
Douglas Cunningham, Petra Hofstedt, Klaus Meer, Ingo Schmitt (Hrsg.): INFORMATIK 2015,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2015

From Ecological Modeling to Decentralized Optimization
of Smart Power Grids

Michael Sonnenschein1 Ute Vogel2 Christian Hinrichs3

Abstract: In this contribution we want to sum up how computer science, ecological modeling and
control of distributed power systems mutually influence. First we show, how ecological modeling has
been influenced by the availability of faster computers and easier to use programming environments.
Then we argue that adaption and emergent behavior in biological systems observed e.g. at the hand
of microscopic models can be interpreted as an optimization process. This observation led to new
optimization (meta-)heuristics in computer science and inspired multi-agent based optimization and
control methods. We motivate why these methods are an interesting choice for finding new solutions
to planning and control problems in future electrical power systems. As an example we sketch a
completely distributed, agent-based planning and control system for a so-called dynamic virtual
power plant. Finally we discuss some directions of future research in the domain of agent-based
control of distributed systems.
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1 Introduction and Overview

For several years now, ’swarm intelligence’ and ’nature-inspired heuristics’ are considered
to be a promising approach for optimizing large distributed systems. This is particularly
the case for optimization problems in the electrical power system (see e.g. [Mc07, AEH09,
Ka14]).

In this contribution we want to sum up how computer science, ecological modeling and
control of distributed power systems mutually influence. First we give a short introduc-
tion into ecological modeling and show, how this discipline has been influenced by the
availability of faster computers and easier to use programming environments: particularly
these conditions allowed the creation of microscopic population models. Then we argue
that adaption and emergent behavior in biological systems observed, e.g. at the hand of
microscopic models, can be interpreted as an optimization process. This observation led
to new optimization (meta-)heuristics in computer science.

Currently our electrical power supply system is redesigned from a few large coal-fired or
nuclear power plants to a large set of relatively small distributed power plants based on re-
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newable energy. But power generation from photovoltaic and wind power plants is volatile
and does not necessarily correlate spatially and temporally to the demand. This and other
reasons cause a substantial increase of complexity in controlling these distributed units to
guarantee grid stability and reliability of supply. After a very brief introduction into cur-
rent challenges of our power system in section 4 we motivate why optimization heuristics
and artificial intelligence methods are an interesting choice for finding new solutions to
control problems in this context. In section 4.2 we show the enormous increase of research
in this area in the last 10 years referring to Scopus queries. As an example in section 4.3 we
sketch a completely distributed, agent-based control system for a so-called virtual power
plant that was motivated by swarm behavior in nature. In the conclusion we discuss the
advantages of such nature-inspired, distributed control methods but also their risks that
lead to further research in this domain.

2 Ecological Modeling

Ecological systems are highly complex systems which are characterized by diverse and
interacting (social) components. The objective of modeling, in particular of ecological
modeling, consists in breaking this complexity down to a (formal) model which reduces
the system to some application-specific core elements. The resulting abstract model can be
analyzed and helps to gain better insights in the dynamics of the underlying system. With
the development of Theoretical Biology, mathematical models were increasingly used:
The resulting models are open for qualitative analysis, e.g. graphical representations help
to uncover structural dependencies such as cause-effect-relations hierarchies and feedback
cycles. Quantitative models, especially differential equations, allow the usage of models
for estimating gaps in the collected environmental data or even to extrapolate the future
development of the system [Lo25, Fo93]. With the availability of computers, software
tools have been developed (Stella, et al.) to support the analysis and allow comfortable
simulations. The abstraction level of such system dynamics models is very high: the di-
versity and heterogeneity of the original system is reduced to a small number of system
state variables and parameters and the dynamics described by flows between the state
variables. This very abstract modeling is justified in systems with a very high number of
individual components as in such systems the aggregated behavioral deviations of individ-
uals can be approximated by the average behavior using averaged parameters. Due to the
high degree of abstraction, more detailed views to the system evolved: Individual-oriented
models allowed for individual distribution models (IBDM) which split a population by
an individual attribute, e.g. age, and model the resulting groups of individuals as separate
state variables, but still represent abstracted views to an aggregated system’s dynamics
which cannot directly be observed in nature. This changed with increased computational
power and availability of adequate software tools, e.g. [LS98]: Individual-oriented models
(IBCM) go one step further by modeling the individuals of the system and their individ-
ual behavior itself, and hence, allow observing interactions between individuals as well as
between individuals and environment [HH90, DRH94]. Simulated flocks of birds and fish
schools are prominent examples that such models could be used for validating biological
theories of emergence phenomena. Additionally, the concept of Cellular Automata [Ho88]
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allows the micro-scale modeling of spatial processes and the integration of heterogeneous
spatial conditions into models.

Common to all these Ecological Modeling approaches is that their objective is to gain
insights in the behavior of biological and ecological systems. [HDP88]

3 Nature-Inspired Optimization

The micro-scale approach of individual-oriented modeling allows to model the individual
behavior and to observe emergent effects on a macro-scale layer. In combination with
the fact that the behavior of biological or ecological systems can be interpreted as an
optimization to their environment, this observation has led to new optimization (meta-)
heuristics, so-called nature-inspired optimization. Introductory textbooks on this subject
are e.g. [Ya10, Br12]. They include several examples of applications as well as pseudo-
code for algorithms.

Other than the ecological modeling, nature-inspired heuristics are applied to optimization
problems in arbitrary disciplines. Applications range over a broad area of computational
problems, e.g. network routing and network design, maximal independent set, minimum
spanning tree, space partitioning [NBJ14]. So, there has been a change from applying
computer technology for the understanding of natural systems to using patterns of natural
behavior for solving computational expensive or intractable optimization tasks [Co96].

In the following, some examples of such nature-inspired optimization techniques are briefly
introduced. We differentiate between heuristic approaches with central control and agent-
based approaches which produce near-optimal solutions solely by interacting agents.

3.1 Heuristic Approaches

The structure and behavior of Artificial Neural networks (ANN) mimics biological neural
networks. They consist of a set of interconnected (artificial) neurons which receive, process
and transmit impulses. An artificial neuron is usually only capable of simple computational
steps, i.e. the linear combination of inputs and the application of thresholds. The weights
and thresholds which are used in the transfer and processing can be trained in order to map
a set of inputs (patterns) to outputs [Mi12]. Hence they reflect a mere statistical relation in
the input/output data and do not explain any structural aspects. On the global perspective,
the realized input/output behavior of a trained neural network can be seen as an emergent
process.

Evolutionary algorithms (EA) are one of the best-known nature-inspired optimization
meta-heuristics: The evolutionary process which allows species or ecosystems to evolve
gradually to an optimal adaption to its environment has inspired different variants of op-
timization techniques [FP95]. The basic idea which has been implemented in Genetic Al-
gorithms (GA) is to view (non-optimal) solutions of an optimization task as individuals
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of a population. Chromosomes code the description of the solution. The nature-inspired
processes Crossover and Mutation produce candidates for the next generation of solutions
by constructing a new combination of two parental chromosomes and by random changes
in some attributes (genes) of a chromosome. The candidates which are the fittest related to
an arbitrary objective function are chosen for the next generation. So the information about
the solution space is distributed over the individuals and coded in their chromosomes, but
the evaluation of this information takes place in the centralized selection process.

Particle Swarm Optimization (PSO) [UP11] has been inspired by swarms, herds, and
flocks of animals. Similar to GA, a PSO starts with a random population of solutions.
The individuals explore the solution space by moving around with individual velocity and
direction. After each step, the individuals’ solution qualities are evaluated and the position
of the global best solution determined. Each individual adapts its direction, and hence its
position in the next iteration, by taking its own best as well as the global best solution into
account.

In this basic form, the behavior of the particle swarm cannot be viewed as an intelligent
swarm [SLW12], as the propagation of the determined global best solution represents a
central component. Variants of the PSO modify the propagation of the individual best so-
lution to a local neighborhood and hence can be viewed as intelligent swarm. Furthermore,
the knowledge propagation about the known best solution changes to a decentralized pro-
cess, which opens up the possibility of a completely distributed implementation.

3.2 Agent-Based Methods

In the micro-scale approach of ecological modeling it often can be observed, that the indi-
viduals’ behavior leads to a global optimum of the overall ecological or biological system.
The behavior of fish schools [Re87] illustrates this idea very well: The movement of a fish
school completely depends on the simple behavior of the single fishes, their restricted per-
ception of their environment, and their interaction. Each fish’s behavior can be reduced to
three rules: 1. Avoid collisions 2. Move with the same velocity and direction as other fishes,
and 3. Head for fishes which might be joined in the school. Simulations show that these
rules can explain the school’s movement, which represents an optimal protection strategy.
Such systems are called self-organizing, as there is no central entity that controls the sys-
tem’s progress, and the global system behavior purely emerges from local interactions.
This idea of independent agents with simple behavioral rules and only local knowledge
about their environment in combination with other species behavioral patterns has been
adopted by agent-based heuristic optimization methods: The behavior of biological ants
and bees inspired heuristics for determining short routes by the Ant Colony Optimization
(ACO) and for optimizing routing protocols by the Bee Colony Algorithm, resp. [GP10].
In these heuristics the individuals can be viewed as agents in a multi-agent system. Each
individual has its own attributes and perception of its local environment and is interacting
and communicating with other individuals in order to fulfill its own objectives. Such a
system fulfills the definition of swarm intelligence as ’ability to act in a coordinated way
without the presence of a coordinator or of an external controller’ [SLW12].
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4 Challenges in Electrical Power Systems

The purpose of an electrical power system is clearly to provide us with electrical power
in the most reliable, economic, environmental friendly, and socially acceptable manner.
Obviously these four goals can’t be maximized simultaneously, so political and societal
weights for these four goals are necessary to design the best possible electrical power
system based on the available technology. These weights can be implemented by legal
frameworks, market regulations or financial incentives.

Currently, in Germany and in many other countries we undergo a system change originated
by weighting up environmental aspects. In combination with emerging new technologies
(wind turbines, photovoltaic systems, battery storage) this leads to a major redesign of our
power supply system replacing large, nuclear or coal-fired power plants by small renew-
able energy sources (see e.g. [DII12] for a required scenario of the German power system
in the year 2050). In consequence not only the traditional role models and business cases
of utility companies are changing, e.g. by private ownership of roof-top solar plants or
small co-generation plants, but also accounting systems and control systems of this more
and more distributed power supply system are being reconsidered significantly. Addition-
ally the power grid has to be redesigned to adapt to the modified power flow in the grid
caused by relocating power plants (see [5014] for the planned development in Germany
which is the subject of controversial political discussion).

4.1 Operation and Control Aspects in Power Systems

Many comprehensive introductions into the operation of power systems are available (see
e.g. [Me06, Sc12]). Of course in this contribution we have to view things from on a very
high level view. In simple terms, apart from the need of matching of supply and demand
operation and control of the power system has at least four technical goals to ensure sta-
bility:

• The frequency has to be 50Hz at any time (for the continental European power grid)
with a maximal deviation of 0.2Hz.

• The voltage band on each voltage level must not be violated (e.g. 210V. . . 250V for
the low voltage grid) at any point of the power grid.

• The operating limitations of all active and passive components (e.g. lines, transform-
ers) of the power systems have to be respected.

• The quality of frequency and voltage, e.g. the level of short-term fluctuations and
the harmonic-content, has to be optimized.

These are hard constraints to avoid power outages or damage of components. Additionally,
from a macro-economic perspective, operation and control of the power system should
minimize overall operational cost and also minimize emissions or other type of waste from
the operation of nuclear or fossil-fuel power plant. In practice, cost-optimization of power
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generation refers to single owners or owner communities and is limited by the market
conditions. Environmental aspects are integrated into the operation by market rules, e.g.
the EEG in Germany [Bu14], that guaranty priority of renewable energy.

So, operation and control of the power supply system includes a highly complex, multi-
criteria optimization problem, integrating a huge amount of units (e.g. power plants or
controllable loads) with many technical constraints and hard real-time aspects. This com-
plex problem is solved by decomposition into several subproblems. Subproblems can be
defined on the one hand by subtasks, e.g. frequency control or local voltage control, and
on the other hand by identifying local control circuits, e.g. related to the grid topology, or
economical balancing groups.

But with the redesign of our power supply system these operation and control problems
becomes even more complex, requiring a ’smart grid’. For example, power generation from
photovoltaic and wind power plants is volatile and does not necessarily correlate spatially
and temporally to the demand. Moreover, prognosis of power generation from renewable
energy comes with some remaining uncertainty. From a technical perspective the system’s
size also becomes problematic, as the number of power plants to be controlled increases
by some orders of magnitude. Furthermore, power plants are now connected to the power
grids at all voltage levels – not only at the high voltage and highest voltage level as in the
past. To handle these challenges, first approaches aim at developing new decomposition
methods – or vice versa aggregation methods for small power plants: virtual power plants
(VPPs) [AP97, PRS07] and microgrids [Ha14]. Both attempts combine the operation of
small power-plants whereby VPPs mainly act at the market whereas microgrids aim at a
local supply-demand matching. But the increasing complexity also motivates research in
new optimization and control methods, which will be discussed in the following sections.

4.2 Nature-Inspired Methods

Due to the substantially increased complexity of the power system, optimization heuris-
tics and artificial intelligence methods are an interesting choice for finding new solu-
tions. Thus, research in nature-inspired approaches for power system operation and control
gained significant momentum in the past decades. Figure 1 shows the number of publica-
tions in this area for the last thirty years, based on a search in the Scopus bibliographic
database.4 Within these publications, most of the research focuses on artificial neural net-
works as well as evolutionary algorithms, beginning in the late 1980’s. Ecologically in-
spired approaches such as ant/bee/bacterial foraging strategies or firefly/cuckoo search al-
gorithms started appearing in the power systems in the late 1990’s (summarized as “other”
in the figure). A remarkable milestone was the adoption of particle swarm optimization in
the power systems community in the early 2000’s, leading to a rapid increase of research
in this context.

While these approaches all focus on heuristic optimization, the field of multi-agent systems
is more related to coordination and planning problems. Starting already in the 1990’s with
4 http://www.scopus.com, accessed June 3, 2015
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Fig. 1: Scopus query results for research in nature-inspired approaches with application to power
systems in the last 30 years, displayed as stacked chart grouped by topic (ANN = artificial neural net-
works, EA = evolutionary algorithms, PSO = particle swarm optimization, MAS = multi-agent sys-
tems, other = ant/bee/bacterial foraging, firefly/cuckoo search algorithms and similar approaches).

only few publications per year in the power systems community, a significant increase
of research volume can be seen nowadays in this area, see Fig. 2. This is supported by
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Fig. 2: Scopus query results for research in decentralized nature-inspired approaches with application
to power systems in the last 30 years.

the trend towards complex intelligent distributed systems in power systems operation and
control, as already outlined in Sect. 4.1. For instance, a research agenda from the point
of view of computer science has recently been published in [Ra12], which particularly
motivates distributed and agent-based solutions.
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4.3 Agent-Based Approaches in Power Systems

As a practical example for an agent-based approach in power systems operation and con-
trol, let us consider the balancing of supply and demand. This is necessary for economical
reasons and with respect to the first technical goal mentioned in Sect. 4.1. Frequency de-
viations in the power grid are caused by an imbalance between consumed and produced
power. If more power is produced than consumed, the frequency increases and under re-
verse conditions it decreases. Simplified, this currently results in three tasks of the power
supply system:

• Balance between demand and supply has to be achieved first by direct contracts
between consumers and producers or at the power market. The latter is enabled by
a complex set of products traded in this market [Eu14].

• The operation of controllable power plants (as well as controllable loads such as
heat-pumps) has to be planned within groups of plants having jointly sold power
products or load profiles in their supply area.

• During execution of the operational plan a system of power reserves has to be
available to react instantaneously to unforeseen deviations from forecasts and other
events as outage of a power plant. This task is primarily assigned to the transmission
grid operator [Eu09].

Let us focus on a the second aspect: the planning of the operation of controllable power
plants within a group responsible for delivering a specific power product or load-profile.
This planning problem is very well known as the unit-commitment-problem. Established
solutions exist for small groups of large controllable plants; for an overview see e.g.
[Pa04]. For several years also nature-inspired optimization heuristics are considered to
tackle this problem – see e.g. [KBP96] for an early approach. But with the redesign of the
power system new challenges arise. For instance, the number of plants to be controlled
increases, so highly scalable solutions are required. Further, the members of virtual power
plants may change quite often, which calls for easily adaptable optimization methods. Be-
cause units in such a virtual power plant can have different owners, each unit also follows
its own optimization goals, yielding hybrid multi-objective optimization problems. Finally,
owners of power plants might have privacy restrictions regarding information on the op-
erating status of their units. So, optimization might be restricted to limited, abstract state
information of units.

Thus, a dynamic agent-based approach seems appropriate for this task. As an example, a
suitable approach exists with the concept of Dynamic Virtual Power Plants (DVPP), which
is summarized briefly as follows (cf. [Ni12, So15]). In a self-organized way coalitions
of plants form with respect to concrete products in an energy market. After delivering a
product, a coalition dissolves and the former participating units can then self-determinedly
join the formation process of other coalitions for subsequent tradeable energy products. In
particular, this comprises the following subprocesses:
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1. DVPP setup: Plants are aggregated to DVPPs by coalition formation, such that the
members of each DVPP agree upon trading a specific power product in the market
(e.g. a certain block product in an electricity spot market). Bids for these products
are then placed in the market by the respective DVPPs.

2. Internal scheduling: After a successful bid, a DVPP is obliged to deliver the power
product. For this, the members of the DVPP have to be scheduled within their indi-
vidually defined degrees of freedom. This is done prior to the actual delivery of the
product in a predictive scheduling process which uses mathematical abstractions of
the devices’ feasible scopes of action.

3. Continuous scheduling: To compensate for unforeseen changes or forecast errors,
a continuous scheduling is performed during the delivery of the product. Here, the
units’ schedules are adapted such that product delivery is not endangered.

4. Payoff division: Subsequently, the revenues gained from product delivery are dis-
tributed among the DVPP members, taking the actual commitment of the units dur-
ing delivery into account.

In addition to the dynamic nature of this concept, all optimization and control tasks out-
lined above are realized with fully distributed approaches. Each participating plant is rep-
resented by an agent in the system, and the autonomy of the participants is preserved by
employing self-organization strategies in the subprocesses. Some results from a prelimi-
nary implementation of this concept can be found in [As14].

5 Lessons Learned

In this article, we have sketched how computer science is related to the domain of eco-
logical modeling and to the domain of power system’s operation and control. Considered
historically, computer science enabled new and much more detailed methods for modeling
ecological systems, e.g. by individual-oriented models. This resulted in new insights in
the behavior of natural systems. Vice versa, a deeper knowledge of self-organization and
adaption in ecological systems inspired new optimization methods as e.g. evolutionary
algorithms or methods based on the self-organization of social insects. Although devel-
oped somewhat in parallel, individual-oriented modeling in ecology has clearly a strong
relationship to multi-agent systems, which are an excellent framework for distributed op-
timization and distributed control.

As technical systems become more and more complex and distributed, components in
these systems become more ‘intelligent’ by advanced micro-controllers. Besides, com-
munication channels between distributed components become self-evident. So distributed
agent-based methods are promising candidates for optimization and control aspects in such
technical systems. Electrical power systems are a prime example for this. By replacing a
few large fossil-fired or nuclear power supply units by many small wind turbines and
photovoltaic systems widely distributed around the power grid, electrical power systems
become an even more complex and distributed socio-technical systems.
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Self-organized agent-based systems promise in particular high adaptability, fault-tolerance
regarding single components, scalability, and – not to forget – privacy of state informa-
tion of components. But let us reconsider the difficulties that arise with this possible
paradigm shift – particularly with regard to the criticality of the infrastructure that has
to be controlled. From the viewpoint of ecological and individual-oriented modeling, self-
organizing systems usually have been constructed by induction: By analyzing existing sys-
tems in nature, interactions among the systems’ individuals could be identified and subse-
quently be adopted to optimization problems. This resulted in widely applicable concrete
approaches, such as meta-heuristics.

Regarding the current and upcoming challenges in the optimization and control of com-
plex critical infrastructures however, these generic solutions are often not sufficient any
more. Instead, specialized methods and architectures with guaranteed properties are re-
quired, where a deductive approach could be more suitable. In such an approach, a system
would be constructed with a concrete goal in mind, but based on an abstract yet rigor-
ous methodology to model the system elements and their interactions towards the desired
emerging behavior. For instance, in the context of communication networks, an example
of such a methodology has been proposed in [PB05]. We believe that this kind of approach
will become more important in the future. Although, due to their complex internal dynam-
ics, distributed algorithms and agent-based methods are more demanding with respect to
proofs and guarantees on their intended behaviour. Also, agent-systems are in risk to be
vulnerable by malicious agents. For an actual adoption in critical infrastructures, these are
significant aspects.

In summary, new research challenges arise for design methods for distributed optimization
and control methods, especially with a focus on provable guaranteed behavior. In this
sense, also the integration of security aspects into agent-based frameworks play a crucial
role, see [Ne14]. Finally, high-level standards for complex communication issues in multi-
agent systems controlling power system’s components will be subject to intensive work.
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