OSSIETZ.}SY
universitat|OLDENBURG

CARL VON OSSIETZKY UNIVERSITAT OLDENBURG
FAKULTAT Il — INFORMATIK, WIRTSCHAFTS- UND
RECHTSWISSENSCHAFTEN
DEPARTMENT FUR INFORMATIK

Automatic Stability Verification
via
Lyapunov Functions

Representations, Transformations, and Practical Issues

Von der Fakultét fiir Informatik, Wirtschafts- und Rechtswissenschaften der Carl von
Ossietzky Universitdt Oldenburg zur Erlangung des Grades und Titels eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

angenommene Dissertation
von Herrn Eike Mohlmann

geboren am 01.04.1985 in Oldenburg

Gutachter:
Prof. Dr.-Ing. Oliver Theel

Weiterer Gutachter:
Prof. Dr. Martin Franzle

Tag der Disputation:
05.12.2018

Acknowledgements

Many people helped and supported me while I was working on this topic and writing
this thesis. I am grateful for all of them and I am sorry for everyone I do not mention
here.

First of all, I thank my wife, Anke, my kids, Oskar and Ida, and the rest of my
family for always being a good backup, motivating me on my long journey, and having
understanding for all the time I could not spent with you and all the activities I could not
join. I thank my parents, Heidi M6hlmann and Udo Hilberts, for enabling and supporting
my studies.

I thank my scientific supervisors, Oliver Theel, Martin Frianzle, Werner Damm, and
Ernst-Riidiger Olderog for inspiring ideas, the shared extraordinary amount of experience
and knowledge as well as the patience not only during this work but also during my
studies towards the diploma degree.

I thank my colleges, especially Jens Oehlerking for introducing me to this topic, the
long and interesting discussion about fruitful and not so fruitful ideas, Oday Jubran for
all the fun, brain teasers, heated debates, and the paper-deadline-pizza-evenings, Willem
Hagemann and Astrid Rakow for the great cooperation and scientific support, Robert
Schadek for being the best travel-mate on the unbelievable exploration of South America,
and Sebastian Gerwinn for pushing me over the finishing line.

I also thank the many interns and students that I was allowed to meet and supervise,
especially, Dhanya Sridhar who supported me in the development of the spidercam
example and the dense to sparse relaxation, Birte Kramer who supported me during the
development of the unrolling relaxation, Adam Wheeler with whom I was working on
another (yet unpublished) relaxation idea.

Further, I thank my whole former group at the university for the delicious cake and
cinema visits that truly added joy to life, the whole team at AVACS for creating such a
vivid and highly inspiring atmosphere, and my current group at OFFIS for the affectionate
welcome and introduction to further research directions.

And finally, this work would not exist without financial support for which I am also
thankful. Hence, I would like to mention that my studies were supported by the Hans-
Bockler-Stiftung and this work has been supported by the German Research Council
DFG within SFB/TR 14 “Automatic Verification and Analysis of Complex Systems”.

Abstract

Starting with the industrial revolution, more and more tasks in our every-day life are
taken over by machines. Since then, the standard of living has improved for the general
population. Besides the evident improvements, a major challenge was to assure flawless
functionality of the machines. Mathematical modeling and analysis are key enabler
for this validation. In the beginning the machines were mechanical systems, large but
simple compared to the machines build to satisfy modern requirements. Nowadays,
these machines combine mechanical and electronic systems and have a hybrid (discrete-
continuous) state space. The discrete components correspond to an embedded controller
and the continuous components often correspond to a physical plant. Interconnected, such
mixed systems are usually called cyber-physical systems and their application range from
assistance functions to fully autonomous functions. Especially in the field of autonomous
systems, it is of utter importance, that disturbances will be counterbalanced (e.g., a
satellite needs to compensate forces induced by radiation, gravity, and the reorientation
of the solar panels). Such a robustness against disturbances should be ensured before
launch, e. g., via a formal proof of stability.

In this thesis, we focus on the automatic verification of global asymptotic stability of
such hybrid systems modeled as hybrid automata. Global asymptotic stability ensures
that the state of the system converges to a predefined desired state independently of the
initial state. A standard tool to derive a proof of global asymptotic stability is Lyapunov
theory. Lyapunov theory requires us to find a so-called Lyapunov function. A Lyapunov
function assigns each state of the system an energy value such that the value decreases
while the system evolves. The existence of such a function does not only prove stability
but also robustness against external disturbances. Even though the search is usually
manual, constraint systems whose solution yield Lyapunov functions can be formulated
and numerical methods for solving exists.

The contribution of this thesis is three-fold: (1) the automatic derivation of Lyapunov
functions (2) the systematic transformation of hybrid systems in order to simplify the
computation of Lyapunov functions, and (3) the extension of a framework for component-
based design of safe and stable hybrid systems.

With respect to automatic derivation of Lyapunov functions, we have fully automatized
all steps from deriving the constraints over solving them to interpreting the results. Our
implementation includes proof schemes for finding common Lyapunov functions, piecewise
Lyapunov functions as well as a compositional Lyapunov functions. Additionally, we
have developed and implemented numerical and symbolic techniques to double-check the
results of the numerical solver. Without such checks a compositional Lyapunov functions
might be invalid. Further, heuristics to simplify obtaining valid results are presented.

We have developed transformation techniques that simplify the search for Lyapunov
functions. One can improve the applicability of cycle-based decomposition approaches
by relaxing the automata’s underlying structure. This — in the best case — requires a
linear number of cycles to be investigate but — in the worst case — successively reverts to
the original structure. The other technique carefully combines reachability and stability
analysis by iteratively unrolling the underlying automaton and mutually uses results

iii

from the analysis for simplification.

iv

Zusammenfassung

Seit der industriellen Revolution werden fortlaufend weitere Aufgaben durch Maschinen
iibernommen. Seit dieser Zeit hat sich der Lebensstandard fiir die breite Bevolkerung
weitergehend verbessert. Jedoch war es von Anfang an eine grofle Herausforderung die
einwandfreie Funktionalitéit der Maschinen nachzuweisen. Das Hauptwerkzeuge fiir die Va-
lidierung sind mathematische Modellierung und Analyse. Zu Beginn waren die Maschinen
rein mechanisch und grof}, jedoch im Vergleich einfacher als solche Maschinen, die gebaut
werden um aktuelle Anforderungen zu erfiillen. Moderne Maschinen kombinieren mecha-
nische und elektronische Systeme und haben einen hybriden (diskret-kontinuierlichen)
Zustandsraum. Die diskreten Komponenten im Zustandsraum entsprechen oft digitalen
Kontrollern und die kontinuierlichen Komponenten einer physikalischen Anlage. Vernetzt
werden solche Systeme als Cyber-physikalische Systeme bezeichnet und finden Anwen-
dung als Assistenzsysteme sowie als voll autonome Systeme. Gerade im Bereich der
autonomen Systeme ist es erforderlich, dass Stérungen automatisch ausgeglichen werden
(z.B. miissen Satelliten Strahlungs-, Gravitationskréfte und Bewegungen der Sonnenkol-
lektoren ausgleichen). Schon vor der Inbetriebnahme sollte die Robustheit gegeniiber
Storungen, z.B. durch den formalen Nachweis von Stabilitét, sichergestellt werden.

Diese Arbeit widmet sich der automatischen Nachweisfithrung globaler asymptotischer
Stabilitét fiir Systeme welche als Hybride Automaten gegeben sind. Globale asymptoti-
sche Stabilitét stellt sicher, dass der Systemzustand unabhéngig vom initialen Zustand
zu einem vorgegebenen Zustand, dem Equilibrium, konvergiert. Typischerweise wird
der Nachweis mit Hilfe von Ljapunow-Theorie erbracht. Dazu wird eine sogenannte
Ljapunow-Funktion gesucht, welche jedem Systemzustand einen nicht-negativen “Ener-
giewert” zuordnet, so dass dieser Wert beim Voranschreiten des Systems abfallt und
das Minimum im Equilibrium erreicht. Obwohl die Suche meist manuell ist, kénnen
Gleichungssysteme aufgestellt werden deren Losung die Existenz einer solche Funktion
implizieren.

Die Beitrége dieser Arbeit fallen in drei Bereiche: (1) die automatische Bestimmung von
Ljapunow-Funktionen, (2) die Transformation der Systembeschreibung zur Vereinfachung
des Stabilitidtsnachweises und (3) der kompositionelle Entwurfsprozess von sicheren und
stabilen hybriden Systemen.

Hinsichtlich des automatischen Nachweises von Stabilitit wurden alle Schritte von
der Herleitung von Gleichungssystemen iiber das Losen dieser bis hin zur Uberpriifung
einer moglichen Losung automatisiert und prototypisch implementiert. Der Prototyp
ermoglicht das Finden von gemeinsamen, stiickweise-definierten und kompositionellen
Ljapunow-Funktionen. Weiterhin wurden numerische und symbolische Methoden zur
Uberpriifung der numerischen Losung sowie zur Vereinfachung des Gleichungssystem
entwickelt und implementiert. Durch die Uberpriifung kann verhindert werden, dass
ungiiltige kompositionelle Ljapunow-Funktionen erzeugt werden.

Hierzu werden zwei Transformationstechniken entwickelt und implementiert. Die ers-
te verbessert die Anwendbarkeit eines existieren Zyklen-basierten Dekompositionsan-
satzes auf Automaten mit einer dichten Graphstruktur. Die zweite Technik integriert
Erreichbarkeits- und Stabilititsanalyse durch das iterative Abrollen des Automaten, wo-

bei wechselseitig Analyseergebnisse zur Vereinfachung verwendet werden.

vi

1

Contents

Introduction

1.1 Stability Verification L o
1.2 Contributions e
1.3 Outline of the Thesis

Preliminaries and Related Work

2.1 Basic Notations
2.2 Hybrid Systems
2.3 Stability
2.4 Stability Verification oo
2.4.1 Lyapunov Theorem
2.4.2 S-Procedure
2.4.3 From Non-Negativity to Sum-of-Squares
2.4.4 Linear Matrix Inequalities
2.4.5 Computing Lyapunov Functions
2.5 Decompositional Stability Verification
2.5.1 Graph
2.5.2 Decomposition into Strongly Connected Components
2.5.3 Decomposition into Overlapping Cycles
2.6 SUMMATY o v e e e e e

Automatic Stability Verification

3.1 State-of-the-Art
3.2 Stabhyli: A Tool for Automatic Stability Verification
3.2.1 Preprocessing
3.2.2 Solving Constraints 0oL
3.3 Equality Detection and Handling
3.3.1 Simplifying Constraint Systems
3.4 Validation of Candidate Solutions
3.4.1 Validating Solver Engine L.
3.5 Guiding a Numerical Solver

3.5.1 Guiding
3.5.2 Example
3.6 Benchmarking .
3.7 Summary . . .

Transformations that Simplify Stability Verification

4.1 State-of-the-Art

10
16
20
25
25
31
33
36
37
41
42
44
45
48

49
50
51
o4
60
63
67
74
75
79
82
84
84
86

89
89

vii

Contents

4.2 Relaxation: From Dense to Sparse Graph Structures
4.2.1 Relaxation of the Graph Structure
4.2.2 Experiments

4.3 Unrolling: Hybrid Methods for Hybrid Systems
4.3.1 Safety, Reachability, and Reach-Avoid Problems
4.3.2 Safety and Stability at Once
4.3.3 Experiments

4.4 SUMMATY .« . o o v v v e e e e e e e e e e e

A Framework for Designing Safe and Stable Hybrid Systems

5.1 Preliminaries e
5.1.1 Plants and Controllers

5.2 State-of-the-Art: Sequential Composition

5.3 Extension to Parallel Composition
5.3.1 Global Asymptotic Stability in an Environment
5.3.2 Global Asymptotic Stability under Parallel Composition

5.4 Advanced Driver Assistant System: A Case Study
5.4.1 Plant e
5.4.2 ADAS: Architecture
5.4.3 Steering Controllero
5.4.4 Velocity Controller
5.4.5 Event Translation,
5.4.6 Composition

5.5 Summary .. o.o. Lo e

Conclusion and Future Work
6.1 Conclusion s
6.2 Outlook and Future Work

Bibliography

Glossary

Acronyms

List of Figures and Tables

viii

117
119
126
131
133
135
143
165
168
169
170
174
179
181
184

187
187
188

193
209
211

213

CHAPTER

Introduction

It is a fact that our every day’s life relies more and more on machines that are taking
over an increasing number of tasks. Among these, there are critical tasks where failures
result in irreversible harm to humans and nature. One example is the push towards
the application of advanced driver assistance systems (ADASs) and autonomous driving
functions (ADFs) in the automotive domain. An advanced driver assistance system is
a system that assists a human driver in sensing the environment and controlling the
vehicle. And an autonomous driving function is a function that takes over all steps from
the perception over maneuver planning to maneuver execution. In both applications,
the quality of the continuous monitoring of the environment and the actions of the
vehicle as well as a continuous re-planning is crucial for avoiding critical situations in
which humans, nature, or property is put at risk. Several methodologies and techniques
have been invented, standardized, and successfully applied to reduce the risk of such
critical situations in practice. However, the more complex the tasks become — like fully
autonomous driving of vehicles, airplanes, and vessels — the more complicated is the
analysis of the system preforming the tasks. Taking into account the number of involved
components and the associated physical processes, it is hardly possible for a single engineer
to get an overview of all the interrelations, and it has been agreed that (semi-)automatic
methods are essential for analyzing complete systems and even subsystems. For some of
the so called cyber-physical systems, it is sufficient to address safety, i.e., the absence of
(potentially) harming “bad” events, but for others, it is mandatory to address liveness,
i.e., the existence of “good” events. In particular, an interesting and common special
cases of liveness properties are convergence properties like stability. An example of an
autonomous operation, where stability is key, is an orbit control system of a satellite
whose task is to keep the satellite in a geostationary orbit. The satellite has only limited
resources (e.g., fuel) for adjusting the orbit. If the satellite veers away too much from
earth, then more resources are needed to prevent the satellite from getting lost; if the
satellite comes too close to earth, then more resources are needed to prevent the satellite
from crashing onto earth. In such a case, optimal control of the impulses towards a stable
orbit maximize the life-time of the satellite and stability is the concept to apply.

Consider the basic feedback loop given in Figure 1.1. It consists of a controller and a
plant. For many real systems the controller is an embedded system and the plant is its
(partial) surrounding environment. Examples of such systems are orbit control systems
of satellites, automatic cruise controllers, engine control units, or unmanned powerhouses.
In all these examples, certain operating conditions have to be maintained, and it is the

Chapter 1 Introduction

Disturbances

|

. +
Set Point 4’@_6' Controller [— Plant Y
1

Figure 1.1: A basic feedback loop.

task of the controller to drive the output y of the plant into the desired operating range.
This desired operating range is often a single point called the set point or equilibrium
point. Given such a set point and the output of the plant y, an error value e can be
computed. The controller then decides for appropriate values of the actuators u based
on this error value. In practice, such a control task has to be performed in the presence
of external disturbances which makes it more complicated — if possible at all — to ever
achieve no error. However, a controller that achieves a vanishing error value is called an

asymptotically stabilizing controller and the overall system is said to be asymptotically
stable.

Unstable

Marginally
Stable

Figure 1.2: Visualization of an unstable (left, red), a marginally stable (middle, orange),
and a stable (right, green) system.

Stability is a very desirable property, since stable systems are inherently fault-tolerant:
after the occurrence of faults leading to, for example, a changed environment', the system
will automatically “drive back” to the set of desired (i.e., stable) states. Stable systems
are therefore particularly suited for contexts where autonomy is important, such as
dependable assistance systems, or in contexts where properties have to be assured in an
adverse environment. A system that is not stable could be

1Such a changed environment can be regarded as disturbances, e.g., a drop of the temperature due to
an open door. In which case a controller could increase the heating effort.

(a) Visualization of a trajectory of a stable (b) Visualization of a trajectory of an
(convergent) system. unstable (divergent) system.

Figure 1.3: Trajectories of a stable and an unstable system.

o unstable: the system’s output grows unboundedly, or

o marginally stable: starting at the equilibrium point, the system stays at this point
and small perturbations lead to small changes of the output without the system
returning to the equilibrium point.

These very basic properties are visualized in Figure 1.2. The figure shows three balls. The
red ball on the top of the hill is in an unstable situation, because a slight impulse makes
the ball roll arbitrary far away. The orange ball on the plateau is in a marginal stable
situation, because a slight impulse results in a slightly different position. The green ball in
the valley is in a stable position because a slight impulse makes the ball return to its initial
position. These properties and other related properties will be discussed in more detail
in Section 2.3. The continuous evolution of a system over time is called a trajectory,
and Figure 1.3 visualizes two trajectories in the phase space. Figure 1.3a shows a
converging trajectory corresponding to a stable system and Figure 1.3b shows a diverging
trajectory corresponding to an unstable system. Both trajectories can be described by
the system @(t) = Kp(xo — z(t)) which is a classical proportional controller with only
one parameter K,. A pure proportional controller is a special case of a proportional-
integral-derivative (PID) controller which has two additional parameters (K;, K;) for the
integral and derivative parts. Such PID controllers can be seen as a Swiss army knife for
control engineers and are broadly applicable due to the fact that only the error z¢g — x(t)
between the desired value xy and the actual value x(t) needs to be measured. However,
stability depends on the choice of tuning parameters (i.e., K,, K;, K4). In that sense,
for a proportional-only controller, a negative value for K, leads to Figure 1.3a whereas
a positive value for K, leads to Figure 1.3b. This can be easily seen as the solution of
the above differential equation is z(t) = x(0)ef#* which obviously diverges for K, > 0
(unstable), stays constant for K, = 0 (marginally stable), and converges for K, < 0
(stable). Note that this illustration does not include a plant. Instead, we simply closed

Chapter 1 Introduction

the loop by feeding the output of the controller to the input. Therefore, we are able to
explicitly determine the solution of the differential equation. Usually, we are not able to
do this, since for a more realistic system, we often have

e several variables that depend on each other, for example, consider a vector-valued
system X = Ax,

e several different dynamics that depend on the mode of the system, for example, a
vector-valued system X = A;x, where ¢ depends on systems state (i.e., the value
of x), and

e several different dynamics that depend on the common state of the plant and the
controller, for example, a vector-valued system X = A;x, where the actual 7 is
selected by algorithms implemented in an embedded system.

While all these systems are dynamic systems, the last two are hybrid systems as they
exhibit, both, discrete and continuous behaviors. In the control theory domain, the
continuous behavior — described by differential equations — is called the flow and the
discrete behavior — often described by an automaton — is called the jump. A powerful
model for such hybrid systems are hybrid automata which have been introduced by Alur et
al. in [Alu492]. A hybrid automaton modeling a simple temperature control unit is given
in Figure 1.4. The implemented control law is essentially the proportional controller from

T - Ty <10 T-Ty<—10

Normal
T=01-(To-T)
-10<T-Ty <10

0<T—-T ~10<T - Ty
Figure 1.4: Hybrid automaton modeling a saturated temperature control loop.

above where, additionally, the change of the temperature is saturated from below and
above, i.e., T € [—1,1]. As depicted, hybrid automata combine both, finite automata and
differential equations. The discrete states are modeled as locations (or sometimes modes),
the discrete behavior is modeled as transitions (or sometimes jumps), and the continuous
behavior is modeled as differential equations over real valued data variables (or short
variables) that are annotated to the locations. Additionally, locations are annotated
with invariants that correspond to the values of the variables that are allowed while
the location is active and transitions are labeled with guards and updates. The guards
correspond to the values of the variables for which a transition can be taken and the
update describes the effect on the valuation of the variables, e.g., setting a variable to
some specific value. That way, hybrid automata are in particular well-suited to model
complex systems where physical processes interact with embedded controllers. Often,
we find the physical process described by differential equations and the controller by a

1.1 Stability Verification

finite automaton. Although it is sometimes possible to discretize physical relations (using
quantization) or to fluidize discrete steps (having a real-valued count of objects), it is
more natural and less error-prone to use hybrid automata for modeling and verification.

1.1 Stability Verification

Consider the vector-valued system %X = Ax. For this purely continuous linear system,
the evolution of the trajectory depends only on the transition matrix A. For such
first-order (and even for second-order) systems, the set of trajectories can be derived by
solving the equation explicitly. However, when proving stability for such systems one
can simply check whether the matrix A is Hurwitz, without solving the equation. This
is called the Routh-Hurwitz criterion and roughly corresponds to checking whether all
roots of the characteristic polynomial have negative real parts. However, in general and
in particular for hybrid systems, asymptotic stability properties are undecidable [BT99;
Blo+00]. Nevertheless, indirect methods that establish properties on the states are quite
successful in proving asymptotic stability. The idea is to find a function that maps every
state of the system to a value such that the value decreases while the system evolves.
These functions are called Lyapunov functions [Lya07] and the value can be seen as the
energy stored in the system which dissipates over time. Such a Lyapunov function has to
satisfy three properties: (1) the minimum is at the equilibrium, (2) the derivative of the
function in the direction of the evolution of the system is (strictly) negative everywhere
but at the equilibrium, and (3) the value of the function grows unboundedly with the
distance to the equilibrium. This criterion is well-known and used in control theory but
was originally developed for purely continuous systems only. Throughout the 1990s, the
use of Lyapunov functions was lifted to the field of hybrid systems [Bra94; LSW94; Bra98,;
Pet99]. The key idea was to search for multiple Lyapunov functions that are compatible
with the above properties, i. e., one assigns each location (or mode) of the hybrid system a
separate Lyapunov function. These local Lyapunov functions have to decrease while the
corresponding location is active and, additionally, when taking a transition (switching
to another mode), the value must not increase.

Further, it has been found that when using templates for the Lyapunov functions,
one can construct a constraint system whose solution yields a set of Lyapunov functions
for the hybrid system. The most popular method for solving such a constraint system
is called semidefinite programming (SDP) [Pet99; PL03; PP03]. Using sum-of-squares
decomposition, it is even possible to apply the search for Lyapunov functions for non-
linear hybrid system or rather hybrid systems whose dynamics, guards, and invariants
are described by polynomials. This can even be automatized, e.g., Oehlerking et al.
implemented a tool that combines state space partitioning with the search for Lyapunov
functions for linear hybrid systems [OBT07].

Chapter 1 Introduction

1.2 Contributions

In this section, we state the basic topics and issues tackled in this thesis. The topic
we address is the automatic verification of global asymptotic stability in the context
of hybrid systems. To this end, we focus on techniques to algorithmically derive a
mathematical proof of global asymptotic stability for a given hybrid system modeled as
a hybrid automaton. The basic techniques we employ are semidefinite programming,
sum-of-squares and Lyapunov functions. These techniques are not new in particular
but have not yet been integrated as an automatic push-of-a-button verification tool for
hybrid systems. The automatization of these techniques and the integration is the central
contribution of this work. During the work, we identify several issues:

(Issue 1) During the computation of Lyapunov functions numerical issues arise easily
for automatic generated constraint system. As a result, solutions produced
by a numerical solver might not yield valid Lyapunov functions although the
feasibility information might be correct. Hence, it must be taken care when
reusing such a computed Lyapunov function in further proofs.

(Issue 2) Success and failure of automatically computing Lyapunov functions depend
on the representation of the system. For example, it can be crucial to make
implicit knowledge explicit (e.g. by tightening guards and invariants) or
choosing a certain shape for the hybrid automaton’s underlying graph.

(Issue 3) There is no automatic support in the design of stable hybrid systems. Even
worse, the established methods give no hint about the reason when failing to
prove stability. Moreover, slight modifications of the system require to restart
proving stability.

In other works, Issue 1 is not relevant because the feasibility information of the solver
is usually reliable — e. g., this is the case for well-conditioned constraint systems. When
performing a monolithic proof, feasibility is all we are interested in because that already
certifies stability. However, in the light of compositional approaches, we reuse and
recombine obtained numerical results and slight errors could render the whole proof
invalid. Issue 2 and Issue 3 arises due to the automatization. Otherwise, when deriving
the constraints manually, then this task includes finding the best representation and
deciding how later modifications in the design affect the proof obligations.

In this thesis we address these issues by the following contributions:

(Contribution 1) We have implemented a tool to automatically derive a certificate of
stability for non-linear hybrid systems, called STABHYLI [MT13a].
Certificates are obtained by different proof schemes such as com-
puting common and piecewise Lyapunov functions as well as the
decomposition by Oehlerking and Theel [Oehl1] and the component
based approach by Damm et al. [Dam+10]. Details are given in Sec-
tion 3.2. Further, numerical issues have been addressed and the tool
includes techniques to detect and handle implicit equalities [MT13D)]

1.3 Outline of the Thesis

and validate candidate solutions obtained from numerical solvers
[MT14]. These techniques are described in detail in Section 3.3 and
Section 3.4.

(Contribution 2) To address Issue 2, we have developed and implemented transfor-
mation techniques that simplify the computation of Lyapunov func-
tions. One technique is the relaxation of the graph structure [MT15]
and the other is the unrolling of the hybrid automaton [HMT15;
HM15; MHT15]. The relaxation technique takes as input a hybrid
automaton whose underlying graph is dense and returns a hybrid
automaton whose underlying graph is sparse. The benefit is that the
latter is better-suited for the decomposition approach of Oehlerking
and Theel but may yield additional behavior which could render the
automaton unstable. The unrolling technique is presented in more
detail in Section 4.3. The unrolling technique takes a hybrid au-
tomaton as input and — in case it terminates — returns an equivalent
hybrid automaton that is acyclic. The benefit is that for acyclic
hybrid automata proving stability can be done by successively in-
specting all locations in isolation and then all transitions in isolation.
Furthermore, since this technique interleaves reachability and stabil-
ity proving steps, safety properties can be decided with few overhead.
Details on this interleaving are given in Section 4.3.

(Contribution 3) In addition to the component-based approach developed by Damm et
al. [Dam+10] which addresses sequential (or rather transition) com-
position, we have built a supplementary framework for the parallel
composition of hybrid automata also preserving safety and stability
[MHR17; Dam+14; DMR14; DMR16]. Details on the underlying
theory focusing on stability and obtaining Lyapunov functions for
parallel composed controllers are given in Section 5.3. An applica-
tion to an advanced driver assistance system (ADAS) in form of a
case study is given in Section 5.4.

Most of the contributions have already been published in peer-reviewed proceedings and
some additionally as technical reports which then also included supplementary material.
Only for Contribution 3, the formal background for composing stable hybrid systems
and their Lyapunov functions is published in this thesis for the first time.

1.3 Outline of the Thesis

The outline of this thesis is as follows: Chapter 2 introduces some basic notations and
defines the main system model, hybrid automata, and the stability notion that this thesis
focuses on. Equipped with this knowledge, we look at existing techniques for stability
verification and collect the ingredients for automating stability verification based on
Lyapunov functions.

Chapter 1 Introduction

In Chapter 3, we focus on Contribution 1 and present STABHYLI, which is our
prototype tool for automatic stability verification and investigate details and background.
Further, we explore practical issues in stability verification and propose solutions for
these.

The focus of Chapter 4 is Contribution 2, where we present the graph relaxation
and unrolling technique. Applicability is shown by analyzing several examples for each
technique.

Contribution 3, which is the component based design framework or more specific, its
extension for safety and stability preserving parallel composition, is given in Chapter 5.
Here, we introduce basic concepts like controllers, plants, and communication channels.
As the background, we summarize the stability-related aspects behind the sequential
composition and, then, introduce adapted versions of the stability notation and proofs
suitable for capturing parallel controllers in the presence of a shared plant. We show how
to apply this new stability notion in a case study of an advanced driver assistance system.
In the case study the task is to control a vehicle using two loosely-coupled concurrent
controllers. Each controller has its specific goals such as (1) keeping the vehicle on the
lane and (2) keeping a user-chosen velocity if applicable and together they have to (3)
maintain a comfortable centrifugal force.

In Chapter 6, we conclude this thesis and give a short outlook on open questions and
possible future extensions of this work.

Preliminaries and Related Work

In this chapter, we will introduce the theoretic foundations, draw the state-of-the-art,
and discuss related work.

Lyapunov Function
Templates

/ Lyapunov Theorem \

Hybrid System

. T /7 | Polynomial
Linear Matrix . N

. Relaxation Optimization

Inequality (LMI) Problem(PoP)

NS

SDP Solver
\{> Result
(yes/unknown)

Figure 2.1: Sketch of the Basic Steps and Artefacts in Automated Stability Verification
via Lyapunov Theory.

Figure 2.1 sketches the basic steps behind the automated verification of stability of
hybrid systems. The inputs to that procedure are (1) the hybrid system for which we
want to prove stability, and (2) a set of so-called Lyapunov Function Templates. The
Lyapunov theorem is then used to generate a set of constraints that, if solvable, prove
that the hybrid system is indeed stable. Where, we can handle two cases:

Case 1: if a hybrid system’s description involves linear expressions only, then the derived
set of constraints consists of linear matrix inequalities (LMIs), or

Case 2: if a hybrid system’s description involves higher order polynomials, then the
derived set of constraints involves polynomial constraints.

In the second case, a series of relaxations can be applied such that, again, we obtain
an LMI. This relaxtation introduces additional parametes and, hence, teh resulting

Chapter 2 Preliminaries and Related Work

LMI is higher dimension. Such an LMI can be feed to a, so-called semidefinite program
(SDP) solver, which is finally used to check whether a solution exists. An SDP solver
optimizes a linear objective function under additional semidefiniteness constraints on
symmetric matricies. Such a constraint requires that, for a matrix M, the scalar x 7 Mx
is non-negative for every column vector x.

The outline of this section is as follows. In Section 2.1 we introduce some basic notations.
We will then introduce hybrid automata in Section 2.2. Hybrid automata is the formalism
we use to describe hybrid systems throughout this thesis. Various stability notions will be
introduced and compared in Section 2.3, among them global asymptotic stability which
is the stability notion we focus on. Using Lyapunov theory, we are able to prove (global)
asymptotic stability which is shown in Section 2.4. This section also formally introduces
LMIs and shows how to relax constraints obtained from the Lyapunov theorem via a
sum-of-squares (SOS) decomposition to LMIs. This relaxation allows to handle systems
whose system description, in form of a hybrid automaton, involves polynomials. The
resulting linear matrix inequalities can be solved automatically and existing tools are
presented in Section 2.4.5. To increase self-containment of this thesis, we briefly sketch
the decomposition as proposed by Oehlerking and Theel [OT09; Oehl1] in Section 2.5.
Here, we start with basic graph notions and then, present the two main decomposition
levels

Level 1: decomposition into strongly connected components and
Level 2: decomposition into (overlapping) cycles.

This decomposition technique is presented in more detail, since is serves as the main
preliminary work for this thesis. Other related work is presented in the following chapters.

2.1 Basic Notations

In this section, we introduce some basic notations. Let us first introduce some common
sets, we often refer to.

Definition 2.1 (Common Sets)

By IN,IN>o, R, R>0, R0, we denote the non-negative integers, the positive integers
(without 0), the real numbers, the non-negative real numbers, and the positive
real numbers (without 0), respectively. We use Time := R>q to denote the set of

timepoints and Times := TimeU {oco} to denote the set of timepoints including
infinity. Let X be an arbitrary set. By P(X) := 2% we denote the power set of X,
i. e., the set of all subsets of X. O

We deal with hybrid systems in this thesis and often, we have to handle runs in forms of
trajectory segments. These trajectory segments describe the evolution of the continuous
variables over time and can be either finite or infinite. As we are concerned with stability
— or rather asymptotic stability, — we will usually look at infinite trajectories and therefore

10

2.1 Basic Notations

the last segment of a run continues to evolve ad infinitum. Hence, we use two time points
to € Time and t1 € Times to denote the interval [tg,t1] of time points of a trajectory
segment. Note that [¢tg, 00) denotes the right-open interval of all time points ¢ with ¢ > ¢
of an infinite trajectory segment. To describe the evolution of the continuous variables,
we use vector-valued functions over time, e.g., x(t). To distinguish vector and scalars
we will use boldface letters to denote vectors, e.g., x,y,z € R™ and upper case letter for
matrices, e.g., M, F', where F' is used when the matrix relates to a function f.

Definition 2.2 (Vector and Matrix Notations)

Let M € R™™ be a real-valued matriz and let x € R™ = R™ ! be a column vector.
We denote by MT the transpose of matriz M and analogously by xT € RY™™, we
denote the result of the transposition which is a row vector. We access the elements
of a matrixz or vector by a subscript in parentheses, e.g., X(;) is the i-th element
of vector x and M; ;) is the element in the i-th row and j-th column of matriz M.
For two vectors x,y € R", we denote by

n
x|y)=x"y=> xuyn
i=1
the inner product. For a squared matriz M € R™*™
n
i=1
defines the trace of the matrix M. &

Often, each element of a vector represents the value of a certain variable v € Var,
where Var is a finite set of variables. We refer to x|y, € RVl as the sub-vector

of a vector x € RIVerl containing only values of variables in Var’ C Var. We use the
shorthand notation x, to denote x¢,, where {v} C Var is a singleton set.

Definition 2.3 (Vector Order)
For two vectors x,y € R", we denote by

*@) Y@ n
<l :|=Ax<y
=0
X(n) Y(n)
the vector order which is a partial order. O

Given a function f, we can use the gradient to describe direction and steepness of the
tangent of the graph of a function. The direction is always the direction of the greatest
increase.

11

Chapter 2 Preliminaries and Related Work

Definition 2.4 (Gradient)
For a real-valued function f : R"™ — R, we denote by

of
o1
0
Vi=(VPe=gt=|
0
i

the gradient or directional derivative of f(x) which is a column vector of partial

derivatives 86—51 in all directions of x = [azl .. xn] T If clear from the context, we

omit x. o

We will use this property to formulate the requirement that the value of a Lyapunov
function decreases in the direction of the flow. As we will see later, this requirement
among others results in properties of the level sets of Lyapunov functions that can be
further exploited. A level set of a Lyapunov function contains all states (i. e., elements of
the domain) that have the same Lyapunov function value and the sublevel set includes
all level sets with a lower Lyapunov function value. Furthermore, the sublevel sets of a
Lyapunov function are invariant.

Definition 2.5 (Level Set)
Let f : R™ — R be a real-valued function. The level set of a function f at c¢ is
defined as

Lpe={x|f(x)=c}.

Likewise L}r’c ={x|f(x)=c} and L; = {x| f(x) < c} are the superlevel set
and sublevel set, respectively. &

Proposition 2.6
If a function f is differentiable, then its gradient at an arbitrary point x is either
0, or perpendicular to the level set of f at that point.

Proposition 2.6 is exploited in the famous Lyapunov theorem (Theorem 2.31) in the
sense that, for a stable system, the angle between gradient and the vectors describing
the flow of the system is obtuse (more than right-angled) and thus pointing into the
level set. This relation is explained in more detail in Section 2.4.1 which also contains a
visualization (Figure 2.7b).

Another property of Lyapunov functions is radial unboundedness, i.e., ||x|| — oo =
f(x) — oo which is achieved by stipulating that a Lyapunov function V' is bounded from
below by the norm of the argument, i.e.,

Vx € R" o ||x]|| < aV(x) for some a € Rxg.

12

2.1 Basic Notations

Definition 2.7 (Euclidean Norm [Oehl1, Definition 3.3])
Let x = [:rl ... mn] € R" be a real-valued vector. The norm

is the euclidean norm of x. O

Sometimes, we are only interested in a certain neighborhood of the origin. For example
a hybrid system stabilizes only for values close to the origin. This property is called local
asymptotic stability and can be verified by requiring the Lyapunov function to be valid
only in an e ball around the origin (see Section 2.3).

Definition 2.8 (Closed Ball)
For a vector x € R", we denote by

B:(x) ={y e R" [|[x —y[l <¢}

the closed ball around x with radius ¢ € R>o. As a shorthand notation, we use B
to denote the closed ball B¢(0) around 0. &

As already mentioned, a run of a hybrid system has both, continuous and discrete
behavior. We use sequences of trajectory segments to describe the evolution of the
continuous variables over time.

Definition 2.9 (Sequence)
By (si), we denote a sequence which can be either finite or infinite. The i-th element
of (s;) is denoted by s; without parentheses. &

In Chapter 3, we will focus on the automatic computation of Lyapunov functions
and address some practical issues with the proposed method. To algebraically handle
polynomials, let us introduce the following.

Definition 2.10 (Polynomial Ring)
R[x], x = [:vl .. xn] s the Ting of polynomials in n variables x1,...,x, with real
coefficients with proper definition of addition and multiplication. &

Definition 2.11 (Monomial)
A monomial m(z) € R[x],x = [z1...2,], is a function m : R" — R of the form
d dl dn,

m(z1,...,Tp) =x° =27 -,

where d = [dl . dn} € INZ, is a vector of exponents. The degree of m(-) is defined

13

Chapter 2 Preliminaries and Related Work

as degree(m(-)) = >, d;. &

Now, we can define a polynomial as a weighted sum of monomials.

Definition 2.12 (Polynomial)
A polynomial p(x) € R[x],x = [z1...2y] is a function p : R" — R of the form

k
= Z a; - m;(x)

%

where a; € R is a coefficient and m;(x) are monomials for alli = 1,...,k. The
degree of p(+) is defined as degree(p(-)) = max;({degree(m;(-))}). &

One of the key tools to efficiently compute Lyapunov functions is a relaxation to
positive semidefinite programming. This relaxation will be introduced in Section 2.4.5.
Positive semidefiniteness can be defined for functions and for matrices. With the help the
Lyapunov theorem as introduced in Section 2.4, we obtain semidefiniteness conditions
on functions which we will then relax to semidefiniteness conditions on matrices.

Definition 2.13 (Definiteness)
Let f: D — R be a function, we define the following relations:

e f(x) =0 if and only if (x =0 — f(x) = 0)A(x£0 = f(x)>0),
e f(x) =0 ifand only if (x =0 = f(x) =0)A(x#0 = f(x)>0),
o f(x)<0ifand only if(x=0 = f(x)=0)A(x#0 = f(x) <0),
e [(x) =0 if and only if (x =0 = f(x) =0) A(x#0 = f(x) <0).

The function f is called
e positive definite (PD) if and only if f(x) = 0 for all x € D,
e positive semidefinite (PSD) if and only if f(x) = 0 for all x € D,
e negative definite if and only if f(x) <0 for allx € D,
e negative semidefinite if and only if f(x) =20 for allx € D.

Let f and g be two functions. We write f(x) = g(x) as a shorthand for f(x) —
g(x) = 0. The abbreviation f = 0 is short for f(x) = 0 for all x. Similar, a real
symmetric matriz M : R™*"™ is called positive semidefinite, symbolically M = 0, if
and only if xTMx > 0 for all x. We stipulate to use analog abbreviations for >,
=, and <. &

14

2.1 Basic Notations

Note 2.14

Positive (semi-)definiteness allows us to “hide” one universal quantifier. Instead of
checking every non-zero argument (resp. non-zero column vector) by e.g. perform-
ing a costly quantifier elimination, we can check a property of the function (resp.
matriz). As we will see later in Theorem 2.47, this can be done, for example, by
checking the eigenvalues, which is very fast if done numerically. N

As mentioned above, we require a Lyapunov function to be bounded from below by
the norm of its argument. Actually, Lyapunov functions are bounded from below and
from above by so-called K functions.

Definition 2.15 (Monotonic Function [TT13])

Let f : D — R be a continuous function. f is called (strictly) monotonically
increasing if and only if for each x1,x2 € D, whenever x1 < Xg, then f(x1) < f(x2)
(resp. f(x1) < f(x2)). The definition for a decreasing function can be obtained by
changing the direction of the order. &

Definition 2.16 (Class K, K> Function [Kha00, Definition 4.2])

A continuous function o : [0,a) — [0,00) is said to belong to class IKC if it is strictly
monotonically increasing and a(0) = 0. It is said to belong to class K™ if a = oo
and a(x) — o0 as x — oo. &

Finally, we introduce convex sets which are used, for example to represent reachsets
as in Section 4.3 and conic sets which are key to the so-called decompositional stability
proofs by Oehlerking and Theel, which we present in Section 2.5.

Definition 2.17 (Convex and Conic Sets and Hulls [Oehl1])
A set X C R™ is called convex if for every two points that lie in X, also the
connecting line segment lies in X. Or formally,

x,yeX=VAe[0,1]: \(x—y)+yeX.

If the cone spanned by two points in X lies in X, then X is called conic. Or
formally,

X, yEX =>VAL, A >0: \ix+ Xy € X.

We can additionally exclude the tip of the cone by requiring A1 + Ao > 0. The hull
is an operation on a set of elements X1, ...,%x, € R" that yields a set with the above
properties. The convex hull is defined as

conv({xy,...,Xp}) := {Z)‘ixi (Vi: X\ >0) /\Z)‘i = 1}

15

Chapter 2 Preliminaries and Related Work

and the conic hull is defined as

cone({xy,...,X,}) = { Z AiX;

Vi: >0 }
Additionally, we define

cone™ ({x1,...,%X,}): {Z)‘XZ)\¢20)AZ)\i>0}.

which, again, excludes the “tip”. We define similar operators for functions. Let
fi : R* = R™, 1 <4<k, be a familiy of real-valued functions. The convex hull is
defined as

)\izo)/\Z)\izl},

)\120)/\2)\i>0}

is the conic hull of functions excluding the “tip”. O

conv({f1,..., fn}): {Z)\ f;

the conic hull is defined as

cone({f1,..., fn}) == {Z)\ fi

and

cone™ ({f1,..., fa}): {Z)\ fi

2.2 Hybrid Systems

After introducing these basic notations, we can focus on the system model which we use
to describe dynamical systems throughout this thesis. We introduce hybrid automata as
a means to capture the behavior of hybrid systems, that is, systems involving discrete
as well as continuous components. A discrete component can be an embedded system
that is controlling a physical (continuously evolving) environment. While the state of the
environment might change continuously, the logical state of the embedded system might
only changed at certain time-points—for example, dictated by a clock. To this end, we
are concerned with deriving stability certificates for these kind of systems and analyze
the hybrid automata that describe them.

A hybrid system (HS) is a system exhibiting, both, continuous evolution and discrete
actions over time. Different ways of modeling have been proposed throughout the litera-
ture. Two, which are very common modeling concepts, are switched systems [Lib03] and
hybrid automata [Alu+92]. Switched systems are often used in physics and control theory

16

2.2 Hybrid Systems

as they focus more on continuous evolution while hybrid automaton are more often found
in computer science due to their relationship to state-machines. State-Machines allow
capturing discrete behavior more easily.

Definition 2.18 (Switched System ([cf. Lib03]))

A switched system is a hybrid system where the dynamics are represented as a set
of differential equations X = fo(y)(x) in the continuous time case t € Time or as a
set of difference equations Xi11 = fq)(X¢) in the discrete time case t € IN where
fi:R"—R", 1<i<mnando(:): Time— [1,n] is a switching signal &

In the literature, it is sometimes distinguished between time-dependent switching where
the value of o(-) depends only on the time and state-dependent switching where the value
o(+) depends only on the state. However, every time-dependent switching signal can be
transformed into a state-dependent switching signal by introducing an extra variable
encoding the time but not vice versa. Another interesting special case is when the
switching signal is not constraint at all, which we call arbitrary switching.

Note 2.19
Stability of a system under arbitrary switching implies stability of a system with the
same dynamics but constraint switching. N

Another famous model for hybrid system are hybrid automata which were introduced
by Alur et al. in [Alu+92; Alu+95]. Undecidability of the reachability problem in various
aspects and decidability of the problem for very restrictive classes have been shown by
Henzinger et al. in [Hen96; Hen+98]. Asarin et al. also gave a good summary and some
more recent results in [Asa+12]. A hybrid automaton is often represented as a multigraph'
made of vertices (called modes or locations) and edges (called jumps or transitions). The
discrete actions (i.e. guards and updates) are annotated at the transitions between the
locations and the continuous evolution is given in form of invariants, differential equations,
or differential inclusions and annotated at the locations.

A hybrid automaton is defined as follows.

Definition 2.20 (Hybrid Automaton (HA) [Oehll, p.35])
A hybrid automaton (HA) is a sextuple

‘H = (Var, Loc, Trans, Flow, Inv, Inits) where

e Var is a finite set of variables and X = RVl is the corresponding continuous
state space,

e Loc is a finite set of locations spanning the discrete state space,

' A multigraph — in contrast to a simple graph — might have multiple edges between any two nodes.
Thus, the set of all edges yields a multiset.

17

Chapter 2 Preliminaries and Related Work

e Trans is a finite set of transitions (I1, G, U,l2) where

— l1,1lo € Loc are the source and target location of the transition, respec-
tively,

— G C X is a guard which restricts the valuations of the variables for
which this transition can be taken,

— U : X — X is the update function which might update some valuations
of the variables,

e Flow : Loc — [X — P(X)] is the flow function which assigns a flow to every
location. A flow f : X — P(X) in turn assigns a closed subset of X to each
x € X, which can be seen as the right-hand side of a differential inclusion

% € f(x),

e Inv: Loc — P(X) is the invariant function which assigns a closed subset of
the continuous state space to each location | € Loc, and therefore restricts
valuations of the variables for which this location can be active,

e (I, Init) € Inits C Loc x X is a closed set of initial (hybrid) states where [is
the initial discrete state and Init is the initial continuous state.

&

The above definition is also sometimes called an initialized hybrid automaton, because
Inits restricts the initial states of the system. The special case where Inits does not
restrict the initial states, is called an uninitialized hybrid automaton. In this case, we
might omit Inits completely and denote H by the quintuple (Var, Loc, Trans, Flow, Inv).
For an uninitialized hybrid automaton, the initial stats correspond to the union of all
invariants, i.e.,

Inits = { (I, Inv (1)) | I € Loc }.

Throughout the thesis, we will focus on polynomial hybrid system as this is the system
class that allows us to use automated stability verification.

Definition 2.21
A hybrid automaton H = (Var, Loc, Trans, Flow, Inv, Inits) is called

e linear if and only if flows, invariants, guards, and updates are described by
linear expressions,

e polynomial if and only if flows, invariants, guards, and updates are described
by polynomials,

e update-free if and only if all updates are the identity function.

18

2.2 Hybrid Systems

Remark 2.22

Often, we describe a hybrid automaton graphically. The representation of a hybrid
automaton is similar to that of a finite-state machine with additional annotations.
The underlying graph consists of vertices, one for each location or mode, and edges,
one for each transition. Vertices are labeled by a name, ordinary differential equa-
tions (ODEs) or inclusions defining the continuous flow, and an invariant. Edges
are labeled with guards and updates. Guards and invariants are represented by
predicates over the continuous vartables and resets are described by assignments
v:= f(x) where v € Var is the continuous variable to be updated and f : X — R
is a function taking the old valuation — before taking the transition — as its argu-
ment and computes the new value. To increase readability, we allow to omit updates
for variables whose value does not change due to the transition. Initial states are
described by arrows having a target but no source location where the target location
denotes the initial location and an annotated predicate defines the set of valid initial
valuations for the continuous variables like a guard. N

Finally, let us formally define the execution semantics of a hybrid automaton which
describes the evolution of the state of an hybrid automaton.

Definition 2.23 (Runs of a Hybrid Automaton [Oehl11, Definition 3.13])
Let H = (Var, Loc, Trans, Flow, Inv, Inits) be a hybrid automaton and let (t;) be a
— possibly infinite — sequence of switching times for which holds

o t; € Time,

o Vi>0:t_1 <t
e at most the last element of the sequence is cc.

A run of H is a — possibly infinite — sequence of tuples (m;) = ((li,%;)) for which
holds

e [; € Loc is a location of H,

o X;: [titiv1] — X (orx;: [ti,tit1) — X, in case of ti1 = 00), is a function
which is absolutely continuous on [t;,tiy1] (or [ti,ti+1) in case of tiy1 = 00),

e (t;) is the sequence of switching times where either both sequences (t;) and
(m;) are infinite or the sequence (t;) is one element longer than the sequence

(mi),
such that

1. my = (lQ,Xo) € Inats,

19

Chapter 2 Preliminaries and Related Work

2. for allt; <t < tit1 holds x;(t) € Inv(l;),
3. for almost all t; <t < tix1 holds x;(t) € Flow(l;)(xi(t))

4. for all tiy1, i > 0, but the last element of (t;), there exists a transition
(m;, G, U, mjt1) € Trans with

a) limy 4, xi(t) € G and
b) xiy1(ti) = U(xi(ti)).
5. if the sequence (t;) is infinite, then lim;_ o t; = 00.

We call the run infinite if (¢;) is infinite and diverges to infinity or (t;) is finite and
its last element is co. We call the run finite otherwise. The sequence (my;) is called
the location sequence. &

Definition 2.24 (Discrete, Continuous, and Hybrid State [Oehl1])

Let H = (Var, Loc, Trans, Flow, Inv, Inits), let (m;) = (l;,x;) be a run of H. For
any time t € Time, the value l; with uniquely determined index i such that t; <
t < ti41 is the discrete state and denoted by I(t) : Time — Loc. Analogously,
the value of the function x;(t) such that t; < t < t;+1 is the continuous state at
time t and is denoted by I(t). The continuous state before taking a transition is
defined as x(t;) = limy,,x(t). Any function x : D — X with D = [0,T],
T € Time or D = Time such that for all t', the vector x(t') is the continuous
state at time t', is called a trajectory of the system. By w(t) = (I(t),x(t)) we
denote the hybrid trajectory of H describing the hybrid state at time t. We call
a hybrid trajectory extendable, if it is a prefiz of another hybrid trajectory and
non-extendable otherwise. &

2.3 Stability

Having introduced hybrid automata as the system model of our choice, we can now
focus on the property we are interested in. This property is called stability and basically
expresses that all trajectories of the system eventually reach an equilibrium point (or
region) of the sub-state space and stay in that point (or region) forever. There are many
different forms of stability that can be distinguished. The six most common ones are
visualized in Figure 2.2 and explained in more detail in this section.

Global Asymptotic (Point) Stability [cf. KhaO0] is the stability notation we focus on
in this thesis. It will be formally defined in Definition 2.26. All trajectories, no matter
where they start will, eventually approach an equilibrium point, which is usually assumed
to be the origin. A trajectory is allowed veer away from the equilibrium point but not
arbitrarily far and eventually has to converge to the equilibrium point. Neither does
the trajectory need to finally reach the equilibrium point nor does it need to maintain a

20

2.3 Stability

(a) Global asymptotic (point) stability.

RN

\

Target Region

/
~_

(¢) Region stability.

Limit Cycle

(e) Limit cycle stability.

_/ ceon
of

Attraction

(b) Local asymptotic (point) stability.

Invariant Set

(d) Invariant set stability.

(f) Orbital stability.

Figure 2.2: The six common stability notions.

21

Chapter 2 Preliminaries and Related Work

Figure 2.3: Phase Portrait of the Van der Pol Equation.

minimal convergence rate. In fact, the time a trajectory needs for decreasing the distance
to the equilibrium point by a fixed amount may grow arbitrarily. If the decay is bounded
by an exponential function, then we call the system globally exponentially stable (GES).

Local Asymptotic (Point) Stability is obtained by restricting global asymptotic (point)
stability to those trajectories that start in a neighborhood around the equilibrium point
[Kha00]. A similar restriction can be applied to global exponential (point) stability in
order to obtain local exponential (point) stability.

Global asymptotic stability and its local counterpart are the two most popular stability
notions and are part of most lectures and books on stability.

Region Stability replaces the equilibrium point by a region that the system’s trajectories
are allowed to enter and leave finitely often and ultimately have to stay within that region.
This notion has been studied by Podelski and Wagner in [PW06; PW07a; PWO07c].

Invariant Set Stability requires every trajectory to ultimately enter and never leave a
certain region or set of states. This kind of stability notation has been studied in [Kha96;
YMH98; CGT08; RS10].

Limit Cycle Stability denotes that every trajectory of the system ultimately converges
towards a single periodic behavior, called a limit cycle or orbit [Kha0O0]. In that sense,
trajectories do not converge towards a point or a region or set but to a behavior that
can be described as a trajectory on its own. An well-known system that exhibits such
a behavior can be found in the electrical circuits employing vacuum tubes and can be
described by the Van der Pol equation depicted in Figure 2.3. The figure shows several
trajectories each converging to the same (infinitely repeating) periodic behavior.

22

2.3 Stability

12

10

Figure 2.4: Phase Portrait of the Lotka-Volterra Equation.

Orbital Stability allows the trajectories to have different periodic behaviors and we
have that a trajectory starting e-close to an orbit will remain e-close to that orbit [Che05].
One example of such a system can be found in biology where two dependent populations
(predator and prey) change over time. This can be modeled by the Lotka-Volterra
equations and this is depicted in Figure 2.4. The figure shows trajectories of the evolution
of the size of the populations that depending on the initial state follow a different periodic
behavior.

Global Asymptotic Stability

Usually, for technical reasons, the equilibrium point is assumed to be the origin 0 of the
continuous state space. This is not a restriction since a system can always be shifted by

=z — 2.

Proposition 2.25

For every hybrid automaton H with equilibrium point x. # 0 one can construct a
hybrid automaton H' with equilibrium point x. = 0 via a coordinate transformation.

In the sequel, we focus on asymptotic stability which does not require the equilibrium
point to be reached in finite time, but only requires every trajectory to converge. This
property is weaker than exponential stability where the existence of an exponential
convergence rate is additionally required.

Definition 2.26 (Global asymptotic stability with respect to a subset of
variables [Oeh11])

Let H be a continuous-time dynamical system with variables Var and let Var® C Var
be a subset of variables that are required to converge to the equilibrium point 0. The

23

Chapter 2 Preliminaries and Related Work

(a) Visualization of Lyapunov stability. (b) Visualization of global attractivity.

Figure 2.5: Visualization of global asymptotic stability.

system H is called Lyapunov stable (LS) with respect to Var® if for all trajectories
X() OfH}

e 35>0eVt> 06 |x(0)]] <5 = me,_y(f)H <e.

H is called globally attractive (GA) with respect to Var® if for all trajectories x(-)
of H,

lim x,,s(t) =0, i.e.Ve>0e0Jtg>0eVt>1t)e

t—o00

X| Vars (t)‘) <e,

where 0 is the origin of]R‘ VarS|, If a system is both, globally stable with respect
to Var® and globally attractive with respect to Var®, then it is called globally
asymptotically stable (GAS) with respect to Var®. &

Intuitively, LS means that trajectories starting d-close to the origin remain e-close
to the origin. GA means that for each e-distance to the origin, there exists a point in
time g such that a trajectory always remains within this distance. It follows that each
trajectory is eventually always approaching the origin. This property can be proven
using Lyapunov theory [Lya07] and is discussed in more detail in Section 2.4.1.

There is also a local version of asymptotic stability called local asymptotic stability.
The definition can be obtained from Definition 2.26 by considering only those x(-) which
start in a certain neighborhood B, of 0, i.e., x(0) € B, for some ¢.

Sometimes, we are not only interested in convergence but we would also like to have
the trajectories converge as fast as a certain fixed rate. This can be achieved by adding
one extra requirement to Definition 2.26.

Definition 2.27 (Global Exponential Stability [Pet99])
A continuous-time dynamical system H is globally exponentially stable if

24

2.4 Stability Verification

e H is globally asymptotically stable and

e there exists ¢ > 0,r > 0 such that for all trajectories x(-) of H, it holds that

Ix@)I < e [x(O)] e~

r is also called the exponential rate. &

2.4 Stability Verification

In the last sections, we have introduced the system model under consideration and the
property we are interested in. The question remains how to show that all (potentially
infinitely many) trajectories (of potentially infinite length) satisfy this property. One
way of proving satisfaction of the property is given by Lyapunov theory and we will show
its application in the following.

In this section, we will incrementally construct a hybrid automaton modeling a simple
velocity controller. The purpose of the velocity controller is to keep the velocity v of a
vehicle at a desired, user-chosen, velocity v.. We consider the unit of the velocity v, v, to
be m/s and the desired velocity to be arbitrary but fixed during our analysis. For figures,
we will pick v, = 25m/s.

Example 2.28 (Running Example of Chapter 2)
We start with a very common and simple but yet powerful dynamical system: a
PlI-controller with the following differential equation:

0 = —0.001z — 0.052 - (v — ve)
T =v— U
x 18 the integrator variable, v is the current velocity, and v, is the desired velocity

(equilibrium point). Figure 2.6 shows a trajectory of the system as a phase plot and
as a plot over time. <

2.4.1 Lyapunov Theorem

Stability can be proven using Lyapunov Theory [Lya07]. Lyapunov Theory was originally
restricted to continuous systems but has been lifted to hybrid systems.

Theorem 2.29 (Lyapunov Functions [Lya07].)

Let x = f(x) with f(x): R™ — R"™ be a dynamical system with the equilibrium z..
If there exists three K™ functions o, B, and a continuously differentiable function
V:R"™ = R such that

25

Chapter 2 Preliminaries and Related Work

x,v

‘ 1

25t 100, 200 300 400 500
.50

20/

-100/
151 -1501
10/ -200/
5] -250/
T -300/

-300 -250 -200 -150 -100 -50

(a) Phase plot (x over v). (b) Time plot of v (blue) and = (orange).

Figure 2.6: Example trajectory of the dynamical system from Example 2.28.

(C1)
vx e a(|lx|]) < V(x) < B([[x|]) and

(C2)
Vx o (VV(x) | f(x)) < —([IxI]),

then the dynamical system x = f(x) is global asymptotic stability (GAS) and V is
called a Lyapunov function (LF).

In particular interesting is that the Lyapunov theorem does not require to explicitly
investigate a single run of a hybrid automaton. Instead, it establishes relations on all
hybrid states and their successor states such that every run approaches the origin of the
state space.

In the following we give a short intuition for the individual constraints of the Lyapunov
theorem. Figure 2.7a visualizes Constraint C1. It shows that the two I functions «, 8
bound the Lyapunov function V(x) from below and from above, respectively. « ensures
that V' is positive everywhere and radially unbounded, i.e., x — 0o = V(x) — oo and
ensures that x — 0 = V(x) — 0. Figure 2.7b visualizes Constraint C2. First, recall the
definition of the angle £(x,y) between two non-zero vectors x, y:

(x|y) = cosL(x,y) - [Ix][- [lyl]-

Considering the relation of the angle and the sign of the inner product gives the following
important property

>0 if £(x,y) €[0,%)
(x|y)S =0 if {(x,y)=7%
<0 if L(x,y) € (5,7

26

2.4 Stability Verification

(a) Visualization of Constraint C1. (b) Visualization of Constraint C2.

(c) Strictly decreasing Lyapunov function and (d) Non-increasing Lyapunov function and
a corresponding trajectory. two corresponding trajectories.

Figure 2.7: Visualization of the Lyapunov theorem (continuous case).

27

Chapter 2 Preliminaries and Related Work

which is exploited in Constraint C2 as it requires the inner product of the gradient of the
Lyapunov function and the vector-valued flow function f(x) to be negative. Since — by
Constraint C1 — the Lyapunov function is 0 at the origin and non-negative everywhere,
the gradient of the Lyapunov function points outwards (see also Proposition 2.6). Now,
additionally requiring negativity of the inner product between gradient and flow function
implies that the flow function points inwards as visualized in Figure 2.7b on any orbit of
the Lyapunov function V(x) = c.

Figure 2.7c visualizes the relation between the Lyapunov function and a trajectory of
a system. The z-y axes span the system’s state space while the z-axis corresponds ot the
Lyapunov function’s value. The Lyapunov function is drawn in blue and the trajectory in
red. It can be seen that the Lyapunov function decreases while the trajectory converges
towards the equilibrium point 0. Modifying the constraint of Constraint C2 such that
the value of the Lyapunov function is required to be non-increasing instead of decreasing,
we can have the situation shown in Figure 2.7d. The figure shows two trajectories on a
stable orbit and the inner product is 0.

—100 20

—10
. 106-20 v

Figure 2.8: A Lyapunov Function for the Dynamical System from Example 2.28.

Let us return to our running example. Using Theorem 2.29, we can prove that the
dynamical system from Example 2.28 is stable and

11.004257v - & + 2.86217622 + 10.6301750°>

is a valid Lyapunov function?. The Lyapunov function is shown in Figure 2.8.

2automatically obtained by STABHYLI, scaled and rounded to six digits

28

2.4 Stability Verification

Brake

5<wv<20 0=-25
=0
5<v<20

13 < v < 15A
=500 <z < 500

5<ov<l1l
Jz:=0
Normal
—15<v<15 © = —0.001z — 0.052v
Az =0 i=uv

—-15<v <15

=500 <z < 500

—6<v< -5 —15< v < —14A
Jz:=0 —500 < z < 500
Accelerate
-20<v <=5 =15

=0

—-20<v< -5

Figure 2.9: Hybrid Automaton Modeling a Saturated Velocity Controller.

Example 2.30 (Continuation of Example 2.28)
Now, suppose we want to saturate the acceleration by at most agay = 1.5m/s2 and the
deceleration by at most agin = —2.5m/s2. We could do this by introducing two new
operation modes covering the operation ranges for which the differential equation of
v would exceed the given limits. This is shown in Figure 2.9. The previous behavior
of the dynamical system is captured by the location Normal and the saturation
1s achieved by the two extra locations Brake and Accelerate where in location
Brake we set U = agax and in location Accelerate we set v = apin. We have
also introduced initial conditions on the locations represented as transitions without
a source location and transitions between locations that define proper switching.
The incoming transitions of the location Normal additionally resets the integrator
variable, i.e., x := 0.

To achieve more convenient driving experience, one would, however, introduce
more locations guaranteeing smother behavior, i. e., reducing the jerk. N

Since our running example is hybrid, we need a version of the Lyapunov theorem, that

additionally covers switching between operation modes. The straightforward version is to
introduce a third constraint that ensures that the Lyapunov function decreases whenever

a run takes a transition: for each (I, G, U,l2) € Trans,

Vx € Geo V(U (x)) < V(x).

This additional constraint basically relates the Lyapunov function of different regions of
the state space. This mechanism can easily be extended to allow each location to have
its own Lyapunov function and have an additional constraint type relating the individual

Lyapunov functions. This leads to the following theorem:

Chapter 2 Preliminaries and Related Work

Viney (2(1))

T

\

0 t1 to t3 t

0

Figure 2.10: Visualization of Constraint C3 of the Lyapunov Theorem (Hybrid
Extension).

Theorem 2.31 (Discontinuous Lyapunov functions for a subset of vari-
ables [Oehl1])

Let H = (Var, Loc, Trans, Flow, Inv), be a hybrid automaton and let Var® C Var
be a set of variables that are required to converge. If for each | € Loc, there exists
a set of variables Var; with Var® C Var; C Var and a continuously differentiable
function V; : X = R such that

(C1) for each l € Loc, there exist two class K™ functions a and 8 such that
vx € Inv (1) @ a(|lxyvar,|) < ViGx) < B(I1xp v 1)

(C2) for each | € Loc, there exists a class K function ~y such that
vx € Inv(l) @ Vi(x) < —y(|1x} var,|])
for each Vi(x) € { (VVi(x) | F(x)) | F(x) € Flow(l) },
(C3) for each (I1, G, U,l2) € Trans,

Vx € GV, (U(x)) <V,(x),

then H is globally asymptotically stable with respect to Var®. Each Vj is called a
local Lyapunov function (LLF) of location I, and the function V(I,x) = Vi(x) is
called global Lyapunov function (GLF).

In this thesis, we denote by location constraints the Constraint C1 and the
Constraint C2 and by transition constraints the Constraint C3.

Figure 2.10 visualizes the Constraint C3. This constraint ensures that while switching
from one location to another the Lyapunov function’s value does not increase.

30

2.4 Stability Verification

A localized version of the theorem — proving local asymptotic stability — can be
obtained by restricting the constraints to a certain neighborhood of the origin B, for
some €.

Global exponential stability (see Definition 2.27) can also be proven by Lyapunov theory
by enforcing a particular shape for the K> functions: «(||x]]) = a||x||%, 8(|x||) = b]|x]|°,
v(|Ix|]) = g|Ix||* where a,b,c,d being positive constants. Global exponential stability
is in particular interesting since this property allows us to estimate (1) the state of the
system and (2) the convergence time. By setting r = ¢g/b we can conclude from the
Lyapunov theorem that

V(x) < —(I[xl1) = —glIx]||" < —%V(X) = —r-V(x),

This is a differential inclusion in a single variable V(x) representing the Lyapunov func-
tion’s value. This differential inclusion has the solution

V(x(t)) < exp(—r-t)-V(x(0)).

Hence, we can conclude global exponential stability.
We can also compute an upper bound on the convergence time as follows. Given a set
of initial states Init and a target set T, we can compute two values cj,;, c7 such that

x € Init = V(x) < ¢t
Vix)<cp=xeT.

Note that these values correspond to two level sets; one set that contains Init and one
set that is contained in T'. This allows us to compute the maximum time spent outside
of the target set using the above solution of the differential inclusion as

cr <exp(—r-t)- cmi
1 .
o t< 1n<6“”t>.
r cr

Thus, after time ¢t any trajectory starting in Init has entered T.

We will make related investigations in Section 4.3 where we obtain so-called safe (level)
sets. A safe (level) set is a set for which it is guaranteed that a trajectory — once entered
— will not leave the set and moreover will not reach an unsafe set.

2.4.2 S-Procedure

The S-Procedure is a powerful technique to transform a conditioned constraint into an
unconditioned constraint. Recall the location and transition constraints in Theorem 2.31.
The constraints have the form Vx € R : f(x) > 0, we call R C R" a region which may
restrict the values for which f : R™ +— R has to be non-negative. If the region is the
full state space, i.e., R = X', then we call the constraint unconditioned and conditioned
otherwise. As we consider polynomial hybrid systems and, thus, guards and invariants

31

Chapter 2 Preliminaries and Related Work

are given as boolean combinations over non-negativity constraints on polynomials, we can
assume, wlog, that each region R is given as a conjunction of equalities and inequalities.?

Theorem 2.32 (S-Procedure [Boy+94, p.23])
Let fi : R™ — R for 0 < i < m. If there exists non-negative multipliers A\; > 0,
such that

Vx eR" e (Z Ai - fi(X)> < fo(x)
=1

Vxe{y

Note that if two functions f;(-) > 0 and f;(-) > 0 are used to encode equality, e.g.,
fi = —fj, then it is better to include only one function f; and remove the positivity
requirement on JA;. This reduces the number of newly introduced free parameters or
decision variables.

In general, the S-Procedure is a relaxation, i.e., it is not an equivalent rewriting. A
notable exception is when m = 1 and f; are quadratic functions, then the two statements
are equivalent.

then

A0 < fily) } *0 < fo(x).
=1

Example 2.33
Suppose we are interested in solutions to the constraint

Vze{y|0<100—y°} o0 < p—2a?

with p being the unknown free parameter. The problem obviously has no solu-
tion without taking the condition Yx € {y ‘ 0 <100 — y2} into account. The S-
Procedure allows us to search for a solution to

Vz e\ (100 — z?) < p —
S Vred < (p—100)\) + (A —1)z?

with 0 < A, instead. And it follows that any solution to
1T<AANT00N<p

yields a solution for the initial problem. N

3Recall, that every formula can be rewritten in disjunctive normal form (DNF). If the region is not
given as a conjunction of equalities and inequalities, we can rewrite it as a DNF and handle each
disjunctive term separately.

32

2.4 Stability Verification

On the other hand, we might not find a solution if the condition is not carefully selected:

Example 2.34
Suppose we want to show non-negativity of a function over a certain “set” and have
the constraint

Vre{y|10=y}e0 <100 — z*

with no unknown free parameter. The function obviously is non-negative for “all” x
which can be easily proven by substitution. However, the S-Procedure gives us

Vz e\ (10 —z) < 100 — z2
& Vre0 < (100 —10)) — 122 + \z

with no constraint on X\, which is unfortunately false. Choosing the condition to
be 100 = 42, on the other hand, yields

vz e\ (100 — z?) < 100 — 22
& Vo e0 < (100 — 100)) + (A — 1)z?

which is true for A = 1. <

This example shows that in order to successfully apply the S-Procedure, one has

to choose the right combination of conditions. Since non-negativity is invariant under
multiplication, we can always add all combinations of conditions. While true in theory, in
practice this introduces several additional unknown free parameters which on one hand
increase the problem size and on the other hand might not help to find a solution in case
they have to be set to zero anyhow. We will address this problem in Section 3.2.2. In
that section, we will propose a simple heuristic to detect free parameters that have to
be zero.

2.4.3 From Non-Negativity to Sum-of-Squares

An efficient way of proving non-negativity of a polynomial is to show that it can be

rewritten as a sum-of-squares (SOS), i.e., p(x) = >i; ¢2(x). A SOS is clearly non-

negative since quadratic terms are non-negative and the sum of non-negative terms is
also non-negative.

Example 2.35 (Taken from [PW98])
Let p(x,y, 2) = 2% + 423922 4+ 90 + 2y*22 + 9%2% + 428, The task is to represented
f by a sum of squares, i.e., find terms (q;) such that

p(x) = 3). (2.1)
=1

33

Chapter 2 Preliminaries and Related Work

One solution is (2% + 2y%2)? + (v° — y22)? + (223)? which is a sum-of-squares and
therefore non-negative. And indeed,

(@ +2y%2)* + (v° — y2*)? + (22°)°
=(28 + 42y?2 + 4y*2?) + (35 — 2y 2% + y?2t) + (429)
=15 + 4:U3y22 + 46 + 2y4z2 + y2z4 + 425
=p(x).

N

However, it is important to note that the converse is not true. For example a well-known
polynomial that is indeed positive semidefinite but has no sums-of-squares-decomposition
is

flz,y, 2) = 2'y? + 2%y* + 20 — 32%y?2?
also known as the Motzkin form [PL03, p.15]. The following important result was

originally shown by Choi et al. in [MD 95] and later reformulated by Powers and
Woérmann in [PW9S].

Lemma 2.36 (Sum-of-squares (SOS) [PW98])

Suppose p(x) € R[x] be a polynomial of degree 2d with z” = [Xﬁl .. .XB“] being a
vector of monomials. Then, p(x) is sum-of-squares (SOS) if and only if there exists
a symmetric positive semidefinite (PSD) matriz Q € R*" such that

p(x) = 2" Qz.

Let Q be such a matriz of rank t. We can construct polynomials q1(x), ..., q(x) €
R[x] such that

p(x) = Z P (x)=2TAATz = 27Qz

i=1
where A € R™ and qi(x) = Z?:l A(Bjﬂ')xﬂj‘

Powers and Wormann also showed that the size of z in Lemma 2.36 is bounded.
Denote by A(n,d) = {e = [el .. .en} ‘ Yore < d} the finite set of all vectors of n
exponents up to a degree of d. If p € Rlzy,...,z,] is a SOS polynomial, i.e., there
exists q1,...,q € R[x] such that p(x) = Y>.I", ¢Z, then p(x) is of degree 2d and each
qi(x) = >0, aix?’j — or rather the corresponding vector of exponents [e;1...e;,] —
is an element of A(n,d). As A(n,d) contains all combinations of exponents, its size is
dim A(n,d) = (”:d).

Note 2.37
The matriz Q = AAT is called a Gram matriz for f(x). <

34

2.4 Stability Verification

(a) The Newton polytope of (b) Monomials used for the SOS
p(x) = 412§ — 2123+ 2} +23. decomposition.

Figure 2.11: Visualization of the Newton polytope [Pap+13].

Example 2.38 (Continuation of Example 2.35)
In Ezample 2.35, the set of all possible vectors of exponents contains all combinations
of three non-negative integers with a sum less or equal to three:

]" $7 y? Z? $27 y27 2:2? :L'y’ xz? yz’ $3’ y37 237 z2y? $2Z? :EyQ’ y227 $Z27 yz27 l'yz
Further investigation of the coefficients allows to reduce this vector to the five terms

(@) = (23,93, y%2,y2%, 2%). 4

One technique to algorithmically reduce the size of the monomial vector is the newton
polytope.

Definition 2.39 (Newton Polytope [Stu98])
Let p(x) € R[x], x = [331 e xn] , be a polynomial in n variables. We can write p as
a weighted sum of monomials

m
p(x) = Z aix‘il,i . xZn,i
7

Let E be the set of exponent vectors E = {ej1...,epn} with e; = [eu . em-]. The
Newton polytope is a convex lattice polytope made of the convexr hull of the exponent

vectors:
Newton(p) = conv({e; € E | a; #0}),

where any zero vector is omitted. &

35

Chapter 2 Preliminaries and Related Work

Example 2.40
Figure 2.11 visualizes the Newton polytope for the planar polynomial p(x) = 4 x32§—
1122 4+ 22 + 22 (taken from [Pap+13]). In Figure 2.11a, the points are the vectors

of exponents of p, i. e.,
(4,6),(1,2),(2,0),(0,2)

where (1,2) lies in the interior and the polytope is their convexr hull. N

Software that makes use of the Newton polytope for the SOS decomposition are
SOSTooLs [Pap+13], YALMIP [Lof04], SOSOPT [Seil3], and STABHYLI. Early
algorithmic approaches to SOS decomposition have been presented by Powers in [PW98].
Recently, Dai and Xia have proposed an optimization in [DX15] that reduces the size of
the problem by first decomposing a polynomial into small, so-called, split polynomials
for which then finding a SOS decomposition is more tractable. This is done because the
size of the problem — as mentioned above — is O ((”:d)) where 2d is the degree of the

polynomial and n is the number of variables and, hence, the growth rate is high.

Note 2.41

In [Rez78], Reznick has shown that the vector of monomials z needs to contain
only monomials, whose squares have a degree in the newton polytope of p(x). For
Ezxample 2.40, this is visualized in Figure 2.11b and the highlighted points correspond
to exponents of the monomials xl,xg,wlm,xlx%,x%m%. <

2.4.4 Linear Matrix Inequalities
With the help of the S-Procedure and the SOS decomposition, we can relax the constraints

obtained from the Lyapunov theorem into a so-called linear matrix inequality.

Definition 2.42 (Linear matrix inequality (LMI) [Boy+94, p.7])
Let F; € R™"™, 0 < i < m, be symmetric matrices and let \; € R, 1 < i < m, be
free parameters. A linear matrix inequality (LMI) has the form

m
0= Fy—+ Z N F;.
=1

A wvaluation of the free parameters \; such that the condition is fulfilled, is called a
solution to the LMI. &

Using a block diagonal matrix, a set of inequalities can be combined into a single LMI:

Proposition 2.43
Simultaneously finding a solution to 0 = Fo+Y i~y ApiF; and 0 < Go—l—Zé:l Aa,iGi

36

2.4 Stability Verification

can be achieved by finding a solution for

m l
FO 0 F, 0 0O O
0 = I: 0 G0:| + AF;L |: 0 O:| + — AG,Z |:0 Gz:|

i=1

Now, by solving a single LMI, we can simultaneously search for the sum-of-squares
decomposition, valuations of the S-Procedure parameters, the K°°-functions, and the
Lyapunov functions.

2.4.5 Computing Lyapunov Functions

To computationally obtain Lyapunov functions, each function is instantiated by a tem-
plate involving free parameters. Using these Lyapunov function templates, a constraint
system corresponding to Theorem 2.31 is generated and relaxed by the above described

1. S-Procedure to restrict the constraints to certain regions and

2. sum-of-squares decomposition which allows us to rewrite the polynomials as linear
matrix inequality [PP03].

These LMIs — in turn — can be solved by Semidefinite Programming (SDP) [BV04].

Definition 2.44 (Semidefinite Programming [BV04, pp.168])
Let C, X, F; € R™" be symmetric matrices and b; € R™, 1 < i < m, be column
vectors. A semidefinite program (SDP) has the from

minimize (C, X)
s.t. (A, X) =b; forall1 <i<m
and X = 0

where (A,B) = tr(ATB) = >.ij(Aij - Bij) for A,B € R"™". A solution to the
SDP problem is the matrix X . &

A list of available SDP solvers at time of writing can be found in Table 2.12. The
solvers that are supported by STABHYLI are CSDP [Bor99] and SDPA [Fuj+07].
Most of the solvers in Table 2.12 use some kind of interior point methods and numerically
approximate a solution.

Example 2.45 (SDP [BPT12, Beispiel 2.11])

37

Chapter 2 Preliminaries and Related Work

Name Language Website
SDPA C++ http://sdpa.sourceforge.net/
CSDP C https://projects.coin-or.org/Csdp/
SDPT3 MATLAB http://www.math.nus.edu.sg/ mattohkc/sdpt3.html
SEDUMI1 MATLAB http://sedumi.ie.lehigh.edu/
DSDP C, MATLAB http://www.mcs.anl.gov/hs/software/DSDP/
PENSDP C, FORTRAN, MATLAB http://wuw.penopt.com/pensdp.html
SDPLR C, MATLAB http://sburer.github.io/
CONICBUNDLE C/C++ https://www-user.tu-chemnitz.de/ helmberg/ConicBundle
CVXOPTx PYTHON http://cvxopt.org/
SCS C http://web.stanford.edu/ "boyd/papers/scs.html
SUANSHU JAava http://numericalmethod.com/suanshu/
SDPB C++ https://github.com/davidsd/sdpb

Table 2.12: Listing of available SDP software.

Consider the following SDP

minimaize 2x1] + 2212

s.t. x11 + a2 =1

T T
and 11 12 =0
T12 T22

with the solver’s inputs

21 01

Every solution to x11(1—x11) > 56%2 yields a valid solution while the optimal solution
18

2-v2 1

4 22

Xoptimal = 1 2+£
2v2 4

which is irrational, and thus, cannot be returned by a numerical solver. However,
CSDP returns

5276295079350937 —6369051706984595

X = 36028797018963968 18014398509481984
T | =6369051706984595 30752501939613031
18014398509481984 36028797018963968

which is close and each entry has an error of 2.4 1072 or less. N

While numerical solvers are very fast, they sometimes suffer from numerical inaccuracies.
Therefore, one has to double-check solutions returned by the solver. To double-check, we
have multiple possibilities from which we make use of two: (1) computing minors and
(2) computing eigenvalues.

Definition 2.46 (Minors [Fis97, pp.191])
Let M : R™™" be a quadratic matriz. Let I,J C {1,...,n} be non-empty subsets of

38

http://sdpa.sourceforge.net/
https://projects.coin-or.org/Csdp/
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
http://sedumi.ie.lehigh.edu/
http://www.mcs.anl.gov/hs/software/DSDP/
http://www.penopt.com/pensdp.html
http://sburer.github.io/
https://www-user.tu-chemnitz.de/~helmberg/ConicBundle
http://cvxopt.org/
http://web.stanford.edu/~boyd/papers/scs.html
http://numericalmethod.com/suanshu/
https://github.com/davidsd/sdpb

2.4 Stability Verification

M ’s indices. A minor is the determinate of a submatriz of M obtained by deleting
the i-th rows and the j-th column for all (i,7) € I x J. If I = J one obtains a
principal minor, that is the determinate of a submatrix that is obtained by deleting
the i-th row and the i-th column for alli € I. If I = J ={1,...,k} for some k <n
one obtains a leading principal minor. &

Theorem 2.47 (Checking (Semi-)definiteness [Bha07])
Let M : R™™ be a real symmetric matriz. The properties

e M =0 (resp. M =0).
e All eigenvalues of M are positive (resp. non-negative).

e All leading principal minors (resp. principal minors) of M are positive (resp.
non-negative).

are equivalent.

As one can see in Definition 2.46, checking definiteness can be done efficiently as for
a n X n square matrix, one has to check only n leading principle minors, in contrast,
checking semidefiniteness requires us to investigate 2™ principle minors. The means that
in practice the semidefiniteness check based on the principal minors is costly due to their
sheer number. However, we can still check the leading principal minors:

e if they are all positive, then M is clearly positive semidefinite,
e if one is negative, then M is clearly not positive semidefinite.

While this allows us to identify validness of results of the solver, it cannot help us to
obtain valid solutions. Therefore, strengthening of the constraints by adding additional
“gaps” might be used to make the constraints more robust against numerical issues. The
drawback is that this sometimes results in the feasible set becoming empty.

Now, we have all ingredients for a first Lyapunov function-based stability verification
algorithm:

(1) Choose templates for the Lyapunov functions.
(2) Generate the constraints as in Theorem 2.31.

(3) Apply the S-Procedure to the constraints and relax the outcome to an LMI using
the SOS decomposition.

(4) Hand the LMI over to an SDP solver.

e if not solvable, return unknown.

(5) Double check result of the SDP solver.

39

Chapter 2 Preliminaries and Related Work

e if valid, return stable.

e otherwise, return unknown.

Example 2.48 (Continuation of Example 2.28)
Constructing the constraints for our (running) example as imposed by the Lyapunov
theorem, one obtains

a,B,y>0

v € [~15,15] A z € [~500.500] = (v + 22) < Viormai (2, v)
€ [<15,15] A z € [=500.500] = Viormar(2,v) < B - (0% + 2?)
€ [-20,-5] Az =0 = a(v?) < Viccererate(T, V)

€ [-20, =5) Az =0 = Viccererate(z,v) < - 0°

v € [5,20) Ax =0 = a(v?) < Vargre(,v)

v € 15,200 Ax =0 = Varare(z,v) < 5+ v?

[—0.0019:0— 0. 052v]> <y (02 4 2?)
[ﬂ> <0
(7))

€ [13,15] Az € [-500, 500] = Varake(x,v) < Viormar (T, v)

v € [—15, —14] Az € [=500,500] = Viccererate(T, V) < Viormar (2, v)
v € [=6,=5] A2 = 0= Viorma1(0,v) < Viccererate(T, v)

vE B, 11 AZ =0= Viorma1(0,v) < Varare(x, v).

€ [~15,15]

Az € [~500.500] <VV”‘”““‘($’”)

S [—20, —5] ANe=0= <vv:4ccele'ra,te

€ 5,200 Nz =0= <VVBmke x,)

A reasonable choice for the Lyapunov function templates is

VNormal() ‘/513 + ‘/411 + VéUfL‘ + ‘/21‘ + Vi’U + ‘/0
VAccelerate() = Vvllx + VlOU + Vovax 4+ Vgx + Vv + Vi
Varake(2,y) = Viza® + Vigv® + Visvx + Viaz + Vizv + Via.

Thus, the resulting Lyapunov constraint system has 21 free parameters before apply-
ing the S-Procedure and afterwards at least 48 more because the S-Procedure adds
one free parameter for each condition. For example, the constraint

€ [~15,15] A z € [=500.500] = a(v? + 22) < Viormai(z,v)

40

2.5 Decompositional Stability Verification

becomes

A (v +15) 4+ A2(15 — v) 4+ Az(x + 500) + Ag(500 — z) + (v + 22) < Viropmar (2, v)
)\17)\27)‘37 /\4 Z 0.

And as we do not necessarily know which S-Procedure-terms are needed, we would
also include the combinations

As(v + 15)(15 — v),

resulting in ten free parameters due to S-Procedure-terms for one constraint. For
the whole constraint system, we have then 5-104+8-6 = 98 free parameters due to S-
Procedure-terms, 18 free parameters due to Lyapunov function templates, and three
parameters due to K functions. Fortunately, in this example all constraints are
quadratic. Thus, the sums-of-squares-decomposition is trivial and does not introduce
extra degrees of freedom which would result in additional free parameters.

The solution obtained by STABHYLI s .00000000000000028079

Vitormar (v,) = +0.110238vz + 0.00397522 + 1.084671v°
— 0.0000002 — 0.000000v
Viceeterate(v,) = —0.1036100% — 4.483182v + 16.122491
Varake(v, 2) = —0.1015020% + 4.080301v 4 18.222108

and depicted in Figure 2.13. In the figure it can be seen that for transitions the
values of the Lyapunov function of the source mode are higher than the values of
the target mode. Also the value of each Lyapunov function decrease towards the

oTLgin. N

2.5 Decompositional Stability Verification

In this section, we briefly introduce the decompositional construction of Lyapunov func-
tions for self-containment and point the interested reader to [OT09] for more details.
The decomposition technique introduces a so-called constraint graph. A constraint
graph C' = C(H) is a directed graph where additionally vertices are labeled with location
constraints and transition constraints for self-loops, i.e., [1 = lo while edges are labeled
with transition constraints for non-self-loops, i.e., [# ly. The predicate constr(C') is
used to denote the conjunct of the annotated constraints. Obviously, any solution to the

41

Chapter 2 Preliminaries and Related Work

i,
)

—100

" 106-20 v

Figure 2.13: A Lyapunov function for the hybrid system from Example 2.28. The
Lyapunov function for the mode Normal is plotted in blue, for the mode
Accelerate is plotted in green, and for the mode Brake is plotted in red.

constraint graph (constr((')) is a solution to Theorem 2.31 for H. The graph structure
is exploited in two ways:

1) The constraint graph is partitioned into finitely many strongly connected compo-
nents (SCCs) and Lyapunov functions can be computed for each SCC in isolation.

2) Each SCCs is further decomposed into (overlapping) cycles. In contrast to SCCs,
Lyapunov functions cannot be computed in isolation, because the Lyapunov func-
tions of the locations in the individual cycles are mutually dependent due to the
transition constraints. To overcome this issue, we do not only compute a sin-
gle Lyapunov function but a finite set of Lyapunov functions for every location
Sy ={Vi1,...,Vin} and any conic combination cone™ (S) — clearly the tip of the
cone has to be excluded — yields a valid Lyapunov function for location I.

2.5.1 Graph

Let us start with some basic graph notations.

42

2.5 Decompositional Stability Verification

Definition 2.49 (Graph)

A graph is a tuple ¢ = (¥, &) where ¥ is a finite set of vertices and & C ¥ x ¥
is a finite set of edges. For a undirected graph, it holds that (v, v12), (v, v1) € &,
if (v1,12) € & then (va,v1) € &. This is not necessarily true for a directed graph
and we can distinguish two edges (v1, v2), (v, v1) € &. &

For an edge (v1, v2), we call the first element v;, the source and the second element vy,
the target.
Often, we focus our analysis only on a certain part of the graph, a so-called subgraph.

Definition 2.50 (Subgraph)
A subgraph ¢' = (V" &") of a graph 4 = (¥, &) is a graph where ¥’ C ¥ and
E'CECY Y. &

In order to reason about the graph structure of a hybrid automaton, we define the
underlying graph as follows:

Definition 2.51 (Underlying Graph)

An underlying graph ¢ (H) = (¥, &) of a hybrid automaton H = (Var, Loc, Trans,
Flow, Inv, Inits) is a directed graph where ¥ = Loc is a finite set of vertices and
E={(li,) eV xV|(l,G,U,lp) € Trans } is a finite set of edges. O

Definition 2.52 (Adjacent, Incident)

Let 9 = (V,&) be a graph. Two vertices vi,va € ¥ are called adjacent if and
only if (v1,v2) € &. Two edges (v1,v2) = e1 € & and (v3,v1) = ea € & are called
incident if and only if either vy = v3 or v = 4. &

The decomposition is done on two levels: cycles and strongly connected components
(SCCs). They are formally defined as follows:

Definition 2.53 (Path, Cycle, Clique)

Let 4 = (V,&) be a graph. A sequence of vertices vy, ...,v, € ¥ is called a path
from vy to v, if and only if the vertices are adjacent and the edges are incident,
i.e., (v, vip1) = € € &, 1 < i < n. If no vertex is repeated, i.e., v; = vj if and
only if i = j, then the path is a simple path. A path is called a cycle if and only if
vl = Un. Again, if only vi occurs twice, then the cycle is a simple cycle. A subgraph
(V,&) =%9" C 9 is called a clique if and only if for every pair v;,v; € V', v; and
v; are adjacent. &

In a directed graph, it is sometimes helpful to emphasize that we not taking edges in
reverse direction. For this a path vy, ..., v, is called a forward path if and only if we
can traverse the graph along the path in a forward direction, i.e., (v;, v;+1) € & for all
1 < i < n. In contrast, we call the path a backward path if and only if we can traverse
the graph along the path in a backward direction, i.e., (vi+1,v;) € & for all 1 <i < n.

43

Chapter 2 Preliminaries and Related Work

Definition 2.54 (Strongly Connected Component)

A strongly connected component (SCC) of a directed graph 9 = (¥, &) is a mazimal
subgraph 4" = (¥, &") such that for each pair of vertices vi # vo € ¥, there exists
a forward path from vy to va. Here, maximality means that no vertex may be added
without violating the existence of a forward path. An edge (vi,v2) connecting two

SCCs is called a bridge. O

To improve the performance of the decomposition, we will identify and investigate
subgraphs with high connectedness (or density) in Section 4.2. In that context, a search
for cliques is one possible way of finding subgraphs with a high density.

Definition 2.55 (Graph Density)
Let G = (V,&) be a graph. If G is undirected then the graph density D is defined

as D = % and if 9 is directed then the graph density D is defined as
_ €]
D= 5o ¢

2.5.2 Decomposition into Strongly Connected Components

The main insight behind the decomposition into SCCs is that if a hybrid system is indeed
stable, then any trajectory entering an SCC of the corresponding hybrid automaton H
may either converge to the equilibrium point within the SCC or leave the SCC. In any
case, once entered, an SCC might not be entered again. This allows us to compute local
Lyapunov functions for each SCC separately, because for every pair (I1,[3) of locations
of different SCCs it holds that either

e there is no forward path between [; and [y or
e there is a forward path from [y to ls but no forward path from Is to Iy.

Thus, the transition constraints — as imposed by the Lyapunov theorem — enforce a
decreasing order of the Lyapunov functions of the two locations at most in one direction.
This is summarized in the following theorem.

Theorem 2.56 (Decomposition into SCCs [Oehl1, Theorem 4.1])

Let H be a hybrid automaton with H = (Var, Loc, Trans, Flow, Inv, Inits). If all
sub-automata pertaining to the strongly connected components of 4 (H) are globally
attractive, then so is H. If all SCCs are Lyapunov stable, and if all transitions
(I1, G, U,l2) € Trans corresponding to bridges of ¢(H) are sub-linear, that is,

de>0eVxe Geo||U(x)| <c|x]l],

then H is Lyapunov stable. Therefore, H is GAS.

44

2.5 Decompositional Stability Verification

2 3
c, c d d
a a b b
4 5
(a) Before splitting (b) After splitting

Figure 2.14: Visualization of the mode-splitting step

2.5.3 Decomposition into Overlapping Cycles

The decomposition into SCCs is the simpler part of the two levels of decomposition.
For the decomposition into overlapping cycles, we need to compute sets of Lyapunov
functions, which have to be further checked to be compatible in the sense of the transition
constraints.

To guarantee compatibility, the cycles have to be treated in a certain order. Let us
first introduce the concepts of outer cycles and border vertices. A cycle is called outer
cycle if there is at most one vertex which connects the cycle with remainder of the graph.
A vertex which is shared by at least two cycles is called a border vertex.

Now, compatibility can be guaranteed if the cycles are examined successively in the
following way:

(1) Preparation: Generate the constraint graph C' = C'(H) of the hybrid automaton
H.

(2) Selection: Search for an outer cycle ¢’ C C'(H) in the constraint graph C(H).

(3) Reduction: If such outer cycle exists, then

1. construct the constraint systems constr(C’) of the subgraph C’, which is like
certifying stability of a corresponding hybrid automaton H’ containing only
those locations and transitions which are in the underlying 4’ of H'.

2. compute finitely many candidate local Lyapunov functions (V; ;) which are given
by solutions of the constraint systems constr(C’). If the constraint systems are
solved using optimization techniques, then different solutions can be obtained
by using different objective functions. If no solution can be found, then return
failed.

3. replace the annotations in the constraint graph: For each border vertex the
location constraints are replaced by the conic combination of the candidate local
Lyapunov functions

Vi = cone™ (Vi) = Y A+ Vi with A >0, Xy >0,
% 7

where ();) are fresh parameters that are existentially quantified and shared by
all such border vertex. All other vertices and edges forming the cycle can be
removed.

45

Chapter 2 Preliminaries and Related Work

4. if this was the last cycle, then return success, otherwise continue with Step 2.

(4) Splitting: If not outer cycle exists, then

1. select an arbitrary vertex and replace the vertex with one copy of that vertex for
each pair of incoming and outgoing edges, such that afterwards, every copy is
connected to exactly one incoming and one outgoing vertex. This is visualized
in Figure 2.14. In Figure 2.14a, vertex 1 is connected to four other vertices by
two incoming and two outgoing edges. In Figure 2.14b, vertex 1 is replaced
by four copies, where each one is connected to exactly one incoming and one
outgoing edge.

2. continue with Step 2.

The Reduction Step Conical combinations of the candidate LLF's are valid local Lya-
punov functions and satisfy the constraints of the Lyapunov theorem because the set
of positive functions is a convex set and the constraints describe a convex satisfaction
problem. This fact allows us to replace constraints corresponding to a — possibly large —
cycle by — possibly small — conic combinations of candidate local Lyapunov functions.

Step 3 of the above algorithm is called the reduction step. The reduction step collapses
all vertices that lie only on that outer cycle and replaces references to LLFs in the
constraints of adjacent edges by conical combinations of the candidate LLFs. This allows
us to prove stability of each cycle separately while, cycle-by-cycle, ensuring compatibility
of the feasible sets of the (overlapping) cycles.

The Location-Splitting Step In the above algorithm, if the graph does not contain an
outer cycle, then Step 4, called the location-splitting step, is performed. In the location-
splitting step, a single vertex is replaced by multiple copies, one copy per pair of incoming
and outgoing edges.

Depending on the order in which vertices are chosen for location-splitting, one can
make a cycle connected to the rest of the graph by exactly one vertex and then perform a
reduction step. Clearly, the order of location-splitting and reduction steps does not only
affect the termination of the procedure, but also the size of the graph and, therefore, the
number of cycles that have to be reduced. With a good order of reduction and location-
splitting steps, one ends up with a single cycle for which the following holds: The
successful computation of candidate LLFs implies the existence of a piecewise Lyapunov
function for the whole SCC. In Section 3.2 on page 52, we introduce three heuristics
for the location-splitting that have been implemented, namely, (1) selection by product,
(2) prioritization of zippers, and (3) selection by pairwise degree.

An Abstract Example Figure 2.15 visualizes an abstract decomposition. Each vertex
represents the constraints of a location of a hybrid automaton. In Figure 2.15a, an outer
cycle can be found and a reduction step is performed. The (red) cycle (consisting of
vertex b and vertex c) is selected and collapsed into a single vertex. This is done by
replacing the border vertex with a finite set of solutions to the corresponding optimization

46

2.5 Decompositional Stability Verification

GaRo

(a) Selection of an outer cycle After a reductlon step) Selection of a mode to split
(d) After a mode-splitting step (e) Selection of an outer cycle (f) After a reduction step

Figure 2.15: A sketch of the decomposition procedure.

problems — visualized by collapsing the cycle into a single vertex in Figure 2.15b. Thus,
the feasible set of the cycle’s constraints is replaced by a set of candidate LLFs. This
set serves as a “summary of the solutions to the sub-proof” in subsequent proofs. Using
conic combinations of these candidates in subsequent proofs, ensures the existence of
Lyapunov functions for all locations in the cycle.

In Figure 2.15¢, there are no outer cycles, thus, a location-splitting step is performed:
the vertex a is selected, copied twice, and each path is routed through one copy. The
result is shown in Figure 2.15d. Since the result contains outer cycles, we can select an
outer cycle as in Figure 2.15e and perform another reduction step resulting a single cycle
being left. Figure 2.15f shows the result. Now, if a solution to the constraint system of
the last cycle can be found, then the original hybrid automaton is stable, too. On the
other hand, if any reduction fails, then we cannot conclude that the system is not stable.
Nevertheless, the designer of the system can make use of the knowledge and redesign the
part of the system that was hard to prove stability of.

As stated before, the order and choice of reduction and splitting steps matters, Oehlerk-
ing suggested in [Oehl1] to use backtracking in case a certain reduction step was not
successful.

Benefits and Issues of the Decompositional Proofs The general benefits of the de-
composition are that

e a large problem is split into several smaller sub-problems,
e solutions to sub-problems can be reused and

e solving small problems is general less attractive to numerical issues.

47

Chapter 2 Preliminaries and Related Work

System Theorem Technique
system of linear ODEs Theorem 2.29 LMI
system of polynomial ODEs Theorem 2.29 SOS, LMI
switched system of linear ODEs Theorem 2.293 LMI
switched system of polynomial ODEs Theorem 2.293 SOS, LMI
switched system of linear ODEs Theorem 2.31 LMI
switched system of polynomial ODEs Theorem 2.31 SOS, LMI
linear hybrid automata Theorem 2.31 S-Procedure, LMI
polynomial hybrid automata Theorem 2.31 S-Procedure, SOS, LMI

Table 2.16: Lyapunov theorem based proof schemata applicable to different classes of
dynamical system.

However, the chance of success is also decreased due to the fact that the feasible sets
are under-approximated by finitely many candidate solutions. Additionally, gaps — as
mentioned in Section 2.4.5 on page 39 — further limit the use of the decomposition as
each reduction now “doubly” shrinks the feasible set: via gaps and — as we have seen —
via computing finitely many candidates LLFs.

2.6 Summary

In this chapter, we have defined basic notations and summarized Lyapunov-related ways
to prove stability of different kinds of dynamical systems. Table 2.16 summarizes which
theorem and techniques can be applied to prove GAS or GES for different classes of
dynamical systems.

In Section 2.4.5, we have presented a technique based on semidefinite programming
to automatically compute Lyapunov functions as a solution to linear matrix inequalities.
Further, we summarized contemporary tools for solving and addressed issues and coun-
termeasures. However, in the next chapter we will investigate the problem of numerical
inaccuracies in more detail and presented further techniques for detected and partially
overcome these issues.

Finally, we have presented the decompositional construction of Lyapunov functions as
proposed by Oehlerking and Theel [OT09; Oeh11]. This technique allows us — depending
on the hybrid automaton — to construct Lyapunov functions more effectively and more
efficiently. However, we have identified that this way of constructing Lyapunov functions
is not suitable in general. We will address some issues in the following chapters:

e numerical inaccuracies and algorithmic treatment, which will be addressed in the
following Chapter 3,

e high connectivity of the underlying graph leads to an explosion of the automata’s
description, which will be addressed in Chapter 4.

3 The theorem has to be extended to include mode constraints for each differential equation f; using a
common Lyapunov function, i.e., enforce the same Lyapunov function for each f;.

48

CHAPTER

Automatic Stability Verification

This chapter presents one of the key contributions of this thesis: an automatized
approach to stability verification using Lyapunov theory.

First, we give a short overview of existing techniques in Section 3.1. Then, we present
STABHYLI which is the tool developed during this work. The theoretical background
has been presented in Chapter 2. Section 3.2 gives details on the implementation that
has been partially presented in [MT13a]. STABHYLI automatically proves stability of
non-linear or rather polynomial hybrid systems. Stability certificates are obtained by Lya-
punov theory combined with decomposition and composition techniques. The certificate
involves finding Lyapunov function using one of the numerical solvers CSD P [Bor99] or
SDPA [Fuj+07] as a backend. Numerical optimization is usually very fast but, it unfor-
tunately, suffers from numerical issues which we have already mentioned in Section 2.4.5.
STABHYLI— among others — integrates some smaller pre- and post-processing steps
that counteract these issues.

We identified one key issue that leads to numerical issues which is: implicit equalities
in the constraint system as obtained from the Lyapunov theorem Theorem 2.31. This
issue often prevents us from automatically finding Lyapunov functions. It has been
investigated in [MT13b]. We present a heuristic to detect and handle implicit equalities
in Section 3.3, which has partially been implemented in STABHYLI and combined with
a backtracking procedure by Zschoche in [Zsc15]. Using the presented heuristic, the
number of false-negatives is reduced. Here, a false-negative means that the solver reports
infeasibility of the numerical problem even if there is a solution.

Also false-positives are possible, i. e., the solver reports success even though the returned
set of values does not satisfy the constraint system. Such a false-positive can easily be
provoked by scaling the flows, invariants, guards, or updates beyond machine precision.
We have addressed this issue in [MT14] and proposed a technique based one satisfiability
modulo theory (SMT) to (a) rigorously validate the results of a numerical solver and
(b) use a possible counterexample to guide the numerical solver towards a valid solution.
The former will be presented in Section 3.4 and the later will be presented in Section 3.5.

Affirmation

Most of the content of this chapter has already been published in [MT13a; MT13b; MT14]
of which the main author and main contributor is also the author of this thesis.

49

Chapter 3 Automatic Stability Verification

3.1 State-of-the-Art

In contrast to safety properties, stability has not yet received that much attention with
respect to automatic proving and therefore, only a few tools are available. Most of the
tools have been developed within the transregional research project AVACS (Automatic
Verification and Analysis of Comlex System) which can be said to be the first reserach
project successfully developing integrated tools for the automated verification of stability
properties of hybrid systems. Indeed, only the following automated tools — each one
specialized for specific system classes — are known to the author.

50

e Podelski and Wagner presented a tool in [PW07b] which computes a sequence

of snapshots and then tries to relate the snapshots in a decreasing sequence. If
successful, then this certifies region stability, i.e., stability with respect to a region
instead of a single equilibrium point. To compute the snapshots, their tool relies on
sets of states which usually are overapproximations of the actual reachable states.
In cases where the overapproximations are to coarse, no decreasing relation between
the snapshots can be found.

Oehlerking et al. implemented a powerful state space partitioning scheme to find
Lyapunov functions for linear hybrid systems [OBT07].

The RSOLVER by Ratschan and She computes Lyapunov-like functions for con-
tinuous system [RS10].

Duggirala and Mitra proposed a tool that combines Lyapunov functions with search-
ing for a well-foundedness relation for symmetric linear hybrid systems [DM12].

AVERIST is a tool, that is based one a technique presented by Prabhakar and Gar-
cfa Soto in [PS13] and allows proving stability of hybrid systems with (piecewise)
constant derivatives. This technique has been extended to polyhedral switched
systems in [PS14] and, recently, to switched linear hybrid systems [PS15; PS16]
by constructing an enclosing polyhedral system and applying a specialized coun-
terexample guided abstraction refinement (CEGAR) technique. It has also been
shown that the technique is complete for locally asymptotically stable linear hybrid
systems which are “uniformly converging in time” in [PS16]. While asymptotic
convergence requires that for every trajectory and any region around the origin
exists a time (that may differ for every trajectory and region) such that the region
is reached, ... uniformly converge is stronger as it requires the existance of a singe
time (that is the same for every trajectory) after which every trajectory has reached
half of it’s way to the origin.

MATLAB toolboxes (YALMIP [Lof04], SOSTooLs [Pap+13]) that require a
by-hand generation of the constraint systems for the search of Lyapunov functions
are available. These toolboxes do not automatically prove stability but assist in
handling backend solvers, provide a uniform notation and a convenient integration
into MATLAB which internally handles the conversion of data structures.

3.2 Stabhyli: A Tool for Automatic Stability Verification

A toolbox integrating SDP solvers is VSDP [JCKO07]. It computes rigorous
error bounds of the true value of the objective function and verified certificates of
infeasibility. It makes use of interval arithmetic and correctly handles the rounding
in floating-point arithmetic. Of course, if VSDP reports infeasibility, we can rely
on this. On the other side, if VSDP reports success, then we have an interval
enclosures of the true value of the objective function and of the optimal feasible
solution. The enclosure of the optimal feasible solution is guaranteed to contain
the optimal feasible solution. However, not every enclosed candidate solution is
guaranteed to be feasible. This means that each candidate needs to be checked.

All these tools, including STABHYLI, are incomplete if their system model is suf-
ficiently expressive. This is due to the fact that not all stable hybrid systems can be
proven stable because stability is in general undecidable. For example decidability has
been shown for the very restrictive case of planar rectangular switched hybrid systems and
undecidable for systems with five or more dimensions [PV13]. Switched hybrid systems
are update-free hybrid systems where flows, invariants, and guards are specified by convex
polyhedral sets. Nevertheless, sufficient conditions such as with Lyapunov theory can be
checked instead.

3.2 Stabhyli: A Tool for Automatic Stability Verification

STABHYLI is a tool for the automatic verification of stability of non-linear hybrid systems.
It can be used to obtain common Lyapunov functions, piecewise Lyapunov functions and
employing the decompositional proof schemes presented in [OT09; Dam+10]. As real
world systems tend to become very large and complicated, automated computer-aided
verification and assistance in the design is very important. STABHYLI addresses both,
verification and design.

To actually obtain the Lyapunov functions, and thereby deriving a proof, one out of
four currently implemented proof schemes can be used. We call a proof scheme a method
that takes a hybrid system as an input and returns either that the system is stable or
that the method was not successful. In the following, the proof schemes are explained in
more detail. All proof schemes have in common that they generate constraint systems
that will be handed over to an external solver.

(Proof Scheme 1) Common Lyapunov Function This proof scheme tries to find a
single common Lyapunov function V such that VI € LoceV; = V and roughly corresponds
to Theorem 2.29 lifted to hybrid systems. This proof scheme has the advantage that
the constraint system contains much fewer free parameters because 1. only a single
Lyapunov function has to be found and 2. some transition constraints (constraint type
C3 of Theorem 2.31) can be left out, e. g., for every transition where the update function
is the identity function. As a drawback this approach is very restrictive since all locations
have to share the same local Lyapunov function.

o1

Chapter 3 Automatic Stability Verification

(Proof Scheme 2) Piecewise Lyapunov Function This proof scheme tries to find a
piecewise Lyapunov function exactly as described in Theorem 2.31. The scheme is not
that restrictive as it allows the use of a local Lyapunov function (LLF') for each location.
These LLFs together form a piecewise Lyapunov function or discontinuous Lyapunov
function which is valid for all runs of the hybrid automaton (HA). Here, all transition
constraints (constraint type C3 of Theorem 2.31) are required to ensure that the global
Lyapunov function does not increase when switching between locations.

(Proof Scheme 3) Piecewise Lyapunov Function via Decomposition The third proof
scheme tries to find a piecewise Lyapunov function using decomposition as proposed by
Oehlerking and Theel [OT09]. A short summary of this technique has already been given
in Section 2.5. From the perspective of a Lyapunov function the decomposition into
cycles can be seen as making the different sequences of locations, that a trajectory may
visit, more explicit. This step, called location-splitting (or mode-splitting), is visualized in
Figure 2.14 on page 45. Location-splitting allows us to have multiple nodes for the same
location depending on the path in the graph. For every node we allow a different LLF.
And, hence, a single location might have different LLFs and the actual one depends on
the history and future of the location sequence. For example, a trajectory might enter
a location [, either coming from [, or I, with a # o’ and visiting l. next. Generating
the constraint system exactly as described in Theorem 2.31 leads to three transition
constraints involving location [,. This might be unnecessarily restrictive since [, might
operate differently depending on the preceding location. In this case, the decompositional
proof scheme will split the paths by creating a copy of I, for each path. And, thereby,
allowing every instance to have its own — possibly different — LLF.

As mentioned in Section 2.5, carefully selecting locations for splitting leads to outer
cycles connected to the reset of the graph by a single border vertex. For each such outer
cycle STABHYLI treads the cycle as a subgraph and generates a sub-constraint system.
For the subgraph’s constraint system the piecewise Lyapunov function scheme is used.
Then, STABHYLI tries to solve the sub-constraint system in different optimization
directions. If no solution could be found, then STABHYLI reports an error. Otherwise,
the set of all found solutions is used as a basis for constructing a LLFs for the border
vertex in subsequent constraint systems.

Note 3.1

Termination of this procedure depends on the selection of vertices for splitting.
Furthermore, the order of the splitting steps affects the total number of steps required
to complete the proof and even the chance of success. N

For controlling the order, we have implemented three heuristics:
Selection by product. Sort the vertices by their product of incoming and outgoing

edges. Select a vertex with the smallest product greater than 1. Thus, this heuristic
always chooses a vertex that will be split into the least possible number of vertices.

52

3.2 Stabhyli: A Tool for Automatic Stability Verification

Prioritization of zippers. We call a vertex a zipper if and only if it either has exactly
one incoming edge and multiple outgoing edges or vice versa. The heuristic performs
a selection by product on zippers. If no zipper exists, then a selection by product
on all vertices is performed. This heuristic tries to quickly obtain outer cycles.

Selection by pairwise degree. Sort the vertices according to the vector order of
incoming and outgoing edges and select the first vertex having a vector greater

than [1 1] T. This heuristic is a trade-off between the others.

Another benefit of the decompositional proof scheme is that, if the hybrid automaton
cannot be proven stable, then the particular part of the automaton, that let the proof
fail, can easily be identified. This is due to the fact that the proof scheme successively
generates sub-proofs to derive a complete proof. If a sub-constraint system could not
be solved, then this can be used to identify the parts of the automaton that potentially
require a redesign. By using this knowledge, a guided analysis, refinement, or redesign
of this part can be performed by the user. This can be seen as a redesign process for
hybrid systems.

(Proof Scheme 4) Piecewise Lyapunov Function via Composition The last proof
scheme is an incremental technique as proposed by Damm et al. in [Dam+10]. STAB-
HYLI allows specifying modules or components with entry (the control is transferred to
the component) and exit ports (the control is transferred from the component to another
one) and automatically generates interfaces for these components. The interfaces keep
annotations that allow to reuse the component in a compositional manner without know-
ing the implementation (i.e., the hybrid automaton) of the underlying module. That
way, a structured design in a bottom-up fashion of stable hybrid systems is possible while
the composition uses the annotations in the interfaces to simultaneously assure that a
proof of stability exists.

In Chapter 5, we will present a so-called sequential composition operator. The Piece-
wise Lyapunov Function via Composition is the supplementing tool support for kind of
composition.

Figure 3.1 gives an overview of the steps performed by STABHYLI.

(1) The input is a hybrid automaton, which is read from a hybrid automaton language
(HAL) file. The description is parsed into an internal graph data structure.

(2) The given hybrid system is shifted such that the equilibrium point is at the origin of
the state space, i.e., 0. Details also including further preprocessing steps are given
in Section 3.2.1.

(3) Depending on the selected proof scheme, a (sub-)constraint system is generated.

(4) A backend solver is run and the result of the solver is then double-checked whether
there are violated constraints. This is done because the solver might only be able to
satisfy the constraints up to a certain accuracy.

53

Chapter 3 Automatic Stability Verification

HAL File Prepro.cessu%g: P.ar.smg, Proof
Shifting, Simplifying) Scheme

]

Solver finished
Result

failed more

(Sub) Constraint

refined System

Fix Violations/ }

accurate | Refine Constraints

Validate
Result

Solve

Constraints

Figure 3.1: Overview of STABHYLI’s internal steps.

(a) If a violated constraint is found, then we refine the constraint system and rerun
the solver in Step 4.

(b) If no refinement can be found, then we stop and report failed.

(c) If the solution is valid and the current constant system is a sub-constraint system,
then we continue with Step 3.

(d) If the solution is valid and this has been the last constraint system to be solved,
then we stop and report success.

Next, we describe the preprocessing. The steps for solving constraints are described
in more detail in Section 3.2.2.

3.2.1 Preprocessing

The preprocessing consists of
(1) parsing the HAL file,

(2) shifting the described hybrid automaton such that the equilibrium point is at point
0, and

(3) rewriting the description such that all terms used to define flows, invariants, guards
and updates are in a canonical form.

Actually, the last two steps are not separated and performed together.

o4

3.2 Stabhyli: A Tool for Automatic Stability Verification

Reading a hybrid automaton language file The hybrid automaton language is a lan-
guage similar to HLANG [Fri+07] but specialized to describe hybrid automata while
HLANG targets a more general description of hybrid systems via predicates. It consists
of five declaration sections.

1 A variable section declaring the set of available variables.

2 An interface section and a submodule section which are only allowed when
using Proof Scheme 4.

3 A location section declaring the locations (or modes) of the hybrid automaton.
Each location needs to have a unique name and optionally has an associated flow
and an invariant.

4 A transition part declaring the transitions (or jumps) of the hybrid automaton
where a transition has a source location, an optional guard, an update function
which defaults to the identity function, and a target location.

The wvariable declaration section allows us to define constants, parameters, and vari-
ables of the hybrid system. Figure 3.2 show a syntax diagram which corresponding to
the extended Backus-Naur form (BNF) for this section. Constants allow giving names

«re

(bounds) ::= »— ‘IN’ — (real) (real) —]’ -
F “C = (real) q E (real) j
CO = ZIN ‘INF’ — c)a

(declarations) ::= »— ‘DECL’ .l (declaration) |

Y
A

(declaration) ::= »— ‘DECL’ i] ‘REAL’ — (id) i] R
‘CONVERGENT’ {bounds)

- ‘REAL’ — (id) — ‘CONVERGENT’ — ‘TQ’ — (mathexpr) —

—— ‘CONST’ — ‘REAL’ — (id) — ‘:=" — (mathexpr) —

‘PARAM’ — ‘REAL’ — (id)

L (bounds)]

Figure 3.2: Syntax diagram of the variable declaration section.

to certain values or ranges. This increases readability of the description of the hybrid
automata because values can be called by their meaning and not by their value. Parame-
ters allow describing parameterized hybrid systems but this feature is not yet supported
by STABHYLI. Variables which are neither constants nor parameters can be declared
as convergent. For convergent variables an equilibrium point different from 0 can be
specified. Additionally, variables may be bounded by globally specifying the domain as
an interval.

The interface and submodule declaration sections are only allowed when using Proof
Scheme 4. The declaration of a submodules allows us to define transitions to other hybrid

95

Chapter 3 Automatic Stability Verification

[}

(lyapfuncs) ::= »—L <matf;ea;p7“> |

(entries) ::= »—L ‘ENTRY’ — (id) — ‘IS’ — (lyapfuncs) — ‘IF’ — (boolexpr) — *;’ J—N

]

(exits) ::= »—L ‘EXIT’ — (id) — ‘IS’ — (lyapfuncs) — ‘IF’ — (boolexpr) — *;’

(submodules) ::= » ‘SUBMODULES’ l ‘SUBMODULE’ — (id) — (entries) — {exits) J—u

Figure 3.3: Syntax diagram of the submodule declaration section.

automata for which only an abstract interface is available. A submodule declaration
(syntax given in Figure 3.3) describes the entry and exit ports together with a set of
Lyapunov functions. The names of the entry and exit ports can be used as the source
and target of a transition. This allows to transfer the control to and receive control
from a component for which only the interface is available. The annotated Lyapunov
functions are used by STABHYLI to prove stability of the composition. To create an

Y
A

(entrydecls) ::= »—L ‘ENTRY’ — (id) — *;’ |

(exitdecls) = - ‘EXIT’ — (id) — 5’ | —

(interface) ::= w—— ‘INTERFACE’ — (entrydecls) — (ezitdecls) —»=

Figure 3.4: Syntax diagram of the interface declaration section.

abstract interface, the interface declaration section is used. A syntax diagram in given in
Figure 3.4. This section serves as a template which is used by STABHYLI to generate
a submodule description. This description can be used in subsequent compositions. The
interface template consists of names for entry and exit ports. These names can be
used as the source or the target of a transition. This allows defining how control may
be transferred to this module and how this module transfers control to outer modules.
Given such a template, STABHYLI computes a set of Lyapunov functions.

The location declaration is the main difference to HLANG. Instead of having a
separated declaration section for invariants — which in case of HLANG are not even
location specific — and for flows, hybrid automaton language (HAL) has only one section,
called MODES, which is more natural for automata and combines both. While this decision

56

3.2 Stabhyli: A Tool for Automatic Stability Verification

makes it less flexible, it also makes the locations of the automaton explicit and is thus
better suited for graph-based analysis without the need to extrapolate a graph structure
from the predicates. The syntax can be seen in Figure 3.5. Each mode optionally

]

<diﬁ€quati0n8> = »—£ <Zd> -7 == <mathe$p7”> ‘ >
(dynamics) ::= »— (diffequations) g
L ‘CONVEX’ — ‘(= ‘(" v (diffequations) 1 oy J

(modes) ::= »— ‘MODES’ v ‘MODE’ — (id) — ‘LET’ — (dynamics) | ..
L ‘WHILE — (boolexpr) J

Figure 3.5: Syntax diagram of the mode declaration section.

has a flow and an invariant. Flows are either (1) differential equations where the time
derivative is described by a polynomial function or (2) differential inclusions where the
derivative lies inside a convex set of polynomial functions. Invariants are arbitrary
Boolean combinations of relations of polynomials with the common logical operators not,
and, or, impl, equiv, nand, and nor, comparison operators <, <=, == = >= and >, and
the arithmetic operators +, - *, /, and ~.

The transition declaration allows us to describe transitions of the hybrid automaton.
This section is called JUMPS and its syntax is given in Figure 3.6. Transitions consist

%]
b

(id) = +=" = (matheapr) -

I

Y
A

’

-t
(target) ::= » ‘GOTO’ — (id)
e h L ‘SET’ — (updates)]

‘WITH — ‘PROB’ — (real) ‘GOTO’ — (id)

L ‘SET’ — (updates)]

(target) J—N

(jumps) ::= F‘JUMPS’i‘FROM’f@d) i (>J
‘IF’ — (boolexpr

Figure 3.6: Syntax diagram of the transition declaration section.
of a source (FROM) location, a guard (IF) which is a Boolean combination of relations
of polynomials just like invariants, and at least one pair of an optional update (SET)

and target location (GOTO). If multiple locations are specified, then each location has to
have an associated probability (WITH PROP) and the sum has to be 1. This allows us to

o7

Chapter 3 Automatic Stability Verification

specify probabilistic hybrid automata, albeit not yet exploited by STABHYLI. In fact
STABHYLI treats each probabilistic choice as several transitions with a non-deterministic
choice.

Preliminary support for specifying initial states as well as target states — to be used
by reachability tools — has also been started but the format is not yet fixed.

Variable Shifting

HAL allows the user to define variables that are required to converge to a fixed value
different from the origin 0. This means that STABHYLI must prove convergence with
respect to this specified equilibrium point. Although this eases modeling, it requires a
tool to shift the system. A successful proof then guarantees that the difference between
the value of the variable and the equilibrium point converges to zero which in turn
guarantees the desired property. Such shifting can be done by replacing each occurrence
of a variable x by a new variable 2’ := x — z, for an equilibrium point z..

Forms of Flows, Guards, Invariants, and Resets

HAL allows us to define flows and resets in terms of arbitrary mathematical expressions
(mathexpr) of the following form

eXpr = expr xexpr | (expr) | —expr | number | variable

with operators x€ {-,+,*,/, "} having their usual meaning. STABHYLI evaluates such
expressions using symbolic substitution and rational arithmetic. and checks whether these
expressions are polynomials since it currently handles only polynomials. For doing so, it
tries to rewrite every such expression as a sum of monomials, i.e. Z?:o ¢l lpevar v
and checks whether all exponents i, ; evaluate to non-negative integers. During this step,
any defined constant occurring in an expression is also be replaced by its definition.

For invariants and guards, HAL allows defining arbitrary logical formulae (boolexpr)
of the form

Lv,j
)

formula ::= formula A formula | (formula) | —formula | formula ~ formula

with logical operators A € {and,or, impl, equiv,nand,nor} as well as comparators
~ € {<,<=,=,1=>= >} also having their usual meaning. Such logical formulae will be
evaluated by STABHYLI and rewritten in DNF.

Variables that are Required for Convergence

HAL allows to globally mark variables as required to converge, that is, v € Var’ according
to Definition 2.26 and, hence, STABHYLI will try to find a Lyapunov function which
witnesses convergence of this set of marked variables. Since convergence of these variable
might depend on the convergence of other variables for certain location, we have to
identify these extra variables. In order to determine this set of variables that are required
to converge locally to a location [€ Loc, we give the following recursive definition: a

o8

3.2 Stabhyli: A Tool for Automatic Stability Verification

variable v € Var is required to converge if and only if the variable is marked as required
to converge or it occurs on the right-hand side of a differential equation or inclusion of a
variable that is required to converge. Thus, the set of variables Var; that are required to
converge locally to a location [is:

Var; := Var' U {v ‘ ' € Var,ev € RHS (Flow(l)w,) },

where Flow(l),,, is the projection of Flow(l) onto variable v" which corresponds to the
time derivative of v. The set RHS(f(+)) is the set of all variables occurring in f(-) with
a non-zero coefficient. It is defined as:

RHS(f(-)) = Var \ {v € Var | f(x) = f(x|var{o}) }

Here, X|yar\ (v} 18 the orthogonal projection on Var \ {v} which sets all entries of x not
in Var\ {v} to zero.

Note, that the recursive definition of Var; is transitive and, thus, we can generate
the set by the transitive closure, which can be compute in O(| Var\?’) time using the

Floyd-Warshall algorithm [War62].

Example 3.2
For the set of variables Var = {x,y, 2} with Var’ = {y} and a flow

T -z —1.52
Y| € conv —z—21y|, |[-1l1lz — 2.1y
Z 0 0

for a location 1, the set of variables, that are required to converge, is Var; = {z,y}
since

Var' U RHS (conv({—x — 2.1y, —1.1z — 2.1y})) U RHS(conv({0,0}))
={y} U{z,y} U{}.

Remark 3.3

This is only a heuristic; for a monomial x -y that occurs on the right-hand side,
it would be sufficient that either x or y converges to 0 but our heuristic demands
both. <

Another approach which is computationally too expensive would be to try every com-
bination.

59

Chapter 3 Automatic Stability Verification

3.2.2 Solving Constraints

STABHYLI automatically generates the constraint system for a given hybrid automaton
by applying Theorem 2.31. If the generated constraint system is feasible, then we obtain
Lyapunov functions which — in turn — imply stability of the hybrid system. If the
hybrid automaton is linear, then one can directly construct a system of LMIs. This
approach and related techniques are discussed by Pettersson in his Dissertation [Pet99].
If the hybrid automaton is polynomial, then it is first required to transform the constraint
system using the so-called sum-of-squares (SOS) decomposition (see Lemma 2.36) into
an LMI [PP03]. In both cases, the S-Procedure (see Theorem 2.32) is used to restrict
the constraints to regions [BV04]. Finally, this yields an LMI problem, which can be
solved by a semidefinite program (SDP) (see Definition 2.44).

These optimization problems can than be solved efficiently by tools like CSDP [Bor99],
which is the solver that STABHYLI uses. Details have been given in Section 2.4.5.

A typical situation where numerical problems arise is that a constraint requires free
parameters to have specific values (such as zero). This happens if for a location [€ Loc,
the invariant contains the origin, i.e., 0 € Inv(l) (in that case, it is required that
V(0) = 0). Although this specific case, where no additive constant for the Lyapunov
function is allowed, is so common that STABHYLI handles it a priori. However, for
others cases, it is more challenging to detect that a free parameter is required to have a
specific value. A very common case are implicit equality constraints which we focus on
in Section 3.3.

Obtaining Lyapunov Function Templates

Most common approaches use parameterized function templates for the search of Lya-
punov functions see for example [SankaranarayananCA2013; BV04]. Providing such
templates for the Lyapunov functions, allows us to search for a solution to the constraint
system as defined by Theorem 2.31 since otherwise a search in the space of all (positive
semi-definite) functions is needed.

An efficent approach is to use polynomials involving free (or unknown) parameters
as the templates, and a solver’s task is to find a good valuation of these parameters.
As described above, having an additive term (i.e., the monomial of degree 0) in the
Lyapunov function is only valid for locations whose invariant does not contain the origin,
because otherwise the value of the Lyapunov function must be zero at the origin. Thus,
STABHYLI will not add an additive free parameter if and only if the invariant contains
the origin. Furthermore, STABHYLI allows the Lyapunov function template to involve
only combinations of variables v that have an associated flow function, i.e., Flow(l),, # 0.
Apart from these exceptions, STABHYLI generates all combinations of variables that
are contained in the Newton polytope as described in Definition 2.39 and whose degrees
are bounded by a user-specified range.

60

3.2 Stabhyli: A Tool for Automatic Stability Verification

Refining Constraints

As mentioned above, STABHYLI uses a numerical solver as a backend. To further
counteract numerical problems, we have implemented a refinement loop. This loop
exploits the fact that due to technical reasons, numerical solvers — if not able to solve a
constraint system — report valuations of free parameters that violate the least number
of constraints. Our refinement loop therefore double-checks the result of the solver and
reruns the solver using a refined problem. To obtain this refinement, STABHYLI replaces
each occurrence of a parameter by

e zero if the parameter is supposed to be non-negative and the valuation is negative,
or by

e a small positive number if the parameter is supposed to be positive and its valuation
is non-positive.

In order not to narrow down the solution space too fast, STABHYLI eliminates those
parameters first which do not occur in the objective and which have the largest distance
to zero.

STABHYLI runs the check even if the solver reports success since it might happen
that the solver returns solutions that satisfy the constraints only up to some threshold.
Accordingly, we use the fact that a matrix is positive semidefinite if and only if it has
only non-negative eigenvalues. Through this refinement, STABHYLI incrementally tries
to build a valid solution even if the solver was not able to find one in the first place.

Detection of Unsupportive Parameters

To detect unneeded parameters, STABHYLI analyzes the linear matrix inequality pre-
sentation of the constraint system. Given an LMI of the form

m
05F0+ZpiFi

i=1

where F; € R™*™. We analyze the diagonal entries

m
diag; = Fo,jj) + > riFiGy)
=1

for 1 < j < n in isolation. The diagonal entries are constraints linear in the parameters
P1,- -+, Pm. For some of these parameters — like those belonging to the X functions
a, 8,7 as well as those belonging to S-Procedure terms — we also know that they have
to be non-negative. If we find any diag; where Fj; ;) < 0 for 0 < ¢ < m, then we
set all parameters p; to 0 where Fj ;;) < 0. We call these parameters unsupportive.
This simplification exploits the fact that all principal minors including diag; have to be
non-negative (cf. Definition 2.46 and Theorem 2.47).

61

Chapter 3 Automatic Stability Verification

Dimension Reduction

Due to the elimination of unsupportive parameters, it might happen that some rows and
columns consists of zeros only. If there exists a k =1,...,n such that for all 0 <7 <m
andall1<j<n

0= F (o N0 = F; 15

holds, then we remove the k-th column and the k-th row of all matrices Fj;.

Strengthen Constraints

As mentioned in Section 2.4.5 we can use gaps to make constraints more robust against
numerical issues. For STABHYLI we generate gaps as follows. Let € be a — user-chosen
— small positive value and let Vary C Var be the set of variables occurring in a constraint
of the form

vx e PC RV o0 < f(p,x)

as imposed by Theorem 2.31. A possible gap function g.(x) has to take into account
that this is a non-negativity constraint, i.e., g.(x) > 0,¥x € P, and if 0 € P, then the
gap should be zero. Therefore, the gap function g.(x) which we use for the constraint is

ge(x) =€ Z x%

ve Vary

where x, is the entry in x corresponding to the variable v.
Clearly, finding a solution for

vx € P C R e g.(x) < f(p,x)
which we call the strengthened constraint — yields a valid solution for

vx e PC RV o0 < f(p,x).

Note 3.4

Let pyum be a candidate solution obtained by a numerical solver and let Pergr C P
be the set of all points where the strengthened constraint is violated, i. e., ge(Xggr) 2
flonum, Xgrp) if and only if Xgpp € Perr- In case 0 < f(pnum, Xggg) for all
Xerr € Perr \ {0} and 0 = f(pnum,0) whenever O € Pggg, then the candidate
solution pyum s still valid for the original constraint. N

62

3.3 Equality Detection and Handling

3.3 Equality Detection and Handling

In the last section, we have introduced the general architecture of STABHYLI and have
shown some basic concepts to counteract numerical issues. In this section, we present a
more advanced heuristic to reduce numerical issues that prevent us from automatically
computing Lyapunov functions. This simple but yet powerful heuristic detects implicitly
specified equality constraints in a system of constraints that is generated for the search
of Lyapunov functions.

The search for Lyapunov functions involves generating and solving sets of constraints
as imposed by the Lyapunov theorem (see Theorem 2.31). As already mentioned, the
methods we focus on require us to first generate a suitable set of Lyapunov function
templates, i.e., the sequence (V;) as well as K> functions. These templates involve
free parameters p = [pl pn] for which we want to find a valuation such that the
constraint system is satisfied. Given a hybrid system and specific Lyapunov function
templates, the constraint system has the form

/\VX € Pel= fz‘(p,X)

where P; C X is a region corresponding to a guard of a transition or an invariant of a
location and 0 < f;(p,x) is the non-negative condition of the individual location and
transition constraints.

Definition 3.5 (Parameterized Lyapunov Constraint System)

Let H = (Var, Loc, Trans, Flow, Inv, Inits) be a hybrid automaton with the contin-
uous state space X = RIVerl. Let (M)icroc be a set of Lyapunov function templates
with free parameters p = [pl pn]. A parameterized Lyapunov constraint sys-
tem PLCS for the hybrid automaton H and Lyapunov function templates (V) is the
set

PLCS := {(P;, fi(p,x))}

where each element (P;, fi(p,x)) corresponds to either a location constraint or a
transition constraint of the form

Vx € P;e0 = fi(p,x)

as imposed by Theorem 2.31. A solution to an PLCS is a wvaluation for p such
that all constraints corresponding to elements in the PLCS are satisfied. Hence, a
solution yields a set of local Lyapunov function for the hybrid automaton H. &

The set of local Lyapunov function can be obtained by substituting the free parameters
in the templates (V;) with the corresponding elements of valuations for p.

As mentioned in Section 2.4.2, we distinguish conditioned and unconditioned con-
straints.

63

Chapter 3 Automatic Stability Verification

Definition 3.6 (Conditioned and Unconditioned Constraint)

A constraint of the form
Vx € Pe0 = f(p,x)

where f(p,x) is a parameterized polynomial, P C X is a subset of the continuous
state space, and P is called the condition. The constraint is either called

e unconditioned if and only if P =R" or
e conditioned if and only if P C R™.

%

The S-Procedure allows us to convert conditioned constraints into unconditioned
constraints at the price of extra parameters. The conversion might hide simple relations
between the functions (f;) as the following motivating example shows

Example 3.7
Suppose the following excerpt of constraints was generated by naively applying the
Lyapunov theorem:

Vx € P :0= fi(p,x)
Vx € P,:0=< fg(p,X)

where P, = P, C R™ and fi1 = —fa. Since these conditioned constraints cannot
directly be given to an SDP solver, we have to apply the S-Procedure (see Theo-
rem 2.32) which then constructs the following representation:

0= fl(p7x) _pl(plvx)
0= fg(p,X) _pQ(p27X)

where p1 (resp. p2) are parameterized polynomials encoding the conditions x € Py
(resp. x € Py). Since Py equals P» also p1 equals pa, except that do to the S-
Procedure, p1 and pa have disjoint sets of parameters, i. e., p1 and ps. Having the
sets disjoint is in most cases good, because it allows more freedom in case f1 # — fo.

But in the special case of f1 = — fa, it imposes unnecessary difficulties since a solver
is required to assign some free parameters exact valuations, which is — unfortunately
— bad.

Consider the case p1(-,x) = p2(-,x) and fi1 = —fo:

0 = fi(p,x) — p1(p1,x) A0 = fa(p,x) — p2(p2, X)
<0 = fi(p,x) —pi(p1,x) A0 =2 —=fi(p,x) — p1(p2, X)
&pi(p1,x) = filp,x) 2 —pi1(p2,x)
=p1(p1,x) X —p1(p2,x).

64

3.3 Equality Detection and Handling

Due to the definition of the S-Procedure, we know that p1(p1,X) is a polynomial
which is linear in p1 and we can write

p1(p1,x) =X —p1(p2,x)
<0 2 —(p1(p1,x) + p1(p2,%))
<0 =2 —(p1(p1 + p2,%)).

Further, since p1(p1 + p2,X) was obtained from the region Py by the S-Procedure it
is, therefore, of the form pi(p1+ p2,x) =D ;(p1i+ p2:) - p1,i(X) with p1;+ p2; > 0.
Moreover, we know that x € Py if and only if for all i holds 0 < p; ;(x).

In the following, we show that this implies that p1 + po = 0. Let us assume
the contrary, i.e., at least one element p1; + p2; > 0, and show that this is a
contradiction.

Let us exclude the trivial case — where all p1;(x) = 0 for all x € P, — and
choose an arbitrary point x* € P;\ {0} for which exists p1 j(x*) > 0. Now, in order
to satisfy 0 < —p1(p1 + p2,x) it has to hold that

0 < (prj+ p2g) Pri(x) < =3 (pri+p2i) pra(x) <0 4
—_————— —— — — —\—
>0 >0 i#] >0 >0

which is a contradiction and, hence, p1j + p2,j > 0 cannot be true.
We conclude that p1 + p2 = 0 must be true. N

In practice, the problem is even worse, since numerical solvers sometimes suffer from
numerical inaccuracies. As mentioned in the previous section, additional gap functions
are added to the inequalities to render the constraints more robust against such numerical
issues.

Consider the following example which often arises in case we have to express equalities.

Example 3.8
Assume we want to express the equality constraint Vx € P : f(x) = 0, which we
have to encode with two inequalities. Naivly, we would write

Vxe P:0=< fl(p,X)
Vx e Py:0= fg(p,x)

with fi = —fo=f and P, = P, = P.

Further, assume that in order to reduce numerical issues, we have introduced gap
functions. Let g; with Vx € P; : 0 < gi(x) and 0 < g;(x) for some x* € P; \ {0}
where © € {1,2} be such gap functions. Instead of solving the above constraints, we
try to solve the following strengthened constraints:

Vx € Pr:gi(x) 2 fi(p,x)
Vx € Py ga(x) = fa(p,x).

65

Chapter 3 Automatic Stability Verification

In this case where P, = Py and fo = —f1, the strengthened constraints do not yield

a solution since

0 < g1(x*) < fi(p,x") N0 < go(x*) < —f1(p, x¥)
<0< gi1(x*) < filp, x*) A fi(p,x*) < —g2(x*) <0
&0 < g1(x) < filp,x*) < —g2(x) <0

N—— N——
>0 <0

is obviously a contradiction unless Py C {0}. But the original conditioned constraint
Vx € P: f(x) =0 may be easy to solve. <

Our heuristic tries to detect such situations. The heuristic analyzes the conditioned
constraints before they are converted into unconditioned constraints by the S-Procedure.
After using the heuristic to detects implicit equalities, we aim to eliminate them using a
substitution of free parameters in the other constraints.

Definition 3.9 (Implicit Equality Constraint over a Region)
Let H be a hybrid automaton and PLCS be the parameterized Lyapunov constraints
system of H. (P, fi(p,x)) is called an implicit equality constraint over P if

e (P, fi(p,x)) € PLCS is an element of the parameterized Lyapunov constraint
system,

. P AU,
e cvery solution p of the PLCS implies 0 = f;(p,x) for all x € P.
&

Our technique can be seen as the exploitation of linear dependence in the parame-
terized Lyapunov constraint system before this information is not preserved during the
S-Procedure. Similar techniques to detect implicit equalities are used, for example, in
satisfiability modulo theories solving for linear arithmetic [Li+09]. However, we have to
deal with universally quantified polynomial constraints for which we show how to handle
them in the special settings, where the constraints arise from proving stability using
Lyapunov functions.

To algebraically handle polynomial optimization problems, we introduce parameterized
versions of monomials and polynomials.

Definition 3.10 (Parameterized Polynomial)

A polynomial f(p,x) is called a parameterized polynomial if it has the form f(zx) =
> €iPj Lo var v where ¢j is a coefficient, p; is a parameter, and p; [[,¢ o, v
is called a parameterized monomial.

In practice, the parameter in a parameterized monomial is rather optional, but to
increase readability and shorten the formulas, we assume every summand in a parame-

66

3.3 Equality Detection and Handling

terized polynomial to have a parameter where a dummy parameter might also represent
a constant 1.

3.3.1 Simplifying Constraint Systems

Next, we give the problem statement and then describe the heuristic used to simplify
the constraint systems.

For our heuristic we restrict the search for implicit equalities over a region P to the
case where P is the condition of the constraint, i.e., P = F; in Definition 3.9. This
restriction has practical reasons and reduces the number of constraints that have to be
considered simultaneously.

Definition 3.11 (Matching Constraint)

Let (P, f(p,x)) € PLCS be a constraint of a parameterized Lyapunov constraint
system. A constraint (P,g(p,x)) is called a matching constraint if and only if
0= f(p,x) N0 = g(p,x) for all x € P implies that 0 = f(p,x) = g(p,x) for all
x € P. &

Note that (P, g(p,x)) in Definition 3.11 might not be an element of the parameterized
Lyapunov constraint system. Therefore,, usually, we have to construct such a matching
constraint by combining other constraints.

Problem 3.12

Let PLCS be a parameterized Lyapunov constraint system with elements (P;, fi(p,%)).
We want to find a constraint (P, fi(p,x)) such that there are non-negative scalars
di,...,d, >0 where

o P, £ Py implies d; =0 and

o > . di- filp,x) = —fi(p,x) for allx € Py.

Theorem 3.13

Let PLCS be a parameterized Lyapunov constraint system with elements (P;, fi(p,x)).
Let dy,...,d, > 0 be non-negative scalars. If there is a k such that P; # Py implies
di =0 and) ;d; - fi(p,x) = —fr(p,x) for all x € Py, then (P, —fr(p,x)) is a
matching constraint and (P, fr(p,X)) is an implicit equality over Py.

Proof.

Let I be the set of indices for which d; > 0. Let p be an arbitrary solution of
the PLCS. This means that all constraints (P;, fi(p,x)) € PLCS are satisfied. This
especially includes the constraint (P, fr(p,x)) and all (P;, f;i(p,x)) fori € I. Since
d; > 0 implies P; = Py, we also know that (Py, fi(p,x)) for i € I are satis-

67

Chapter 3 Automatic Stability Verification

fied. Since positive semidefinite functions are closed conic combination, we con-
clude that (Py,>; d; - fi(p,x)) = (Px, —fr(p,x)) is also satisfied. Finally, if both
(P, — fr(p,x)) and (P, fr(p,x)) are satisfied, then they can be satisfied only with
equality, i. e., fr(p,x) =0 for all x € P. O

Roughly speaking, we are searching for constraints for which one can obtain a matching
constraint via a conic combination of the other constraints. In theory, the factors d;
do not need to be restricted to scalar factors. Instead, they can be arbitrary positive
semidefinite monomials. This is due to the well-known fact that the result of a product
of positive semidefinite functions is again positive semidefinite. Without this restriction,
we could find the implicit equality in the following example:

Example 3.14
Given the following system of conditioned constraints:

Vz € P: p1a? < poa? (3.1)
Vo € P poxt < prat (3.2)

by multiplying the inequality in Constraint 3.1 by 2, we obtain

Vo e P:przt < poxt A poz* < prat
from which we conclude that

Vo € P: piat = pozt.

However, we restrict the factors to scalars since implicit equality constraints are mainly
caused by the transition constraints (constraint type C3 of Theorem 2.31). Therefore, a
situation such as in Example 3.14 does not need to be handled because

e only the transition constraints are responsible for relating the individual Lyapunov
function templates and

e a free parameter p; usually occurs only in a single parameterized monomial of the
Lyapunov function template.

Furthermore, due to this restriction, a simple linear program (LP) can be used to search
for implicit equality constraints. In the following, we show how to obtain such a linear
program.

We start with a parameterized Lyapunov constraint system PLCS obtained by gen-
erating all constraints required by Theorem 2.31. Then, we group the constraints of
the PLCS by their condition, thereby obtaining a finite number of groups of constraints.

68

3.3 Equality Detection and Handling

Each such group has the following form:

Vx € Pe
0= filp,x) = Zc(j,l)ﬁ’(jg) H pe@.s1)

i ve Var

MO = Fulox) = S oy T sesn.
J

ve Var

Here, c; 1, is the j-th coefficient of the k-th constraint belonging to the j-th parameterized
monomial of the k-th constraint and, similar, p; is the j-th parameter of the k-th
constraint.

In each group, we now search for constraints (P, fx(p,x)) € PLCS for which we
can syntactically construct a matching constraint as a conic combination of the other
constraints:

Eldla s ,dn >0 .Zdlfl(pax) = _fk:(pax)

or equivalently:

ddy,...,d, >0 OZdifi(p,X) + fk<p,X) =0
ik
By syntactically replacing all parameterized monomials p; ;) I
symbol z(we have:

Eldl, e ,dn 2 Oe Z dz Z C(j,i)z(j,i)
i J
+ D e m =0
J
Reordering the m syntactical different monomials z1, ..., z;, leads to:

3dy,...,dy, >0 .Zdiic(j,i)zj
{ J

m
+_cwz =0
J

By grouping the monomials z;, we obtain
Eldl,...,dn20o

Z ((Z di%w‘)) + C(ch)) zj = 0.

7 7

e
ve var V@9 by a new

Now, observe that a solution for the linear feasibility problem

finddy,...,d, such that
Vl S] S m e Zdlc(],z) = —C(ch)

69

Chapter 3 Automatic Stability Verification

Figure 3.7: Hybrid system describing a robot automatically approaching a certain
region Center.

with d; > 0, yields a valid solution to the above constraint system and

Vx € P,e(0 = Zdifi(p,x)

7

is a constructible matching constraint for the k-th constraint. Note, that in order to ease
finding a solution for the LP, the parameter d; should, a priori, be set to 0. Also note, that
if it is known that the templates are not scaled, i.e. the constraints are not normalized
then the problem can even be reduced to a binary program where d; € {0,1}.!

Y

Example 3.15

Figure 3.7 shows a hybrid automaton modeling a simple robot whose goal is to reach
a certain target region Center independent of the starting point (somewhere in
North, East, South, or West) with a mazximal velocity of 2km/h. Whenever it is

LAt first glance, this seems to be a bad idea in terms of complexity since binary or integer programs are
NP-complete while linear programs can be solved in polynomial time. However, over the last decades
impressive improvements have been made and SAT solving is very fast in practice. Thus, is might
serve as an alternative.

70

3.3 Equality Detection and Handling

Figure 3.8: Vector field of the robot’s movement defined in Figure 3.7.

not yet close to the Center, it drives full throttle in the cardinal direction of the
center (thus, its direction depends only on the quadrant the robot is in). Being close
to (less than one kilometer) the target, the robot’s strategy changes: now, it follows
a radio signal directing it directly towards the target. The vector field is visualized
in Figure 3.8.

Generating the parameterized Lyapunov constraint system for this hybrid automa-
ton leads to three constraints per location and one constraint per transition — thus,
27 constraints in total. Here, we focus only on the constraints generated for the

71

Chapter 3 Automatic Stability Verification

72

transitions which are:

r=y=Vy=Vg (3.3)
r=y=VgVy (3.4)
r=y= Ve X Viy (3.5)
r=y=Vw Vs (3.6)
r=—-y=Vy=Vw (3.7)
r=-y=Vw Wy (3.8)
x=—-y=Vy Vg (3.9)
x=—-y=Vs < Vg (3.10)
Pyt =1=Ve 3 Vy (3.11)
Py =1=Ve=<Vg (3.12)
4yt =1= Ve 2 Vs (3.13)
Pyt =1= Vo < Vi (3.14)

where Vo, Vn, Vi, Vs, Viy are the templates for the Lyapunov function for the indi-
vidual locations Center, North, East, South, and West, respectively. By applying
the procedure described above, we derive that Constraint 3.3 and Constraint 3.4,
Constraint 3.5 and Constraint 3.6, Constraint 3.7 and Constraint 3.8, and Con-
straint 3.9 and Constraint 3.10 are pairwise matching constraints. In the textual
presentation above, this can be easily seen, but matching constraints can be much
harder to detect — even automatically — in practice, since the templates are not
given in this explicit form but instead are given as parameterized polynomials. The
templates might be Vi = p;1yx® + paoyry + pusy® + puay + pasyy + e for
i€ {N,E,S,W} and V¢ = p(c,l)xQ + pc2)ry + p(qg)y2 + picaT + pc5)Y, which
are good candidates in this example. However, we conclude that

r=y=Vy="Vg, (
x=—y=Vy=Vy, (3.16
r=-y="Vp="Vs, (
r=y=Vs=Vy. (

3.3 Equality Detection and Handling

Model Mode2

i=-2 i=—4

1<z <100 0 <z <100

Figure 3.9: Hybrid system showing that implicit equality constraints might involve
more than two transitions.

Thus, in case of Equality 3.15 together with the condition, we have

r=y= (p1) — P(E,1))95'2
+ (p(v2) — P(B2))TY
+ (pN3) — PES)Y
+ (P(N4) — P(Ba))T
+ (p(v,5) = P(E5)Y
+ (p(vg) — P(EG) = 0.

By eliminating the condition, we get the unconditioned constraint

(pv.1) + P(vi2) + P(.3)
— P+ PE2) + PEs)Y
+ (p(va) + P(v5) — P(EA) T P(ES)Y
+ (p(vie) — P(E6) =0
in which we can now isolate one of the parameterized monomials and use it to

substitute it in the other constraints. Here, a promising candidate is to replace
pE6) by (v + pvg) + Pivg) — PE) + PE2) T PEs)Y + (P(va + Pvs) —
PB4 t p(E,5))y + p(v,6)- By doing so, we reduce the number of free parameters by
one and the number of constraints by two. We can repeat the procedure with the
other three implicit Equalities 3.16 to 3.18 and remove six more constraints and
three more parameters. <

Example 3.16
The third example, which is given in Figure 3.9, does not describe a system for a

73

Chapter 3 Automatic Stability Verification

particular purpose. But it shows that implicit equality constraints can involve more
than two constraints. Here, the transitions require:

r=1=V =W (3.19)
r=1=V; 2V, (3.20)
r=1=V =V (3.21)

where Vi, Vo, and V3 are the Lyapunov function templates for Model, Mode2, and
Mode3, respectively. By combination of the constraints, we can conclude:

r=1=Vi=V=Tj (3.22)

which allows us to remove three constraints and two free parameters from the con-
straint system. N

For all three examples, Lyapunov functions can only be found if

(a) no gaps are used to strengthen the constraints which, then, risks that the values
returned by a solver do not form a valid Lyapunov function or

(b) implicit equality constraints are detected and resolved which, thereby, discards the
need for gaps on these constraints.

The current implementation in STABHYLI is still incomplete. For example STAB-
HYLI does not check every possible isolateable term and uses a greedy approach instead.
These limitations have been addressed in the thesis of Zschoche, where he developed a
backtracking approach [Zsc15]. He has also further investigated the problem of implicit
equalities. The contributions presented in [Zsc15] include

e generalization of the detection to implicit equalities without structural identical
conditions, and

e identification of a strong relation between cycles in the hybrid automaton’s under-
lying graph and implicit equalities.

On one hand, the latter allows us to check for implicit equalities local to a cycle of
the underlying graph but, on the other hand, requires us to enumerate cycles. This
enumeration is very costly because the number of cycles can be exponential in the
number nodes. However, an integration into the decomposition method (see Section 2.5)
seems to be interesting as the decomposition already enumerates cycles.

3.4 Validation of Candidate Solutions

In this section, we present experiments on combining satisfiability modulo theory (SMT)
methods with state-of-the-art numerical solvers for the validation of candidate solutions
during the search for Lyapunov functions. In the last sections, we have shown how to

74

3.4 Validation of Candidate Solutions

make the constraint systems — that arise during the search for Lyapunov functions —
more robust with respect to numerical issues and how to detect implicit equalities. Both
techniques increase the chance to obtain solutions but do not avoid getting invalid results.
Therefore, one still needs to validate the result. STABHYLI uses the computation of
eigenvalues and principal minors (cf. Theorem 2.47) to ratify the validity of a solution.
However, the computation of eigenvalues is usually done via numerical algorithms which,
again, may suffer from numerical issues.

Instead, we would like to identify and use a method which is precise. In [MT14],
we propose the use of SMT solvers to validate candidate solutions. An SMT solver
combines SAT solvers with theory solvers to check the satisfiability (SAT) over first
order logic (FOL) formulae with respect to first-order theories. One instance of such
a theory is non-linear real arithmetic (NRA). A formula is satisfiable if there exists a
model — a valuation for each free variable — such that using the model, the formula
evaluates to true. Since, general first order logic (FOL) is semi-decidable, i.e., there
exists a procedure such that, given a formula, the procedure eventually decides whether
the formula is valid. Due to Tarski [Tar51], we know that non-linear real arithmetic
(NRA), on the other hand, is decidable. The complexity is, however, double exponential
in the number of variables as proven for the upper bound by Collins [Col75] and for the
lower bound by Davenport and Heintz [DH88] and Weispfenning [Wei88§].

SMT solving has received quite some attention over the last years but, unfortunately,
most available implementations are either restricted to linear arithmetic or do not support
quantifiers. There is only a handful of SMT solvers which support NRA with quantifiers:
Z3 [DB0g], CVC3 [BT07], and CVC4 [Bar+11]. As stated above, SMT is already
combining boolean satisfiability problem (SAT) solving with different theory solvers.
Nevertheless, other combinations built on top of SMT solvers have been realized. One
approach combines a linear SMT solver with interval constraint propagation to solve
non-linear real arithmetic problems [Gao+10]. Another approach combines convex pro-
gramming with SMT solving to solve non-linear convex constraints [Nuz+10]. Gao et al.
[Gao+10] also use the result of a linear SMT solver to validate answers of the interval con-
straints propagation method. This is very similar to what we do, but they consider only
quantifier-free formulas. In the search for a solution of the constraint systems, however,
we have a single quantifier alternation that is an outer existential and an inner universal
quantifier. Thus, we cannot apply their method due to the lack of the quantifiers.

Referring to the list of tools in Section 3.1, all Lyapunov-based tools somehow use nu-
merical — approximative — methods. This means that the obtained candidate solutions
should better be validated to ensure correctness.

3.4.1 Validating Solver Engine

In the following, we describe the validating solver engine. This engine is the integrated
engine used by STABHYLI to compute Lyapunov function. It consists of

1. the implicit equality detection and elimination described in Section 3.3,

75

Chapter 3 Automatic Stability Verification

Equality Constraint
Handler Strengthener
Lyapunov & x / z/
Function
ates i Approximates
Templates = Pol.yn.oml.al Linear Matrix ol
Optimization |F—>] Tnequality (LMT) olution
Hybrid __—> Problem(PoP) quatty
System
(Automaton))) 2) /
Arbitrary Precision SMT Numerical Numerical
? ‘ Validator Validator Solver
Certificate Candidate Candidate Machine
(Lyapunov Solution Solution Precision
Function) to PoP to LMI (Implementation

dependend)

Valid up to
Desired Precision

Valid up to

Machine Precision

Figure 3.10: Overview of the validating solver engine.

2. the strengthening, the simplifications, and the conversion to linear matrix inequali-
ties described in Section 3.2.2 and

3. the validation described in this section.

A hybrid automaton in this context might be a describtion of the full system or of a
subsystem or even a system of systems. In case of the proof schemes Piecewise Lyapunov
Function via Decomposition and Piecewise Lyapunov Function via Composition such
subsystems are automatically constructed, e. g., the subsystems corresponding to cycles
in the underlying graph. In case of the proof scheme common Lyapunov function scheme,
the Lyapunov function templates might be identical for all locations.

Figure 3.10 gives an overview on the steps of the validating solver engine. In this
sketch of the process, the big arrows describe the dependencies, boxes are input, output,
and intermediate artefacts, and ovals are process steps that are addressed — in this
thesis — in more detail. On the right it is indicated the numercial solver and validator
do only approximate solutions, hence, it is indicated in the middle, that the candiate
solutions are valid up to machine precision, and on the left it is indicated, that the SMT
validated candidate solution are valid with arbitrary precision. The individual steps of
the validating solver engine are as follows:

1. In the first step, a linear polynomial optimization problem (LPoP) is constructed
from the Lyapunov function templates and the description of the hybrid automaton.

76

3.4 Validation of Candidate Solutions

2. In the second step, an equality handler and a constraint strengthener post-process
the linear polynomial optimization problem (LPoP).

3. In the third step, the LPoP is relaxed (via S-Procedure and SOS decomposition)
into a linear matrix inequality (LMI).

4. In the fourth step, an SDP solver is used to obtain a candidate solution for the
LMI.

5. In the fifth step, the LMI candidate solution is numerically validated (e.g., by
computing eigenvalues? and checking principal minors).
If the candidate solution to the LMI did not pass this validation, then the process
stops and reports no success.

6. In the sixth step, a candidate solution to the LPoP is derived from the candidate
solution to the LMI.

7. In the last step, the candidate solution to the LPoP is further validated by an
SMT solver. If the candidate solution to the LPoP did not pass this validation,
then the process stops and reports no success. Otherwise, the candidate solution
is successfully validated and a valid stability certificate will be reported..

The SDP solver and the numerical validator usually approximate a solution, i.e., they
start with an initial valuation of the free parameters. Then, they optimize the valuation
in the direction which minimizes a given objective function as well as the error.® If
(a) a certain accuracy is obtained, (b) a maximum number of steps is reached, or (c) the
progress becomes too small, then the algorithm stops. Clearly, we can always increase the
maximum number of steps and the desired accuracy but the closer the current valuation
gets to an optimal solution, the smaller the progress becomes. Therefore, it is not always
possible to reach the optimal solution.

Recall, that the resulting LMIs is to be solved by a numerical solver and — unfor-
tunately — this kind of solvers do only approximate solutions and additionally suffer
from numerical issues. Prior to applying the S-Procedure and SOS decomposition, the
parameterized Lyapunov constraint system has the following form:

/\VX . /\O < 9G.4)(X) | = 0= fi(p,x)
i J

where p = [pl e pm] T are the free parameters (stemming from the templates and
K functions), x € R™ are the system variables (stemming from the hybrid system),

each g(; (x): R™ — R is a parameter-free polynomial describing a certain region (the

2Note, that computing eigenvalues has issues on its own since it is well-known to be numerically ill-
conditioned [Wil94]. A problem is said to be ill-conditioned, if a small change in the input, may result
in a huge change in the output.

3Roughly speaking, the error determines the quality of the solution: the closer to 0, the better (in the
sense of feasibility) the solution is.

7

Chapter 3 Automatic Stability Verification

condition of the constraint), and f;(p,x) : R”™ x R™ — R are polynomials which are
linear in the free parameters p. The goal is to find a valuation for p.
Example 3.17 shows a very simple instance of such a constraint system.

Example 3.17

Vz € Retrue = 0= p-x?

N

When trying to find a feasible solution for p, a numerical solver might return the
candidate solution pyym = —1 - 107, where k is sufficiently large. On one hand, this is
in most cases sufficient and allows us to conclude feasibility of the above problem. On
the other hand, reusing this candidate solution might render any successive calculation
invalid. However, STABHYLI composes Lyapunov functions as conic combinations of
other Lyapunov functions. This means that in order to guarantee validity of the composed
Lyapunov function, we need to assure validity of the combined Lyapunov functions.

We tried to directly solve constraint systems obtained from applying the Lyapunov
Theorem, using the SMT solvers Z3 [DB08], CVC3 [BT07], and CVC4 [Bar+11].
Unfortunately, none of these solvers were able to solve relevant instances — the solvers
always returned unknown. However, we were able to use SMT solvers to successfully (in-
)validate candidate solutions. This use of SMT solvers for validating solutions is beneficial
since it can be done with exact arithmetic, e. g., using rationals with full precision. This
allows us to conclude that a candidate solution is actually valid and further computation
that reuse the candidate solution is also trustworthy.

Remark 3.18

If we want solve the constraint systems directly using an SMT solver, then we
can only use solvers that support the logic NRA (non-linear real arithmetic) since
the constraints involve polynomials. In contrast, if we want to validate candidate
solutions, then we can use solvers that support QF_NRA (quantifier-free non-linear
real arithmetic). Even though both logics are decidable in theory, the first one is
computationally intractable in general. N

To validate a candidate solution, we substitute the free parameters p in the constraint
system by the candidate solution pyym. For Example 3.17, we obtain:

Vr€R:true = 0 =< —1-107%. 22 (3.23)
Next, we simply iterate through all constraints and ask whether the negation is satisfi-

able. For Equation 3.23, we obtain:

Jz e R:trueA—1-107%. 22 <0. (3.24)

78

3.5 Guiding a Numerical Solver

Then, an SMT solver reports one of the following;:

case unknown We cannot assure validity of the candidate solution — this might happen
due to insufficient memory or computation time.

case unsat We know that the candidate solution is valid.

case sat We have to reject the candidate solution because we found a witness of its
invalidity.

For Equation 3.24, an SMT solver might return sat with the model xgy,+ = 1 and,
indeed, xg) 1 serves as a counterexample showing that pyym is an invalid solution.

Remark 3.19
In our experiments, none of the solvers ever returned unknown while checking validity
of candidate solutions. <

We have automatized this simple validation scheme in STABHYLI using Z3 and
allow the user to choose the threshold with which candidate solutions are rejected. This
leads to the following rule on which STABHYLI decides to reject solutions.

Definition 3.20 (Rejection of Candidate Solutions)
Given a parameterized Lyapunov constraint system PLCS, a candidate solution
PNUM = [pNUM’l PNUM,nL and user-chosen thresholds Osyr, Ogy, and Opy. If

either

o for any (P,0 < f(p,x)) € PLCS, it holds

Ixspr € P e f(pnum, x) < Osur,

e for any (P,0 < f(p,x)) € PLCS, it holds that the corresponding LMI formu-
lation for f(pnum,X) has eigenvalues or minors less than Ogy, or

e for any parameter, it holds that pnum,; < Opy is negative while it is supposed
to be non-negative,

then the candidate solution pyym ts rejected. &

3.5 Guiding a Numerical Solver

In this section, we sketch a preliminary idea to guide the numerical solver away from
bad candidate solutions and give a simple example which leads to numerical issues in
the search for Lyapunov function. However, these issues can be detected and fixed due
to the proposed method.

In the previous section, we have shown how to use SMT solvers to validate solutions.
Due to the nature of the numerical solvers (i.e., that they approximate solutions), we

79

Chapter 3 Automatic Stability Verification

Equality Constraint
Handler Strengthener

Lyapunov & X / z/

Function

Templates Pol-yn'oml'al Linear Matrix

Optimization ==X ity (L)

Hybrid Problem(PoP) 4 Y

System
(Automaton)

Linear
Extra Constraint
Numerical Numerical
Validator Solver
invalid Ve~
. o
Constraint SMT
Deduction Validator
valid ?}

Certificate Candidate Candidate
(Lyapunov Solution | <— Solution
Function) to PoP to LMI

Figure 3.11: Overview of the guiding solver engine.

can expect many solutions returned by a numerical solver to be invalidated by the SMT
solver. One of the reasons is the optimization goal as by default, the numerical solver tries
to minimize —a, 3, and —v (see Theorem 2.31). In most cases, this leads to a situation
where the optimal feasible solution lies on the border of the solution space. That means
that the choice of optimization function increases the attractiveness of invalid candidate
solutions.

To overcome this issue, we would like to gain knowledge from counterexamples, i.e.,
candidate solution which have been identified as invalid. As described in the previous
section, in a situation where the SMT solver has detected an invalid solution, then, we
obtain a witness xgpmT1 of the invalidity. Therefore, we propose to use this witness and
compute the error or residual at the point xgyTt of the constraint which is not satisfied.
Next, we extend the constraint system with an additional constraint which is supposed
to prevent the invalid candidate solution.

Figure 3.11 gives an overview of the guiding (and validating) solver engine. It extends
the proposed engine from Figure 3.10 by a constraint deduction which makes use of the

80

3.5 Guiding a Numerical Solver

7/
N 7/
‘ \ /
/7 \ 7/
7/ 4
‘ N
~ 4 .
X \ <
7 \7 >~
7/ 7/
y 2
(a) Solution space with a first counterexample. (b) Final solution space

Figure 3.12: Guiding the solver by shrinking the solution space of a constraint system.

generated counterexample from the SMT-based validator. The idea is as follows: If the
SMT solver returns sat and a model zgmT, we construct an additional constraint that
rules out the candidate solution pnym. This is done iteratively: whenever we identify
invalid solutions, then we construct an addition constraint until a valid solution is found.
We call this iterative way of extending the constraint system, guiding because it does not
guarantee that the numerical solver will return valid solutions. Instead, this approach does
push the solver away from bad solutions. Moreover, we can also check for unsatisfiability
of the added constraint — which are all linear constraints — to detect situation where
the solution space becomes empty.

Figure 3.12 sketches the idea. The inner circle represents the solution space while the
gray outer ring represents the invalid candidate solutions that might be returned by the
solver due to numerical issues and approximation inaccuracies. In Figure 3.12a, the “X”
marks a possible candidate solution which is then successfully identified as invalid. The
dashed line represents a derived constraint that is added to rule out the invalid candidate
solution — and hopefully other invalid candidate solutions as well. Figure 3.12b represents
a final result in which the original solution space is narrowed down to the most inner
gray polygon due to four more constraints that were added. Any solution that might be
returned by the numerical solver that is within the gray polygon is valid. Even more, if
again due to numerical issues, the solution lies slightly outside of the inner gray polygon
but within the white circle, then this is not a problem since such a candidate would still
satisfy the original constraint system.

Remark 3.21
Note, that the goal is to find solutions to the original constraint system. This fact
allows us to exclude the added constraint from validation as they do not need to be

81

Chapter 3 Automatic Stability Verification

satisfied since their sole purpose is to guide the numerical solver. N

In the following, we explain how the additional constraints are constructed.

3.5.1 Guiding

By evaluating the all violated constraints 0 < f;(p,x) using the counterexample xsyT
and the candidate solution pyym, we obtain

res; = fz‘(PNUMaXSMT)a

where res; < 0. Now, we can extend the constraint system from Example 3.17 by a
constraint

|res’i’ < fi(p7 XSMT)?
which is linear in p and does not contain quantifiers. In our running example, this leads
to the constraint |res| < p - 24, 1. The extended constraint system is as follows:

Example 3.22

dp such that Vz etrue = 0 < p- a2

Alres| < p-xgur
<

This extended constraint system can be handed back to the numerical solver, asking
for a new pyyv- This will be again validated using the SMT solver. If we obtain a new
counterexample x),7, then we extend the problem again until either

e a valid solution is found,
e a maximum number of iterations has been reached, or

e the set of constraints with which we extended the original problem, contains a
contradiction.

The last alternative might happen if the real solution space is empty or has a very
small interior. Note, that the additional constraints are all linear, unconditioned, and
quantifier free. Thus, linear programming (or again an SMT solver) might be used to
further check contradiction-freeness, i.e., satisfiability of the additional constraints.

Such contradictions can be introduced because the constraints that we add are more
restrictive than the original constraints. The rationale behind this is the assumption
that a numerical solver will achieve the same accuracy on the added constraint as on
the original constraint. If that is the case, then the numerical solver might not return a
solution to the extended constraint system. But the new candidate might nevertheless
satisfy the original constraint system. Thus, we would have obtained a validatable
solution.

82

3.5 Guiding a Numerical Solver

Model Mode2

T =—cx T = —cox

1< 2% <100 1< 2?2 <100

Figure 3.13: Badly scaled hybrid system.

Accelerated Guiding

We can accelerate this method further by an alternative formulation of the added con-
straint. By acceleration, we mean that with each extra constraint, we narrow down the
solution space more quickly by ruling out many points at once. This has the drawback
that we might exclude good points, too. This can be achieve if we alternatively extend
the constraint system as follows:

Example 3.23

Jp such that Vzetrue = 0 < p- a2

Aacc-|res| < p-ziyT

where 0 < acc is an acceleration factor. Choosing acc such that 1 < acc can lead to a
validatable solution more quickly. The drawback is that with increasing acc the solution
space is narrowed down faster. In the worst case, it might happen that the solution
space becomes empty due to contradictions before a validatable solution has been found.
On the other hand, if choosing acc such that 0 < acc < 1, then it might happen that
there is nearly no progress concerning the quality of candidate solutions returned by the
numerical solver.

Remark 3.24
In our experiments, an acceleration factor of 5 < acc < 10 turned out to be a good
choice. N

83

Chapter 3 Automatic Stability Verification

3.5.2 Example

Consider the subsystem of the hybrid system given in Figure 3.13 consisting of the two
locations Model and Mode2, only. The flow is described by the differential equation

T=—¢ T

where inv = 1 < 22 A 22 < 100 is the invariant of both locations and arbitrary switching
is allowed. Choosing the coefficients ¢; to be badly scaled, e.g. ¢; = 10719 and ¢y = 10'°
together with using ps - 22 + pa - + p1 as the Lyapunov function templates for both
locations leads to the constraint system:

da, B, :

inv:>a‘x25p3-x2+p2-x+p1

ANinv= p3-22+po-x+p1 < B - a2

/\inv:>7~ac2j2clp3-m2+clp2-x

/\inv:>’y-:z2j2CQp3-a:2+02p2~a:

ANO<a

ANO<pB

A0 <.

One might easily see that py = p2 =0, p3 = a = 8 =1, v = 2¢; is a valid solution.
Nevertheless, both solver, SDPA and CSDP report “Lack of Progress” and thus, the
quality of the solution is unknown. Indeed, both solution have the problem that ~ is
slightly too large and CSD P additionally chooses V3 and f slightly too small.
However, the SMT-based validator finds counterexamples. And after deducing two
more constraints in case of SDPA and four more constraints in case of CSDP, both
solvers — even though they still report “Lack of Progress” — return a valid solution.

Remark 3.25

The numerical validation is not helpful in this example, since the eigenvalues are very
close to 0. For the initial constraint system, i. e., without any additional constraints,
computing the eigenvalues correctly indicates that the candidate solutions are not
valid. In case of the final constraint system — the one obtained through guidance —
computing eigenvalues indicates that the solutions are invalid even though they are
valid. Here, the SMT-based validator allows us to recover the solutions and let us
conclude stability of the hybrid system. N

3.6 Benchmarking

In this section, we will give some examples that were proven stable using STABHYLI.
The first example is a simplified automatic cruise controller that might be used to adjust
the velocity of a vehicle. The second example demonstrates that higher order Lyapunov
functions allow stability proofs even if no quadratic Lyapunov function exists [PP03].

84

3.6 Benchmarking

Emergency Brake Act
O =—t—2.5
=0
i=1
15 <0 <40

Emergency Brake Full
v ==5
=0
i=0
15 <v <40
t=25

t= 2.5
15<wv <40

18 < v < 20A
0<t<13A
t:=0

Service Brake Act
v=—t—12
=0
i=05
5<v<20

Service Brake Full
v =-2.5

5<v<1IA 4o
0<t<13A
z:=0

13 <v < 15A
—500 < 2 < 500A
t:=

=

—15 <v < —14A
—500 <z < 500
Normal

© = —0.001z — 0.052v

=0

Accelerate
=15
=0
t=0

—-20<v< -5

i=0
—15<v<15
—500 < z < 500

Figure 3.14: The automatic cruise controller [Ochl11].

Example 1: The Automatic Cruise Controller Figure 3.14 shows an automatic cruise
controller (ACC) from [Oeh11]. This controller regulates the velocity (in m/s) of a vehicle.
Its objective is to approach a desired velocity. In this example, the variable v is the
difference between this desired velocity and the current velocity. The automaton contains
six locations; four of them model the brake system, one location models the acceleration,
and one location implements a fine-tuning of the current velocity using a PI controller in
non-critical situations. The brake system of the vehicle has two levels and, for convenience,
slowly increases the deceleration towards a maximum.

In our experiments, STABHYLI was able to obtain a certificate of stability for this
controller via decomposition with all three heuristics in twelve steps (sum of splitting
and reduction steps).* While the sequences of steps performed by the “Prioritization of
Zippers” and the “Selection by Product” heuristic are identical, the heuristic “Selection by
Pairwise Degree” has chosen a different sequence of steps but obtained the same result.

Intentionally “sabotaging” the controller in a way that it cannot stabilize, causes
STABHYLI to recognize and report the problem. E.g., changing the differential equation
in location “Emergency Brake” to © = 5, leads to an unstable cycle covering the locations
“Emergency Brake”, “Brake Activation”, and “Emergency Brake Activation.” In this case,
STABHYLI terminates the search for a proof and blames the responsible cycle. This
information allows guided redesign of this particular part of the automaton. The other
proof schemes simply fail without any information about the cause.

Example 2: An Artificial Example with a Sextic Lyapunov function from [PP03] is

With reduced accuracy of 1.00e-06

85

Chapter 3 Automatic Stability Verification

Flow(11)(x) Flow(l2)(x)
o *5331 - 4332 o *21‘1 — 41‘2
- —Xr1 — 21’2 o 201‘1 — 2%’2 ’

with z = [ml xg] T which has two locations [1,lo and allows arbitrary switching.

For this system, STABHYLI cannot find a quadratic common Lyapunov function,
which is clearly not a deficiency since no such function exists [PP03]. Note, that one
cannot conclude that the system is not stable. In fact, it is indeed stable and can be
proven stable by allowing STABHYLI to search for a sextic common Lyapunov function.
The normalized result, STABHYLI returns, is

V(z) =19.57625 + 11.62725 29 + 15.267x] 23
+ 3.0857x5 3 + 8.9471x3 25 — 1.36292, 25
+ 1.053925

which is nearly the same Lyapunov function as the one presented in [PP03]. By default,
STABHYLI uses quadratic Lyapunov function templates. For this system, the default
setting is not sufficient, but the tool user can allow STABHYLI to retry using higher
degrees and thereby allowing more flexible templates. In our experiments, STABHYLI
returned the above result within few seconds, while RSOLVER was not able to return
any solution within nine hours. Relaxing the problem to region stability let RSOLVER
report “Unknown.”

3.7 Summary

In this chapter, we have presented STABHYLI, a tool for automatically deriving proofs
of stability of hybrid systems. STABHYLI uses state-of-the-art techniques like sum-
of-squares to cast polynomial constraint systems to LMIs. In Section 3.2, we have
presented the four different proof schemes that STABHYLI offers. These proof schemes
are combined with powerful preprocessing and refinement steps. The decompositional
proof scheme allows a designer to identify proof-critical parts of the hybrid system. The
incremental proof scheme, in contrast, allows a bottom-up design of hybrid systems while
STABHYLI ensures that a proof exists.

A simple but yet powerful heuristic that detects implicit equality constraints has been
presented in Section 3.3. This heuristic searches for equality constraints using linear
programming. In our case, the constraints that we have to consider, do have a special
shape. Thanks to this shape, the heuristic is sufficient in many cases and especially in
the settings of finding Lyapunov functions. After applying the heuristic, we can use the
gained knowledge, i.e., the detected equality constraints, to eliminate free parameters in
the parameterized Lyapunov constraint system. Eliminating free parameters does not
only reduce the number of free parameters but also the number of constraints. We have

86

3.7 Summary

presented three examples where the search for Lyapunov functions certifying stability of
these hybrid systems would fail because of additional gaps that are required to make the
constraint system robust against numerical issues. But by using our heuristic, it is easy
to find Lyapunov functions for two of them.

In Section 3.4, we have presented an approach to validate candidate solutions as
obtained by numerically solvers. We have applied this approach in the process of solving
constraint systems that arise in during the search for Lyapunov functions. The validation
works by using SMT solvers to check satisfiability of the negated constraints. Such
a validation is needed if the Lyapunov functions are reused, e.g. as barrier certificates
proving unreachability of certain bad states, as a basis for composition, or as an estimator
on the rate of convergence.

While this validation is already very helpful, one would also like to be able to gain
knowledge from invalid candidate solutions. Therefore, in Section 3.5, we have presented
a preliminary idea usable to guide numerical solvers away from invalid candidate solutions.
That way, it becomes more likely that valid candidate solutions will be found.

Finally, in Section 3.6, two examples that have been studied in the literature have been
proven stable using STABHYLI. The first example is the automatic cruise controller
from [Och11] for which a quadratic Lyapunov function can be found. The second example
is from [PP03] for which a sextic common Lyapunov function can be found. Both can
be proven stable fully automated using STABHYLI.

87

Transformations that Simplify Stability
Verification

In this chapter, we propose two techniques to simplify the verification of stability
properties using Lyapunov functions.

The outline of the chapter is as follows Section 4.1 gives a short overview of existing
techniques for transformation, relaxation, or rewriting hybrid system for stability verifi-
cation. In Section 4.2, we present a method for relaxing the graph structure of a hybrid
automaton which — in the best case — reduces the effort for decomposition enormously,
then step-by-step reconstructs the original graph structure, and — in the worst case

— falls back to a decomposition of the original hybrid automaton. This technique has
been presented in [MT15]. In Section 4.3 we present a second technique which is called
unrolling. Unrolling automatizes parts of the techniques that we used to verify a steering
controller in [MHR17]. It combines repeated but local reachability and stability analysis
to simultaneously verify safety and stability properties for the overall hybrid system. The
technique has been published in [MHT15; HM15; HMT15].

Affirmation

Most of the content of this chapter has already been published in [MT15; MHT15] of
which the main author and main contributor is also the author of this thesis. The main
contribution in [MHT15] of Hagemann considers the conversion of safe sets — obtained
from sublevel sets of Lyapunov function — to safe boxes. A preliminary idea addressing
ellipsoidal sublevel sets only was proposed by the author of this thesis but never published.
Hagemann has shown that with minor adjustments the idea can be generalized to arbitrary
quadrics and proved the correctness of this technique. In the generalized case, we do not
necessarily obtain boxes but H-polyhedra. The results have been published in [HM15].

4.1 State-of-the-Art

Abstraction and refinement is widely used in software development. Such techniques
are valuable since they allow handling complex systems. One key point is the ability
to decompose a large system into subsystems, analyze those subsystems and deduce
properties of the larger system. As cyber-physical systems tend to become more and
more complex, such techniques become more important.

89

Chapter 4 Transformations that Simplify Stability Verification

The topic of automatic transformation techniques for stability has not received much
attention. This is different for reachability analyses where techniques like abstractions
(e.g., combined with refinement in CEGAR) as in [Pra+13; Bog+14], bisimulations as in
[HTPO05], and relaxations as in [Jha+07; CTGO06] are applied frequently and automated.
Even worse, classical constructions based on bisimulations do not preserve stability [Cui07;
PDV12; PLM13].

In a series of papers by Prabhakar et al. [PDV12; Pral2; PLM13] investigated and
proposed a stronger bisimulation notion which is called uniformly continuous bisimulation
and proved this notion to preserve stability. This notion additionally requires uniform
continuity. A special case is the identity relation which trivially satisfies the requirement
of uniform continuity [PS16]. It says that, given two hybrid automata H; and Ho, if
‘H1 is asymptotically stable and exhibits at least all trajectories of Hs, then Hs is also
asymptotically stable.

Therefore, only two approaches in the area of transformation techniques for automatic
stability verification are known:

1. The transformation used in the decompositional technique by Oehlerking and
Theel [OT09] (see Section 2.5) and

2. The technique and the tool (AVERIST) proposed in [PS13; PS14; PS15; PS16]
which is based on abstractions (see Section 3.1).

Unfortunately, AVERIST is currently restricted to switched linear hybrid systems. In
theory, however, the technique implemented in AVERIST can be lifted to update-free
non-linear hybrid systems, but for this class, no good strategy for state space partitioning
is known. Nonetheless, the techniques presented in this chapter have the potential to be
combined with the technique underlying AVERIST.

4.2 Relaxation: From Dense to Sparse Graph Structures

In this section, we present an improvement to the decomposition technique for proving
stability of hybrid systems as proposed by Oehlerking and Theel in [OT09]. The im-
provement consists of relaxing the graph structure before applying the decomposition
technique and was published in [MT15].

Our relaxation technique is developed for hybrid systems exhibiting dense graph struc-
tures. Applying the relaxation results in hybrid systems that are well suited for de-
composition. This is because the connectivity of the hybrid system’s graph is reduced
significantly by rewiring the transitions of the graph. On one hand, the relaxation ren-
ders the decomposition technique more efficient and, on the other hand, the relaxation
allows us to decompose a wider range of graph structures. This increases the likeliness
of successfully identifying Lyapunov functions.

For hybrid systems with a complex discrete behavior, the decomposition technique
decomposes the monolithic problem of proving stability into multiple subproblems. But
if a hybrid system exhibiting a complex control structure — in the sense of a dense
graph structure — is decomposed, then the blow-up can be enormous. The result is a

90

4.2 Relaxation: From Dense to Sparse Graph Structures

high number of subproblems that must be solved — which is not bad per se. But since
the decompositional technique involves underapproximating the feasible sets of each
subproblem — when applied too often — results in the feasible set becoming empty.
The relaxation technique presented here reduces the number of steps required by the
decomposition and, therefore, the number of underapproximations. This has two benefits:
(1) the runtime is reduced as well as (2) the effect of underapproximations is minimized.

The remainder of this section is organized as follows. First, we describe the relaxation
technique in Section 4.2.1, prove termination, and show that stability is preserved when
using Lyapunov functions for the proof. Second, in Section 4.2.2, we demonstrate our
relaxation by proving stability of three examples:

1. the automatic cruise controller which is the motivating example for the decomposi-
tional technique,

2. an abstract example which shows what happens if decomposition is applied to
complete graph structures, and

3. a spidercam which is an example that exhibits a dense graph structure for which
proving stability using decomposition is not possible.

4.2.1 Relaxation of the Graph Structure

We show how the decomposition can be improved by our graph structure-based relax-
ation. Consider the underlying graph ¢¥(H) = (¥,&) of a hybrid automaton H =
(Var, Loc, Trans, Flow, Inv), with the set of vertices ¥ = Loc and the set of edges
E ={(l1,l2) e ¥ x¥ | (l1, G, U,ly) € Trans }. Note, that the underlying graph has
at most a single edge between any two vertices while the hybrid automaton might have
multiple transitions between two locations. The density of the graph ¢ is the ratio of
the number of edges in the graph and the maximal possible number of edges in a graph
of the same size, i.e., %1

The idea is to identify a set of locations of a hybrid automaton whose graph structure
is dense. This can, for example, be done by a clique-finding or dense-subgraph-finding
algorithm. A clique is a complete subgraph, i.e., having a density of 1 (see Defini-
tion 2.53 on 43).2 Our relaxation then rewires the transitions such that the resulting
automaton immediately exhibits a structure well suited for decomposition. In the context
of decomposition, we call a graph structure well-suited if it contains mainly outer cycles.

The reason, that our relaxation technique combines so well with the decomposition
technique, is as follows: if a hybrid system exhibits a dense graph structure, then the
decomposition results in a huge blow-up. This blow-up is a result of the location-splitting

"We are referring to the definition of density for directed graphs.

2Finding the maximum clique is NP-hard. However, a mazimum clique is not required, any mazimal
clique with more than two vertices is sufficient. Any clique for which no clique has more vertices
is called a mazimum clique while a clique which cannot be extended by including one more vertex
is called a mazimal clique. Even better, as we are interested in dense structures only, we can use
quasi-cliques. A quasi-clique is a subgraph whose density is not less than a certain threshold. Thus,
any greedy algorithm can be used.

91

Chapter 4 Transformations that Simplify Stability Verification

step. The splitting step separates vertices shared between cycles, i.e., if there is more
than one vertex shared between two or more cycles, then multiple copies of the vertex
are created. Thus, the higher the density of the graph structure is, the higher the blow-
up gets. Further, if many cycles share many vertices — as in dense graphs, — then
whole cycles may get copied and each copy requires (1) solving an optimization problem
and (2) underapproximating the feasible set of the problem. In contrast, our relaxation
overapproximates the discrete behavior by putting each vertex in its own cycle connected
only to the new dummy vertex. This reduces the number of optimization problems to
be solved and the number of feasible sets to be underapproximated.

In the following, we define the relaxation operator. Then, we give an algorithm which
applies the relaxation integrated with decomposition. Finally, we prove termination of
the algorithm and that stability of the original hybrid automaton is implied by stability
of the relaxed automaton.

Definition 4.1 (Graph Structure Relaxation)

Given a hybrid automaton H = (Var, Loc, Trans, Flow, Inv) and a subset of locations
Locq C Loc. The graph structure-relaxed hybrid automaton Rlxgs(H, Locg) =
(Varﬁ, Loct, Trans®, Flowﬁ, Imjﬁ) with respect to the sub-component Locy is defined
as follows

Vart = Var,
Loc* = Loc U {l.},
Trans® = { (I1, G, U,ly) € Trans | {l1,la} N Locg =0}
U{(ll,G,id,lc), (i, G, U,lp) € Tmns,}
(e, G, U,lo) | A{l1,lo} N Locg 20 |

zero ifl =1,

Flow*(l) = ,
Flow(l) otherwise,
fl=1.
Inv*(l) = {Q) i

Inv(l) otherwise,

where l. is a new location, called a dummy or central location whose flow is given by
zero and the invariant is the empty set. zero: X — P(X) is a function assigning
0 to eachx € X, i.e., x € zero(x) = {0} for allx € X. O

In Trans® in Definition 4.1, we replace each transition (lh, G, U,l2) € Trans connected
to at least one location in Locy with two transitions: one connecting the old source
location I; with the new central location /. and the other one connecting [. with the
old target location ls. Note, that multiple applications of the relaxation operation are
possible. We call each such application a transition-splitting step. By ST, we denote the
set of all pairs of transitions, called split transition, that have been created during the
transition splitting step.

Intuitively, the introduced location [, is a dummy location whose invariant always

92

4.2 Relaxation: From Dense to Sparse Graph Structures

Algorithm 1: The relaxation function relax.

input :a hybrid automaton H, a dense sub-component Locg of H
output : the relaxed version of H, a set of split transitions ST, the central

B =" B NV R CR

© ®

10

11

location [,

o <+ newLocQ);

H.Loc <— H.Loc U {l.};
H.Flow(l.) < zero;
H.Inv(l.) < 0

Trans < H.Trans;

foreach 7 = (I, G, U,l3) € Trans do

if {l1,12} N Locy # 0 then

// split the transitions into two parts
1« (1, G,id, l.);

T < (lc, G, U,ZQ);

// replace the transition by the two parts
H.Trans < (H.Trans \ {7}) U{m,12};

// keep account of split transitions

ST +— ST U {(7’1,7’2)}

evaluates to false and the flow function does not change the valuations of the continuous
variables. Indeed, no run will dwell in the central location and a run taking an incoming
transition of /. must, immediately, take an outgoing transition of [.. The sole reason

to

add the central location is changing the structure of underlying graph of the hybrid

system: the new structure contains mainly cycles that are connected via [..

Next, we show how to integrate decomposition and relaxation. Pseudo-code of the
relaxation function and a reconstruction function — which step-by-step reverts the
relaxation — can be found in Algorithm 1 and Algorithm 2, respectively. Algorithm 3
gives pseudo-code of the main algorithm. The main algorithm works as follows:

(1) The function relax relaxes the graph structure of the hybrid automaton H and

(2)

generates the set of split transitions ST.

If the set ST is empty, then call applyDecomposition with the original automaton
and return the result — this function applies the original decomposition technique
as described in Section 2.5.

Otherwise, apply applyDecomposition on the current relaxed form of the automaton.
If the result is stable, then return the result. Otherwise, if the original decomposi-
tional technique has failed, then it returns a failed subgraph that is a subgraph for
which it was unable to find Lyapunov functions.

Choose a split transition from the set ST which also belongs to the failed subgraph.
It is then used to reconstruct a transition from the original hybrid automaton. Then,
execution is continued with step 2.

93

Chapter 4 Transformations that Simplify Stability Verification

Algorithm 2: The reconstruction function reconstruct.

1

2

3

4
5

input :a relaxed hybrid automaton H, a set of split transitions ST, a pair of
split transitions (71, 72), where 7 = (I1, G,id,), 72 = (l¢, G, U, l3) and
l. is the central location

output : a relaxed hybrid automaton H with one split transition being
reconstructed, the set of split transitions ST

// reconstruct the original transition

T < (ll, G, U,lz);

// replace the split tramsition (71,72) by T

H.Trans < (H.Trans \ {m,72}) U{7};

// update the set of split transitions

ST «+ ST\ {(1,m2)};

// remove l. if and only if unconnected

if ST = (then
L H.Loc < H.Loc \ {l.};

(5) If no such split transition exists, then the algorithm fails and returns the failed

subgraph since this failing subgraph will persist in the automaton. Further, reverting
the relaxation cannot help because no split transition is contained in the failed
subgraph.

Next, we prove termination and soundness of the algorithm. Here, soundness indicates

that a Lyapunov function-based stability certificate for a relaxed automaton implies
stability of the original, unmodified automaton. In particular, the local Lyapunov func-
tions of the relaxed hybrid automaton are valid local Lyapunov functions for the original
automaton.

Termination of the Integrated Algorithm

94

Theorem 4.2
The proposed algorithm presented in Algorithm 8 terminates.

Proof.

The function relax terminates since the copy of the set of transitions of H is
finite and is not modified in the course of the algorithm. The while-loop terminates
if either an applyDecomposition is successful, no pair for reconstruction can be
identified, or the set ST is empty. In the first two cases, the algorithm terminates
directly. For the last case, we assume that no call to applyDecomposition is ever
successful and a split transition is always found. Then, in each iteration of the loop,
one edge gets removed from ST. The set ST is finite because the relaxation function
relax splits only finitely many edges. Thus, the set ST eventually becomes empty.

4.2 Relaxation: From Dense to Sparse Graph Structures

Algorithm 3: The integrated relaxation and decomposition algorithm.

input :a hybrid automaton H, a set of locations Locg corresponding to a dense
subgraph
output : returns stable if the H is stable and failed otherwise.
// relax the graph structure
1 H,ST,l. + relax(H, Locy);
2 while ST # () do
// apply decomposition
3 result < applyDecomposition(H);
if result is stable then
L return stable;

o

// apply reconstruction

if 3(71,72) € ST : {m1, 72} N failedSubgraph (result) # () then
‘ H, ST <+ reconstruct (H, ST, (11,72),1);

else
L return result;

© ® g O

// apply decomposition on the original automaton
10 result < applyDecomposition(H);
11 return result;

I Therefore, the loop terminates. O I

Preservation of Stability

Theorem 4.3

Let H = (Var, Loc, Trans, Flow, Inv) be a hybrid automaton and let Locy C Loc be
a subset of the locations. If a family of local Lyapunov functions (V}) proving
Rlzgs(H, Locg) to be GAS exists, then there exists a family of local Lyapunov
functions for H proving H to be GAS.

Proof.

Given a hybrid automaton H = (Var, Loc, Trans, Flow, Inv). Let the hybrid automa-
ton H! = Rlzgs(H, Locq) = (Vart, Loct, Trans®, Flow®, Inv*), be a graph structure-
relaxed version of H where Locqg C Loc is the sub-component of H that has been
relazed. Further, let (V)),cp,.¢ be the family of local Lyapunov functions that prove
GAS of H! and let ST be the set of split transitions — some transition may have
been reconstructed. Now, it must be shown that (V;),cr,. are valid Lyapunov func-
tions for H.

The location constraints of Theorem 2.31 trivially hold, since Rlrgs alters neither
the flow functions nor the invariants, i. e., ¥l € Loc : Flow*(l) = Flow (1) A Inv(l) =

95

Chapter 4 Transformations that Simplify Stability Verification

Inv(l). The transition constraint also holds for all transitions that are not altered
by Rlxgs or have been reconstructed, i. e., Trans N Trans®. Let T € Trans \ Trans®
be an arbitrary transition. We show that the transition constraint holds. Due to
the definition of Rlxgs, all transition in Trans \ Trans® are split transitions and
there is a corresponding pair in ST. Let (11,72) € ST be the pair corresponding to
7= (l1, G, U,l2). Since (V1),crot 5 a valid family of local Lyapunov function for
HE, the transition constraint holds for all transitions in Trans®. In particular, the
transition constraint holds for 7 = (l1, G,id,l.) and 7o = (l., G, U,l2). Thus,

Vee GeV (id(z)) <V, (z) AVz € GoV,(U(x)) <V (x).

It follows, that
Vz e G eV, (U(z)) < Vi (z) <V ()

Therefore, the transition constraint holds for T. O

While Theorem 4.3 shows that stability of the relaxed automaton yields stability of
the original automaton, the contrary is not true. Figure 4.1 shows a hybrid system where
the relaxation renders the system unstable. This example exploits that the relaxation
may introduce spurious runs. This happens in case there are transitions with overlapping
guard sets connected to the central location I.. A trajectory of the relaxed automaton
might then take the first part of a split transition to the central location [, and continues
with the second part of a different split transition. A transition corresponding to this
behavior might not exist in the unmodified hybrid automaton. While this does not render
our approach being incorrect, it may lead to difficulties since these extra trajectories
have to be GAS, too. In case of the system in Figure 4.1, new trajectories are introduced
which allow a trajectory to jump back from the location L to H by taking the transitions
71, T9. This behavior corresponds to leaving L by the right self-loop and entering H by
the left self-loop, which is obviously impossible. However, due to the update function,
the value of x might increase as 1 +0.01(z — 1)(z — 10) > 1 for x < 1.

In general, our relaxation introduces conservatism which is then reduced step-by-step
during each reconstruction step. The degree of conservatism highly depends on the
guards of the transitions since the central location relates all LLF's of locations in Locy.
Therefore, when more guards are overlapping, more LLF's have to be compatible even
when this was not needed in the original automaton.

One possibility to counter-act this issue is to introduce a new continuous variable in
the relaxed automaton which is set to a unique value per split transition: the update
function of the first part of a split transition sets the value used to guard the second part
of the transition. Indeed, this trick discards any spurious trajectories for the price of an
additional continuous variable. However, since the values of that variable are somewhat
artificial, a Lyapunov function may not be able to make use of that variable. Thus, this
trick will not ease satisfying the conditions of the Lyapunov theorem in general.

96

4.2 Relaxation: From Dense to Sparse Graph Structures

true/z := 0.9z
true/z := 0.9z

H true

T =—-0.2z &= —-0.2z
1<x<10 1<x<10

true/z := 1+ 0.01(z — 1)(z — 10
true/z == 1+ 0.01(x — 1)(z — 10) Tue/e (== 1)@ -10)

(a) The unmodified (stable) automaton. (b) The relaxed (unstable) automaton.

Figure 4.1: A hybrid system which becomes unstable after relaxation.

4.2.2 Experiments

In this section, we present three examples where the graph structure-based relaxation
improves the application of the decomposition technique. The first example is again
the motivating example for the decomposition technique: an automatic cruise controller
(ACC) [Oehll]. The second example is the fully connected digraph K3. K3 (such as
the K1, Ko, K4, K5 do not represent a concrete hybrid automata but a potential graph
structure of a hybrid automaton. The last example is a spidercam. Here, the graph is
not as fully connected as the K3 example, but its density is already too high to apply
decomposition directly.

We have implemented the decomposition and relaxation in Python. Our implementa-
tion does not compute the Lyapunov function but merely performs the graph transforma-
tion. Lyapunov functions have been computed separately using STABHYLI. Table 4.2
gives the graph properties and a comparison of the number of reduction steps required
by the decomposition with and without relaxation (in the best case).

The given data was obtained without actually computing Lyapunov functions focusing
on the graph related part of the decomposition.

Decomposition With Relaxation
Graph Structure Nodes (n) Edges Reductions Location- Time Reductions Time
steps Splittings steps
steps
directed K1 1 0 0 0 0.04s 0 0.04s
directed Ko 2 2 1 0 0.04s 2 0.04s
directed K3 3 6 6 4 0.21s 3 0.05s
directed K4 4 12 47 25 1.15s 4 0.05s
directed K5 5 20 1852 352 13h22m | 5 0.05s
Spidercam 9 32 753 287 1h46m 9 0.06s
Cruise Controller 6 11 7 6 0.060s 6 0.06s

Table 4.2: Comparison of the decomposition with and without relaxation.

Example 1: The Automatic Cruise Controller (ACC) has been presented in Example 1
and is globally asymptotically stable as it can be proven using the original decomposition
technique (cf. [Oehll; MT13a]). Indeed, the graph structure is sparse and thus, already
well-suited for applying the decomposition technique directly. In fact, only one more

97

Chapter 4 Transformations that Simplify Stability Verification

cycle needs to be reduced compared to decomposition after relaxation (cf. Table 4.2).
Even though the relaxation is not needed here, it also does not harm. Though, it may
be used for sparse graphs structures, too.

Example 3: The directed K3 is a fully connected digraph with n nodes. The K3 as
well as a relaxed version of it is shown in Figure 4.3. In a fully connected digraph, there

1

1
/\\ :
7N
3 T 2 3 2

(a) unmodified (b) relaxed

Figure 4.3: Relaxation of The K3 example.

is a single edge from each node to each other node, resulting in a total number of n(n —1)
edges. The number of cycles, the decomposition technique has to reduce, grows very fast
by n which can be seen in Table 4.2. In comparison, the number of cycles in the relaxed
version of the graph grows linearly with n, assuming that the edges can be concentrated.?
Otherwise, after the relaxation, each original node has n — 1 incoming and n — 1 outgoing
edges where each edge connects the node with the central node .. Each such combination
forms a cycle between [, and an original location, giving a total of n(n —1)(n — 1) cycles
in the worst case. This cubic growth is still much less than the number of reductions
without relaxation.

Such a graph might not be the result of a by-hand designed system but might be the
outcome of a synthesis or an automatic translation. However, the fast growth of cycles
also indicates the high number of reductions steps and therefore the high number of
underapproximations of the solution space.

Example 4: The Spidercam is a movable robot equipped with a camera. It is used at
sport events such as a football matches. The robot is connected to four cables. Each
cable is attached to a motor that is placed high above the playing field in a corner of a
stadium. By winding and unwinding the cables — and thereby controlling the length of
the cables, — the spidercam is able to reach nearly any position in the three-dimensional
space above the playing field. Figure 4.4 shows a simplified model of such a spidercam
in the plane. The goal is to stabilize the camera at a certain position. The continuous

3By “concentrating edges,” we mean that edges with the same source and target node are handled as a
single edge for the cycle finding algorithm.

98

4.2 Relaxation: From Dense to Sparse Graph Structures

variables « and y denote the distance relative to the desired position on the axis induced
by the cables.

Fourth Quadrant Positive Y First Quadrant
06 o s o Y T<s 05<a
§=-06 §=—-06 i=-06 04<z 0 ><, :) e e <o0a
—100< 2 < —04 —05<z<05 | ¥<04 0.4 <2 <100 V:} i‘” y ;'74“’ o=y Vy < 0.4
V0., 1 .
0.4 <y <100 0.4 <y <100 8 0.4 <y <100 Fourth Quadrant | o, 0" =Y v=
) vy <04
~ =D, - EY EY z<-05 S 4 /1 4
sl lv 4 S| |w v V05 <y 04 <ave <04
vi| |a vi| & " Vy <04V =04 <y
ES <] I > S S
Negative X Center Positive X —04 <avy < -0.5
0.5 < ava < —0.5
=06 2<-05| i=-01-2 i=—06 Vo5 <y
= Vy<—05V05 <y
“100<2< 04 | 04<z | J06<2<06 0.4 <2 <100 < —05vy < 0.5 < avy < 0.4
—05<y<05 —06<y<06 —05<y<05
> L/\» = n e = 0
vi||s >ovif | S vi||s
= = =
1=} VI 1=} VI 7% 1=} VI 04<z
[=9 ! = o = V_04< T <05
<05
Third Quadrant Negative Y Second Quadrant Third Quadrant vy 05 05<a
D ST
i =06 i=—01-x i=-06 Vi < —05 . ‘”’;S i
§=06 §=06 §=06 Vooa<y \Jvy< o vy <05
~100 <z < —0.4 —05<2<05 0.4 <z <100 Second Quadrant
100 <y < —0.4 100 <y < —0.4 100 <y < —0.4

b) relaxed
(a) unmodified (b) relaxe

Figure 4.4: Relaxation of the simple planar spidercam.

In the model, we assume a high-level control of the motor engines, i. e., the movement
is on axis @ and y instead of a low-level control of each individual motor. The model has
nine locations: one location that controls the behavior while being close to the desired
position, four locations corresponding to nearly straight movements along one of the
axes and four locations cover the quadrants between the axes. The maximal velocity
in the direction of each axis is limited from above by 0.6m. Thus, in the four locations
corresponding to the quadrants, the movement in each direction is at full speed. In the
four locations corresponding to the axes, the movement on the particular axis is at full
speed while the movement orthogonal to the axis is proportional to the distance. In the
last location, the speed in both directions is proportional to the distance.

The spidercam is globally asymptotically stable which can be proven fully automatically.
However, it is not possible to obtain a piecewise Lyapunov function via decomposition
without relaxation due to accumulating underapproximations of the partial solutions and
the high number of cycles that have to be reduced.* This is because, each time a cycle is
reduced, the feasible set of a subproblem is underapproximated by a finite set of solutions
which finally results in the feasible set becoming empty and no LLFs can be found.

In contrast, relaxing the graph structure followed by applying the decomposition is
immediately successful. In particular, no reconstruction step is required.

4STABHYLI currently does not contain strategies to handle the situation where no reduction is possible.
The current implementation would then simply fail. Although, it is theoretically possible to perform
some form of backtracking, it is hard to decide which underapproximation must be refined.

99

Chapter 4 Transformations that Simplify Stability Verification

4.3 Unrolling: Hybrid Methods for Hybrid Systems

In this section, we describe an approach for simultaneously verifying safety and stability
and focus on the author’s contributions. The approach has been published in [MHT15;
HM15; HMT15].

In industrial applications it is usually not sufficient to prove either safety or stability
properties, instead, usually we need to prove both. The safety property guarantees that
“something bad” never happens. The stability property guarantees that “something good”
eventually happens. The analyses of both properties are usually performed in isolation.
In this work, we consider analyzing both properties by a single automatic approach for
hybrid systems. We basically merge analyses of both properties to exploit the knowledge
gained from the analysis of each of them in the analysis of the other. We show how
both analyses can be divided into multiple steps and interlocked such that both benefit
from each other. In fact, we compute single-location Lyapunov functions,” unroll the
automaton of the hybrid system via repeated reachability queries, and, finally, compute
a global Lyapunov function. Each reachability query is simplified by exploiting the
knowledge gained from the single-location Lyapunov functions. The final computation of
the global Lyapunov function is simplified by a precise characterization of the reachable
states and reuses the single-location Lyapunov functions.

We present an approach to verify safety and stability properties of hybrid systems at
once. While the verification of safety and stability is usually done separately, we propose
to integrate both analyses in a symbiotic fashion:

From the safety perspective, we use Lyapunov functions to detect regions that are
guaranteed to be safe. Exploiting these regions helps us to shorten the reachability
analysis. Indeed, if all trajectories eventually enter a safe region, then there is no
need to compute infinite traces of the trajectories.

From the stability perspective, we obtain a more precise description of the reachable
sets, and thereby, the trajectories of a system which are actually feasible. By
discovering implicit knowledge and making it explicit, we lower the computational
burden to obtain Lyapunov functions.

A rudimentary unrolling has been sketched in [Ochll, page 126 f.]. Oehlerking sug-
gested to use reachability analysis to show that certain guards are not reachable. Such a
reachability analysis can be complicated as most tools will only be able to tell what is
reachable within finite time and not the opposite. To achieve the opposite, invariants
or fix point arguments are required. We solve this issue by the careful integration of
safety and stability analysis and show the potential using a prototypical implementation
combining the two tools STABHYLI and SOAPBOX.

°In [MHT15; HM15; HMT15], we called single-location Lyapunov functions “single-mode Lyapunov
function” which is closer to the terminology used in control theory.

100

4.3 Unrolling: Hybrid Methods for Hybrid Systems

Note 4.4

Since STABHYLI employs the sum-of-squares method, every computed Lyapunov
function is representable as a sum-of-squares and therefore as quadratic matrices.
However, in the following, we restrict ourselves to quadratic Lyapunov functions
as they are sufficient for many applications. N

4.3.1 Safety, Reachability, and Reach-Avoid Problems

Since we deal with both, safety and stability properties in this section, we recall some
basic background on safety and reachability analysis and briefly present some properties of
SoaprBox [Hagl4; Hagl5] which is the tool we use to automatically compute reachable
state sets and, thus, allows us to check for (non-)reachable states.

Safety and reachability analysis of hybrid systems has to deal with two problems:
(1) how to tackle the dynamics of the system, and (2) how to represent the reachable
states systematically. Both problems are related since the choice of the admissible dynam-
ics has an impact on the required operations for post-image computation. For reachability
analysis, we will consider systems whose dynamics are given by linear differential inclu-
sions [Fre+11; Gir05; KV00]. Differential inclusions allow us to approximate systems
with richer dynamics [ADG03; ADGO07; DMT10].

For state representation we focus on convex approaches where reachable states are
usually represented by unions of convex sets. Different representations, like polyhedra
[CKO03], template polyhedra [SDI08], zonotopes [Gir05], ellipsoids [KV00], and support
functions [LG09], are commonly used.

In the following, we present two concepts which are related to our combined investiga-
tion of safety and stability.

Reach-avoid problems describe that one is interested in finding a control strategy or
initial condition to reach a certain set of desired states while avoiding another set of
undesired states. In [MTO00], Mitchell and Tomlin propose an exact algorithm for this
problem which — like our algorithm — makes use of sublevel sets. Abate et al. give a
specification of the corresponding probabilistic problem in [Aba+08]. However, a reach-
avoid problem is an existential problem, i.e., it asks for the existence of at least one
trajectory, while we are interested in the case where all trajectories converge and avoid
undesired states.

Inevitability of a hybrid system H with respect to a set T denotes that every trajectory
of the system reaches T within finite time. This property has been studied for hybrid
systems by Podelski et al. in [PW06; BMP10] and Duggirala and Mitra in [DM12]. The
focus of this line of research is the relation to program termination and well-foundedness.
However, we do not require a single T to exist. Instead, every trajectory or bundle of
trajectories might have its own set and additionally, they do not need to be given a priori
but are identified implicitly.

101

Chapter 4 Transformations that Simplify Stability Verification

Checking Reachability via SoapBox

SoAaPBOX is a tool for reachability analysis of hybrid systems. It is implemented in
MATLAB and recently parts of it have been reimplemented in C++.5 SoAPBoX handles
hybrid systems with continuous dynamics described by linear differential inclusions and
arbitrary affine maps for discrete updates. The invariants, guards, and sets of reachable
states are given as convex polyhedra. Internally, the reachability algorithm of SOAPBOX
is based on symbolic orthogonal projections (sops) [Hagl4; Hagl5].

Although SoAPBoOX is a fully functional model checker handling continuous and
discrete updates of a hybrid system, for our approach, it suffices to present the location-
specific continuous post-image computation provided by the method

Reach(Init, Flow(l), Inv(l), Safe, T).

As input it expects an H-polyhedron representing the initial states Init, a differential
inclusion Flow () describing the differential inclusion of the form x = Ax +E, where E is
an H-polytope modeling the bounded input, an H-polyhedron representing the invariant
Inv(l), an H-polyhedron representing the target set” T, and an H-polyhedron Safe. The
method computes a tight overapproximation of all reachable states on trajectories solving

x(t) = Ax(t) + E, x(0) € Init, ¥t > 0 e x(t) € Inv(m),

until either all states leave the invariant or all states have entered the set Safe. Then,
it returns a polyhedral set representing a tight polyhedral overapproximation of the
intersection of the reachable states with the target set 7.8

4.3.2 Safety and Stability at Once

We present our algorithm that combines safety and stability analysis. We show how the
combination of both analyses mutually simplifies the verification task.

While GAS is defined over trajectories, Theorem 2.31 argues over hybrid states and
searches for LLFs which have to be compatible with respect to the transition constraints.
We observed that, often, we are able to find the LLFs but fail to establish the necessary
compatibility with respect to the transition constraint. Among other reasons, this may
be due to cyclic dependencies imposed by the transitions of the hybrid automaton as
investigated in Section 3.3.

Note 4.5
For each Lyapunov function V (local or global), it holds that for any trajectory
x(+) the value of V does not increase, i. e., Vtg,t > 0 e V(x(tg +t)) < V(x(tg)) (or

5The experiments in the section have been performed using the MATLAB version of SOAPBOX.

"Usually, Reach() handles finite unions of polyhedral target sets at once. For the sake of simplicity, our
presentation is restricted to a single target set.

8 As before, Reach() returns unions of polyhedra, each representing a single traversal of a target set.

102

4.3 Unrolling: Hybrid Methods for Hybrid Systems

Vito, t > 0@ V(I(to +t),x(to +t)) < V(I(to),x(to)) for the global Lyapunov function
(GLF)). 4

Our approach is to unroll the hybrid automaton to an equivalent hybrid automaton
for which we can verify GAS via Theorem 2.31. Here, “equivalence” denotes that both
automata exhibit an identical continuous behavior, i.e., for each trajectory of either
automaton, there is a trajectory of the other automaton with the same continuous
evolution. Hence, the original hybrid automaton is as well GAS.

We define the following notion of the depth of a reachable state. The set Ry = Inits
is the set of all reachable states of depth 0. Given the set R, of all reachable states
at depth n, we recursively define R,41 as the set of all tuples (lnH,xn +1) which are
reachable from any tuple (I,,,%,,) € R,, by a combination of a continuous evolution and
a subsequent discrete transition, i.e., there exists a flow f € Flow(l,), an instant of time
ts > 0, and a transition (I, G, U,l,1) € Trans such that for y(ts) = [;° f(y) dt it
holds that y(t) € Inv(l,) for all t € [0,%,], y(0) = x,,, y(t;) € G, and U(y(ts)) = X, ;-
Clearly, a hybrid state (I, x) is reachable at depth n if and only if (I,x) € R,,.

Our idea is as follows: First, we compute for each location a Lyapunov function, called
a single-location Lyapunov functions (SLLFs). Then, starting with Rg, we successively
compute the sets R,. For each location this reduces to the reachability problem of
computing the reach set, that is the set obtained by computing all reachable states in the
transition guards and subsequent application of the respective discrete updates. During
each reach set computation, we additionally assess safety, i.e., we decide whether Unsafe
can be reached or not. Moreover, the single-location Lyapunov functions (SLLFs) enable
us to compute safe sets which substantially simplify reachability analysis: An appropriate
safe set has no intersection with neither the unsafe set nor any guard of an outgoing
transition and it is invariant under the flow. Thus, we may stop the reachability analysis
as soon as a safe set is entered.

Successful termination of this approach does not only help to ensure safety, but also
yields an unrolled (or unfolded) version of the original hybrid automaton. The unrolled
automaton is free of cyclic dependencies. Additionally, guards are restricted to their
intersection with the reachable states. Both facts enormously simplify the task of estab-
lishing compatibility of the SLLFs with the transition constraints, which finally yields a
global Lyapunov function.

Single-location Lyapunov Function Computation

As mentioned above, in the first step, we compute Lyapunov functions for each location
in isolation. We call a Lyapunov function single-location Lyapunov function (SLLF),
if it satisfies the location constraints, but not necessarily the transition constraints of
Theorem 2.31.

STABHYLI can compute Lyapunov functions automatically. To obtain single-location
Lyapunov functions, we run STABHYLI with a single-location automaton H; for every
l € Loc, where the single-location hybrid automaton is defined as

H, = (Var,{l},0,{l — Flow(l)},{l — Inv())},{(Inv(l),1)}).

103

Chapter 4 Transformations that Simplify Stability Verification

Unsafe Unsafe

FINCFINY
) NN

\\
\
\\ \
Jnvariant Set \ Invariant Set /

~O -

(a) Trajectories will not reach (b) Trajectories might reach
Unsafe. Unsafe.

Figure 4.5: A sketch of invariant sets.

Computing the SLLF's certifies that each single-location hybrid automaton is GAS.
Note, that this is not sufficient to conclude that the full hybrid automaton is GAS.
However, we exploit SLLFs during the following reachability analysis. In a final step, we
combine the SLLFs with the results of the reachability analyses to verify GAS of the full
hybrid automaton (see Global Lyapunov Function Computation on page 108).

Safe Set Computation

As in the previous section, we restrict our attention to a single location [of a hybrid
automaton H. First, we introduce the notion of a sublevel set of a Lyapunov function.

Definition 4.6 (Sublevel Set of a Lyapunov Function)
Let Vi(+) be a Lyapunov function of location . For any s > 0, we call L‘_/l s =
{x | Vi(x) < s} a sublevel set of a Lyapunov function of location I.

A Lyapunov function assigns a value to any state of the state space, and its values along
any trajectory does not increase. Hence, all trajectories starting in a sublevel set will not
leave the sublevel set. In general, we call any subset of states which cannot be left by
the continuous trajectories an invariant set (for the formal definition see Definition 4.7).
This property allows a strong prediction on the future of the trajectory. However, if the
intersection of the invariant set (cf. the green circles in Figure 4.5) with Unsafe (cf. the
red boxes in Figure 4.5) or some guards (cf. the orange boxes in Figure 4.5) is not empty,
then this prediction does not suffice to establish safety. In this case, we can neither
rule out that a trajectory enters Unsafe in this location nor that a trajectory leaves the
location via a discrete transition and enters Unsafe via another location.

104

4.3 Unrolling: Hybrid Methods for Hybrid Systems

Definition 4.7 (Safe Set, Avoid Set, and Invariant Set)
Let A and X' be two subsets of X such that X' C Inv(l). If for all trajectories x(-)
of a hybrid automaton H with x(0) € X’ and for all t > 0 it holds

Vi (0<t <t—x(t)env(l) = WV (0<t<t—x({t)ex’) (4.1)

Vi (0<t <t—sx(t')env(l) = W O<t<t=sx(t)gA, (4.2)

then A is called an avoid set and X' is called a safe set for A of a location l. A
safe set for A is denoted by Safe,.
The set X' C Inv(l) is an invariant set if condition (4.1) holds. &

Proposition 4.8
Any sublevel set of a Lyapunov function of a location is also an invariant set of the
location.

Proof.

Let Ly, , be a sublevel set of some location I, x(+) a trajectory with x(0) € Ly .
and ty > 0. Assume, x(t') with 0 < t' <ty is a trajectory segment that does not
leave the invariant. A Lyapunov function assigns a value to any state of the state
space, and the values along any trajectory do not increase. Hence, x(t') will not
leave the sublevel set. O

Proposition 4.9
Let X' be an invariant set of a location. If AN X' = 0 holds for some set A, then
X' is a safe set for the avoid set A.

Proof.

X' is an invariant set. Hence, each point on any trajectory which emanates from
X' is either within X' or it violates the invariant. Since X' and A have no points
in common, none of the points in A can be reached by a trajectory emanating from
X' without violating the invariant. O

Corollary 4.10
Any sublevel set of a location which has an empty intersection with some set A is a
safe set for the avoid set A.

105

Chapter 4 Transformations that Simplify Stability Verification

Unsafe

|~ Unsafe — |

— N

/,

Ma)=g -

(a) safe after entering Ly, (b) initially safe

Figure 4.6: A sketch of safe sets.

Proof.
Follows immediately from Proposition 4.9 and Proposition 4.8. O

Now, the alleviating argument for the reachability analysis is that a certain set, like
Unsafe or a guard, cannot be reached as soon as a safe set for the respective set is entered.

Following Corollary 4.10, we aim at maximizing the extent of the sublevel set Ly s =
{x | V(x) < s} for a given avoid set A. Let g be a strict lower bound for the Lyapunov
function over A, i.e., g < infxe4 V(x). Since all states with a lower value are guaranteed
not to be in A, the set Safey, = Ly is a safe set for A. Furthermore, if we find an upper
bound i > supyep,; V(x) with g > 4, then A is unreachable from all initial states, and
we can omit the reach set computation entirely. Both cases are visualized in Figure 4.6.

This yields the following basic algorithm:

(1) Determine the infimum of the Lyapunov function b = inf{V(x)|x € A} over the
avoid set A.

(2) Determine the supremum of the Lyapunov function i = sup{V(x)|x € Init} over
the initial set Inst.

(3) If i < b, then the Init is safe (initially safe). Otherwise, subtract a safety margin e
from the infimum, g = b — ¢, to build the safe set Safe, = Ly, (safe after entering

Lv’g) *

Although finding the infimum (resp. supremum) of a Lyapunov function over a compact
set coincides with the search for the minimum (resp. maximum) and can be done via
numerical optimization, our implementation performs a bi-sectioning combined on top
of Z3. Further, our implementation returns a lower (resp. upper) bound instead of the
infimum (resp. supremum) which is sufficient in our case. The procedure is as follows:

(1) Guess an initial bounding interval [a, b] with a = 0 for the infimum (resp. supremum)
of the Lyapunov function

106

4.3 Unrolling: Hybrid Methods for Hybrid Systems

Algorithm 4: The prepare function().

input :a hybrid automaton H, a set Unsafe

output : a set of Lyapunov functions LFs, and a prepared version of H
1 Inits’, Trans', LFs + (;

// compute Lyapunov functions for each location in isolation

2 foreach | € H.Loc do LFs(l) < computeLF(Flow(l), Inv(l));

3 Trans' < H.Trans; // copy transitions
4 foreach (Init,l) € H.Inits do // separate each initial location
5 ' < copyLoc(H,Unsafe,LFs,l); // copy the location
6 Inits’ < Inits’ U {(Init,1")} ; // add the new initial set

// copy each outgoing transition to the new location
7 | foreach (I, G, U,ly) € Trans’ do H.Trans < H.Trans U{(I', G, U,l3)};

8 H.Inits < Inits’ ; // replace initial states

(2) Refine the initial interval:
Ask Z3 to find an x € A (resp. x € Init) such that V(x) < b (resp. V(x)
While such an x cannot (resp. can) be found increase b.

Y
=

(3) If a refined interval [a, b] is found, then we enter the bi-sectioning:
Ask Z3 to find an x € A (resp. x € Init) such that V(x) < b_T“ (resp. V(x) > %59).

2
While b — a > € continue with [a, %5%] (resp. [%5%,8]) if such an x can be found and

2
continue with [25%,b] (resp. [a, %5%]) otherwise.

(4) A safe approximation of the infimum (resp. supremum) of the Lyapunov function is
given by a (resp. b).

SafeBox Conversion

In order to use safe sets for trajectory truncation in a polyhedral-based tool like SOAP-
Box, we generate polyhedral underapproximations of safe sets. In this section, we
shortly describe the idea of our method. Details of this method can be found in [HM15;
HMT15]. STABHYLI generates quadratic Lyapunov functions. Hence, a sublevel set
in our context is a quadric set {x ‘ x'Vx < ¢? } with ¢ > 0 and a symmetric matrix V.
Projectively principal axis transformation yields an invertible matrix L and a diagonal
matrix £, whose coefficients are equal to —1, 1, or 0, and sorted in descending order such
that V = LEL”. Using homogeneous coordinates this can also be expressed as
V= (g %) = LELT with B = (g7) and L = (5 9).

By Sylvester’s law of inertia, the numbers of negative, positive, and zero coefficients in £
and E, respectively, are uniquely determined. Furthermore, let E be the matrix obtained
from E by replacing all occurrences of —1 by 0. This yields the implication y’ E'y < 1
= y'Ey < 1. Hence, the cylinder {y ‘ ylE'y < 1} over a lower-dimensional unit

107

Chapter 4 Transformations that Simplify Stability Verification

sphere is the largest inscribed convex and cylindrical set of { y ‘ yI'Ey <1 } Now,
given template H-polyhedra with circumspheres of arbitrary dimension, it is easy to
generate an inscribed H-polyhedron of the spherical cylinder. For our experiments, we
used hypercubes and cross-polytopes. It remains to compute the image of the resulting
polyhedra under the inverse transformation to (Z) =7 (’;), which is computationally

easy but involves non-trivial insights in projective geometry.”

Unrolling Algorithm

Algorithm 4 and Algorithm 5 show the unrolling algorithm. Algorithm 4 is a preparation
function that creates copies of the locations as well as all outgoing edges for each initial
state set. The function copyLoc creates a fresh copy of a location with the same flow,
invariant, SLLF, and unsafe set as the original location. Algorithm 5 is the main unrolling
algorithm. It is executed after the preparation function. It maintains a job queue which
is initialized with the initial state sets. Until the job queue is empty, it selects a job,
computes safe sets and reach sets with respect to Unsafe and the guards of the outgoing
transition. An intersection of the reach set with Unsafe shows that the hybrid system
is unsafe. Intersections with guards are used to tighten the guards of transitions and
are enqueued for further exploration by replacing the guard of the transition with the
actual reach set. This unrolls the hybrid automaton in a breadth-first manner. If the job
queue is empty, then the unrolling is followed by a post-processing. The post-processing
removes all nodes that are not connected to a location of the initial set. The result is
a forest of hybrid systems describing the trajectories abstractly. This unrolled hybrid
automaton can be proven stable very efficiently according to Corollary 4.12. In fact,
since the unrolled hybrid automaton is acyclic, the computed SLLFs may be reused.

Global Lyapunov Function Computation

Now that we have established safety, we verify GAS of the unrolled hybrid automaton
reusing the SLLFs. Since both automata are equivalent in the sense of feasible trajectories,
this implies GAS of the original hybrid automaton.

For completeness, we introduce notations as well as a theorem from [Oehl1] which we
will adapt to our needs in Corollary 4.12.

A decomposition of the underlying graph into SCCs allows us to apply the following
theorem:

Theorem 4.11 (Decomposition into strongly connected components [Oehl1,
Theorem 4.1, Remark 4.3])

Let H be a hybrid automaton with H = (Var, Loc, Trans, Flow, Inv, Inits). If all
sub-automata pertaining to the SCCs of 9(H) are globally attractive, then so is
H. If all SCCs are Lyapunov stable and if for all transitions (1, G, U,l2) € Trans

9 Actually, we use a projective generalization of polyhedra similar to the notion of projective polyhedra
as it has been introduced in [Gal09].

108

4.3 Unrolling: Hybrid Methods for Hybrid Systems

Algorithm 5: The unrolling algorithm.

w N =

10

11

12

13

14

15

16

input :A hybrid automaton H, a set Unsafe, and a set of Lyapunov functions

LFs.
output : An unrolled version of H.
Jobs <+ H.Inits; // start from each initial state set
while Jobs # () do
(Init, 1) < pop(Jobs); // select a job

// compute safe sets with respect to unsafe and convert them to
safe boxes

Safejnsafe < convertToBoxes(safeSets(LFs(l), Init, Unsafe(l)));

// compute reach set with respect to unsafe

R « Reach(Init, Flow (1), Inv(l), Safey,sqfe, Unsafe(l));
if R # () then markUnsafe(l,R); // model is unsafe
Trans' < H.Trans; // copy transitions

// check reachability of each outgoing transition

foreach (I, G, U,ls) € Trans' do

H.Trans < H.Trans \ {({, G, U,12)}; // remove old transition

// compute safe sets with respect to guard and convert them to
safe boxes

Safeq < convertToBoxes(safeSets(LEFs(l), Init, G));

// compute reach set with respect to guard

R < Reach(Init, Flow(l), Inv(l), Safeq, G);

if R =0 then continue; // guard unreachable

' + copyLoc(H, Unsafe, LFs,l3); // copy the location

H.Trans < H.Trans U{(l, R, U,l")}; // add refined incoming
transition

// copy each outgoing transitions to the new location
foreach (l2, Gy, U,,l3) € Trans’ do
H.Trans < H.Trans U{(l'; Gy, Uy, l3) };
Jobs + Jobs U{(apply(R, U),l')}; // append updated postset

corresponding to bridges of 4 (H), it holds that
Je>0eVx e GoVi,(la,U(x)) <c-Vo,(l1,x)

where C; is the SCC containing l; fori € 1,2, then H is Lyapunov stable. Therefore,
H is GAS.

Therefore, if a hybrid automaton consists of SCCs which contain at most one location

— as it is the case for an unrolled hybrid automaton, — then we can compute Lyapunov
functions for each location in isolation, and we can check satisfiability of the transition
constraints afterwards.

This leads to the following corollary which is basically a reformulation of Theorem 4.11

109

Chapter 4 Transformations that Simplify Stability Verification

in the context of unrolled hybrid automata.

Corollary 4.12 (GAS of an unrolled Hybrid Automaton)

Let H be an unrolled hybrid automaton with H = (Var, Loc, Trans, Flow, Inv, Inits).
If all locations are globally attractive, then so is H. If all locations are Lyapunov
stable and for all transitions (1, G, U,l2) € Trans it holds that

de>0evVxe GoV,(U(x)) <c-V,(x),

then H is Lyapunov stable. Consequently, H is GAS.

Proof.
Follows from Theorem 4.11, if every location of H belongs to exactly one SCC. This
s the case because H is unrolled and, in turn, acyclic. O

Since we already have SLLF's, it remains to show that for each transition the factor ¢
as used in Corollary 4.12 actually exists. If this is successful, then we can conclude that
the hybrid automaton is GAS.

4.3.3 Experiments

In this section, we present our benchmark set and compare the time needed for verification
of their respective properties. The benchmark set consists of four examples

1. the automatic cruise controller (see Example 1),
2. the spidercam (see Example 4 and Figure 4.4a), and

3. a velocity controller for which we verify stability and safety and which is part of
the case study presented in Chapter 5,

4. an artificial example for which it is impossible to prove stability without further
reachability analysis.

Examples 1 and 2 can trivial be extended to also include unsafe sets. Doing so requires
us to further verify safety. Due to our combined approach this verification can be done
with no additional costs because we already have the complete reachability information
at hand.

Example Automatic Cruise Controller (ACC) The unrolled version of the ACC (see
Figure 3.14 on page 85) is given in Figure 4.7. It has six initial locations and at most five
location switches occur until every trajectory enters and stays in the location Normal
PI.

110

4.3 Unrolling: Hybrid Methods for Hybrid Systems

(b) Runs emanating from locations Service Brake Act, Service Brake Full, Emergency
Brake Full.

Figure 4.7: The unrolled automatic cruise controller.

Example Spidercam Every trajectory of the spidercam needs at most five transitions
until it enters and stays in the location center. But due to the number of initial locations,
the unrolled version has 193 locations and 184 transitions. A small snippet which contains
only those runs emanating from the location Positive X is shown in Figure 4.8.

Example 5: A Velocity Controller (VC) — visualized in Figure 4.9 — is part of the Ad-
vanced Driver Assistance System (ADAS) presented and analyzed in [Dam+14; DMR14;
MHR17] and briefly introduced in Section 5.4. The ADAS consists of two concurrent
controllers (as well as helper components) that cooperatively achieve the following objec-
tives:

(Obj1l) maintain a centrifugal force comfortable for a driver,
(Obj2) bring and then keep the car on the center of its lane,

(Obj3) control the speed whereby also considering driver requests for a certain speed
value.

The VC contributes to Objective Objl and Objective Obj3.
The model has three modes: one location with a constant acceleration, one location with
a constant deceleration and one location doing the fine-tuning via a PI controller. The

111

Chapter 4 Transformations that Simplify Stability Verification

Figure 4.8: The unrolled spidercam (only runs emanating from the location Positive X
are shown).

4 <veleyr — 'Uezgoal <5
Jveling :=0 —6 < veleyr — velgoa < —5.8

/— Norm \
Decl veline =veleyr — velgoal Accl
Vel = —3 Velew = — 0.0075 - velin velyr = 3
4 < veleyr — velgoa < 50 —0.052 - (velcur — velgoal) —50 < veleyr — velgoal < —4
\ | —6 < veleur — velgoa < 6 /
5.8 < weleyr — velgoal < 6 —5 <veleyr — velgoa < —4
Jveliny :=0

Figure 4.9: The velocity controller [Dam-14].

V(s task is to drive the current velocity of the vehicle vele,, to a desired velocity velgoal.
This desired velocity is given by an external input that might be updated discretely. The
verification task is to show that

e velq,, converges to velgoal,

o if velcyr — velgoal < —3 initially holds, then velcyr — velgoa < 3 always holds,

o if velcyr — velgoal € [—3, —2] initially holds, then velcyr — velgoal < 2 always holds,

o if velcyr — velgoal € [—2,0] initially holds, then velc,r — velgoal < 1 always holds.
The later three are safety properties and restrict the peak-overshoot. For the verification,

all properties are considered under the assumption that velge, remains constant once
set.

Example 6: An Artificial Example is a model (see Figure 4.10a) which cannot be
proven stable without further reachability information. The reason is that the guard
of the transition from location Turbo Fast to Wait does not restrict values of x. Thus,
naively generating constraints due to Theorem 2.31 leads to the following snippet of

112

4.3 Unrolling: Hybrid Methods for Hybrid Systems

constraints

Vz,tex € [~100,100] At € [0,5] = a(||z]]) = Viait
Viet e [0, 5] = VTurbo Fast(oatL
Vi e V;\Iait (091‘ + 0.1, 0) § VTurbo Fast (.’L‘, 5)

z,t)
=0

~— —

Obviously, no such Vyait, Viurbo wait €xist. On the other hand, due to the unrolling, we
can conclude that the transition may only be taken with x € [10.1,38.9] which allows us
to replace the last constraint by

Vo ez € [10.1,38.9] = Viai1(0.92 + 0.1,0) < Viurbo Fast (2, 5),

and, indeed, for > 10, the Lyapunov function value may not increase.!’ The unrolled
automaton is sketched in Figure 4.10b.

Turbo Fast

i=—-01z—0.5
i=1
t=5/ 0 <z <100
z:=09z+1.0,t:=0 0<t<5

Wait -
Active
&= —0.1x .
. i =—-0.1z
t=1 .
t=0

—100 < z < 100
—100 < 2 <100

Turbo Slow
i=-01z—-02
t=1

0<x<100

0<t<5

(a) unmodified (b) unrolled

Figure 4.10: Unrolling of an artificial example.

Results

Table 4.11 shows, in order, the depth of the unrolled hybrid automaton and the time

ONote, that the update increases in case the transition is taken with z < 10. This renders the system
non-LS (cf. Definition 2.26). However, reachability information reveals that no such trajectory exists.

113

Chapter 4 Transformations that Simplify Stability Verification

Depth STABHYLI SafeSet BoxConvert SoarBox Total Time
vC 3 0.39 0.16 2.40 38.60 41.55
ACC 6 0.82 1.00 57.20 291.60 350.62
Spidercam | 5 2.14 580.30 11.00 3814.70 4408.14
Example 6 | 8 1.65 5.67 0.06 58.04 65.42
(a) including MATLAB startup
Depth STABHYLI SafeSet BoxConvert SoarBox Total Time
vC 3 0.39 0.16 2.40 14.60 17.55
ACC 6 0.82 1.00 57.20 39.60 98.62
Spidercam | 5 2.14 580.30 11.00 1098.70 1692.14
Example 6 | 8 1.65 5.67 0.06 10.04 17.42

(b) excluding MATLAB startup

Table 4.11: Detailed computation times.

needed to compute the SLLFs, the safe sets, the inscribed polygon (hypercube and cross-
polytope), the reachability information, and, in the last column, the total runtime.'! Since
SoAaPBOX is written in MATLAB and our current prototype tool runs SOAPBOX
for each reach set computation, we did two comparisons: (a) with and (b) without the
time for the MATLAB (re-)initialization (once for each computation).

STABHYLI STABHYLI STABHYLI Unrolling
(common) (piecewise) (decomposition)
VC X 0.21s 22.29s 17.55
ACC X 1.70s 112.99s 98.62
Spidercam | 1.37s 6.97s X 1692.14
Example 6 | X X X 17.42

Table 4.12: Comparison of computation times.

In Table 4.12, we compare the runtime of the proposed approach with the runtime
of STABHYLI searching for a common Lyapunov function, STABHYLI searching for
a piecewise Lyapunov function, and STABHYLI using the decompositional approach.
We can conclude that although the proposed unrolling technique is not the fastest, its
runtime is comparable to the runtime of the decompositional approach and may handle
examples that other approaches cannot handle. Furthermore, if a benchmark exposes a
safety property, too (like the VC), then additional time is required to verify the safety
properties which nullifies the advantage of the shorter runtime.

4.4 Summary

In this chapter, we have presented two techniques to simplify the search for Lyapunov
functions. The first technique relaxes the graph structure of the hybrid automaton: if the
graph of the hybrid automaton is dense, then the relaxed version contains significantly
fewer cycles. The idea is to re-route every transition through a new dummy location.

' An Intel@© Core™ i7-3770T CPU with 2.50GHz and 8GB of RAM (in single-core mode) was used to
run the benchmarks.

114

4.4 Summary

Thus, if in the original automaton a single transition is taken, then the relaxed automaton
has to take the cascade of two transitions to achieve the same result. This is an advantage
for the decompositional proof scheme because it implicitly computes cycle covers for every
strongly connected components of the underlying graph. Therefore, fewer cycles lead to a
reduced effort. Even more, the cycle covers have to satisfy that each pair of cycles shares
at most one node. Our relaxation immediately produces such a structure. However, the
main advantage is technical: a cycle encountered by the decompositional proof scheme
results in a stability problem whose solution set is underapproximated by a finite number
of solutions. This underapproximated solution set is reused in further computations.
Therefore, the more subproblems have to be solved and underapproximated, the more
likely we end up with an empty solution set due to underapproximation. That means that
due to our relaxation technique the decompositional proof technique is available for hybrid
automata whose graph structure is very dense. This is desired as the decomposition is
particularly well-suited to prove stability of large-scale hybrid systems because it allows:

1. to decompose a monolithic proof into several smaller subproofs,
2. to reuse subproofs after modifying the hybrid system, and
3. to identify critical parts of the hybrid automaton.

All these benefits are not given when the hybrid system exhibits a very dense graph struc-
ture of the automaton because that would lead to an enormous number of computational
steps required in the decomposition. The proposed relaxation overcomes these matters in
the best case. Nevertheless, our relaxation is not for free and may introduce runs which
are not stable and may render the search for Lyapunov function unsuccessful. Thus, if
the relaxation is too loose, then our technique falls back to step-by-step reconstructing
the original automaton. Each step increases the effort needed for the decomposition
until a proof succeeds or ultimately — in the worst case — the original automaton gets
decomposed.

Furthermore, the procedure can be automated which is very much desired as our focus
is the automation of Lyapunov function-based stability proofs. In Section 4.2.2, by
successfully employing the proposed technique in some examples, we showed usefulness
of our approach.

The second technique is called unrolling or unfolding and simultaneously allows us to
verify both, safety and stability properties of hybrid systems. In contrast to the simple
approach of verifying the properties separately, we merge the verification procedures
such that it makes either verification task simpler. Our approach allows us to exploit
the knowledge that is gained during the verification of one problem in the verification
of the other one. From the safety perspective, we use the fact that sublevel sets —
which are obtained from Lyapunov functions — reveal subsets of the state space which
are known to be safe. We stop the reachability analysis as soon as the safe set is
entered. From the stability perspective, we use an unrolled version of the hybrid system’s
automaton — which is obtained by repeated reach set computations — to have a more
precise characterization of the feasible trajectories. Obtaining Lyapunov functions for

115

Chapter 4 Transformations that Simplify Stability Verification

this unrolled hybrid automaton reduces the computational effort. It allows us to find
Lyapunov functions for systems where the representation of the system contains implicit
information that is needed to successfully prove stability.

For some hybrid automata this approach might not be applicable. This is the case when
the sequence of locations in a run is infinite and thus a run keeps switching locations. In
this case, we believe that the presented techniques still can fruitfully be applied to parts
of the automaton. Reachability analysis profits from safe sets even when the stability of
the overall automaton cannot be established. Additionally, knowledge gained by partial
reachability computations on sub-components of the automaton helps us to relax the
transition constraints for the computation of a global Lyapunov function. The usefulness
of our approach has been shown by some promising experiments (see Section 4.3.3).

116

CHAPTER 5 -

A Framework for Designing Safe and
Stable Hybrid Systems

In this chapter, we focus on the structured design of stable and safe hybrid systems.
The key idea is to facilitate the reuse of components and employ composition to create
large-scale hybrid systems out of smaller sub-components. Indeed, we would gain the
following benefits:

e reduced verification effort: smaller models tend to be more tractable with respect
to verification; minor changes in a sub-component do not necessarily trigger a complete
rerun of the verification task,

¢ improved manual inspection: smaller models are easier to comprehend by humans,

e reduced development costs: creating new models does not require an engineer to
start from scratch but rely on mature and well-known components; the influence of
changes in sub-components are easier to locate and contract breaking components can
be replaced.

In these settings, we assume a clear separation of the plant P, a controller C, and
their common environment env as visualized in Figure 5.1. The controller might read
the plant’s state via sensors Sens and manipulate the state via actuators Act while an
external (not modeled) environment may additionally manipulate the plant’s state via
disturbances Disturb. Given a plant our goal is to systematically construct a controller
that achieves certain objectives on the plant. Such objectives include stability properties,
e.g., driving the plant state to a certain equilibrium, and safety properties, e.g., the
plant state will always avoid a certain set of unsafe states. The design flow is then as
follows: first, we design small controllers that either achieve some objectives on their
own or contribute to cooperatively achieving an objective. Second, we compose the
smaller controllers to larger ones and deduce properties of the composite based on the
sub-component’s properties.

To be able to deduce properties of a composed component from properties of its
sub-components, contracts and interfaces are used. This is called contract-based design
[Ben+08; SDP12]. Interfaces are used to describe properties of a component’s assumption
on its deployment context as well as the guarantees it will achieve in that context, which
we also call its service. Using an interface instead of the implementation allows us

117

Chapter 5 A Framework for Designing Safe and Stable Hybrid Systems

Controller: C Environment: Env

Act Sens Disturb
\

Plant: P

Figure 5.1: General setting: a clear separation between the controller, the plant, and
their common environment

to (1) once check satisfaction of the interface in isolation and (2) later — during the
composition — rely on the properties annotated in the interface to check compliance
with the contract imposed by the composition operation. This last step is called virtual
integration.

In this chapter, we focus on a parallel composition operator which complements the
sequential composition operator introduced by Damm et al. in [Dam+10]. The sequen-
tial composition operator allows passing the burden of controlling a plant to another
component while the parallel composition operator allows to have multiple controllers
run simultaneously and controlling distinct parts of a common plant.

Neither interfaces nor implementations are unique. On one hand, there can be multiple
interfaces to an implementation, for example, covering different operation modes, hiding
or exposing certain implementation details, or describing certain levels of degradation
either of the component itself or its environment. On the other hand, different implemen-
tations might satisfy the same interface, for example, we might have two controllers with
different deployment contexts if one controller’s context comprises the other controller’s
context while achieving the same guarantees it also satisfies the interface of the other
controller but not necessarily vice versa.

The problem addressed in this chapter can be summarized as: carefully design a
framework (1) making realistic assumptions on the deployment context, (2) allowing local
verification of safety and stability properties of sub-controllers, (3) defining composition
operators that preserve the locally established properties of the sub-controllers. Table 5.2
summarizes the contributions and the main responsible authors.

The remainder of the chapter is organized as follows: In Section 5.1, we formally
introduce an extended version of hybrid automata, namely hybrid input /output automata,
environmental predicates that capture the behavior of a controller’s expected environment,
and adapt the definition of runs to these new settings. Section 5.2 presents a brief
introduction on the sequential composition operator as proposed in [Dam+10]. Section 5.3
is the main part of this chapter and contains the stability-related theory to the framework
as published in [DMR16]. The stability-related part is solely contributed by this thesis’s

118

5.1 Preliminaries

Contribution main contributor
Framework [DMR16]
e design of composition operator shared
e correctness of composition Astrid Rakow
e design of event mechanism shared
e correctness of composition with events Astrid Rakow

Framework-tailored stability notions

e definition author
e correctness author
e compositionality author
Case Study [MHR17; DMR14; Dam+14]

e controller design and specification author
e manual unrolling technique author
e over-approximation techniques author
e hybridization technique shared
e local stability proofs author
e local safety proofs author
e reachability tool extension Willem Hagemann

Table 5.2: Contributions addressed in this chapter

author, while the remainder of the framework is mostly joint work. In this section, we first
extend global asymptotic stability and the Lyapunov theorem to hybrid I/O automata
and then show how to apply these in the context of parallel composition. Indeed, we
introduce two new stability notions:

e global asymptotic stability under assumptions (GAS-Asm) and
e conditional global asymptotic stability (conGAS).

The later says that stability holds only while a certain (external) condition is satisfied by
the environment and the former is a simple instantiation where the condition is globally
assumed to hold. These two notions allow us to encode stability objectives that are
always guaranteed and stability objectives that are only guaranteed in some situations
such as after negotiating a contract with a cooperating controller. Finally, in Section 5.4