 Hash-table insert methode . 68
5.3 MapItem implementation . 72
5.4 Map container . 73
5.5 Set implementation . 74
5.6 Multimap implemenatation . 75
5.7 MapSet implemenatation . 76
5.8 Vector implementation . 78
5.9 Logger prototyp . 84
5.10 Lazy example . 85
5.11 Main function . 85
5.12 Getopt function prototype . 86
5.13 Getopt example . 86

6.1 NFA to DFA algorithm used by dex . 90
6.2 Exemplary transition table and state mapping 93
6.3 Range array . 94
6.4 Action ouput . 94

7.1 Erronous grammar production . 99
7.2 Extended Grammar construction part of productionmanager 101
7.3 Extended Grammar construction recursive call 101
7.4 Dalr lalr(1) parser algorithm implementation 104
7.5 GLR stepper algorithm . 106

8.1 Simple main function . 110
8.2 ASTNode from dmcd . 111

132

List of Tables

2.1 Shunting yard algorithm on (a|b)*cd. 30
2.2 DFA minimization steps . 38
2.3 Minimized deterministic finite state machine 38
2.4 Minimized table representation . 39

3.1 Dangling else parse table . 45
3.2 Transition table for graph 3.6 . 51
3.3 Extended grammar rules . 53
3.4 First sets of the extended grammar . 54
3.5 Follow set of extended grammar . 55
3.6 Combination of follow set and extended grammar productions. 56
3.7 Exemplary result of merge operation on rules 4, 7, 12 56
3.8 Merged extended rules and follow sets . 57
3.9 Final parse table . 58

5.1 Runtime complexity four ISR implementations. 70
5.2 Performance tests of the different ISR implementations. 71
5.3 Representation of vector data structure 78
5.4 Example states of the deque . 79
5.5 Operation complexity for random access container vector and deque . . . 80
5.6 Runtime complexity of random access implementation 81
5.7 Runtime complexity for list based container 82
5.8 Empirical runtime of list implementation 1/2 83
5.9 Empirical runtime of list implementation 2/2 84

6.1 Regex definition of Dex input files . 87
6.2 Transition table and mappings before reduction 91
6.3 Transition table and mappings after row reduction 92
6.4 Final transition table and mappings . 92

8.1 Tree as array representation . 112
8.2 Children index array . 112
8.3 Tree building speed comparison. 113

133

Acronyms
ast abstract syntax tree. 46, 98, 99, 109, 110, 112, 113, 118, 120, 137

bnf Backus-naur form. 98, 137
bst binary search tree. 67–69, 137

cfg context free grammar. 41, 42, 137
CPU central processing unit. 61, 114, 115, 119
ctfe compile time function execution. 5, 19

DFA deterministic finite state machine. vii, 7, 27, 28, 30, 31, 37–40, 89–91, 109, 132,
133, 137

GLR Generalized LR. 46, 47, 97, 98, 102–106, 109, 137

ia inline assembler. 5, 137
IDE Integrated development environment. 113
ISR insert search remove. vii, 65–70, 72–75, 77, 132, 137

LALR Lookahead bottom-up parser. 44, 45, 47, 58, 97, 98, 102–105, 137
lan local area network. 114, 137
LL Left to right, left derivation parser. 42, 43, 47
LLVM Low Level Virtual Machine. 125, 137
LR Button up parser. 43–46, 137
lru least recently used. 120, 137

NFA non-deterministic finite state machine. vii, 27, 28, 30, 31, 37, 39, 40, 88–90, 137

red-black tree rbtree. 68, 69, 137
regex regular expression. vii, 27–29, 39, 87–89, 109, 138

SLR Simple button up parser. 44, 47, 48, 58
STL standard template library. 67, 72, 138

tls thread local storage. 7, 137

135

Glossary

inline assembler Inline assembler describes the way of implementing a function or part
of functions in an assembly language. The assembler statements are written directly
in the source file, instead of been written in a separate file.. 5

Bottom-up parser So called shift reduce parser.. 45
thread local storage Variable that are defined global as well as static but have an

instance for every thread are called thread local. This means if one thread changes
the variable, that change is not visible in any other thread.. 7

abstract syntax tree The abstract syntax tree represents parts of the syntax tree that
are relevant for further processing.. 46, 99, 109, 118, 120

backus-naur form The backus-naur form is a meta-language that allows an efficient
representation of context free languages.. 98

binary search tree Binary search trees are search structures that allow insertion,search,
and removal in an average complexity of O(n log n).. 67

context free grammars Context free grammar are called languages of type-2 in the
Chomsky hierarchy.. 41

deterministic finite state machine Finite state machine where for every input the tran-
sition must be strictly deterministic.. 31, 37–39, 133

Generalized LR Genearl are LR parser that follow all possible action should there be
more than one present at a given state.. 46, 103

insert search remove The interface is the base for all data structures that can be used
in the construction of any mapping container types.. vii, 65, 66, 74

Lookahead bottom-up parser Popular incarnation of bottom up parser with a typical
lookahead of one.. 103

local area network A is a spacial restricted network, usually connect by ethernet.. 114
Low Level Virtual Machine The Low Level Virtual Machine is a compiler backend..

125
least recently used Least recently used is a replacement strategy for caches. The data

that hasn’t been read the longest is removed.. 120
non-deterministic finite state machine Finite state machine where for every input the

transition must not be strictly deterministic.. 28, 30, 31, 37, 89
red-black tree Red-black trees are search structures that allow insertion,search, and

removal with a time complexity of O(n log n).. 68, 69

137

Glossary

regular expression Regular expression allow it to construct all languages that fit into
chomsky type-3.. 29, 39, 89, 109

standard template library A library of template function and class that are used for
common store and algorithmic tasks in .. 67, 72

abstract The abstract keyword prevents a class of being instantiated.. 66, 67

C C is in imperativ programming language developed by Dennis Ritchie.. v, 3, 5, 8, 18,
20, 44, 48, 67, 77, 110, 138

C++ C++ is an object oriented programming language develop initially by Bjarne
Stroustrup as a successor to .. 5–7, 9, 10, 44, 67, 72, 74, 75, 77, 138

C++11 C++ 11 is the latest revision off C++. Released in 2011.. 7
class Classes are an integral part of object oriented programming. In lamens’ terms they

are structs with method’s.. 66
compile time The time when the compiler is run is called compile time.. 5, 139
conditional compiling Conditional compiling allows, through passing values to the

compiler, to manipulate the parsing process of the compiler.. 5

Dalr Dalr is a parser generator created from this thesis. 97, 100, 102–104, 109, 114, 120,
121, 125, 130, 132

define Object to textural replacement another object. Used mainly in C and C++. . 5
dex Dex is a lexer generator created for this master thesis.. 95–97, 105, 109
dmcd Dmcd is the compiler developed in this thesis.. 97, 99, 104, 109, 111, 113–115,

118, 122, 125
dot Dot is a graph layout program that comes with the graphviz program collection.. 95

finate state machine Finate state machine are able to accept all word defined by
Chmosky type 3 languages.. 27, 28

hash-table Datastructure that allows insertion, removal and searching with an average
time complexity of O(1).. 68–70, 120

heap Heap memory is dynamically allocated. Usually allocating memory on the heap is
a slow procedure and should therefore be avoided. Anyway, it is required to create
objects in memory that should exists longer than the scope they are created in.. 61

immutability A variable marked immutable can only be assigned once.. 7

Java The Java programming language is an object oriented programming language. It
was developed by James Gosling, and is currently owned by the Oracle Corporation..
5, 6

json Json is a human readable data exchange format. The name json is an acronym for
java script object notation.. 110

138

Glossary

lexer A lexer is usually defined as a program that reads a string and splits it into words.
These words are known as token.. 27, 39, 54, 55, 109, 115–117

libhurt Libhurt is the standard library created for the DMCD compiler.. 15, 66, 68–70,
76–79, 84, 86, 87, 93

member function Function of classes and structs are called member function.. 7–11, 15,
21, 22, 73–79, 86, 88, 89, 101–103, 105, 107, 111, 139

memory leak Memory leakage describes the case in which heap space is allocated by no
pointer or reference exists that can be used to access the memory.. 74

mixin D keyword that allows to insert a string at compile to manipulate the source code..
5

null A special pointer address that indicates that the pointer is invalid.. 67

parser A parser verifies whether or not a stream of tokens forms a word of a defined
language.. 41–44, 46, 47, 109–111, 115–118, 120

phobos Phobos is the D standard library.. 3, 85
polymorphism Polymorphism allows the different class to be used as the same typ. For

instance two class could implement a vehicle specification, but in a very different
way.. 65

Semaphore A semaphore is an abstract datatype that can be used to synchronise
processes.. 7

template A template allows a function or class to have members or parameter that are
defined at time of instantiation.. 66

template meta programming Template function are instanced at to compute the result
of function at .. 5

this A this pointer is a reference that can be used inside a to get access to members of
the class instance.. 7

Unix Unix is an operating system first released by the company AT&T.. 44
utf Utf defines a way of encoding the same character in different ways. There are two

variable length encoding called utf8 and utf16. The thrid style of encoding is called
utf32, all three encodings are capable of storing the same characters. At the point
of writing the utf standard defines more than one million symbols.. 39, 93

virtual The virtual keywork marks functions in C++ that can be overwritten by a
derivating class.. 10

XML XML is extensible markup language that is human as well as machine readable..
110

yacc Yacc is a LALR(1) parser, and parse table generator originally created by employees
of AT&T.. 97

139

Bibliography

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison Wesley, August
2006.

[ASU86] Alfred V. Aho, R. Sethi, and J.D. Ullman. Compilers principles, techniques,
and tools. Addison-Wesley, Reading, MA, 1986.

[Bre89] R. P. Brent. Efficient implementation of the first-fit strategy for dynamic stor-
age allocation. ACM Transactions on Programming Languages and Systems,
11:388–403, 1989.

[Cic80] Richard J. Cichelli. Minimal perfect hash functions made simple. Commun.
ACM, 23(1):17–19, January 1980.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition,
2009.

[com10] Clang community. Clang recursive decent parser. http://clang.llvm.org/
features.html, 2010.

[com12a] D community. Faq. http://dlang.org/faq.html#q5_2, 2012.
[com12b] D community. Getopt. http://dlang.org/phobos/std_getopt.html, 2012.
[Con12] The Unicode Consortium. Unicode 6.1.0. http://www.unicode.org/

versions/Unicode6.1.0/, 2012.
[Dij61] Edsger W. Dijkstra. Algol 60 translation : An Algol 60 translator for the x1

and Making a translator for Algol 60. Technical Report 35, Mathematisch
Centrum, Amsterdam, 1961.

[dla12a] dlang.org. Cpp template instance ambiguity. http://dlang.org/
template-comparison.html, 2012.

[dla12b] dlang.org. Functions. http://dlang.org/function.html, 2012.
[dla12c] dlang.org. Interfaces. http://dlang.org/interface.html, 2012.
[dla12d] dlang.org. Lexical. http://dlang.org/lex.html, 2012.
[dla12e] dlang.org. Operator overloading. http://dlang.org/operatoroverloading.

html, 2012.
[dla12f] dlang.org. Templates. http://dlang.org/template.html, 2012.
[Ear70] Jay Earley. An efficient context-free parsing algorithm. Commun. ACM,

13(2):94–102, February 1970.
[fsf05] fsf. New c parser. http://gcc.gnu.org/wiki/New_C_Parser, 2005.

141

http://clang.llvm.org/features.html
http://clang.llvm.org/features.html
http://dlang.org/faq.html#q5_2
http://dlang.org/phobos/std_getopt.html
http://www.unicode.org/versions/Unicode6.1.0/
http://www.unicode.org/versions/Unicode6.1.0/
http://dlang.org/template-comparison.html
http://dlang.org/template-comparison.html
http://dlang.org/function.html
http://dlang.org/interface.html
http://dlang.org/lex.html
http://dlang.org/operatoroverloading.html
http://dlang.org/operatoroverloading.html
http://dlang.org/template.html
http://gcc.gnu.org/wiki/New_C_Parser

Bibliography

[Hol90] Allen I. Holub. Compiler Design in C. Prentice-Hall, Upper Saddle River, NJ
07458, USA, 1990. Prentice-Hall Software Series, Editor: Brian W. Kernighan.

[Hop71] John E. Hopcroft. An n log n algorithm for minimizing states in a finite
automaton. Technical report, Stanford, CA, USA, 1971.

[Ige04] Lars Ivar Igesund. License agreement. http://www.eternallyconfuzzled.
com/tuts/datastructures/jsw_tut_bst2.aspx, 2004.

[JA] R. Nigel Horspool John Aycock. Practical earley parsing. The Computer
Journal, pages 620–630.

[JJ79] Stephen Johnson and Stephen C. Johnson. Yacc: Yet another compiler-
compiler. Technical report, 1979.

[Joh12] Stephen C. Johnson. Yacc: Yet another compiler-compiler. http://dinosaur.
compilertools.net/yacc/, 2012.

[Kno65] Kenneth C. Knowlton. A fast storage allocator. Commun. ACM, 8(10):623–624,
October 1965.

[Knu65] Donald E. Knuth. On the translation of languages from left to right. Infor-
mation and Control, 8(6):607 – 639, 1965.

[Knu98] Donald E. Knuth. The art of computer programming, volume 3: (2nd ed.)
sorting and searching. Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA, 1998.

[Mar12] Torsten Marek. Cyk javascript. http://www.diotavelli.net/people/void/
demos/cky.html, 2012.

[McP02] Scott G. McPeak. Elkhound: A fast, practical glr parser generator. Techni-
cal Report UCB/CSD-02-1214, EECS Department, University of California,
Berkeley, Dec 2002.

[McP03] Scott G. McPeak. Elkhound: A fast, practical glr parser generator. Technical
report, Berkeley, CA, USA, 2003.

[oP05] University of Pittsburgh. Cs 1622 lecture 10 parsing(5). lecture10.pdf, 2005.
[saio12] The serial ata international organization. Sata 3.0 specification. http://www.

sata-io.org/technology/6Gbdetails.asp, 2012.
[Sun12a] Sun. Object oriented programming concepts. http://docs.oracle.com/

javase/tutorial/java/concepts/index.html, 2012.
[Sun12b] Sun. Synchronized methods. http://docs.oracle.com/javase/tutorial/

essential/concurrency/syncmeth.html, 2012.
[Tom84] Masaru Tomita. Lr parsers for natural languages. In Proceedings of the

10th International Conference on Computational Linguistics and 22nd annual
meeting on Association for Computational Linguistics, ACL ’84, pages 354–357,
Stroudsburg, PA, USA, 1984. Association for Computational Linguistics.

[Tom87] Masaru Tomita. An efficient augmented-context-free parsing algorithm. Com-
put. Linguist., 13(1-2):31–46, January 1987.

142

http://www.eternallyconfuzzled.com/tuts/datastructures/jsw_tut_bst2.aspx
http://www.eternallyconfuzzled.com/tuts/datastructures/jsw_tut_bst2.aspx
http://dinosaur.compilertools.net/yacc/
http://dinosaur.compilertools.net/yacc/
http://www.diotavelli.net/people/void/demos/cky.html
http://www.diotavelli.net/people/void/demos/cky.html
http://www.sata-io.org/technology/6Gbdetails.asp
http://www.sata-io.org/technology/6Gbdetails.asp
http://docs.oracle.com/javase/tutorial/java/concepts/index.html
http://docs.oracle.com/javase/tutorial/java/concepts/index.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

Bibliography

[Wal08a] Julienne Walker. Binary search tree tutorial 1. http://www.
eternallyconfuzzled.com/tuts/datastructures/jsw_tut_bst1.aspx,
2008.

[Wal08b] Julienne Walker. Binary search tree tutorial 2. http://www.dsource.org/
projects/tango/wiki/LibraryLicense, 2008.

[Wal08c] Julienne Walker. Hash table tutorial 1. http://www.eternallyconfuzzled.
com/tuts/datastructures/jsw_tut_hashtable.aspx, 2008.

[Wal08d] Julienne Walker. Red black tree tutorial. http://www.eternallyconfuzzled.
com/tuts/datastructures/jsw_tut_rbtree.aspx, 2008.

143

http://www.eternallyconfuzzled.com/tuts/datastructures/jsw_tut_bst1.aspx
http://www.eternallyconfuzzled.com/tuts/datastructures/jsw_tut_bst1.aspx
http://www.dsource.org/projects/tango/wiki/LibraryLicense
http://www.dsource.org/projects/tango/wiki/LibraryLicense
http://www.eternallyconfuzzled.com/tuts/datastructures/jsw_tut_hashtable.aspx
http://www.eternallyconfuzzled.com/tuts/datastructures/jsw_tut_hashtable.aspx
http://www.eternallyconfuzzled.com/tuts/datastructures/jsw_tut_rbtree.aspx
http://www.eternallyconfuzzled.com/tuts/datastructures/jsw_tut_rbtree.aspx

Erklärung
Hiermit erkläre ich, Robert Schadek, dass ich diese Masterarbeit eigentständig verfaßt,
noch nicht anderweitig für andere Prüfungszwecke vorgelegt, keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate als
solche gekennzeichnet habe.

Oldenburg, den 12. September 2012

	Introduction
	Introduction
	Introducing D
	D Crash Course
	Parts of c
	Classes
	Inheritance
	Interfaces

	Type Casts
	Templates
	Template Functions
	Template Parameter Type Deduction
	Template Aggregations
	Template Structs
	Template Interfaces
	Template Classes

	Template Restrictions

	Compile Time Control Flow and Execution
	Static If Statements
	Version Statements
	Debug Statements

	Pure Functions
	Function Pointer and Delegates
	Advanced Loop Statements
	Modules and Imports

	Theory
	The Lexer
	Introduction
	From Regular Expression to Finite State Machines
	How Finite State Machines are Created
	Basic Operations of Regular Expression
	Regular Expression to Non Deterministic Finite State Machines
	NFA to DFA
	DFA Minimization
	Minimizing the Transition Table of the Minimized DFA
	From Multiple Regular Expression to a Lexer

	The Parser
	Introduction
	Parser Types
	Top-Down Parsing
	Recursive Decent Parser
	LL Parser
	LL(1) parser
	LL(k) parser

	Bottom-Up Parsing
	Lalr(1) Parsing
	Parsing all of Chomsky Type-2
	Glr Parsing
	Elkhound

	Earley Parsing
	CYK

	Comparison

	Parse Table Construction
	Itemset Construction
	Transition Table Construction
	Creation of Extended Grammars
	First Set Computation
	Follow Set Computation
	Extended Follow Set Reduction
	Action and Goto Table Construction

	The Compiler
	Introduction
	The Frontend
	Parts of the Frontend
	Lexical Analysis
	Syntactical Analysis
	Parse Trees
	Abstract Syntax Trees
	Symbol Table

	Semantic Analysis

	The Backend

	Implementation
	The library Libhurt
	Insert Search Remove interface
	The isr specification
	Implementation
	Tree based container
	Binary Search Tree
	Red-Black trees

	Hashtables
	Binary vector

	Comparison
	Using ISR types
	Maps
	Sets
	MultiMaps
	MapSets
	MultiSets

	Random Access Containers
	Vectors
	Deques
	Random access container performance comparison

	List based containers
	Double linked list
	Single linked list
	Fast double linked list

	List performance comparison

	Miscellanies functionality
	Logger
	Main argument parser

	The D lexer generator Dex
	Flow of Execution
	Parsing the Input File
	Preprocessing the aregex
	Building a NFA
	Transforming the anfa to a adfa
	Minimizing the adfa
	Minimizing a Transition Table
	Input Mapping Optimization
	Writing the Transition Table and Other non-static Parts

	Additional Functionality
	Creating Graphs
	Writing a Lexer Template

	The D glr parser generator Dalr
	Introduction
	Parse Table Construction
	Parser Templates
	Implementation of the Parse Table Generator
	Parse Table Construction
	Input File Language
	Input File Parsing
	Input File Validation
	Grammar Rule Preprocessing
	Itemset Construction
	Extended Grammar Construction
	First Set Generation
	Follow Set Generation
	Final Parse Table Construction
	Transition Table

	Additional Functionality
	Parser Template Printing
	Itemset Printing
	Log File Printing

	Implementation of the Parser
	Lalr(1) Parser
	Glr(1) Parser
	A Single Parse
	Running in Parallel

	The D compiler DMCD
	Introduction
	The Lexer
	The Parser

	Intermediate Representation
	Symbol Table
	Abstract-Syntax-Tree
	Flattening the Tree
	Restructuring the Tree
	Speed comparison

	Distribution
	Multithreading
	Lexer Parser Communication
	Push back token
	Get token
	Benchmark

	Semantic-Analyzer
	Benchmark

	Caching
	Cached Data
	Performance

	Overview

	Conclusion
	Future work
	Difference Compiler
	Recursive parser
	Binding to llvm
	Integrating Libhurt Containers into phobos
	Thread Pool for Semantic Analysis
	Combining Parts of the Semantic Analysis with the Parser
	Make Replacement

	Conclusion
	Appendix
	List of Figures
	List of Listings
	List of Tables
	Acronyms
	Glossary
	Bibliography

