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Abstract 

The eCarUs tool implements heuristic optimizations to find the optimal placement for battery stations for electric 
cars by using a simulation of traffic using real world data. A second optimization phase can calculate the required 
number of battery slots for each station.  

1. Introduction 

According to predictions between 1 and 2.5 million electric cars will drive on Germany’s streets by the 
year 20203. That would be 1-2% of all cars. The greenhouse effect might be reduced by saving non-
renewable resources. The reliance on oil is a economical as well as a political problem while electricity 
could be generated locally e.g. from sustainable energy sources like wind farms. But besides these benefits 
- with this relatively new technology also comes new challenges.  
A full battery lasts for about 200 kilometres and charging takes a few hours. Additionally there is no fully 
developed infrastructure for electric vehicles (EVs). This leads to acceptance issues for the introduction of 
EVs in Germany. 

Current developments suggest that instead of charging a battery, the better alternative would be to ex-
change the battery of the EV with a new one which would take only a few minutes. This is where the eC-
arUs tool comes in. It helps to plan the needed and currently missing infrastructure. It is able to find the 
optimal placement for exchange stations. Additionally it calculates the required number of batteries which 
each exchange station needs to keep in stock.  

The eCarUs tool was developed by a group of eight students from the Carl von Ossietzky University of 
Oldenburg. We worked for one year on this project, each student about 16-18 hours a week.  

2. Requirements 

The main project requirements were developed around the question how an EV could travel a long-
distance route like Hamburg–Munich without having to do longer stops for recharging its battery. This 
resulted in the following functional requirements:  
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• The goal is to place stations with minimum costs and maximum satisfaction as well as determin-
ing the stock of batteries held at each station. This means a car should always find a station before 
the battery is drained. Each station should only keep as much batteries in stock as really needed.  

• The quality of found solutions should be rated by customer satisfaction, because this is relevant 
for the acceptance of the technology. 

 
Non-functional Requirements 

• The traffic simulation should run on a real road map of Germany. Adding other countries later on 
should be no problem.  

• The traffic flow should be based on realistic data, meaning different traffic flow for holidays, 
work-days, commuting traffic etc.  

• The user should be able to configure all settings easily. So the application should have a graphical 
user interface (GUI).  

• The optimization progress should be shown to the user. The placement of stations could be shown 
on a map in the GUI.  

• Exporting the results should be possible for further processing (CSV/XLS preferred). 

3. Design 

3.1  Data sets  

3.1.1 Traffic Data 

From the Federal Ministry for the Environment, Nature, Conservation and Nuclear Safety we got statistic 
data about traffic based on actual counting and extrapolation. In the bachelor thesis of one team member a 
program was created which transforms these statistics into traffic flow data which is usable for the simula-
tor ([Strudthoff2010]). The output data is basically a very long comma-separated file which contains a 
time, a starting- and an end-point.  

3.1.2 Geographical Data 

The OpenStreetMap4 project provides free map data. The quality and depth of detail meets the require-
ments to simulate cars driving on major streets and highways. The map data is available in XML format 
and can be converted and imported into a PostGIS database. The PgRouting extension for PostGIS imple-
ments Dijkstra’s algorithm for the shortest path problem ([Dijkstra1959]) which can be used by our simu-
lation to let the vehicles drive on realistic routes for given start- and end-points. 
 
3.2 Technologies  

The SimPy framework5 fulfilled the requirements for the simulation engine. SimPy is an object-oriented, 
process-based discrete-event simulation framework. The usage is easy and it provides good documenta-
tion.  

The simulation has to keep track of all driving EVs and their batteries. The batteries discharge while 
driving and will be recharged at the battery station. A full battery can then be exchanged again. The dis-
tance an EV can drive with a full battery, the time it takes to charge etc. will be configurable with the GUI. 
By choosing SimPy the programming language6 was automatically set Python. Python is a modern very-
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high-level language which is often used in scientific computing. It is a interpreted object-oriented lan-
guage which is known for rapid development but cannot offer the same speed as compiled languages. 
Nevertheless letting the simulation engine handle thousands of EVs was no real problem. The PyQt li-
brary7 was chosen as the best option to create complex user interfaces. PyQt is a binding for the platform 
neutral GUI toolkit Qt8. 

4. Optimization 

Several optimization algorithms were evaluated. Here are the most promising candidates. Algorithms like 
ant colony optimization (ACO) were also evaluated but will be omitted in this paper. To determine cus-
tomer satisfaction for a temporal solution, the simulation runs with the current set of battery exchange sta-
tion positions. This takes a fixed amount of time. Some optimization algorithms need many of such simu-
lation runs to find a viable solution which prevented their use due to timing constraints. 

4.1 Tabu search  

Tabu search requires a neighbourhood search function. Our database contains about 680,000 edges which 
are all connected to form the major streets and highways. If every square kilometre in Germany contains 
only 1.9 edges every station would have over 300 neighbours in a range of 10 kilometres. For 20 stations 
the number of possible neighbours raises to the power of 30020. Therefore tabu search was not applicable 
for finding the optimal placement.  

4.2 Evolutionary algorithms  

For these algorithms a start population would be created using random positions. Depending on the start 
population the solution space might not be fully searched. Another disadvantage is that a population could 
contain many solutions. Calculating the fitness for each solution can take a very long time because the 
fitness is calculated by the simulation results (basically the ratio between total number of EVs and the 
number of EVs which did reach their destination).  

4.3 Flow Refuelling Location Model  

Kuby et al. published research ([Kuby2009]) about optimal placement of stations for vehicles with alterna-
tive fuel, especially hydrogen-powered cars in California. The objectives of FRLM seem very similar to 
our problem but it was not clear if the model would equally work well with the dense German road net-
work. Exchanging batteries was not intended in FRLM. The integration of our simulation seemed impos-
sible, too.  

4.4 Heuristic algorithms  

In conclusion it was decided to create our own heuristic algorithms which are very specific to our prob-
lem. A simple one basically works like this: Every EV leaves a trace. Where traces overlap most a station 
will be placed if possible (depending on extra factors like e.g. investment sum). The simulation is used to 
evaluate the placement algorithms. The placement will be rated by fitness functions, which get the number 
of EVs which reached their destination, as input. 
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5. Implementation 

 
  
 
 
The application has a classic model-view-controller architecture and makes heavy use of common patterns 
like the observer and the delegate pattern. Besides the main GUI application a simple command line appli-
cation was created for debugging purposes which could be used as a base for a distributed application for 
parallel processing very large data sets. Using a geographic information system greatly helped to concen-
trate on the main problem without having to worry about efficient spatial data storage and retrieval.  

 

 
Figure 2: GUI 

 
The interfaces between the different components are highly abstracted. Exchanging e.g. the routing layer 
or the optimization algorithms can be done without touching the code of the GUI or the simulation. To 
prevent inter-component-dependencies the simulation, the optimization and the fitters are called by the 
controller. At the end the possibility to export the complete simulation-, optimization- and fitness-results 
into delimiter separated text files and Excel sheets was implemented. 

 

Figure 1: Architecture 
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6. Conclusions 

The presented application is a tool to plan the infrastructure for the emerging e-mobility market. It com-
plies with all specified requirements and can find good placements for battery exchange stations. Addi-
tionally it can predict how many batteries each station has to keep in stock based on simulated traffic flow.  
The flexible architecture leaves room for experiments with new algorithms and extensions.  
The current model assumes that batteries are charged at the station and can be exchanged again after they 
are fully charged. It would be interesting to see how deferred charging (e.g. based on varying electricity 
prices) might affect the number of required batteries. Large scale controlling unused batteries at all sta-
tions could also help to stabilize the operating reserve.  

Another idea is to equip each EV with a (virtual) intelligent navigation system which can communicate 
with the stations in the near range to gather information where batteries are available. If the driver accepts 
a small detour the number of required stations/batteries might be reduced significantly.  
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