OLDENBURG

Fakultdt Il — Informatik, Wirtschafts- und Rechtswissenschaften
Department fiir Informatik

Stochastic Satisfiability Modulo
Theories: A Symbolic Technique for the
Analysis of Probabilistic Hybrid Systems

Dissertation zur Erlangung des Grades eines
Doktors der Naturwissenschaften

von

Dipl.-Inf. Tino Teige

Gutachter:

Prof. Dr. Martin Franzle
Prof. Dr.-Ing. Holger Hermanns

Tag der Disputation: 29. August 2012

Niemals ohne Dich!

Acknowledgments

First of all, I would like to express my deepest gratitude to my supervisor Prof. Dr. Martin
Franzle for his excellent words of advice and his extraordinary support during all the
steps finally leading to this thesis. He introduced me to the research area of formal
verification of complex systems and sparked my interest in symbolic techniques for the
analysis of probabilistic hybrid systems, the latter becoming the core topic of this thesis.
I particularly appreciate the freedom Martin gave me in organizing my work, and I want
to emphasize all the numerous and oftentimes spontaneous discussions with him about
various questions not only related to science but also to private matters.

[am furthermore very grateful to Prof. Dr.-Ing. Holger Hermanns for the valuable col-
laboration on the fundamentals of the approach of this thesis as well as for his willingness
of being my co-examiner, to Prof. Dr. Ernst-Riidiger Olderog and Dr. Sibylle Froschle
for attending my thesis defense as members of the committee, and to my colleagues from
the University of Oldenburg, from the OFFIS Institute for Information Technology, from
the Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (AVACS), and from the European Collaborative Project “Model-
ing, Verification and Control of Complex Systems: From Foundations to Power Network
Applications” (MoVeS) for many fruitful discussions and for the great atmosphere dur-
ing everyday work as well as during project meetings. Especially, I would like to thank
Andreas Eggers, Dr. Christian Herde, Natalia Kalinnik, Stefan Kupferschmid, Karsten
Scheibler, and Dr. Tobias Schubert for jointly developing the iSAT tool which establishes
one central building block of the SiSAT tool presented in this thesis.

My cordial thanks go to my dear colleagues Dr. Christian Herde and Andreas Eggers
for the close and outstanding cooperation during the last years and for the pleasant ac-
tivities outside job. I gratefully acknowledge Christian’s great help to me when I came
to Oldenburg and started my job at university. From him, I learned a lot about satisfia-
bility and constraint solving as well as about predicative encodings of hybrid systems. I
regard highly Andreas’ invaluable technical assistance in performing the experiments of
this thesis, which has saved me several hours of manual effort, namely by mechanizing
the execution of the experiments on the servers as well as the extraction of relevant data
obtained from these experiments.

Last but not least, I am indebted to my family and to my friends for all the good times
we spent together and for the support in bad moments.

Tino Teige
Oldenburg, September 2012

Abstract

In today’s high-tech world, embedded computer systems interacting with technical, phys-
ical, or even biological environments are our permanent companions. While several of
these applications are almost free of risk and just contribute to a better quality of life
such as the use of cellular phones, washing machines, and refrigerators, other embedded
systems operate in a safety-critical context where the health of people might be jeop-
ardized like, for instance, in airplanes, automobiles, and medical devices. It is thus of
utmost importance that embedded and, in particular, safety-critical systems never run
into unsafe situations causing disastrous consequences.

Such real-world safety-critical applications exhibit an intricate system behavior com-
prising discrete computations like of embedded digital controllers, continuous dynamics of
technical environments like the continuous evolution of the temperature, as well as their
interaction by means of sensors and actuators. These systems are commonly known under
the term of hybrid discrete-continuous systems.

When permitting a more realistic view on real-world embedded systems, it becomes
apparent that their dynamics are frequently influenced by randommness. For instance,
the landing maneuver of an airplane is, among others, subject to the wind speed and
wind direction. These physical entities however are controlled by nature and can be
forecast only with uncertainty. That is to say, statements about safe landing maneuvers
should also incorporate stochastic predictions of the evolution of wind. Other sources
of randomness can be found in the hardware itself like unpredictable failures of circuits,
noise in measurements affecting sensors, and actuators missing their setpoints. Such more
realistic systems are referred to as stochastic or probabilistic hybrid systems.

When safety-critical applications are subject to stochastic dynamics, preventing unsafe
situations by design usually is impossible or economically infeasible, such that a residual
risk has to be accepted. The notion of safety in this context is slightly relaxed, requiring
that the probability of reaching the unsafe system states always is below an acceptable
threshold like, for instance, 1%o. In order to certify safety of real-world applications,
manual inspection becomes more and more impracticable due to their rapid-growing com-
plexity. This motivates the development of computer-aided certification methods. The
research area dealing with automatic analysis procedures for stochastic and probabilistic
hybrid systems has attracted wide interest in recent years and has yielded diverse analysis
approaches which are chiefly based on simulation or finite-state abstractions.

In this thesis, we pioneer a completely different approach, namely a symbolic tech-
nique for the safety analysis of probabilistic hybrid automata (PHAs) involving a simple
model of randomness, that is, probabilistic events from a finite sample space as is the case
with throwing dice. Our approach builds on bounded model checking (BMC), where the
step-bounded state reachability problem of non-probabilistic hybrid systems is reduced to
the satisfiability problem of logical formulae involving arithmetic constraints. For non-
probabilistic hybrid systems, the latter is a quantifier-free satisfiability modulo theories

VIII

(SMT) problem. To reflect the semantics of PHAs, we extend SMT by existential as
well as randomized quantifiers, the latter known from stochastic propositional satisfiabil-
ity (SSAT). This extension of SMT to stochastic satisfiability modulo theories (SSMT)
facilitates a reduction of probabilistic bounded state reachability of PHAs to the prob-
lem of solving SSMT formulae, being referred to as probabilistic bounded model checking
(PBMC). Completing the symbolic analysis procedure, algorithms for solving SSMT for-
mulae and, moreover, a number of algorithmic enhancements to improve performance in
practice are investigated. This symbolic approach establishes an automatic falsification
procedure for probabilistic safety properties of the shape “the probability of reaching the
unsafe states always is below 1%q”.

Motivated by the fact that industrial applications often call for quantitative measures
distinct from classical state reachability probabilities, we further propose a symbolic
method for computing expected values of PHAs, being able to verify probabilistic safety
requirements like “the mean time to failure always is at least 20 minutes”.

We finally suggest approaches that go beyond probabilistic bounded state reachability
but are yet restricted to probabilistic finite-state models. Being based on a generalization
of the logical concept of Craig interpolation, these symbolic procedures aim at the verifi-
cation of probabilistic safety properties like “the probability of reaching the unsafe states
always is below 1%0”, on the one hand, as well as of probabilistic stability properties like
“the probability that the system stabilizes within some region always is at least 99.9%”,
on the other hand.

A significant characteristic of the above symbolic approaches is the direct treatment
of concurrency, as well-known from the non-probabilistic case. That is to say, the state
explosion problem, arising from an explicit construction of the product automaton (with
respect to the discrete state space) as in several other analysis approaches, is alleviated,
thus contributing to a better scalability.

Zusammenfassung

In der heutigen hochtechnologisierten Welt sind eingebettete Computersysteme, welche
mit technischen, physikalischen oder sogar biologischen Umgebungen interagieren, unsere
standigen Wegbegleiter. Wahrend viele dieser Anwendungen nahezu risikofrei sind und
lediglich zu einer besseren Lebensqualitéit beitragen wie der Einsatz von Mobilfunkte-
lefonen, Waschmaschinen und Kiihlschranken, operieren andere eingebettete Systeme in
einem sicherheitskritischen Kontext, in welchem die Gesundheit von Menschen gefahrdet
sein konnte, zum Beispiel in Flugzeugen, Automobilen und medizinischen Geréten. Es ist
daher von &uflerster Wichtigkeit, dass eingebettete und insbesondere sicherheitskritische
Systeme niemals zu unsicheren Situationen mit desastrosen Konsequenzen fithren.

Sicherheitskritische Anwendungen in der realen Welt weisen ein kompliziertes System-
verhalten auf, welches diskrete Berechnungen wie in digitalen eingebetteten Steuerein-
heiten, kontinuierliche Dynamiken der technischen Umgebungen wie die kontinuierliche
Entwicklung der Temperatur sowie deren Zusammenspiel mit Hilfe von Sensoren und Ak-
tuatoren beinhaltet. Diese Systeme werden {iblicherweise unter dem Begriff der hybrid
diskret-kontinuierlichen Systeme zusammengefasst.

Erlaubt man einen realistischeren Blick auf eingebettete Systeme der realen Welt, so
wird es augenscheinlich, dass ihre Dynamik héufig dem Zufall unterliegt. Beispielsweise
héngt das Landemanover eines Flugzeugs unter anderem von der Windgeschwindigkeit
und Windrichting ab. Diese physikalischen Entitdten werden jedoch von der Natur kon-
trolliert und kénnen nur mit Ungewissheit vorhergesagt werden. Aussagen iiber sichere
Landemanover sollten daher auch stochastische Vorhersagen iiber die Entwicklung des
Windes mitberiicksichtigen. Andere Quellen von Zufall kénnen in der Hardware selbst ge-
funden werden wie unvorhersehbare Ausfille von Schaltkreisen, Storungen in den Messun-
gen von Sensoren und Aktuatoren, die ihre Einstellwerte verfehlen. Solche realistischeren
Systeme werden als stochastische oder probabilistische hybride Systeme bezeichnet.

Wenn sicherheitskritische Anwendungen stochastisches Verhalten einschlieflen, ist das
Vermeiden unsicherer Situationen durch konstruktive Mafinahmen in der Regel unmog-
lich oder 6konomisch nicht realisierbar, so dass ein Restrisiko in Kauf genommen werden
muss. Der Sicherheitsbegriff ist demnach in diesem Kontext leicht abgeschwicht, und
zwar erfordert dieser, dass die Wahrscheinlichkeit des Erreichens unsicherer Zusténde im-
mer unterhalb eines akzeptierbaren Schwellwertes liegt, zum Beispiel 1%o. Um die Sicher-
heit solcher Anwendungen zu zertifizieren, wird eine manuelle Inspektion aufgrund der
schnell wachsenden Systemkomplexitéit immer unpraktikabler. Durch diesen Umstand ist
die Entwicklung computergestiitzter Zertifizierungsmethoden motiviert. Das Forschungs-
gebiet, das sich mit der automatischen Analyse stochastischer und probabilistischer hy-
brider Systeme beschéftigt, ist in den letzten Jahren auf reges Interesse gestoflen und hat
diverse Analyseverfahren hervorgebracht, die vor allem auf Simulation oder Abstraktion
basieren.

In der vorliegenden Arbeit stellen wir einen andersartigen Ansatz vor, ndmlich eine sym-

X

bolische Technik zur Sicherheitsanalyse probabilistischer hybrider Automaten (PHAs), die
ein einfaches Modell von Zufall unterstiitzen, und zwar Zufallsexperimente mit endlich vie-
len Ausgédngen, wie es der Fall beim Wiirfeln ist. Dieser Ansatz kniipft an eine Technik
an, die sich bounded model checking (BMC), also beschrinkte Modellpriifung, nennt.
BMC reduziert das schrittbeschréinkte Zustandserreichbarkeitsproblem fiir nichtprobabi-
listische hybride Systeme auf das Erfiillbarkeitsproblem quantorenfreier logischer Formeln,
die arithmetische Ausdriicke umfassen. Letztere Probleme bezeichnet man im Englischen
als satisfiability modulo theories (SMT). Um die Semantik von PHAs widerspiegeln zu
konnen, erweitert diese Arbeit den Begriff von SMT um existentielle sowie randomisierte
Quantoren, wobei die letztgenannten dem stochastischen propositionalen Erfiillbarkeits-
problem (SSAT) entstammen. Diese Erweiterung von SMT miindet in den neuartigen
Begriff von stochastic satisfiability modulo theories (SSMT) und erméglicht die Redukti-
on des probabilistischen beschrankten Zustandserreichbarkeitsproblems fiir PHAs auf das
Problem des Losens von SSMT-Formeln, was als probabilistic bounded model checking
(PBMC) bezeichnet wird. Um das symbolische Analyseverfahren zu vervollstandigen, wer-
den Losungsalgorithmen fiir SSMT-Formeln entwickelt und dariiber hinaus eine Vielzahl
algorithmischer Optimierungen untersucht, um die Performanz in der Praxis zu verbes-
sern. Dieser symbolische Ansatz begriindet ein automatisches Falsifizierungsverfahren fiir
probabilistische Sicherheitseigenschaften der Art ,die Wahrscheinlichkeit des Erreichens
unsicherer Zustinde liegt immer unterhalb der 1%o-Grenze*.

Motiviert durch die Tatsache, dass industrielle Anwendungen héufig nach quantitati-
ven Maflen verlangen, die von klassischen Erreichbarkeitswahrscheinlichkeiten abweichen,
stellt die vorliegende Arbeit des Weiteren eine symbolische Methode zur Berechnung von
Erwartungswerten probabilistischer hybrider Automaten vor, die in der Lage ist, probabi-
listische Sicherheitsanforderungen der Gestalt ,.die mittlere Dauer bis zum Systemausfall
betragt mindestens 20 Minuten® zu verifizieren.

Der Schlussteil der Arbeit widmet sich dann einer Methodik, die iiber probabilisti-
sche beschrinkte Zustandserreichbarkeit hinausragt, bislang jedoch auf probabilistische
zustandsendliche Systeme limitiert ist. Basierend auf einer Verallgemeinerung des logi-
schen Konzepts der Craigschen Interpolation zielen diese symbolischen Verfahren auf die
Verifikation von probabilistischen Sicherheitseigenschaften wie ,,die Wahrscheinlichkeit des
Erreichens unsicherer Zustinde liegt immer unterhalb der 1%o-Grenze* zum einen sowie
von probabilistischen Stabilitdtsanforderungen wie ,,die Wahrscheinlichkeit, dass das Sys-
tem innerhalb einer gewissen Region stabilisiert, betrdgt mindestens 99, 9% zum anderen.

Eine signifikante Charakteristik der obigen Ansitze ist die direkte Handhabung von
Parallelitdt dhnlich dem nichtprobabilitischen Fall. Das Problem der Zustandsexplosion,
welches durch die explizite Konstruktion des Produktautomaten in vielen anderen Analy-
severfahren entsteht, kann dadurch gelindert werden, was zu einer besseren Skalierbarkeit
beitrigt.

Contents

1 Introduction
1.1 Motivation
1.2 Contributions and structure of the thesis

2 Foundations and Notations
2.1 General notations
2.2 Propositional logic
2.3 Computational complexity theory
2.4 Probability theoryo

3 Probabilistic Hybrid Systems
3.1 Motivation: A networked automation system
3.2 Related work: Probabilistic hybrid models and model checking
3.3 Concurrent discrete-time probabilistic hybrid automata

4 Stochastic Satisfiability Modulo Theories
4.1 Boolean satisfiability oo
4.2 Stochastic Boolean satisfiability
4.3 Satisfiability modulo theories oL
4.4 Stochastic satisfiability modulo theories

5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid
Automata
5.1 Probabilistic bounded state reachability

5.2 Introductory example of the reduction to SSMT
5.3 Reducing probabilistic bounded reachability to SSMT

6 Algorithms for SSMT Problems
6.1 Algorithms for SAT
6.2 Algorithms for SSAT
6.3 Algorithms for SMT
6.4 Algorithms for SSMT
6.5 Algorithmic enhancements
6.6 SSMT-based probabilistic bounded model checker SiSAT
6.7 Experimental results oo

7 SSMT-Based Expected-Value Analysis of Probabilistic Hybrid

Automata lﬂ

7.1 Cost expectation for probabilistic hybrid automata with costs

XII Contents

7.2 Conditional expectation for SSMT @
7.3 Reducing step-bounded cost expectation to SSMT @
7.4 SSMT algorithm for conditional expectation bad
7.5 Experimental results oo @
8 Case Study: A Networked Automation System @
8.1 Formel model of the NAS @
8.2 Analysis of the NAS lﬁ

9 Beyond Probabilistic Bounded Reachability by Means of Generalized
Craig Interpolation
9.1 Generalized Craig interpolants
9.2 Computing generalized Craig interpolants
9.3 Applications to symbolic analysis of probabilistic systems

10 Conclusion
10.1 Summary of achievements 0L
10.2 Future directions
10.3 Closing words

Bibliography

¢ £l EEEE| EEEE

Index

List

1.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26

of Figures

General view of the main symbolic analysis procedure

A networked automation system (NAS)
Parallel composition of probabilistic hybrid automata
Two concurrent probabilistic hybrid automata
Sample anchored runo

Semantics of an SSAT formula depicted as atree
Computational complexity of SSAT and related problems
Semantics of an SSMT formula depicted as atree
SSMT involving dependent probability distributions

Example of the SSMT encoding scheme

DPLL-based backtracking algorithm for SSAT
[lustration of pruning the search space
Example of S-resolution
Interaction between the different layers of the overall SSMT algorithm . . .
Hlustration of the SiSAT algorithm
Interpretation of the probability result pr of the SSMT algorithm
Example of the SSMT layer
Example of pruning the search tree based on accuracy
Example of solution-directed backjumping
Example of caching and reusing probability results of subtrees
Example of caching and reusing solutions
Input file format of SiSAT: single SSMT formula
Input file format of SISAT: probabilistic transition system
Excerpt of the help menu of SiISAT
Output of SiSAT: single SSMT formula
Output of SiSAT: probabilistic transition system
Cooling SysStem Scool + « v« v v e e
[lustration of the behavior of S¢oe;
Analysis of S..,;: maximum reachability probabilities
Analysis of S..0: accuracy-based pruning and thresholding
Evaluation of SiSAT: no enhancements
Evaluation of SiSAT: thresholding I
Evaluation of SiSAT: thresholding IT
Graphical representation of functions uby(6;) and uby(6;)
Evaluation of SiSAT: thresholding and branching heuristics I
Evaluation of SiSAT: thresholding and branching heuristics IT

ckkkkkEEREEREERREEEEEE RS 8 ErEE EEEE =

20

XIV

6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

8.1
8.2
8.3
8.4
8.5

8.6
8.7

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

10.1
10.2
10.3

List of Figures

Evaluation of SiISAT: thresholding and branching heuristics III @
Evaluation of SiISAT: purification, @
Evaluation of SiSAT: accuracy-based pruning bod
Evaluation of SiISAT: solution-directed backjumping @
Evaluation of SiISAT: caching probability results m
Evaluation of SiSAT: caching solutions bid
Evaluation of SiISAT: combinations of algorithmic enhancements I m
Evaluation of SiSAT: combinations of algorithmic enhancements IT b1d
Evaluation of SiSAT: basic versus alternative SiSAT encoding

Evaluation of SiISAT: algorithmic enhancements for alternative encoding I . @
Evaluation of SiSAT: algorithmic enhancements for alternative encoding I1

Evaluation of SiSAT: overall impact,

A single probabilistic hybrid automaton with cost function @
Maximum conditional expectation for SSMT @
Example of the SSMT encoding of step-bounded cost expectation @
SSMT algorithm for computing the maximum conditional expectation . . . bad
Excerpt of the extended help menu of SiISAT
Analysis of (Scoor, cost): k-step minimum MTTF IZE
Impact of thresholding I @
Impact of thresholding IT @
Formal model of the NAST @
Formal model of the NASTII bsil
Formal model of the NASIIT @
Sample system run of the NAS model., @
Analysis of the NAS: distributions of the final object position for fixed
initial phase shifts. Lo
Analysis of the NAS: actual distribution of the final object position lﬁ
Analysis of the NAS: expected values IZE
Craig interpolant L be4
Generalized Craig interpolant @
Example of interpolating S-resolution IZE
A simple MDP M b7
Probabilistic state reachability analysis of MDP M T @
Probabilistic state reachability analysis of MDP M IT bs4
Invariance kernelo L IZE
Computation of an invariance kernel IZTSB
Probabilistic region stability analysis of MDP M T g
Probabilistic region stability analysis of MDP M I b1l
A continuous-time PHA involving ODEs bod
Trajectory defined by an ODE constraint @
A PHA with state-dependent probability distributions. bad

1 Introduction

“It is remarkable that this science, which originated in the consideration of games of
chance, should become the most important object of human knowledge. ... The most
important questions in life are, for the most part, really only problems of probability.”

Pierre-Simon, marquis de Laplace, 1 812

1.1 Motivation

200 years ago, Laplace already recognized the omnipresence and the important role of
probability in our life. The term of probability commonly denotes the degree of certainty
that some event will happen, where this degree is given by a numerical measure ranging
in between 0 to 1. For instance, if the probability is close to 1 or to 0 then we are
almost sure that the event will or will not occur, respectively. A simple example of a
probabilistic phenomenon is throwing a die: the unknown outcome of one throw is a
natural number between 1 and 6 where all results are equiprobable, i.e. each number
occurs with probability %. Throwing dice or other random experiments are an essential
ingredient of games of chance which can be traced back some thousands years ago.

Nowadays, randomness is observed and investigated in various scientific disciplines.
For instance, the stochastic process of radioactive decay is studied in physics, random
genetic mutations are considered in biology, and theories like the random walk hypothesis,
assuming a random evolution of stock market prices, are suggested in finance. Another
steadily growing area in which random phenomena have to be taken into account is the
development of embedded computer systems interacting with technical, physical, or even
biological environments. While several of these applications contribute to the quality
of life such as the use of cellular phones, washing machines, and refrigerators, other
embedded systems operate in a safety-critical context where the health of people might
be jeopardized. Safety-critical applications are developed, for instance, in the aviation,
automotive, and railroad industry but also in medical engineering. When considering
assistance systems in an automobile, malfunction of the navigation system will hardly
ever cause any disastrous consequences, while a failure of the precrash system, which
automatically applies partial or full braking among others, will most likely increase the
severity of an accident. It is thus of utmost importance that embedded and, in particular,
safety-critical systems work irreproachably.

Due to the growing complexity of embedded systems employed around the world, the
development of computer-aided approaches to the validation of their safety has evolved
to an active and significant research area. In order to describe the intricate behavior
of real-world safety-critical applications in a very precise manner, the expressive model

!The original quotation in French has appeared in the book Théorie Analytique des Probabilités by
Laplace in 1812. The English translation above was published in [Pic09].

9 1 Introduction

of hybrid discrete-continuous systems is frequently utilized. A hybrid system comprises
discrete as well as continuous behavior, thus being able to cope with the computations of
embedded digital controllers, with the continuous dynamics of technical environments like
the continuous evolution of the temperature, as well as with their interaction by means
of analog-to-digital and digital-to-analog converters. As mentioned above, randomness is
omnipresent in physical, biological, and chemical processes and thus should be covered
by a realistic system model. To this end, a wealth of ideas of augmenting hybrid systems
with probabilities has been suggested. The resulting models are known under the general
term stochastic hybrid systems and particularly vary in the degree to which they support
random phenomena.

With regard to automatic analysis procedures for stochastic hybrid systems, several
approaches rely on Monte Carlo simulation which is an inherently incomplete technique
and allows for approximate results only. Other approaches are based on the application
of established methods for probabilistic finite-states systems on finite-state abstractions
of the original system. These procedures also yield approximate results in general, while
most of them in fact compute upper estimates of the actual results. As a consequence,
the latter approaches establish verification procedures for probabilistic safety properties
of the shape “the worst-case probability of reaching an unsafe state is at most 0.9%”.
That is to say, if an upper estimate of at most 0.9%o is computed then the latter property
is verified.

In this thesis, we propose a completely different approach to the (unsafe) state reacha-
bility analysis of stochastic hybrid systems. Motivated by the success of symbolic model
checking techniques for non-probabilistic hybrid systems, we aspire to a similar concept
for probabilistic hybrid systems. To be more exact, instead of abstracting the original
system, we aim at a precise description of the next-state relation of the stochastic system
by means of a stochastic logic. Though the symbolic encoding is precise, the resulting
stochastic constraint formulae just cover bounded system behavior akin to the bounded
model checking, or BMC for short, approach for the non-probabilistic case. With the
aid of an algorithm for solving such stochastic constraint formulae, lower estimates of the
actual reachability probability are determined. Due to the latter fact, we achieve an au-
tomatic and fully symbolic falsification procedure being able to refute above probabilistic
safety properties once a lower estimate exceeding 0.9%¢ is computed. This approach thus
complements the verification procedures mentioned earlier.

In contrast to stochastic hybrid systems in full generality, the model investigated in the
thesis is very confined in its stochastic behavior as it only admits probabilistic events from
a finite sample space as is the case with throwing dice. Albeit being simple, interesting
random phenomena like component failures or message losses are characterizable.

Concerning the issue of concurrent systems, it is important to remark that above sym-
bolic approach does not flatten concurrent systems before model checking which has be-
come known as state explosion in the finite-state case. In fact, the symbolic encoding of
concurrent probabilistic hybrid systems accommodates concurrency directly such that the
size of the encoding is linear in the number of parallel components, as well-known from
the non-probabilistic case. That is to say, this treatment alleviates the state explosion,
arising from an explicit construction of the product automaton (with respect to the dis-
crete state space) as in several other analysis approaches, and thus contributes to a better

1.2 Contributions and structure of the thesis 3

scalability.

Motivated by the fact that industrial applications often call for quantitative measures
distinct from classical (unsafe) state reachability probabilities, we further propose a sym-
bolic method for computing expected values of probabilistic hybrid systems, being able
to verify probabilistic safety properties of the shape “the mean time to failure is always
at least 20 minutes”.

In order to go beyond probabilistic bounded state reachability, we moreover suggest
a symbolic technique that is able to compute upper estimates of the reachability proba-
bility but is yet restricted to probabilistic finite-state models. This symbolic verification
procedure can then be used to validate safety properties of the shape “the worst-case
probability of reaching an unsafe state is at most 0.9%¢”, namely if an upper estimate of
at most 0.9%¢ is calculated. In addition to the latter, we finally investigate an approach
to probabilistic region stability of probabilistic finite-state systems.

1.2 Contributions and structure of the thesis

In this thesis, we make three contributions to symbolic model checking of probabilistic
hybrid and finite-state systems. These contributions are elaborated on in Chapters[3lto
An overview of some relevant foundations and notations being used throughout this thesis
is given in Chapter Pl In Chapter 10, we conclude with a summary of the achievements
and discuss promising directions for future research.

We remark that essential parts of this thesis were already published in proceedings of
scientific conferences as well as in academic journals by the author of this thesis together
with his co-authors. The relevant publications are cited before the corresponding passages
in the thesis.

In the remainder of this section, we outline the three major contributions.

Symbolic falsification procedure for probabilistic safety properties of proba-
bilistic hybrid automata based on SSMT solving. The main analysis approach
of this thesis is illustrated in Figure [LI The starting point is a given problem from the
real world, i.e. a real-world system comprising random phenomena and a probabilistic
safety property of the shape “the probability of a fatal system error is at most 1%o in
worst case”. In Chapter [l we elaborate on such a real-world scenario from the networked
automation systems domain. In order to address above problems by means of mathemati-
cal methods, the frequently informal descriptions of real-world problems must be phrased
in a mathematically exact way. To this end, we introduce the formal model of concur-
rent discrete-time probabilistic hybrid automata in Chapter [B] as well as the notion of
probabilistic bounded state reachability in Chapter Bl As an example, we show how the
case study from the networked automation systems domain can be modeled as a system
of probabilistic hybrid automata in Chapter [8l In a next step, the formal probabilistic
system model and the unsafe states are encoded symbolically, which is described in Chap-
ter Bl This encoding scheme is similar to predicative descriptions of non-probabilistic
hybrid systems where the system behavior is mapped to a logical formula involving rich
arithmetic constraints, the latter being also known as a satisfiability modulo theories

1 Introduction

real-world problem result

lower
bounds
on failure
probability

falsifying
prob. safety
property

probabilistic
safety
property

probabilistic
real-world
system

Chapter[3 /N Chapter 8
modeling ‘ ‘ problem-solving algorithm
Chapter 8 Chapter[d

-

formal problem description probabilistic BMC formulae

probabilistic
hybrid
automata

unsafe
states

Chapter

Chapters (3 &[4

R

translation ‘ ‘ probabilistic BMC

Chapter

Chapter[3

predicative problem description

—

symbolic

encoding

Chapters[] €

Figure 1.1: General view of the main symbolic analysis procedure.

(SMT) formula. To further cope with the probabilistic dynamics present in probabilistic
hybrid automata, the notion of SMT is enhanced by randomized quantifiers as known
from stochastic propositional satisfiability (SSAT). Together with the classical existential
quantifiers needed for resolving the non-determinism in the system, this extension of SMT

1.2 Contributions and structure of the thesis 5

results in the novel concept of stochastic satisfiability modulo theories (SSMT), which
is introduced in Chapter [4. From the predicative problem description, concrete SSMT
formulae are then achieved using the idea of probabilistic bounded model checking, see
Chapter B These SSMT formulae reflect the original problem restricted to step-bounded
system behavior and, moreover, their quantitative interpretations yield lower bounds on
the worst-case probability of reaching the unsafe states. In order to complete the sym-
bolic analysis procedure, Chapter [l investigates algorithms to solve SSMT formulae as
well as a number of algorithmic enhancements to improve performance in practice. As
indicated in Figure [LI the approach sketched above establishes a falsification procedure
for probabilistic safety properties of probabilistic hybrid automata. That is to say, once
a lower estimate of the worst-case probability of reaching the unsafe states is computed
which exceeds the acceptable threshold value, for instance, 1%¢ as above, the probabilistic
safety property is falsified. In order to demonstrate practical applicability, the symbolic
analysis procedure proposed in this thesis is applied to the concrete case study from the
networked automation systems domain in Chapter &

Symbolic verification procedure for safety requirements on expected values of
probabilistic hybrid automata based on SSMT solving. Motivated by the fact
that industrial applications often call for quantitative measures distinct from classical
reachability probabilities, namely to gain a more precise insight into the system behavior,
Chapter [1 is devoted to a symbolic method for computing expected values of concur-
rent discrete-time probabilistic hybrid automata like, for instance, mean time to failure
(MTTF). This method builds upon SSMT-based probabilistic bounded model checking,
and its schematic view is roughly the same as depicted in Figure [LIl Since the proposed
method addresses probabilistic safety properties of the shape “the MTTF is always at
least 20 minutes”, it however turns into a verification approach being able to validate that
a system of probabilistic hybrid automata meets such above safety requirement once a
lower bound on the worst-case MTTF is computed which is at least 20 minutes. This
SSMT-based expected-value analysis procedure is also applied to the case study from the
networked automation systems domain in Chapter [8.

Symbolic verification procedure for probabilistic safety properties of prob-
abilistic finite-state systems based on generalized Craig interpolation. Both
aforementioned analysis procedures are only able to cope with bounded system behav-
ior. In Chapter [9 we pioneer symbolic approaches that go beyond probabilistic bounded
state reachability but are yet restricted to probabilistic finite-state models. To this end,
we introduce and make use of the novel concept of generalized Craig interpolation for
SSAT formulae. Akin to symbolic methods for the non-probabilistic case, generalized
Craig interpolation provides an opportunity to compute a symbolic overapproximation of
the (backward) reachable state set of probabilistic finite-state systems. This computation
relies on a resolution calculus for SSAT formulae which is explained in Chapter [0 Craig
interpolation-based model checking for non-probabilistic systems is able to verify safety
properties of the shape “the unsafe states are unreachable” whenever the overapproxi-
mated set of all reachable states has an empty intersection with the set of unsafe states.
As reaching the unsafe states is frequently unavoidable in probabilistic scenarios, a sim-

6 1 Introduction

ple check for empty intersection does not suffice in general to verify probabilistic safety
properties like “the worst-case probability of reaching the unsafe states is at most 1%0”.
To develop such a symbolic verification procedure, we exploit a predicative description of
the system as well as a symbolic overapproximation of the backward reachable state set in
order to construct SSAT formulae whose quantitative interpretations yield upper bounds
on the worst-case probability of reaching the unsafe states. Whenever an upper bound of
at most 1%o is computed then above probabilistic safety property is verified. Chapter
furthermore investigates the application of generalized Craig interpolation to probabilistic
region stability of probabilistic finite-state systems.

2 Foundations and Notations

This chapter serves as a glossary of general foundations and notations used throughout
this thesis.

2.1 General notations

The sets of the real numbers, the integers, the natural numbers, and the Booleans are
denoted by R, Z, N, and B, respectively. An interval I over T' € {R,Z,N} is a subset
of T, i.e. I C T, that satisfies the following property: if z1,2, € I with x; < x5 then
each x € T with z; < x < x5 is contained in I, i.e. x € I. The infimum and supremum
of an interval I over T, denoted by inf(I) and sup(l), are the greatest number of T' that
is less than or equal to each number in I and the smallest number of T' that is greater
than or equal to each number in I, respectively. Within this thesis, we primarily refer to
bounded intervals I, i.e. the infimum inf(I) and the supremum sup(I) of I exist within R.
We distinguish four cases of bounded intervals. A bounded interval I over T' € {R,Z, N}
with [= inf(I) and u = sup(l) is called closed, denoted by [I, u], open, denoted by (I, u),
left-open, denoted by (I, u], and right-open, denoted by [l,u), if l € Tand uw € I, if [¢ T
and u ¢ [, if [¢ Tand uw € I, and if [€ [and u ¢ I, respectively.

Given any formula (or term) ¢, we define Var(p) as the set of all variables that occur in
¢. The notation ¢[v/z] denotes usual substitution of v for x in . For consecutive substi-
tutions @[vy/z1][ve/xs] . . . [Uk/xk], We occasionally write ¢[vy, va, ..., vp/x1, Ta, ..., 2] if
the z; do not mutually occur in the v;. The domain of a variable z, i.e. the set of possible
values = can take, is occasionally denoted by dom(z).

We use the following common abbreviations:

k
D1 @i = ap+ag+ ...+ ay,
k [jp—
Hi:1ai = a1 Q... Ay
k o
max; ;a; := max(ay,as,...,a),
k ._
XEia; = ap Xag X ...Xay,
k o q
/\izlaz‘ = a3 Nas N\ ... N\ag, an
k [yp—
Ot = a10a®...0a,

where x and ® denotes Cartesian product and concatenation, respectively. Whenever it
is clear from the context, we omit the symbol @, i.e. for some a and b, we occasionally
write ab instead of a ® b. For a set A = {a1,as,...,ar}, we further define), :
k — TTF ._ k vk . AE
E@':1 Qs HaeA T H@':1 a;, MaXgeq ‘= Max, ; a;, ><a€A = Xi:1 g, /\aEA = /\izl a;, and
k
Ouea = Oi_; a; as usual.

8 2 Foundations and Notations

2.2 Propositional logic

Propositional logic is a branch of mathematical logic that investigates propositional formu-
lae and their interpretations. A propositional formula consists of atomic formulae (atoms
for short) and logical connectives (also known as logical operators). Atomic formulae are
of no deeper propositional structure and are also called propositional or Boolean variables
or, whenever it is clear from the context, just variables as from now. Logical connectives
are used to connect propositional formulae. In a formal definition of propositional formu-
lae, these connectives are usually restricted to the unary operator negation, denoted as —,
and to the binary operators conjunction, denoted as A, and disjunction, denoted as V.

Syntactically, propositional formulae are defined inductively: first, each propositional
variable is a propositional formula and, second, if ¢ and 1) are propositional formulae
then also =, ¢ A 1, and ¢ V 9 are propositional formulae. Semantically, such formulae
are interpreted by means of truth assignments. A truth assignment of a propositional
formula ¢ is a mapping that assigns to each variable that occurs in ¢ a truth value from
the Boolean domain B, i.e. either true or false. A truth assignment 7 then determines
the truth value of a propositional formula . Formally, we need to extend the concept of
a truth assignment to a mapping 7 from propositional formulae to truth values as follows:
if ¢ is a variable then 7(¢) = 7(¢). Otherwise, 7(—¢) = true if and only if 7(p) = false,
T(¢ AN) = true if and only if T(¢) = true and 7(¢) = true, and 7(p V ¢) = true if
and only if 7(p) = true or T(¢) = true. Slightly abusing notation, for a given formula
¢ and a truth assignment 7 we write 7(¢) to denote 7(p). We call a truth assignment 7
of a formula ¢ satisfying assignment, solution, or model of ¢ if and only if 7(¢) = true,
and occasionally denote it by 7 = ¢.

If a propositional formula ¢ has a model, then we call ¢ satisfiable and otherwise
unsatisfiable. In case that each truth assignment of ¢ is also a model of ¢, the formula ¢
is called a tautology or tautological denoted by |= . If ¢ is not a tautology then we call
¢ non-tautological denoted by = ¢. It clearly holds that ¢ is tautological if and only if
- is unsatisfiable. We sometimes write true for a tautological formula and false for
an unsatisfiable formula. If two formulae ¢ and v have the same models, i.e. 7 = ¢ if
and only if 7 = 9, then ¢ and v are semantically equivalent or just equivalent and we
write ¢ = . In case that ¢ is satisfiable if and only if ¢ is satisfiable, ¢ and 1) are called
equi-satisfiable. Please note that based on the logical connectives above, other connectives
can be defined. One common logical operation we use in this thesis is implication, denoted
as =, that is defined by ¢ = ¥ = —p V .

In addition to the notion of a truth assignment, we further define the concept of a
partial assignment T to the variables Var(y) of a formula ¢. Such a partial assignment 7
is not forced to map each variable in Var(p) to a truth value but just exactly those from
some subset V' C Var(y), i.e. 7 : V — B is a (total) function. Whenever z € V| we say
that 7(x) is defined, and otherwise, i.e. if x ¢ V| we say that 7(z) is not defined.

A central concept used in this thesis is a normalized syntactical representation of for-
mulae. A propositional literal ¢ (or literal for short) is a propositional variable = or its
negation —x. In the first case, i.e. £ = x, we call literal ¢ positive, and in the second case,
i.e. { = -z, negative. The opposite literal of a literal ¢ € {z,—z}, denoted by neg(¢), is
defined as follows: if £ = = then neg(¢) = —x and if { = -z then neg(¢) = x. A clause is

2.2 Propositional logic 9

then a (potentially empty) disjunction of literals. Throughout the thesis and without loss
of generality, we assume that a clause does not contain the same literal more than once as
¢V ¢ = /(. Consequently, we may also identify a clause with its set of literals. We remark
that the empty clause, denoted by (), is equivalent to false. A propositional formula ¢
is in conjunctive normal form (CNF) if ¢ is a (potentially empty) conjunction of clauses.
As for clauses, we may represent a formula in CNF as a set of clauses. An empty formula
in CNF is equivalent to true. It is well-known that for each propositional formula ¢ there
is a semantically equivalent propositional formula i) in CNF. However, the size of ¢ may
be exponential in the size of ¢. In many applications, for instance in symbolic model
checking, it is not necessary to obtain an equivalent formula but an equi-satisfiable one.
Computing an equi-satisfiable formula in CNF is always possible in linear time by the
so-called Tseitin transformation [Tse68] that introduces additional variables. We further
say that a propositional formula is in KCNF if and only if it is in CNF and each of its
clauses contains exactly k literals. For constant k € N with £ > 3, there exist linear-time
algorithms to transform a propositional formula to an equi-satisfiable formula in kCNF
(for k = 3 confer [Kar72]), while an efficient procedure to achieve a 2CNF is not known.

For the sake of simplicity, we occasionally use a slightly more general definition of
propositional formulae that may additionally contain the constants true and false. Se-
mantically, we define that the constant true is a tautology, i.e. = true, and that the
constant false is unsatisfiable. We thus have that —true = false, —false = true,
true A ¢ = ¢, false A ¢ = false, true V ¢ = true, and false V ¢ = ¢ hold. By
using above equivalence rules, each propositional formula ¢ that potentially contains the
constants true and false can clearly be rewritten into a semantically equivalent formula
¢ ie. ¢ = @, such that a) ¢’ does not comprise the constants true and false or b) ¢’
coincides with true, i.e. ¢’ = true, or ¢) ¢’ coincides with false, i.e. ¢' = false. We
call such a formula ¢’ a cleaning of ¢. We primarily refer to a cleaning of a propositional
formula ¢ in CNF. Here, a cleaning ¢’ of ¢ is simply achieved by removing from all clauses
in ¢ the constant literals false and —true, and by excluding all clauses in ¢ that contain
at least one of the constant literals true and —false. More formally,

<p/ = {c\ {false, ﬂtrue} rcep,cn {true, ﬁfalse} = (2)})

Observe that the cleaning ¢’ of a propositional formula ¢ in CNF obtained by above
construction does never contain the constants true or false. The rationale is that above
case b) ¢/ = true is encoded by the empty formula, i.e. the empty conjunction, that is
equivalent to true, and above case c) ¢’ = false is represented in such a way that ¢’
includes the empty clause, i.e. the empty disjunction, that is equivalent to false. For
technical reasons, we identify a cleaning of a propositional formula in CNF by a cleaning
that is achieved by aforementioned construction.

Propositional logic can be generalized by using the idea of quantification where propo-
sitional variables are bound by some quantifiers. Most common are the existential quan-
tifier, denoted as 3, and the universal quantifier, denoted as V. A quantified Boolean
formula (QBF) Q : ¢ then consists of a propositional formula ¢ and of a quantifier prefix
Q binding all variables in ¢ to quantifiers 4 and V, i.e. Q : ¢ has no free variables. The
semantics of a quantified Boolean formula Q : ¢ is as follows. If the leftmost quantifier
is existential, i.e. @ = Jx ® @', then Q : p is true if and only if one of the subformulae

10 2 Foundations and Notations

Q' : p[true/z] or Q' : plfalse/x] is true. In case the leftmost quantifier is universal,
ie. @ =Var® Q) then Q : ¢ is true if and only if both substitutions are true. Since all
variables in ¢ are quantified by Q, the quantifier-free base cases, i.e. if Q is empty, yield
formulae which are equivalent either to true or to false. For more details on QBF, we
refer the reader to [BB09].

2.3 Computational complexity theory

This section recalls the basic concepts of computational complexity which are important
for this thesis. For a more detailed overview, we refer the reader to the foundational
textbooks [Pap94, [GJ90]. Computational complexity investigates the difficulty to solve
computational problems on a general computing machine. Usually, Turing machines are
considered as a mathematical model of such machines. Though Turing machines are
simple to some extent and easy to analyze formally, it is believed that these machines
are as powerful as any other machine model. The latter conjecture is also known as
the Church-Turing thesis. In brief, a Turing machine can read and write symbols on a
memory with infinite capacity (encoded by so-called infinite tapes) by performing actions
from a pre-defined (finite) set. Turing machines are classified by how the next action
a is chosen. Among others, these are deterministic Turing machines, where action a is
unambiguously specified by the current state of the machine, non-deterministic machines,
where a can be freely chosen among some available actions, and probabilistic machines,
where a is selected randomly according to some probability distribution. When restricting
the amount of memory or running time of a Turing machine, this enables the definition
of complexity classes. We just briefly recall these classes of decision problems that are
important for this thesis.

A decision problem is a computational problem for which the answer is “yes” or “no”. An
instance of a decision problem with answer “yes” is called a true instance and an instance
with answer “no” is said to be a false instance. The complexity class P consists of all
decision problems that can be solved by a deterministic Turing machine in polynomial
time. NP contains all decision problems that are solvable by non-deterministic Turing
machines in polynomial time, where solvable means here that all true instances can be
decided. The class co-NP is defined by all problems which complements are members
of NP, where the complement of a decision problem results from reversing the “yes” and
“no” answers. All decision problems that are solved by probabilistic Turing machines in
polynomial time with an error probability less than a half establish the class PP. More
precisely, for true instances the machine outputs “yes” with probability strictly greater
than a half and for false instances the output is “yes” with probability at most a half.
More intuitively, PP is the class of all problems whose true instances have the property
that the majority, i.e. more than a half, of the computation paths are accepting on non-
deterministic Turing machines. Finally, PSPACE comprises all decision problems solvable
by deterministic Turing machines using only a polynomial amount of memory. While the
inclusion chain

PC c?\.gp C PP C PSPACE

2.4 Probability theory 11

holds, it is still open whether these inclusions are strict or not. It is widely suspected that
all inclusions are strict.

All of the above complexity classes have so-called complete problems, i.e. problems that
are the “hardest” in the corresponding classes. A problem is complete for a complexity
class C'if it is a member of C' and it is hard for C'. A problem is hard for C' if every problem
in C can be reduced to that problem. The actual properties of such a reduction depends
on the particular complexity class. In Subsection [L.2.1] we prove PSPACE-hardness of a
decision problem. To show that a problem P is PSPACE-hard, polynomial-time many-
one reductions from a suitable PSPACE-complete problem P’ to P are usually considered.
The latter reduction converts each instance I’ of P’ into an instance I of P in polynomial
time such that I’ is true if and only if [is true.

In addition to examine the difficulty of solving computational problems, it is of essential
interest whether a given problem is solvable at all. A computational problem P is decidable
if and only if there exists a Turing machine (or simply an algorithm) that solves each
instance of P in finite time. Otherwise, i.e. there does not exist any algorithm to solve all
instances of P in finite time, we call P undecidable. Such undecidable problems actually
exist. One famous example is the halting problem, i.e. to decide whether a given program
eventually halts on a given input, which was proven to be undecidable by Turing [Tur37].
To show that a problem P is undecidable, we can again employ the idea of reduction,
namely from some undecidable problem to P.

2.4 Probability theory

The mathematical research field of probability theory investigates the analysis of random
phenomena, where first activities can be traced back some hundred years ago. While a
plethora of significant notions and results were achieved, we turn our attention to one basic
concept that is essential for this thesis, namely the idea of probability distributions. Such
distributions are commonly used to probabilistically characterize the unknown outcomes
of uncertain experiments. One of the simplest such experiments is coin tossing where the
outcome of one throw is either heads or tails. Though the resulting side of the coin cannot
be predicted with absolute certainty, it is however possible to specify the chance of yielding
heads or tails as an outcome. When assuming a “fair” coin then both potential results
are equiprobable, i.e. heads occurs with probability 0.5 and with the same probability the
outcome is tails. The set of all possible outcomes of an experiment is called the sample
space. Observe that the sample space for coin tossing consists of the two elements heads
and tails. A function X : § — R, mapping each element of the sample space S to a real
number, is typically introduced that is called random variable. If the image (or range)
of X, denoted by X|[S], is countable then X is called discrete random variable. In the
following, we restrict ourselves to discrete random variables with finite images. For the
coin tossing experiment, we may define the discrete random variable as follows:

X(s) = { 1 if s = heads,

0 if s = tails.
Given some discrete random variable X, a discrete probability distribution specifies the
probabilities of the values of X by means of a probability mass function px : X[S] — [0, 1]

12 2 Foundations and Notations

such that all these probabilities add up to one, i.e. Exex[s} px(z) = 1. Throughout this
thesis, we identify a discrete probability distribution with its probability mass function.
Recalling that both outcomes of coin tossing are equiprobable, we are able to state the
corresponding discrete probability distribution:

05 ifz =1,

pﬂ@z{OBﬁx:O

While the formalisms and methods presented in this thesis mainly deal with discrete prob-
ability distributions, we occasionally touch upon the more general concept of continuous
probability distributions. As opposed to the consideration above, the image of a random
variable X may also be uncountable. In such cases, X is called continuous random vari-
able. While each single outcome of a discrete random variable can be associated with
a probability, like for coin tossing, this is not possible for continuous random variables.
This convention also matches our intuition: assume that a continuous random variable X
talks about the length of a captured pike. Then, a length of exactly 100 cm is possible but
the probability is equivalent to zero. When however asking for the probability p that the
length of the captured pike lies in between 95 cm and 105 cm, then p is potentially greater
than zero. Formally, the probability Pr|x; < X < z5] that a continuous random variable
X takes a value within the interval [z, 23] is computed by means of a probability density
function gx. More precisely, the above probability is defined by the integral f;f gx(z)dz.

3 Probabilistic Hybrid Systems

This chapter elaborates on the concept of probabilistic hybrid systems. We first present
a motivating and illustrative example from the networked automation systems domain
in Section B.Il Thereafter, we give an overview on existing formal models of probabilis-
tic hybrid systems as well as on related approaches to probabilistic model checking in
Section B.2l The formal model of probabilistic hybrid systems being investigated in this
thesis is finally introduced in Section [3.3

3.1 Motivation: A networked automation system

In order to motivate our formal model of a probabilistic hybrid system as well as the
probabilistic model checking approaches proposed in this thesis, we start by introducing a
realistic industrial application, namely a case study of the networked automation system
(NAS) studied in |[GEF06]. We first give a detailed description of the NAS application,
as it was published in [TEF11], from which we then derive the motivation for the formal
automata model that is introduced in Section 3.3l Finally, we pose questions about the
system behavior that are relevant to the formal analysis of the NAS. These questions are
then addressable by the model checking procedures presented in Chapters [Al and [7] while
a detailed analysis of the NAS case study is given in Chapter

Description of the NAS. A schematic overview of the networked automation system
(NAS) studied in [GFO06] is depicted in Figure Bl As a typical NAS, it involves net-
worked control by programmable logic controllers (PLCs) connected to several sensors
and actuators via wired and wireless networks. Its objective is to transport a workpiece
from its initial position to the drilling position by means of a transportation unit which
controls the speed of the conveyor belt on which the object is transported. The PLC
can set the deceleration of the belt via network messages to the transportation unit, but
cannot determine the position of the object unless it hits two sensors SA and SB close
to the drilling position. The sensors are connected to the IO card of the PLC over the
network. When the object reaches sensor SA, the PLC reacts with sending a command
to the transportation unit that forces it to decelerate to slow speed. Likewise, the trans-
portation unit is asked to decelerate to standstill when the PLC notices that SB has been
reached. The goal is that the object halts close to the drilling position despite the uncon-
trollable latencies in the communication network. The parameters of the system are taken
from [GF06] as far as indicated. Thus, one length unit (lu) is 0.01 mm, and one time step
(ts) is 1ms. The positions of SA and SB are 6991u and 4701u, respectively, while the
desired drilling position is at 0lu. The initial speed of the object is 24 1u/ts and the slow
speed is 41u/ts; the decelerations for the two types of speed changes at SA and SB are 2
and 41u/ ts?, respectively. The network routing time is determined stochastically, needing

14 3 Probabilistic Hybrid Systems

'S
inputs ‘
i network =
5 o -
S 0 -
o o Y
i i | transport unit |
outputs l
PLC Workplece 77777777 > ---------------- ---------------- 3
© O O O O O O ®)

Figure 3.1: A networked automation system from [GE06]. (Source of figure: [TEF11])

1ts for delivery with probability 0.9 and 2ts with probability 0.1. The cycle time of the
PLC-IO card is 10ts and of the PLC is 7ts. The minimum sampling interval is 1ts. Due
to the initial speed of 24 1u/ts, the initial position of the object is thus equally distributed
over 24 neighboring values. In our setting, the initial position ranges between 999 and

976 lu.

Motivation of formal model. Real-world dynamical systems, as the NAS above, char-
acteristically evolve over time that is a continuous quantity. Mathematical models of such
dynamical systems should therefore take account of an appropriate notion of time. Most
common notions are discrete time, where the system evolution is represented by means
of sampling at discrete points of time, and continuous time, where the system behavior
is described as a continuous evolution over time. The NAS application above relies on
discrete time as it specifies a constant sampling interval. To cope with this NAS and
similar systems, we concentrate on a

e discrete-time semantics

for the formal automata model. It is important to remark that discrete time is not
necessarily equivalent to equidistant time, where system sampling actually happens at
equidistant time points. Our model of discrete time permits sampling at arbitrary points
of time. Moreover, these sampling points may also be state-dependent. This allows for a
scheduled-event semantics, akin to [AL94], where the next sampling point is determined
by the current system state.

The continuous dynamics of the NAS workpiece underlies the laws of motion with
uniform (or constant) acceleration. That is, given the current position s, the current
speed v, the constant acceleration a, and a time step of duration At, then the position s’
and the speed v’ after At time units are given by the formulae

1
s':s+v-At+§-a-At2 and v =v+4a-At.

In order to describe such dynamics within a formal automaton model, we demand that

3.1 Motivation: A networked automation system 15

e rich arithmetic theories over continuous domains

are supported.

We need to remark that more complex continuous dynamics in fields like nuclear physics
or biophysical chemistry are usually modeled by means of ordinary differential equations
(ODEs) or even by partial differential equations (PDEs). While some ODEs have so-called
closed-form solutions, that are expressible by common arithmetic functions, others have
not. It is however always possible to safely approximate ODEs by, for instance, Taylor
series. In Chapter [I0] we elaborate on a much more expressive automata model that
incorporates ODEs and is interpreted over continuous time.

The NAS also includes components like the PLC that execute discrete programs. More-
over, the computed output of the PLC can change the continuous dynamics of the work-
piece by setting a new value for the deceleration. Therefore,

e discrete computations and a logic for switching the continuous behavior

should be comprised by the formal automata model.

The behavior of the network depends on random phenomena as its routing time is
determined probabilistically. Since all probabilistic events that may occur in the NAS
range in a finite sample space, it suffices to require

e discrete probabilistic choices
to be present in the automata model. The latter should furthermore support
e non-deterministic choices

in order to cope with, for instance, input data or open design questions. Though the NAS
above does not show any non-determinism, the model could be enhanced, for instance,
by a non-deterministic choice between several PLCs with different cycle times in order to
find out whether some safety requirements are fulfilled regardless of which PLC is actually
employed.

Finally, a formal automaton model should facilitate a convenient way of

e parallel composition

as many real-world systems like the NAS consist of several components. To meet this
requirement, we aim at a formalism that allows to model each subsystem itself, and thus
renders unnecessary the construction of one automaton for the overall system.

Analysis questions. As mentioned above, the goal of the NAS application is to trans-
port the workpiece close to the drilling position. The main analysis question thus is
whether this property actually holds. As usual in scenarios of probabilistic nature, it can-
not be assumed that desired properties are definitely satisfied. In such cases, engineers
are however interested in whether desired properties hold with very high probability. We
therefore investigate questions like

e “What is the probability that the workpiece stops close to the drilling position?”

16 3 Probabilistic Hybrid Systems

or, phrased as a decision problem,
e “Is the probability that the workpiece stops close to the drilling position high enough?”

In Chapter Bl we present a model checking procedure addressing such questions. To be
a bit more precise, our model checking approach deals with probabilistic bounded state
reachability problems, i.e. it computes the probability of reaching some target states within
a bounded number of system steps. In applications where the target states are considered
to be bad, i.e. they violate some safety property, this bounded model checking (BMC)
procedure is potentially able to falsify safety properties like “the probability of reaching
the bad states is at most 1%oc”. From the NAS description, it is not hard to see that the
workpiece finally stops. Thus, the dynamics of the workpiece is bounded and BMC is able
to respond to both questions above.

Industrial applications often call for quantitative measures distinct from classical reach-
ability probabilities to gain a more precise insight into the system behavior. Considering
the NAS case study, it would be very beneficial to answer questions like

e “What is the mean time to stop of the workpiece?”
and
e “What is the expected final position of the workpiece?”

Motivated by these questions, Chapter [7]enhances probabilistic BMC to compute expected
values. The enhanced probabilistic BMC procedure is then potentially able to verify safety
properties of the shape “the worst-case mean time to failure is at least 20 minutes”. With
the same argument as above, i.e. the workpiece finally stops, we are able to answer both
questions above.

A detailed analysis of the NAS case study, including the complete formal system model
and probabilistic model checking results, is given in Chapter [8.

3.2 Related work: Probabilistic hybrid models and
model checking

In this section, we give an overview on existing formal models of probabilistic hybrid
systems as well as on related approaches to probabilistic model checking.

3.2.1 Probabilistic hybrid systems

Hybrid discrete-continuous behavior arises when discrete and continuous dynamic pro-
cesses become connected, as in the case of embedded computers and their physical envi-
ronment. For an example, recall the NAS application from Section B.1] where the PLC
influences the continuous dynamics of the workpiece. An increasing number of the tech-
nical artifacts shaping our ambience are such hybrid systems relying on, often invisible,
embedded computer systems. Their safety assessment amounts to showing that the joint
dynamics of the embedded system and its environment is well-behaved, for instance, that

3.2 Related work: Probabilistic hybrid models and model checking 17

it avoids undesirable states or that it converges to a desirable state, regardless of the
actual disturbance. Disturbances may originate from uncontrolled inputs in an open sys-
tem, like a car driver performing her driving task, as well as from internal sources of
the overall technical system, like failing system components, including sensors or even
actuators. Gradually advancing the capabilities of addressing such systems, research in
hybrid system verification has thus traditionally focused on different classes of system
structures and disturbances, ranging from a closed-system view over non-deterministic
to probabilistic or stochastic hybrid systems. While the closed-system view necessitates
a reasonably exact representation of the rather intricate yet deterministic feedback dy-
namics of coupled discrete and continuous systems, non-deterministic systems extend this
view by unknown inputs of an open system. Probabilistic hybrid systems, finally, allow
to capture unpredictable, yet statistically characterizable disturbances.

In the context of hybrid systems augmented with probabilities, a wealth of models
has been suggested by several authors. These models particularly vary in the degree
to which they support random phenomena. The cornerstones are formed by the fol-
lowing models. In probabilistic hybrid automata [Spr01], state changes forced by con-
tinuous dynamics may involve discrete random events, akin to Markov decision pro-
cesses [Bel57], determining both the discrete and the continuous successor state. Piece-
wise deterministic Markov processes [Dav84l, [Dav93| permit that state changes may hap-
pen spontaneously in a manner similar to continuous-time Markov chains, confer, for
instance, [Tij03, Chapter 4]. Stochastic differential equations [Arn74] are another model
where, like in Brownian motion, the random perturbation affects the dynamics contin-
uously. In full generality, stochastic hybrid system models can cover all such ingredi-
ents [HLS00, [PBLBO03| BL06, [CLOT|, thereby having a wide range of applications, for
instance, air traffic control [PHLS00, IGL04], manufacturing systems [CMO03], and com-
munication networks [Hes04].

The model investigated in this thesis belongs to the class of probabilistic hybrid au-
tomata. In contrast to the other models mentioned above, this system class is very
confined in its stochastic behavior as it only admits discrete probabilistic choices within
state transitions. Albeit being simple, interesting random phenomena like component
failures or message losses are characterizable. Concerning the NAS case study, it is able
to express the uncertain latencies of the network as well as the distribution of the initial
position of the workpiece.

3.2.2 Probabilistic model checking

The fully automatic verification of whether a given system model meets some specification
is referred to as model checking. Typically, such specifications describe safety properties
like “a fatal system error may never occur” or, in the probabilistic setting, “a fatal system
error may only occur with very low probability”. Very expressive specification logics have
been developed, among them the very prominent probabilistic computation tree logic, or
PCTL for short, confer, for instance, [HJ94, [BAA95]. While safety properties just talk
about (un)reachability of states, logics like PCTL permit the specification of more ex-
pressive temporal properties like “each message will be finally delivered with probability 1
and whenever a message is tried to be sent then this message will be delivered in five

18 3 Probabilistic Hybrid Systems

system steps with very high probability of at least 0.995”. Model checking of probabilistic
finite-state models like Markov decision processes and continuous-time Markov chains is
a well-studied and still very active research area, having originated efficient probabilistic
model checking tools like PRISM or MRMCf. For a nice survey on probabilistic finite-
state model checking we refer the reader to [BK08, Chapter 10].

When turning one’s attention to the automatic analysis of richer probabilistic systems
with infinite state space like probabilistic hybrid systems, lots of verification approaches
“only” aim at safety properties or, dually, unsafe state reachability. On the one hand, this
is motivated by the fact that most temporal properties can be reduced to reachability
problems due to the very expressive hybrid modeling framework. On the other hand,
probabilistic state reachability is a hard and challenging problem. Indeed, this problem is
undecidable in general, even for probabilistic hybrid automata. The latter fact immedi-
ately follows from general undecidability of the reachability problem for (non-probabilistic)
hybrid automata since probabilistic hybrid automata are a superclass of hybrid automata.
A very detailed account of the boundary between decidability and undecidability of the
reachability problem for hybrid automata is given in [HKPV95]. An important decidable
subclass are timed automata [AD94] where the continuous behavior is limited in the sense
that real-valued variables, so-called clocks, may only progress with rate 1. In [HKPV95],
this decidability result was generalized to initialized rectangular automata where the con-
tinuous evolution of each real-valued variable is governed by arbitrary constant rates from
some interval, for instance from [—3, 5], but whenever the continuous activity of a variable
changes then the value of that variable must be re-initialized. As observed in [HKPV95],
when slightly generalizing the latter automata class, for instance by imposing an order of
the derivatives of variables, then the reachability problem becomes undecidable. Another
way to obtain decidable subclasses was suggested by Frianzle: in [Frd99], he exploited the
notion of robustness to show that reachability for robust hybrid automata is decidable.

Though research concerning stochastic hybrid systems is rapidly increasing over the
last years, results related to their analysis and verification are still limited to some ex-
tent. While for the general class of stochastic hybrid systems such analysis approaches
are often based on Monte Carlo simulation [BB04, BKBO0G], several subclasses of piece-
wise deterministic Markov processes, of probabilistic hybrid automata, and of stochastic
hybrid systems are recently investigated for which reachability probabilities can be ap-
proximated [BL03, BCO5, IAAPT06b, [KR06]. With regard to decidable subcases, Spros-
ton could establish a result similar to the non-probabilistic setting. In [Spr00] [Spr01], he
showed that model checking is decidable for the subclass of probabilistic initialized rectan-
gular automata against specifications of a probabilistic temporal logic called probabilistic
branching time logic (PBTL) that is similar to PCTL. The dynamics of this restricted
subclass is confined in the same way as for its non-probabilistic counterpart mentioned
above. His model checking procedure relies, first, on a translation to a probabilistic ver-
sion of timed automata, second, on the construction of a finite state representation of the
latter system called the probabilistic region graph and, third, on using established PBTL
model checking techniques [BdA95, BK98]. Sproston argues that his approach suffers
from two significant drawbacks: 1) the assumption of re-initialization is too restrictive

! More information can be found on http://www.prismmodelchecker.org.
2More information can be found on http://www.mrmc-tool.org/trac.

http://www.prismmodelchecker.org
http://www.mrmc-tool.org/trac

3.2 Related work: Probabilistic hybrid models and model checking 19

and 2) the translation process introduces too many new variables and thus increases the
state space significantly. He therefore proposed a semi-decision procedure for reachability
analysis of the more general class of probabilistic rectangular automata, i.e. without the
restriction of re-initialization, by means of a forward search through the reachable state
space [Spr01].

In the remainder of the section, we first outline the model checking techniques for
probabilistic hybrid automata being introduced in this thesis. Thereafter, competitive
approaches for the same and closely related system classes are reviewed.

3.2.3 Approach of this thesis

The probabilistic hybrid automata model of this thesis is mainly restricted as follows:
first, it is interpreted over discrete time, second, it does not include ordinary differential
equations and, third, the non-determinism and stochasticity must be finite. In spite
of these limitations, interesting applications can be covered as shown by the NAS case
study of Section B.Il We further remark that these restrictions are not essential for
our approach and that Chapter [I0 elaborates on a continuous-time model incorporating
ordinary differential equations.

The model checking procedures introduced in this thesis belong to the class of depth-
bounded state-space exploration methods based on satisfiability solvers, which have orig-
inally been suggested for finite-state systems by Groote et al. in [GKvV95] and Biere
et al. in [BCCZ99]. Such methods have become popular under the term bounded model
checking (BMC) now accounting for a major fraction of the industrial applications of
formal verification. The idea of BMC is to encode the next-state relation of a system as a
propositional formula, to unroll this to some given finite depth k, and to augment it with
a corresponding finite unravelling of the tableaux of the negation of a temporal formula,
describing some desired system property, in order to obtain a propositional formula which
is satisfiable if and only if an error trace of length £ exists. Enabled by the impressive gains
in performance of Boolean satisfiability (SAT) solvers in recent years, BMC can now be
applied to very large finite-state designs. Though originally formulated for discrete tran-
sition systems, the concept of BMC also applies to hybrid discrete-continuous systems.
The BMC formulae arising from such systems comprise complex Boolean combinations
of arithmetic constraints over real-valued variables, thus entailing the need for so-called
satisfiability modulo theories (SMT) solvers over arithmetic theories to solve them. Such
SMT procedures are thus currently in the focus of the SAT-solving community [BBCT05,
DAMO06, BPT07, FHT 07, [EFHOS, IGGIT10], as is their application to and tailoring for
BMC of hybrid systems [ABCS05, | ABKS05, [FHO7, HEFTO08, ASB*11) [ERNF1I].

In this thesis, we present a technology that saves the virtues of SMT-based BMC,
namely the fully symbolic treatment of hybrid state spaces, while advancing the reason-
ing power to probabilistic models and requirements. In Chapter [, we therefore extend
SMT by alternating quantifiers of the classical existential form as well as of randomized
or, equivalently, stochastic type. This leads to the logical framework of stochastic satis-
fiability modulo theories (SSMT) facilitating a symbolic encoding of probabilistic hybrid
automata. Chapter [gives a detailed account of this symbolic encoding. The idea of the
latter is, in a nutshell, to encode the transition effects as an SMT formula, as usual, yet

20 3 Probabilistic Hybrid Systems

add the branching structure to the encoding by means of quantification, with existential
quantification reflecting non-deterministic choices and randomized quantification reflect-
ing probabilistic events. The step-bounded analysis of probabilistic hybrid automata can
then be reduced to solving SSMT formulae. Appropriate algorithms to solve SSMT prob-
lems as well as several algorithmic optimizations are presented in Chapter [6l This proba-
bilistic bounded model checking (PBMC) approach is then able to falsify safety properties
of the shape “the worst-case probability of reaching a fatal system error is at most 1%¢”
whenever a step depth was found for which this property could be refuted. Akin to the
non-probabilistic case, SSMT-based PBMC permits an encoding of concurrent probabilis-
tic hybrid automata that is of size linear in the number of parallel components, alleviating
the state explosion arising from an explicit construction of the product automaton with
respect to the discrete state space, and thus enhancing the scalability of the automated
analysis procedures.

Apart from such classical reachability probabilities, several industrial applications fre-
quently call for more expressive quantitative measures like expected values, confer the
latter two analysis questions of Section 3.1l Motivated by this fact, Chapter [1is devoted
to a symbolic method for computing ezxpected values of discrete-time probabilistic hybrid
systems like, for instance, mean time to failure (MTTF). Though the latter method builds
upon SSMT-based PBMC, it has fundamentally different properties: instead of targeting
at falsification, the resulting procedure turns into a verification approach being able to
verify safety requirements of the shape “the MTTF is always at least 20 minutes”.

3.2.4 Competitive approaches

Zhang et al. presented an approach to wverification of safety properties concerning the
probability of reaching unsafe states in probabilistic hybrid automata [ZSR*10]. This
approach can thus be seen as complementary to PBMC that establishes a falsification
procedure for such safety properties. The automata class of [ZSR10] is however not that
restrictive than the one of this thesis as continuous-time semantics and ordinary differ-
ential equations are supported. In a bit more detail, the verification procedure works as
follows. First, a non-probabilistic hybrid automaton is obtained from the given proba-
bilistic hybrid automaton by simply replacing probabilistic choices with non-deterministic
ones. The hybrid automaton is then abstracted into a finite-state system using classi-
cal methods, for instance [ADI06, (RSO7]. While the current implementation employs
the tool PHAVer [Fre(5], any other tool that produces such abstractions is applicable.
In the next step, the abstracting finite-state system is decorated with probabilities via
techniques known for Markov decision processes [DJILO1, [HWZ08], resulting in a proba-
bilistic finite-state automaton. This overall translation ensures the following property: if
the abstracting probabilistic finite-state system satisfies some probabilistic safety property
then the original probabilistic hybrid automaton does so. To compute the probability p
of reaching unsafe states in the probabilistic abstraction, standard methods, here value
iteration |[Bel57], are used. By above property, p is a safe upper bound of the reachability
probability for the original infinite-state system. A safety property of the shape “in worst
case, unsafe states are reachable with probability at most 67 is then verified whenever
p < 6 holds. Otherwise, i.e. if p > #, the abstraction is refined to obtain a potentially

3.2 Related work: Probabilistic hybrid models and model checking 21

more precise upper bound. We remark that how the refinement is realized depends on
the abstraction technique. While PHAVer computes polyhedra to cover the continuous
state-space per discrete location, the authors currently reduce the maximal widths of these
polyhedra to refine the abstraction.

More recently, the expressiveness of the above system model was enhanced consider-
ably in [FHHT 11|, namely by permitting continuous probability distributions in discrete
state changes The resulting system class is called stochastic hybrid automata. With re-
gard to the probabilistic reachability analysis of such systems, the verification procedure
from [ZSR™10] was adapted to this more general case as follows. In a first step, a given
stochastic hybrid automaton is overapproximated by a probabilistic hybrid automaton,
as defined in [ZSR710], by means of abstracting continuous probability distributions by
discrete distributions combined with additional uncountable non-determinism. The lat-
ter abstraction satisfies the property that if the resulting probabilistic automaton meets
some probabilistic safety requirement then the original stochastic automaton does so. In
a second step, the overapproximating probabilistic hybrid automaton is model checked
using the verification procedure from [ZSR10].

The recent work described in [HNP*11] targets at the same problem as in [ZSR*10],
namely the probabilistic reachability analysis of probabilistic hybrid automata, with the
suggested analysis approach also relying on finite-state abstraction of the given infinite-
state system. More precisely, two abstraction techniques are elaborated on, with both
of them abstracting the given probabilistic hybrid automaton by an n-player stochastic
game. Within this stochastic game, the abstraction is represented by an own player. By
defining the strategy of the latter player to minimize or maximize the probability of reach-
ing the target states, lower and upper bounds, respectively, on the optimal reachability
probability for the original automaton can be obtained from the abstraction. That is
to say, the approach of [HNP™11] establishes a verification as well as falsification proce-
dure for probabilistic safety properties. For the sake of completeness, we remark that the
authors of [HNP*11] further considered the computation of lower and upper bounds on
optimal long-run average rewards for probabilistic hybrid automata as well as the problem
of synthesizing an optimal controller for such systems.

In control theory, a model similar to probabilistic hybrid automaton is currently in the
focus that is called discrete-time stochastic hybrid system (DTSHS) [AAPT06b, AAPT06al
Aba(7, [APLS08|]. Being sampled at discrete time points, this model comprises non-
deterministic as well as discrete probabilistic choices of state transitions. The non-
determinism is modeled via so-called control inputs. In comparison to probabilistic hybrid
automata, the above system class do not exhibit an explicit notion of symbolic transition
guards. Transition guards are an essential concept in hybrid system modeling as they
offer the possibility to describe computer programs controlling the system. For instance,
a heater should be switched off only if the temperature is above 35°. It is however possible
to define transition guards implicitly by picking properly the probabilistic transition func-
tions as the latter may also depend on the continuous state, see [APLS08, Section 2]. The

3In fact, another contribution of [FHH™11] is the introduction of uncountable non-determinism in dis-
crete assignments. In principle, the latter feature however was already present in probabilistic hybrid
automata [ZSR™10] and was neglected only for the sake of a simpler presentation, confer footnote 1
on page 199 of [ZSR™10).

22 3 Probabilistic Hybrid Systems

model of DTSHS supports a further and more general concept of randomness: at each
time step the continuous state may be determined according to a continuous probability
distribution. DTSHSs are thus able to describe discretized stochastic differential equa-
tions incorporating random phenomena like noise in temperature evolution, confer the
thermostat example in [AAPT06b| starting on page 54. With regard to system analysis,
the above articles concentrate on the control problem of “keeping a system within a safe
region for a given time horizon with sufficiently high probability”. The notion of safety
is thus understood as to find an optimal control policy that maximizes the probability of
staying safe or, in other words, that minimizes the probability of reaching unsafe states.
This point of view differs from most common model checking approaches, like the one
described above or the one of this thesis, where non-determinism typically arises from
open design questions or non-expert inputs and is thus considered as uncontrollable. As
a consequence, model checking aims at the worst case scenario while optimal control ap-
proaches address the best case. The maximum probability of remaining in the safe region
is expressed using optimal cost functions. These functions basically reflect the branching
structure of the DTSHS, while branching according to continuous probability distributions
is represented by integrals. These cost functions theoretically establish a backward recur-
sive procedure which is also called dynamic programming scheme. Intuitively, dynamic
programming determines how the optimal probability for some state at time point k—1 is
computed if the optimal probabilities for all states at time k are known. The reasoning is
thus backward in time and stops when time point 0 is reached. As a finite time horizon is
considered, i.e. the number n of discrete time steps is finite, the base cases are given at time
point n where the probabilities for all states are trivially known, i.e. probability 1 for safe
states and probability 0 for unsafe states. Finding analytical solutions to such dynamic
programming equations, i.e. closed-form expressions without integral parts, is however
hard in general, since such cost functions can be very general and of non-linear shape. In
order to tackle this issue, a numerical approximation approach was suggested in [Aba07,
Section 2.2.8]. The idea is to construct a finite discretization of the continuous state-space
that is called grid. Using this finite-state grid, the dynamic programming scheme can be
discretized and then solved approximatively. It was shown in [AbaO7, Theorem 9] that
the approximation error depends on the grid size@, i.e. the maximal size of a cell of the
grid, from which follows that the quality of approximation enhances for smaller grid sizes.
It is well-known that finite-state gridding approaches suffer from the so-called “curse of
dimensionality”, confer, for instance, [Aba07, Section 2.3.4], i.e. the number of cells of
the grid is exponential in the number of continuous state components. In order to apply
dynamic programming, the grid must be constructed beforehand. This is an inherent
difference to SSMT-based PBMC where the state space is encoded fully symbolically as
an SSMT formula without an exponential overhead. Complexity issues potentially arise
when solving an SSMT problem: in worst case, the full state space must be traversed
while the latter fact is tried to mitigate by several algorithmic enhancements, confer Sec-
tion [6.5 We finally remark that in [Aba07, Section 2.2.4] also the infinite time horizon
case was investigated, addressing the question of convergence of the optimal control law
to a stationary policy.

Another approach to a very similar problem as above was suggested in [AKLP10]

4Note that this term does not denote the number of cells of the grid.

3.2 Related work: Probabilistic hybrid models and model checking 23

AKTLP11], where the DTSHS model is autonomous, i.e. without non-deterministic control
inputs. Akin to the method above, the probability of remaining in the safe region is also
described as a dynamic programming scheme, and the continuous state space is again
discretized by a finite-state grid. The difference however lies in the computation of the
probability. As distinguished from using the grid to obtain and then numerically solve a
discretized dynamic programming scheme, the grid is exploited to derive a discrete-time
Markov chain, the latter being model checked using standard techniques. The result is
an approximation of the actual probability of staying safe, while the approximated result
converges to the exact probability as the maximal size of a cell of the grid tends to zero.

The above approach employs a uniform-partitioning algorithm for the grid construction
and thus frequently suffers from scalability issues. In a more recent work, the authors
of [SA11] proposed an adaptive procedure for the grid generation that exploits knowledge
about the system dynamics. It was shown that this adaptive procedure can lead to grids
with a much smaller number of cells, thus mitigating the “curse of dimensionality”.

The authors of [AKMI11] proposed an approach to model checking autonomous DTSHSs
against linear time objectives like, for instance, liveness instead of mere safety proper-
ties. Such objectives are specified either as a deterministic finite-state automaton (DFA)
or as a generalized (non-deterministic) Biichi automaton, the latter covering properties
expressible in the linear temporal logic (LTL). The problem of computing the probabil-
ity that a given autonomous DTSHS satisfies a linear time property specified by a DFA
or Biichi automaton is then reduced to the problem of computing reachability probabil-
ities in the product of the DTSHS and of the automaton encoding the property. The
latter probabilistic reachability problem is then addressed by a procedure similar to one
of [AKLP10, AKLP11].

More recently, Platzer suggested a logic-based approach to safety analysis of stochastic
hybrid systems [Plall]. As a formal model, stochastic hybrid programs (SHPs) were intro-
duced. This system class is very expressive on the stochastic side as it comprises stochastic
differential equations, discrete probabilistic branching, and random assignments to real-
valued variables, while it seems that non-deterministic branching and parallel composition
are not expressible. For the specification of system properties, a logic called stochastic
differential dynamic logic is considered. A proof calculus is then proposed to verify logical
properties of SHPs. The latter calculus was presented without an implementation, and the
issue of its automatability was not discussed. With regard to the approach of this thesis,
the model of probabilistic hybrid automata, on the one hand, is considerably more con-
fined than SHPs, in particular in its stochastic behavior. On the other hand, SSMT-based
PBMUC establishes a fully automatic analysis procedure which is particularly suitable for
the analysis of concurrent systems, i.e. of systems consisting of several subsystems.

In [WZHO0T], model checking probabilistic programs against specifications of a fragment
of PCTL is examined. Probabilistic programs are very similar to discrete-time probabilis-
tic hybrid automata as they support non-deterministic and discrete probabilistic choices
as well as arithmetic expressions over unbounded integers and reals to describe the pro-
gram execution. Due to infinite data domains, the state space of this system class is also
infinite. Like the approaches above, the procedure of [WZHO0T7| relies on finite-state ab-
straction but of a very different nature. Instead of partitioning the infinite state space by
geometric objects explicitly, for instance, by polyhedra or grids, the more general concept

24 3 Probabilistic Hybrid Systems

of predicates is used to obtain a symbolic abstraction. A predicate ¢ over the variables
of the given probabilistic program encodes a set of states, namely the states satisfying .
Such a predicate may describe a set of states that is of much more complex shape than,
for instance, a polyhedron as it may encode, for instance, a union of unconnected polyhe-
dra. Given n predicates, the infinite state space can then be discretized into 2" abstract
states by characterizing for each abstract state which of the n predicates are satisfied and
which are not. Such predicates are extracted from the probabilistic program as well as
from the PCTL property and may also be provided by the user. This predicate abstrac-
tion resulting in a probabilistic finite-state automaton works as follows. Given predicates
©1,...,©n, an abstract state s* is represented by a bit vector (by,...,b,), and s* encodes
an original state s whenever for all 1 < ¢ < n it holds that Boolean variable b; is true if
and only if s satisfies predicate ;. In order to construct the abstracted finite-state model,
the authors of [WZHQT7] proposed an SMT-based approach: to detect all initial abstract
states as well as all transitions between abstract states, SMT formulae are generated that
link the abstract states and original states to each other. Each solution of such an SMT
formula to the Boolean variables then gives an initial state or identifies transitions be-
tween abstract states. An appropriate SMT solver is used to enumerate all solutions,
i.e. all initial states and all transitions. Observe that in worst case, the number of gen-
erated states and transitions is exponential in the number n of predicates. To mitigate
this issue, optimization techniques to decrease the number of Boolean variables in these
SMT formulae and thus the number of SMT solutions were presented in [WZHO07], and
it was shown empirically that these enhancements can improve performance. In a final
step, the resulting probabilistic finite-state automaton is analyzed using the probabilistic
finite-state model checker PRISM. Due to the fact that predicate abstraction preserves
safe PCTL properties, i.e. if the abstraction satisfies a PCTL property then the original
probabilistic program also does, the original system is verified whenever the abstracted
system satisfies the PCTL specification.

Though both, the approach of [WZH07] and SSMT-based PBMC presented in this the-
sis, target at very similar infinite-state system models and rely on SMT solving, they show
however inherent differences. As mentioned above, the technique of [WZHO07] constructs a
finite-state abstraction of a given infinite-state system and thus aims at verification, while
SSMT-based PBMC precisely encodes the step-bounded behavior of the given infinite-
state system as an SSMT formula and is designated for falsification. Although both ap-
proaches use symbolic encodings of the system behavior, the application of SMT solving
is different. In PBMC, the overall probabilistic reachability problem is directly reduced
to solving the corresponding SSMT formula, while [WZHO07] first extracts the abstracted
system from all solutions of the corresponding SMT formulae and then model checks the
abstraction by another method. As mentioned earlier, the approach of [WZH07] must
enumerate exponentially many SMT solutions in worst case. This issue is clearly also
present when solving an SSMT problem. The difference lies in how optimizations apply:
in [WZHO07], each guarded command, i.e. each probabilistic choice, of the original system
is encoded as one SMT formula to detect abstract transitions. This implies that the op-
timizations mentioned above are only applicable for one probabilistic transition choice.
An SSMT formula in PBMC however comprises the whole system behavior (of bounded
step-depth), in particular all non-deterministic and probabilistic transition choices, and

3.2 Related work: Probabilistic hybrid models and model checking 25

thus talks about system runs and not only about single system steps. This gives rise to
more sophisticated optimizations that potentially exclude several system runs. Algorith-
mic optimizations of SSMT solving are investigated in Section We finally remark two
other differences. The expressiveness of arithmetic expressions occurring in probabilistic
programs strongly depends on the employed SMT solver. The implementation in [WZH07]
is based on the SMT tool Yices [DAMO06] and thus restricted to linear arithmetic. SSMT-
based PBMC builds on the non-linear arithmetic SMT solver iSAT, confer [FHTT07| and
Section [6.3] such that the probabilistic model of this thesis may contain richer arithmetic
expressions involving transcendental functions like sin or exp. With regard to parallel
composition, the approach of [WZH07] must also resort to flattening the overall system
structure leading to an in general exponentially-sized product automaton. As mentioned
above, SSMT permits a linearly-sized encoding of parallel systems and thus alleviates
the state explosion arising from an explicit construction of the product automaton with
respect to the discrete state space.

Aiming at probabilistic (unsafe) state reachability, the verification technique of [WZHQT]
was enhanced in [HWZ08] as follows: the authors suggested a method to refine the pred-
icate abstraction based on counterexamples and furthermore extended the approach to
falsification. Asin [WZHOT], predicate abstraction is first used to achieve a finite-state sys-
tem from a given probabilistic program. Using a probabilistic finite-state model checker,
the probabilistic reachability problem of the shape “the maximum probability of reaching
unsafe states is at most 0” is then model checked on the abstraction. If the latter property
holds for the abstraction then the original probabilistic program is verified. The reverse
direction, however, does not hold in general. In order to close this gap, the approach
in [HWZ08| generates a counterexample for the abstracted system. As opposed to the
non-probabilistic case, a counterexample to a probabilistic reachability property is not a
single system run but comprises several such runs, and can even be a cyclic (discrete-time)
Markov chain. Exploiting a technique from [HK07], the Markov chain counterexample is
preprocessed thereby obtaining a finite set of finite system runs whose probability mass
exceeds safety threshold 6. The next step is to check whether the abstract counterexample
can be realized, i.e. whether there is a corresponding probabilistic counterexample in the
original program, or not. This requires to decide whether single runs of the abstract coun-
terexample are realizable in the concrete system or spurious. This problem can be solved
by checking satisfiability of a corresponding SMT formula. As an abstract state encodes
several (potentially infinitely many) concrete states, a further challenge is to identify one
concrete initial state from which the system reaches the target states with highest proba-
bility. The latter problem is reduced to a weighted MAX-SMT formula, i.e. to determine
an assignment of a formula that maximizes the value of a weighted expression. If the
counterexample is actually realizable, then the probabilistic reachability property is falsi-
fied. Otherwise, i.e. the property was neither verified nor falsified, the current abstraction
is refined by adding new predicates. This so-called probabilistic counterexample-guided
abstraction refinement is done by analyzing the non-realizable probabilistic counterex-
ample. With regard to the reasons of non-realizability mentioned above, new predicates
should prevent for the same or similar spurious abstract runs and should facilitate a finer
abstraction of the initial states. Such predicates are obtained by the logical concept of
Craig interpolation as, for instance, in [HIMMO04]. We remark that Chapter [l elaborates

26 3 Probabilistic Hybrid Systems

on the topic of Craig interpolation. The approach of [HWZ08] is implemented in the tool
PASS [HHWZ10).

The authors of [ZPC10] proposed a method for the analysis of discrete-time stochastic
hybrid systems with respect to bounded temporal properties that is called statistical model
checking. Their system model is very similar to the one of [Aba(7] and also permits
continuous state changes according to continuous probability distributions. The statistical
model checking procedure, however, does not belong to the class of exhaustive state-space
exploration methods but is based on system simulation and on Bayesian statistics. As
a consequence, the results obtained from statistical model checking are not guaranteed
to be correct. Nevertheless, two reasons are presented to motivate this simulation-based
approach: first, results are usually obtained much faster compared to exhaustive search
and, second, the probability of returning a wrong result can be made arbitrarily small.

The work presented in [FHW10] discusses probabilistic reachability analysis of a rich
probabilistic model that is called first-order probabilistic timed automaton (FPTA). Com-
pared to probabilistic hybrid automata, the continuous dynamics of an FPTA is restricted
to timed behavior as in timed automata [AD94], i.e. to real-valued clocks with progress of
rate 1. While discrete actions in probabilistic hybrid automata are usually described by
(non-linear) arithmetic predicates and assignments like “if sin(t) < cos(t) At > 37 then
execute x := 2% 4+ y and t := 07, transition guards and assignments in FPTAs comprise
first-order predicates. This permits to manipulate more sophisticated data structures like
lists. For instance, let the symbol cons denote a list constructor. Then, the transition
guard list = cons(elem, list") followed by the assignment list := list’ characterizes the re-
moval of the first list element elem in the list list. The analysis approach of [FHW10)] first
translates the given FPTA model into a labeled first-order formula over linear arithmetic,
where labels and linear arithmetic are used to preserve all probabilistic aspects and to
describe the advance of time, respectively. In the next step, the resulting formula is fed to
a first-order theorem prover that is employed to enumerate all proofs. These proofs then
facilitate the construction of a probabilistic timed automaton (PTA) that is reachability
equivalent to the original first-order model. By the latter reduction, the original proba-
bilistic reachability problem for FPTAs is then solved for the simpler PTA model using
the PTA model checking tool MCPTA [HHQ9].

We finally mention the work on probabilistic safety analysis of discrete-time Markov
chains (DTMCs) published in [WBB09]. The considered system model is much more re-
strictive than probabilistic hybrid automata: the state space is finite and the behavior
is fully probabilistic, i.e. without non-determinism. The analysis technique is however
closely related to the one presented in this thesis. More precisely, the authors of [WBBQ9]
suggested a BMC-based approach to the falsification of safety properties of the shape “the
probability of reaching the target states, while passing only states of some specified set,
is at most 67 This approach works as follows. In a first step, the given safety property
of above form is reduced to state reachability by removing edges from the DTMC. By
mapping probabilistic transitions to non-deterministic ones, the step-bounded behavior of
the given DTMC as well as the reachability property are then described as a propositional
formula as common for BMC. Note that the original transition probability matrix of the
DTMC is maintained in order to keep track of the transition probabilities between states.

>These safety properties are actually PCTL formulae of the form Pr<g(aUb).

3.3 Concurrent discrete-time probabilistic hybrid automata 27

The idea then is to solve the BMC formulae for increasing step depths thereby collecting
all system runs that reach the target states until the probability measure of these runs
exceeds . In a bit more detail, the BMC formula of some initial step depth k is solved
by a SAT solver. If the formula is unsatisfiable then there does not exist a system run
of length k that reaches the target. Otherwise, the satisfying assignment provided by the
SAT solver is used to extract a run of the DTMC that reaches the target. The proba-
bility of this run is retrieved by means of the original probability matrix. After adding
an additional clause to the BMC formula which excludes the previous solution, the SAT
solver is called again to potentially find another run reaching the target states. Whenever
the (modified) BMC formula of depth & is decided to be unsatisfiable, the process contin-
ues with BMC formula of depth &£ + 1. The overall procedure terminates if all collected
system runs carry enough probability mass to falsify the safety property, thereby estab-
lishing a probabilistic counterexample. To reduce the number of SAT solver calls and thus
to improve efficiency, the authors of [WBB09] proposed some optimizations. The most
important one tries to detect loops in runs reaching the target states in order to achieve
infinitely many runs from one solver invocation. Besides the fact that SSMT-based PBMC
can deal with probabilistic infinite-state systems exhibiting non-determinism, the main
difference to the approach of [WBB09] is that a PBMC formula preserves full informa-
tion about the branching structure, in particular all probability information, by means
of existential and randomized quantifiers. This naturally allows for a distinction between
non-deterministic and probabilistic choices as well as for several algorithmic optimizations
including optimizations with respect to probabilistic behavior, confer Section [6.5l

More recently, the latter approach was enhanced in [BWBT11] to the more general
case of Markov reward models (MRMSs), which are DTMCs extended by real-valued state
rewards. The corresponding safety properties are now of the shape “the probability of
reaching the target states with an accumulated reward of at least 6, and of at most 6,,,
while passing only states of some specified set, is at most #”. In order to cope with such
constraints on the accumulated reward, the step-bounded behavior of the given MRM
(together with the reformulated safety property) is now encoded as an SMT formula over
linear real arithmetic instead of a propositional formula. For the falsification of above
safety properties, principally the same procedure as in [WBB09] is feasible. The authors
of [BWBT11] actually prefer a slightly different approach: since the probability measure
of a run can be encoded in above SMT formula, binary search is used to generate runs of
higher probabilities first, as this leads to more compact probabilistic counterexamples in
general.

3.3 Concurrent discrete-time probabilistic hybrid
automata

After having motivated the probabilistic system model of this thesis by means of a prac-
tical NAS application in Section 3.1l and after having surveyed related system classes in
Section 8.2 we now present in detail the formal model of concurrent discrete-time proba-
bilistic hybrid automata as introduced in [TEF11]. We remark that essential parts of this
section were published in [TEF11] by the author of this thesis together with his co-authors.

28 3 Probabilistic Hybrid Systems

As exemplified by the NAS case study, hybrid systems occurring in practice generally
consist of multiple components evolving concurrently, both in the small, where controllers,
sensor, actuators form identifiable units being coupled by one or more communication
busses, or in the large, where a number of otherwise independent physical processes be-
comes connected via embedded control, as in a car platooning maneuver. Given the
ubiquity of concurrency in such embedded control applications, it makes sense to avoid
the detrimental effects of flattening concurrent systems before verification, which have
become known as state explosion in the finite-state case, and offer models directly accom-
modating concurrency instead. In the sequel, we therefore elaborate on such a model,
where probabilistic hybrid automata evolve concurrently subject to a synchronous seman-
tics involving global agreement on transitions as in CSP [Hoa85]. Within their evolution,
the individual automata

1. non-deterministically select local transitions and synchronously suggest them to the
environment,

2. establish consensus on a global transition comprising one selected local transition
from each concurrent component by checking mutual consistency between the in-
dividual activation conditions of the selected local transitions, releasing the syn-
chronous global transition if and only if the conditions are consistent,

3. after having committed to this global transition, do locally select one of the available
probabilistic variants of the corresponding local transition,

4. establish global consensus on execution of the locally selected probabilistic variants
by checking mutual consistency of their side effects,

5. in case of consensus, execute the transition concurrently by applying their associated
effects on the global state, or else deadlock due to inconsistent assignments in the
committed transitions.

The semantics has been defined with the goals of, first, permitting concise models by
not imposing overly restrictive rules on use of variables and, second, providing separation
between the possibly non-deterministic process of transition selection and the then purely
probabilistic process of selection of a transition variant, as in classical, monolithic proba-
bilistic hybrid automata [Spr01], BC05, [FHT08]. To achieve the first, both the (then not
really) local conditions for transition selection and the side effects can refer to non-local
variables in both pre- and post-states, forcing parallel automata to agree on mutually
consistent local transitions. The second, which is a necessary prerequisite for avoiding
ill-formed probability measures due to interference between schedulers (or policies, adver-
saries) resolving non-determinism and the probabilistic choices, is accomplished by first
committing a non-deterministic transition selection and then pursuing the probabilistic
selection of a variant, yielding a deadlock if the latter experiment yields an outcome which
is inconsistent to the earlier selection.

Definition 3.1 (Syntax of a system of concurrent PHAs)

A system of concurrent discrete-time probabilistic hybrid automata & = {A;,..., A,}
is given by a set of discrete-time probabilistic hybrid automata (PHAs), where each
probabilistic hybrid automaton A; for 1 < i < n consists of the following:

3.3 Concurrent discrete-time probabilistic hybrid automata 29

o A finite set D; = {d., ..., dfﬂ} of discrete variables spanning the discrete state space
(sometimes called the locations) of the hybrid automaton by means of the Cartesian
product Xfizl dom(d}) of their finite domains dom(d’). Without loss of generality,
we assume that each dom(d;'») s a bounded integer interval. In order to permit non-
local referencing of the state variables, we demand that D; N D; = 0 if i # j, i.e.
that the variable names used in different concurrent automata are disjoint.

o A finite set R; = {%,... 2%, } of continuous state components controlled by that

automaton (yet visible to all others). Fach continuous component x; ranges over
a bounded interval dom(z}) = [lxi_,uggj] within the reals R. Again, we demand that
RNR; =0 ifi # j. Additionally, we require discrete variable names and continuous
variable names to be disjoint, i.e. D; N R; =0 for all i and j.

o A predicate init; in an arithmetic theory T with free variables in D; and R; de-
scribing the initial state of the automaton. For technical reasons and without loss of
generality, we demand that there is exactly one valuation in the state set States; =
X?i:l dom(d}) x X2, dom(z}) of the automaton which satisfies init;. Note that due
to the disjointness of the local variable name spaces, this implies existence of exactly
one global initial state s € X[, States; satisfying \;_, init;.

e A finite family Tr; = {tr{, ... tr} } of symbolic transitions.
Each symbolic transition tr} comprises the following.

e A generalized transition guard g(tr;) expressing the conditions on local and global
variables required for establishing consensus on that transition. As for the descrip-
tion of initial states, g(tré) is a predicate in the arithmetic theory T over variables
in Dy,...,D, and Ry,..., R, as well as primed variants thereof, the latter repre-
senting the post-states. A transition guard states the conditions on the discrete as
well as the continuous state under which the transition may be taken. Note that
the guard predicate can refer to the current states and post-states of all concurrent
automata in S. It thus provides an expressive formalism supporting synchronization
through global consensus.

e A discrete probability distribution p(tr}) € D(PC,,:), where PCy.: is a finite and
J J

non-empty set of symbolic transition alternatives and D(PC,,:) denotes the set of

discrete probability distributions over PC’tT;. That is, p(tr?) assigns to transition tr}

a distribution over |PC,,i| many transition alternatives. Without loss of generality,
J

we demand that each transition alternative is of positive probability, i.e. for each

pe € PCys it holds that p(tr})(pe) > 0.

e For each transition alternative pc € PC”,;'_ of transition t'r’§ an assignment predicate
asgn(trl, pc) defining the successor state. As for transition guards, asgn(tr’, pc)
is an arithmetic predicate in the arithmetic theory T over variables in Dy, ..., D,
and Ry, ..., R, as well as primed variants thereof, the latter again representing the
post-states.

30

3 Probabilistic Hybrid Systems

2
VLGSR

NChoice = {
PChoice((tr], tr?)) = {

(try,tri), (¢ry, tr3)}
(pc} 17PC% 1) (Pc%gv pcil)v
(p 011 p012) (PC{,vaCiQ)}
PChoice((tri, t7"2) {(pCl 171702 1 (Pcizvpf?%,l)}

PChoice = PChoice((tr], tr?))

U PChoice((tr], tr3))

Assign((tri,tr}), (pcl,,peiy)) =2/ = 0A Y = 22
p((tri, trd), (pcl,l.,pcm)) =0.2-0.6=0.12

Figure 3.2: A parallel composition of probabilistic hybrid automata. Guards are omitted for the
sake of clarity. (Source of figure: [TEF11])

Note that the assignment predicate may again refer to the global pre- and post-
state, i.e. the current states and the post-states of all concurrent automata in S.
This definition enables an automaton to read state variables of other automata, and
moreover offers the possibility of non-local writes, entailing agreement in case of
multiple concurrent updates to the same variables. Semantically, updates will only
be performed in case all concurrent automata agree on them, and the system will
become deadlocked in case of inconsistent updates. Furthermore, we require that the
concurrent execution of assignments are deterministic with respect to the primed
variables, i.e. the concurrent execution of the local transition alternatives of the
indiwidual automata uniquely determines the global post-state of the overall system.

The above two requirements imply that each concurrently enabled combination of
local transitions may permit at most one successor state for each possible resolu-
tion of the local probabilistic choices. This condition necessitates a global view of
transitions and their related assignments, which motivates the following definitions,
as illustrated in Figure 32 To obtain such a global view, let NChoice = X, T'r;
denote the Cartesian product of the local transition sets, thus representing the set of
all potentially possible global transitions. As each local transition may have multiple
probabilistic variants, the same applies for global transitions. With regard to a single
global transition (tr',... tr") € NChoice, the set of associated probabilistic transi-
tion alternatives is PChoice((tr!, ... tr")) = X PCy., which is the Cartesian
product of the local probabilistic transition alternatives available for the individual
local transitions trt, ... tr". Taking together all the global probabilistic alternatives
of all global transitions, PChoice = |J,.c nchoice PChoice(nc) denotes the set of all
global probabilistic choices. Given a global non-deterministic transition choice tr =
(tr', ..., tr") € NChoice and a corresponding global probabilistic alternative choice
pe= (pc', ..., pc") € PChoice(tr), we denote by Assign(tr,pc) = N\, asgn(tr, pc')
the conjunction of the selected local assignment predicates. With these definitions, we
can formalize the requirements that each concurrent execution of local transition al-
ternatives be deterministic: We demand that for each global transition tr € NChoice
and for each global probabilistic alternative pc € PChoice(tr), the associated global
assignment Assign(tr, pc) is deterministic or, equivalently, a partial function, i.e. it

3.3 Concurrent discrete-time probabilistic hybrid automata 31

satisfies
Assign(tr, pc) A Assign(tr, pc)[e/d, /7] = e=d' Nj= '

where d' and &' denote the vectors of all primed discrete and continuous variables
of all automata Ay, ..., A,, respectively. Intuitively, the current global state and a
global assignment uniquely determines the global post-state.

Observe that above definition left blank a concrete description of the arithmetic theory 7.
In this thesis, we concentrate on the very general theory of non-linear arithmetic over the
reals and integers involving transcendental functions like exponential and trigonometric
functions. We remark that 7-predicates may also comprise logical operators and can thus
be a complex-structured non-linear SMT formula as formally introduced in Section 4.3

Let Statess = X, States; be the global state space of system S. In the sequel,
we define the concurrent semantics of the system &. Here, all partners do propose a
local transition that is fixed as soon as the partners have reached consensus in the sense
of the guards of the involved local transitions being consistent. The latter amounts to
checking whether a global post-state exists which together with the current pre-state
satisfies the conjunction of the (generalized) local guards. Once the global transition has
been negotiated, all partners do randomly select a local transition alternative. Provided
that the assignments corresponding to the resulting global probabilistic alternative are
consistent, each system enters the unique post-state of S arising due to determinacy of
assignments. In case the selected global system step is impossible due to inconsistency
between the selected guards of all A; or due to inconsistency of the randomly selected
assignments, the overall system & deadlocks in a distinguished state L.

Given a selection of transitions and transition alternatives, it immediately follows from
Definition B.] (determinacy of global assignments) that at most one post-state exists:

Property 3.1 (Uniqueness of post-states)

Let S be a system of concurrent discrete-time probabilistic hybrid automata. Further, let
s € Statess be a state of S, tr = (tr!,... tr") € NChoice be a non-deterministic transi-
tion choice, and pc = (pct,... pc") € PChoice(tr) be a probabilistic choice of transition
alternatives. We define the predicate val(z) for z € Statess as a conjunction of equations
/\veU?:l(DiuRi) v = z(v), where z(v) is the value of variable v in state z. Then, if

n

val(s) A /\ (g(tr*) A asgn(tr', pc'))

i=1
is satisfiable then there exists exactly one state s’ such that

n

val(s) Awal(s") A /\ (g9(tr") A asgn(tr', pc’))

is satisfiable, where val(.)" is val(.) with all variable names decorated by primes.

In this case, we denote by Post(s,tr,pc) the unique post-state s'. Otherwise, the system
deadlocks and we define Post(s,tr,pc) = L. For convenience, let be Post(L, tr,pc) = L
for all tr,pc, and let L not satisfy any T -predicate.

32 3 Probabilistic Hybrid Systems

The next definition explains the executable system behavior:

Definition 3.2 (Semantics of a system of concurrent PHAs)

The semantics of a system S of concurrent PHAS is defined by runs of S that are ﬁmtc@
alternating sequences of states and transitions, the latter involving both non-deterministic
and probabilistic choices. FEach run r = (so, (tri,pc1), s1, ..., (trg, pcx), sg) € (Statess U
{L}) x ((NChoice x PChoice) x (Statess U{L}))* of S meets the following properties:

1. pc; € PChoice(tr;) for all1 < j <k.
2. sjp1 = Post(sj, trj,pc;) for all0 < j <k —1.

We define first(r) = so and last(r) = si. We say that run r starts in state sqg. For tech-
nical reasons, we do not demand that a run starts in the initial state. We call r anchored
run whenever sq is the (unique) initial state, i.e. sy satisfies the initial predicate \;_, init;.
The length of run r, denoted by length(r), coincides with the number of transition steps
involved, i.e. length(r) = k. Fach subsequence (s;, (tr;, pc;), siv1) of r is referred to as
transition step or, synonymously, system step or step, for short.

Thus, each anchored run starts in the global initial state defined by the initial state pred-
icates of the concurrent components. Upon each transition step, all concurrent automata
first select non-deterministically among their transitions and then probabilistically under
their variants. The corresponding transition step leads to a unique post-state, if existent,
or to deadlock otherwise. The probability of a transition step (s, (tr,pc),s') from s to s’ un-
der non-deterministic choice tr = (tr!, ... tr") and probabilistic choice pc = (pc!, ..., pc")
is given by p(tr, pc) =[]}, p(tr')(pc’), confer Figure3.2l The probability p(r) of a (finite)
run 7 is the product of the probabilities of all transition steps of r, with the common
convention that the empty product is equal to 1. Hence, for each run r of length 0, i.e.
r = (s) with s € Statess U {L}, we have p(r) = 1. Note that under a given scheduler
resolving non-determinism the accumulated probability of all runs that start in the same
state and are of the same length is always 1.

Example. Consider the system S = {sensor, controller} depicted in Figure 3.3 For the
sake of clarity, we omitted probabilistic transition alternatives whenever just one exists, for
instance, in the entire automaton controller. In order to be more intuitive and illustrative,
we talk about concrete location names like sns_rise or ctr_rise when explaining the model.
Note that the set of all locations, i.e. the discrete state space, is formally given by the
valuations of discrete variables, confer Definition 3.Il In our example, we may assume
that the discrete state space of each automaton is spanned by one discrete variable whose
domain consists of the corresponding locations encoded as integers.

The idea of this very simple model is that sensor shall perform discrete state changes
whenever the sine curve (evaluated over time) reaches its extremal values. That is, from
sns_rise to sns_fall when hitting the maximum, and vice versa when reaching the mini-
mum value. This switching behavior is synchronized with the controller, i.e. the controller
retrieves such state changes of sensor in its guards. The controller regulates the continuous

SConsidering finite runs of PHAs suffices for the purpose of this thesis, since we investigate bounded
reachability.

3.3 Concurrent discrete-time probabilistic hybrid automata 33

T 3 ., 3
—% Sys<s —% Syss
A —(sns_rise A sns_fall’) / A —(sns_fall A sns_rise’) /
y=y+ (-1 Y =y—(t'—1)

3m

3% Asns_rise A sns_fall' /y =y

Figure 3.3: Graphical representation of the two concurrent probabilistic hybrid automata sensor
and controller. (Source of figure: [TEF11])

variable y that is increasing over time in discrete state ctr_rise and decreasing over time
in ctr_fall. The global time of the system is modeled by variable ¢, and the time passage
is governed by automaton sensor. A safety requirement of the system, for instance, is
that the value of y may never leave the safe region [—7/2,37/2]. In case of violation,
the controller enters the discrete state ctr_error and remains there forever. It is thus of
interest whether the overall system may violate the safety property, and, if so, to quantify
the system error.

The probabilistic behavior of S arises from the fact that the modeled sensor may over-

34 3 Probabilistic Hybrid Systems

(&) | (b) | (c) [(d) | (e) | ()| (g)]| (h)
sns_rise X X — — — X X —
sns_fall - - - X X - - X
sns_fall_fail | — - - — _ _ _ _
sns_rise_fail | — - % — _ _ _ _

T T T T 3 T T T
x 2l 222 |2 |2 2|:2
(sin (x)) -1 1 1 1 -1 | -1 1 1
t _T T s s 3 | 3w | 5w 5

2 2 2 2 2 2 2 2
ctr_rise X X X X X X X —
ctr_fall — — - — _ _ _ _
ctr_error — — — - — _ _ %

™ T ™ ™ 3 3 5m 5m
Y 2l 2l 2121212122

Figure 3.4: Sample anchored run of S. (Source of figure: [TEF11])

look an optimum of the sine curve with some probability, say 0.1. In such cases, the
controller may not perform a state change from ctr_rise to ctr_fall or vice versa. As
depicted in Figure B.3] this is modeled by the transition alternatives pc; o and pcgo of
transitions ¢r] and trj5, respectively. Each such alternative occurs with probability 0.1
forcing the sensor to visit one of the fail states sns_rise_fail and sns_fall fail. These fail
states are then left immediately, but the effect is that the controller does not detect the
discrete state change of sensor as desired.

Figure B4 depicts a possible anchored run of S. Initially, it starts in the (unique)
initial state (a) ((sns_rise,z = —7w/2,t = —n/2),(ctr_rise,y = —n/2)). The choice
(trs, trs), (—, —) (where the probabilistic alternatives are left free due to uniqueness) leads
to state (b) ((sns_rise,z = 7/2,t = 7/2), (ctr_rise,y = 7/2)). Now, the guard sin(z) = 1
of tr{ is true. The only enabled transition of sensor thus is ¢r]. Assume that the sensor
fails now which is modeled by the probabilistic transition alternative pc;,. The con-
troller consistently selects transition ¢r§ to remain in ctr_rise. Under this choice the next
system state (c) is ((sns_rise_fail,x = 7/2,t = 7/2), (ctr_rise,y = 7/2)), and immedi-
ately thereafter (d) ((sns_fall,z = 7/2,t = n/2), (ctr_rise,y = 7/2)). The sensor now
takes transition tr§ and the controller ¢7§, and the system enters state (e) ((sns_fall,x =
3n/2,t = 3mw/2), (ctrrise,y = 3m/2)). By the next choice (tr3,trs), (pea1, —), a dis-
crete state change in sensor is performed while setting = to —m/2, and results in state
(f) ((sns_rise,z = —7/2,t = 37/2), (ctr_rise,y = 37/2)). Then, both automata per-
form a self loop in their current discrete states yielding (g) ((sns_rise,z = 7/2,t = 57 /2),
(ctr_rise,y = 57/2)). Now, the value of variable y has left the safety interval [—7 /2, 37/2],
and selecting transition ¢r¢ of controller leads to location ctr_error. The sensor selects tran-
sition ¢r5 and probabilistically the alternative pcy 1. So, the next state (h) is ((sns_fall, z =
7/2,t = bm/2), (ctr_error,y = 57/2)). The length of this run is 7, and its probability is
given by the probabilities of its transition steps. There are just three steps with a probabil-
ity lower than 1, namely these with transition alternatives pc; o, pco.1, and pc; 1. Therefore,
the probability of this run is 0.1-0.9-0.9 = 0.081.

This example shows existence of a single anchored system run violating the safety

3.3 Concurrent discrete-time probabilistic hybrid automata 35

property with probability 0.081. Assuming that some probabilistic requirement however
permits violation with probability at most 0.1, then from above information we cannot
conclude whether this requirement is satisfied by the system or not. To obtain a mean-
ingful figure, the full, non-deterministic and probabilistic, system behavior needs to be
taken into account. This issue is addressed in Chapter Bl which introduces the problem of
probabilistic bounded state reachability and furthermore suggests a symbolic method to
solve the problem. Since this symbolic analysis approach is based on a stochastic exten-
sion of satisfiability modulo theories called SSMT, we devote the following chapter to a
detailed picture of SSMT and its underlying notions.

4 Stochastic Satisfiability Modulo Theories

This chapter introduces the notion of stochastic satisfiability modulo theories, SSMT for
short, as the underlying formalism for the symbolic analysis of probabilistic hybrid systems
being explored in Chapter Bl The idea of SSMT is to combine two well-studied logical
concepts, namely first stochastic Boolean satisfiability (SSAT) and second satisfiability
modulo theories (SMT), while both SSAT and SMT are extensions of the well-known
Boolean satisfiability (SAT) problem. To reasonably approach the definition of SSMT
in Section 4.4 we first recall the SAT problem in Section 4.1l and we then devote our
attention to SSAT and SMT in Sections and [4.3] respectively.

We remark that essential parts of Section [£.2] were published in [TE10] by the author
of this thesis together with his co-author.

4.1 Boolean satisfiability

Given an arbitrary propositional formula ¢, the Boolean satisfiability problem, or SAT for
short, asks whether a satisfying assignment of ¢ exists. SAT is one of the most famous and
most important decision problems in computer science, in fact from a theoretical as well as
practical point of view. SAT was the first problem to be known as NP-complete, i.e. one
of the “hardest” problems in NP. This seminal result was proven by Cook in 1971 [CooT]]
and facilitated to discover more NP-complete problems by means of reductions from SAT
and then from those new NP-complete problems, confer, for instance, [Kar72 [GJ90].
The Boolean satisfiability problem remains NP-complete even for formulae in CNF and
moreover for formulae in kCNF for k£ > 3 [Coo71]. When restricting the formula to be in
2CNF then the resulting problem becomes solvable in linear time [APT79].

Though it is still open whether P = NP holds or not, most experts believe that P # NP
and thus a polynomial time algorithm for SAT is not expected. As a consequence, hitherto
existing SAT algorithms show exponential runtime in worst case. However, there is a lot
of work to improve performance of these so-called SAT solvers in practice. The need of
practically efficient SAT solvers is motivated by industrial applications of SAT like software
and hardware verification. Nowadays, SAT solvers are actually high-performance tools for
many real-world problems in formal verification, and are moreover accepted and used by
industry. Modern SAT solving techniques are also exploited in algorithms for extensions
of SAT, in particular for SSAT, SMT, and SSMT. In Chapter [6] we elaborate on solving
technologies for these different problems.

4.2 Stochastic Boolean satisfiability

Papadimitriou [Pap85| has proposed the idea of modeling uncertainty within propositional
logic by introducing randomized quantification in addition to existential quantification.

38 4 Stochastic Satisfiability Modulo Theories

ECD = Jz 4"y (2 vV —y) A (mz V) }

Pr(®) = max(0.3,0.7) = 0.7

x
r =true \\\\\x:false
Pr=03-1+07-0=0.3 \\@PT:0.3-0+0.7-1:O.7
Yy = true {y=false y=true ‘\\y:false
p=0.3 \p=07 p=03 . p=07
) (o) [e) [e |
Pr=1 Pr=20 Pr=20 Pr=1

Figure 4.1: Semantics of an SSAT formula ® depicted as a tree. (Source of figure: [TF10])

The resultant stochastic Boolean satisfiability (SSAT) problems consist of a quantifier
prefix followed by a propositional formula. The quantifier prefix is an alternating sequence
of existentially quantified variables and variables bound by randomized quantifiers. The
meaning of a randomized variable x is that = takes value true with a certain probability p
and value false with the complementary probability 1—p, while the value of an existential
variable can be set arbitrarily. Due to the presence of such probabilistic assignments, the
semantics of an SSAT formula ® no longer is qualitative in the sense that ® is satisfiable
or unsatisfiable as it is for propositional formulae, but rather quantitative in the sense that
we are interested in the maximum probability of satisfaction of ®. Intuitively, a solution
of @ is a strategy for assigning the existential variables, i.e. a tree of assignments to the
existential variables depending on the probabilistically determined values of preceding
randomized variables, such that the assignments maximize the probability of satisfying
the propositional formula.
The formal definition of the syntax and semantics of SSAT is as follows.

Definition 4.1 (Syntax of SSAT)
A stochastic Boolean satisfiability (SSAT) formula ® is of the form Q : ¢ where

1. @ = Q111 ® ... Qux, 1s a quantifier prefix of quantified propositional variables
x; with 1 < i < n, where Q; is either an existential quantifier 3 or a randomized
quantifier & with a rational constant 0 < p; < 1, and

2. ¢ is a propositional formula such that Var(p) C {x1,...,x,}.

The quantifier-free propositional formula ¢ is sometimes called the matrix of ®.

Definition 4.2 (Semantics of SSAT)
The semantics of an SSAT formula ® is defined by the maximum probability of satisfac-

4.2 Stochastic Boolean satisfiability 39

tion Pr(®) as follows:

Pr(c: o) | 0 if ¢=false,
-7 L1 if p=true,

Pr(3z ® Q:¢) = max(Pr(Q: ¢[true/z]), Pr(Q: p[false/x])) ,
Pr(dPz® Q:) = p- Pr(Q: ¢[true/z]) + (1 —p)- Pr(Q: p[false/x])

where £ denotes the empty and Q an arbitrary quantifier prefiz.

Note that the semantics is well-defined as ® has no free variables such that all variables
have been substituted by the constants true and false when reaching the quantifier-free
base case. For an illustrating example of the SSAT semantics confer Figure [4.1]

Without loss of generality, we may assume that the matrix of an SSAT formula is in
CNF. The rationale is that each propositional formula ¢ can be efficiently translated into
an equi-satisfiable formula ¢’ in CNF using the Tseitin transformation [Tse68], confer
Section 2.2 By this transformation, formula ¢’ may contain fresh auxiliary variables
hi,...,hx & Var(y), which are interpreted as innermost existentially quantified. It then
holds that Pr(Q: ¢) = Pr(Q® 3h; ®...® Jhy : ¢').

In order to simplify naming, we occasionally use the terms mazimum satisfaction prob-
ability, probability of satisfaction, as well as satisfaction probability synonymously for
mazimum probability of satisfaction whenever the latter is clear from the context.

For the sake of completeness, we remark that an extension of SSAT that additionally
allows universal quantifiers V has also been considered in the literature. The resulting
notion is called extended SSAT, or XSSAT for short, confer [LMPO1, [Maj09]. Semantically,
a universal quantifier calls for minimizing the satisfaction probability. That is, to define
Pr(®) for XSSAT formulae ®, Definition L2l must be extended by rule Pr(Vz ® Q : ¢) =
min(Pr(Q : p[true/x]), Pr(Q : ¢[false/z])).

Applications and extensions. In recent years, the SSAT framework has attracted
interest within the Artificial Intelligence community, as many problems from that area
involving uncertainty have concise descriptions as SSAT problems, in particular proba-
bilistic planning problems [LMPO1l, MLI98al IML03, Maj07] and belief network inference
problems |[Rot96]. Inspired by that work, other communities have started to exploit
SSAT and closely related formalisms within their domains. The Constraint Program-
ming community has developed the notion of stochastic constraint satisfaction problem
(SCSP) [Wal02, BS06] to address, among others, multi-objective decision making under
uncertainty [BS07]. A SCSP is defined by a set of constraints over existential and random-
ized variables, and extends SSAT in the following sense: first, variables need not range
over the Boolean domain but over arbitrary finite domains and, second, a constraint may
describe any relation between variables by specifying the allowed tuples of their values.
However, SCSP does not add expressive power to the concept of SSAT since each SCSP
can be encoded into SSAT. This observation relies on the encoding of (non-stochastic)
constraint satisfaction problems into SAT, confer, for instance, [Wal00], and on the fact
that an existential or randomized variable over any finite domain with n values can be
represented by a binary tree of depth at most n — 1 and thus by at most n — 1 existential

40 4 Stochastic Satisfiability Modulo Theories

or randomized propositional variables. In Section [£.4] we enhance the expressiveness of
SSAT substantially, namely by integrating the in general undecidable theory of non-linear
arithmetic over the reals and integers, while the quantified variables range over finite do-
mains as in SCSP. The resulting logical framework, called stochastic satisfiability modulo
theories, then opens a new application of stochastic satisfiability in symbolic probabilistic
model checking, the latter being exposed in Chapter Bl

4.2.1 Computational complexity of SSAT

Given any SSAT formula ® and any rational constant 0 < 6 < 1, the SSAT decision
problem (®,0) asks for whether Pr(®) > 6 holds. In general, this problem is PSPACE-
complete [Pap85, [Lit99]. The hardness can be easily shown by a reduction from the
quantified Boolean formula (QBF) problem: given a QBF instance Q : ¢, i.e. @ may
contain existential and universal quantifiers, we construct the SSAT formula @’ : ¢ such
that Q" arises from Q by replacing all universal quantifiers by randomized ones ¥ with
some rational 0 < p < 1. Then, Q : ¢ is true if and only if Pr(Q’: ¢) > 1. This reduction
shows that QBF can be seen as a special case of SSAT, while both general problems share
PSPACE-completeness.

There is some extensive work on the complexity of SSAT and QBF subcases that gives
a better insight into the relation of both problems. When restricting a QBF formula to
just existential or to just universal variables, this results in the well-known NP-complete
SAT problem or in the co-NP-complete tautology (TAUT) problem, respectively. The
subclass of SSAT that allows only randomized variables gives the PP-complete (“prob-
abilistic polynomial time”) MAJSAT problem. Recall that (co-)NP C PP C PSPACE
holds. Thus, randomized quantifiers are in some sense computationally harder than just
existential or just universal ones. In addition to restricting the quantifier prefix, it is of
interest to consider special shapes of the propositional formula. The special cases of SAT,
TAUT, QBF, MAJSAT, and SSAT for which the formulae are in 3CNF do not change
the complexity results mentioned above. Restricting however a QBF formula to be in
2CNF, the resulting QBF subproblem can be solved in linear time [APT79], and thus
also the corresponding subcases of SAT and TAUT. The same restriction of MAJSAT,
called MAJ2SAT, however remains PP-complete [GHMO05]. This is an interesting result as
alternating existential and universal quantifiers seem to be computationally harder than
just randomized ones for formulae in kCNF with £ > 3, but computationally weaker for
formulae in 2CNF.

In the following, we investigate the complexity of the SSAT subclass for which the
propositional formula is in 2CNF. We call this problem S2SAT. As MAJ2SAT is PP-
complete, it immediately follows that S2SAT is PP-hard. The precise complexity of
S2SAT, however, was open to the best of our knowledge. In [TEF10, Section 3|, we have
shown that S2SAT is as hard as the general SSAT problem, i.e. PSPACE-complete. A
summary of the complexity results mentioned above is given in Figure

In the rest of this subsection, we prove the new complexity result for SSAT. PSPACE-
membership of S2SAT immediately follows from the fact that S2SAT is a subcase of SSAT.
We prove PSPACE-hardness by a polynomial-time many-one reduction from the PSPACE-
complete decision problem 1-in-3 Q3SAT. A 1-in-3 Q3SAT formula Q : ¢ is simply a

4.2 Stochastic Boolean satisfiability

Formula || SAT | TAUT | MAJSAT | QBF | SSAT
any NP | co-NP PP PSPACE | PSPACE
3CNF || NP | co-NP PP PSPACE | PSPACE
2CNF P P PP P PSPACE

Figure 4.2: Overview of the computational complexity of SAT, TAUT, MAJSAT, QBF and SSAT
as well as of their subcases in which the propositional formulae are in 3CNF and in 2CNF.

Q3SAT formula, i.e. a QBF formula with ¢ being in 3CNF. While quantifier treatment
remains unchanged, satisfaction of ¢ however differs from the standard definition: ¢
is 1-in-3 satisfied under truth assignment 7 if and only if each clause ¢ € ¢ is 1-in-3
satisfied under 7, i.e. if and only if ezactly one literal in each ¢ is satisfied under 7.
PSPACE-hardness can be shown by reduction from Q3SAT that relies on the reduction
from 3SAT to 1-in-3 3SAT by Schaefer [Sch78]. For an arbitrary Q3SAT instance Q : ¢
with ¢ = clyA. . . Acl,,, we construct the 1-in-3 Q3SAT instance Q' : ¢’ as follows. For each
clause cl; = (05 V 05V 1) € ¢, we introduce five 1-in-3 Q3SAT clauses one-in-three(cl;) :=
(v a; Vi) NN DV d;) N (a; Vb Ve)A(ciVd;V fi) A5V c; V false) with six fresh
Boolean variables a;, b;, ¢;, d;, e;, f; and the constant literal false that is never satisfied. It
holds that cl; is satisfied under 7 if and only if Ja;, b;, ¢;, d;, €;, fi = one-in-three(cl;) is 1-in-3
satisfied under 7. By setting Q' := Q®3ay, by, . .., €, fm and ¢’ := A", one-in-three(cl;),
it follows that Q : ¢ is true if and only if Q" : ¢’ is I-in-3 true, i.e. true under 1-in-3
satisfaction. Note that Q' : ¢ is of size linear in @) : ¢, as Q' : ¢’ contains 6m new
variables and 5m clauses.

Theorem 4.1
S2SAT is PSPACE-complete.

Proof. PSPACE-membership is obvious as SSAT lies in PSPACE. We prove PSPACE-
hardness by a polynomial-time, actually a linear-time, many-one reduction from 1-in-
3 Q3SAT.

Let Q : ¢ be a 1-in-3 Q3SAT instance. We construct an S2SAT instance (®,#) such
that Q : ¢ is 1-in-3 true if and only if Pr(®) > 0. First observe that Q : ¢ is 1-
in-3 true if and only if Pr(Q" : ¢) > 1 under 1-in-3 satisfaction where Q' arises from
Q by replacing all universal quantifiers by randomized ones ¥%°. Let be ¢ = {(¢} Vv
v, v ey s}, Now, we introduce 3m fresh randomized variables (three
randomized variables per clause) all with the same probability p = 0.9 resulting in the
prefix Q" := Q' ®@¥*rl vl vl ... r™ 7P ¢ of ®. The following propositional formula
of ® ensures that at most one literal per clause in ¢ is true. To also enforce that at least
one literal per clause is true, the probability threshold 6 is set correspondingly by taking
account of the probabilities of the randomized variables 80'97“; to rule out non-solutions
of .

identify value of literal E; with variable 7"§ at most one trui\hteral per clause

A\

Y o= /m\ /8 A A A A \ /\(_'Ti v _‘Té)
PV A@Y =rh) A (neg () v) A= v)
= A=y V —rg)

42 4 Stochastic Satisfiability Modulo Theories

where neg(¢) returns the opposite literal of £, i.e. it returns x if ¢ = =z, and —x otherwise.
Note that ¢ is in 2CNF and & is of size linear in Q : ¢, since ¢ contains 3m new variables
and 9m clauses.

We now show that Pr(Q’ : ¢) > 1 under 1-in-3 satisfaction if and only if Pr(®) >
0.009™. Let be @' = Qqx1...Q,x,. Note that under each assignment 7 to the variables
in Q' there exists a unique assignment 7’ to the randomized variables 7%, ri, ri such that
the combined assignment 7" to all variables in Q" with 7 (x;) = 7(x;) and 7"(r}) = 7/ ()
satisfies /\3:1(@ V ort) A (neg(€) V rt) in ¢ for each 1 < <m, i.e. at least one of

Prd®ri 1, .. ram s O[T (21) /2] - [(n) 2] [T (r) Jra) [T (k) Jre—i] [true /i)
Prd%% 1, .. ram s 0[r(z1) /21] . [T () 2] [T (1) Jr1) - [T (k1) [T [false /i)

is 0 for each 1 < k < 3m. Due to (=ri vV —ri) A (=ri V =ri) A (—=rh V =ri) € ¢ and because
of setting 'r’; to true with probability 0.9 and to false with 0.1, for each assignment 7 to
the variables in @’ it holds that Pr(d°%rl, ... v% : [r(zy)/z1] ... [7(2,)/2,]) < 0.009™.

Furthermore, for each assignment 7 to the variables in Q' that 1-in-3 satisfies ¢,
ie. Pr(e : o[r(x1)/x]...[T(xs)/z,]) > 1 under 1-in-3 satisfaction, the unique assign-
ment 7' also satisfies (—ri V —rd) A (=ri V —rd) A (=rh V —rd) for each 1 < 7 < m,
since each clause in ¢ has exactly one true literal under 7, and thus 7" satisfies .
Therefore, for each 1 < i < m exactly one variable of ri{, 7} ri is set to true by 7/,
from which follows that Pr(4%%r} ... r§* : Y[r(x1) /2] ... [T(zn)/2,]) = 0.009™. Vice
versa, if for some assignment 7 to the variables in Q' it holds that Pr(d°r},... Tyt
Y[r(x1) /2] .. [T(xn)/x,]) = 0.009™ then for each 1 < ¢ < m exactly one variable of
ri,rs ri is set to true by 7 due to (=i V =rd) A (=ri V =ri) A (=rh Vv —ri) and due to
Ho'gré. From /\?Zl(ﬂé Vrt) A (= Vrh), we conclude that each clause in ¢ has exactly one
true literal under 7. Thus, Pr(e : ¢[7(z1)/21] ... [7(z,)/xs]) > 1 under 1-in-3 satisfaction.
Summarizing, Pr(e : [r(x1)/z1] ... [7(xy)/2,]) > 1 under 1-in-3 satisfaction if and only
if Pr(d%%t,... v aplr(zy) /2] .. [7(2,)/2,]) = 0.009™. From this fact and due to
Prd®rl el sl (2y) /2] - . [T (20) /20]) < 0.009™ for each 7, it immediately follows
by definition that Pr(Q’: ¢) > 1 under 1-in-3 satisfaction if and only if Pr(®) = 0.009™
if and only if Pr(®) > 0.009™. To complete the reduction, we choose the rational constant
6 := 0.009™.

The resulting S2SAT instance (®, §) contains n + 3m variables and 9m clauses where n
is the number of variables and m is the number of clauses in Q : ¢. The rational constant
0 = 0.009™ can be represented by a decimal fraction of size O(m). Thus, (®,0) can be
constructed in linear time. O

We remark that S2SAT with just homogeneous probabilities in randomized quantifiers,
i.e. %5 is of the same complexity while the proof is slightly more complex. In brief, 3m
more randomized variables are appended to Q" (on the right) and ¢ is extended by 3m
more clauses, i.e. 4°ht by, h% and (i V —hi) A (ry vV =hi) A (riV —hi) per clause ¢;. Then,
if 77 = true both assignments to h} satisfy (/v —=h%), and otherwise, i.e. 75 = false, just
h; = false does. Thus, for each ¢ one of 71, 75,73 is true if and only if the corresponding
probability is 0.5°, and all 7‘;- are false if and only if the probability is 0.5%. It remains
to set 6 := 0.55™,

4.3 Satisfiability modulo theories 43

4.3 Satisfiability modulo theories

As mentioned in Section [4.I] the Boolean satisfiability problem has many practical appli-
cations, particularly in formal verification of software and hardware systems. Although
modern SAT solvers are highly efficient tools to solve many industrial problems, system
designs and their corresponding verification tasks become more and more intricate and
often require logical frameworks that are more expressive than propositional logic. To
meet these requirements, the Boolean satisfiability problem was extended by integrating
background theories. The resulting notion is generally known as satisfiability modulo the-
ories, or SMT for short. Some theories of interest are equality logic with uninterpreted
functions, arithmetic like difference logic or linear arithmetic, the theories of arrays, bit
vectors, and inductive data types. Being expressive enough to encode the behavior of prob-
abilistic hybrid automata introduced in Section [3.3] we direct our attention in this section
to the theory of non-linear arithmetic over the reals and integers involving transcendental
functions like exponential and trigonometric functions. For more details on SMT for the
above mentioned theories, the interested reader is referred to the nice survey [BSST09).

4.3.1 SMT for non-linear arithmetic

An SMT formula with respect to the theory of non-linear arithmetic over the reals and
integers is an arbitrary quantifier-free Boolean combination of non-linear arithmetic con-
straints including transcendental functions. An example is given by the formula

¢ = ((sin(y?) <0.1) = (2 <0Vz>3z+exp(y)))

where x € Z, and y,z € R. In order to obviate the issue with undefined values of
partial operations, we demand that all arithmetic operators in arithmetic constraints are
total. Practically, this need not be a huge restriction as most common partial arithmetic
operators can be expressed by their inverse operation. For instance, the constraint y = 1/x
in which the term 1/ is undefined for x = 0 can be rephrased as y - = 1 Az # 0. We
further remark that propositional literals b and —b with b being a propositional variable
can be encoded as v/ > 1 and &’ < 0, respectively, with ' being an integer variable with
domain {0, 1}.

Semantically, non-linear arithmetic SMT formulae ¢ are interpreted over assignments
T € (Varz(v) — Z) x (Varg(p) — R) to their variables Var(p) = Varz(e) U Varr(y),
where Varz(yp) and Varg(p) denote the set of ¢’s integer and real-valued variables, re-
spectively. Given such assignment 7 = (77, 7r), we slightly abuse notation and identify
7(x) = 17(x) if © € Vary(p) and 7(x) = m(z) if © € Varg(y). Satisfaction of arithmetic
constraints under some assignment is with respect to the standard interpretation of the
arithmetic operators and the ordering relations over the integers and reals. For instance,
both constraints sin(y?) < 0.1 and z > 3z + exp(y) are satisfied under assignment 7 with
() =1, 7(y) = 1.9, and 7(2) = 24.3 because sin(1.9?) < 0.1 and 24.3 > 3 + exp(1.9).
The constraint x < 0 is clearly not satisfied under above 7. If a constraint c is satisfied
under some 7, we also say that ¢ has truth value true under 7 and otherwise, i.e. ¢ is
not satisfied under 7, ¢ has truth value false under 7. Please note that this semantics is
well-defined since all arithmetic operators in a constraint are total. That is, each arith-
metic term evaluates to a defined value in the reals or integers under each assignment

44 4 Stochastic Satisfiability Modulo Theories

and, thus, each arithmetic constraint has a definite truth value under each assignment.
Satisfaction of a non-linear arithmetic SMT formula under some assignment is then based
on the standard interpretation of the logical operators, confer Section For instance,
the disjunction (z < 0V z > 3z + exp(y)) is satisfied under above assignment 7 because
one constraint, namely z > 3z + exp(y), is satisfied under 7. As a consequence, the whole
formula 1) above is satisfied under 7. If an SMT formula ¢ is satisfied under an assignment
7, denoted by 7 |= ¢, then 7 is called satisfying assignment (or solution or model) of .
An SMT formula ¢ is satisfiable if and only if there is a satisfying assignment of . If no
solution of ¢ exists, ¢ is unsatisfiable.

Undecidability. The satisfiability problem for SMT formulae with respect to the theory
of non-linear arithmetic, i.e. the problem of deciding whether a given non-linear arithmetic
SMT formula is satisfiable or not, is undecidable in general. This is due to the fact that
non-linear Diophantine equations, i.e. equations between polynomials in several integer
variables, can be encoded in non-linear SMT since the latter supports addition and multi-
plication over integer variables. The problem of deciding whether a Diophantine equation
has an integer solution or not, also known as Hilbert’s Tenth Problem, was proven to be
undecidable by Matiyasevich [Mat70]. We remark that non-linear SMT that allows just
real-valued variables is also undecidable since a model of the integer numbers can be fil-
tered out from the reals by exploiting the periodicity of trigonometric functions. Despite
the fact of general undecidability, necessarily incomplete algorithms addressing non-linear
arithmetic SMT problems were developed. In Section [6.3] we describe such an SMT al-
gorithm, more precisely the so-called iSAT algorithm [FHT™07, [Her1(], that constitutes
the algorithmic basis of the SSMT solver introduced in Section [6.4]

Conjunctive form. With regard to the development of such SMT solving algorithms, it
is common to deal with formulae of syntactically restricted shape. Similar to propositional
formulae in conjunctive normal form, we rewrite an arbitrary SMT formula as above into a
conjunction of clauses where clauses are disjunctions of primitive constraints. A primitive
constraint is either a simple bound consisting of one variable, one relational operator, and
one rational constant like x = 3.1 or z < —12.8, or it is an arithmetic equation containing
up to three variables and one arithmetic operation like + = y + z or x = sin(y). SMT
formulae of the above shape are called to be in conjunctive form or CF for short.

In [Her10, Chapter 5|, Herde presented a linear-time procedure to convert an arbitrary
non-linear arithmetic SMT formula into an equi-satisfiable formula in CF. This procedure
is a generalized version of the Tseitin transformation [Tse6§], the latter being applied to
obtain propositional formulae in CNF. In brief, the generalized Tseitin transformation for
non-linear arithmetic SM'T formulae is based on introducing fresh auxiliary variables for
the values of arithmetic subexpressions and of logical subformulae. It furthermore sup-
ports optimizations like the elimination of common subexpressions and common subfor-
mulae through reuse of the auxiliary variables. An important property of this generalized
Tseitin transformation is the following: given any SMT formula ¢, it computes an SMT
formula ¢’ in CF such that ¢ = 3hq, ..., h, : ¢’ where hq, ..., h, are the introduced aux-
iliary variables. Considering the SMT formula v above, an equi-satisfiable SMT formula

4.4 Stochastic satisfiability modulo theories 45

in CF, for instance, is

(hsin(yQ) >01V <0V hz_gx_exp(y) > 0)
A (hsin(yQ) = Sin<hy2>> A (hy2 = y2) A (hz—i’:x—exp(y) =z — h3x—exp(y))
A\ <h3mfexp(y) = h3:1: - hexp(y)) A (th = 31’) A (hexp(y) = eXp<y>>

with the auxiliary variables hgn(y2y, fy2, Pz—3e—exp(y)s M3e—exp(y), Rexp(y) € R, and hs, € Z.
The formal syntax of an SMT formula in CF with respect to the theory of non-linear

arithmetic is specified in the following definition.

Definition 4.3 (Syntax of non-linear arithmetic SMT formulae in CF)
SMT formulae in conjunctive form (CF) with respect to the theory of non-linear arithmetic
over the reals and integers are formed according to the following grammar:

smt_formula ::= { clause \}*clause
clause ::= ({constraint V' }* constraint)
constraint ::= bound | equation
bound ::= wvar relop const
equation 1= var = term
term = wop var | var bop var
relop = <|<|=|>]|>
uop = — | sin | cos | exp | abs | ...
bop=+|—1]-]...

where var denotes a real-valued or integer variable, and const ranges over the rational
constants.

From the general semantics it follows that an SMT formula ¢ in CF is satisfied under an
assignment 7 if and only if at least one constraint is satisfied under 7 in each clause of .

4.4 Stochastic satisfiability modulo theories

This section presents the logical framework of stochastic satisfiability modulo theories, or
SSMT for short, that we have first introduced in [FHTO08]. Roughly speaking, SSMT com-
bines the concepts of SSAT, described in Section 4.2 and SMT, dealt with in Section [4.3]
and thus enhances the reasoning power of SMT to probabilistic logics. In several publica-
tions, we have investigated different definitions of SSMT. In very general terms, an SSMT
formula ® can be viewed as an SMT formula ¢ over some theory 7, while ¢ is preceded
by a quantifier prefix Q comprising some of the variables in Var(y), i.e. ® = Q : .

In the original paper [FHTO0S|, we required that theory T is decidable and that prefix Q
includes only existential and randomized variables over finite domains. The requirement
of decidability of 7 was relaxed in [TF08|] where we considered non-linear arithmetic over
the reals and integers. The latter definition of SSMT establishes the fundamental basis of
the symbolic analysis procedure for discrete-time probabilistic hybrid systems being inves-
tigated in Chapter Bl In addition to existential and randomized quantification, the SSMT

46 4 Stochastic Satisfiability Modulo Theories

version of [TF09, [TEF11] also permits universal quantifiers in Q akin to XSSAT. Expres-
siveness of SSMT has been enhanced considerably in [FTEI10a] by two major extensions:
first, by reasoning over ordinary differential equations (ODEs) as an additional theory
and, second, by existential quantification over continuous-domain variables. The latter
version of SSMT then allows for the symbolic analysis of continuous-time probabilistic
hybrid systems. We elaborate on this issue in Chapter [0l While all of the above papers
define the semantics of SSMT by the maximum probability of satisfaction as for SSAT,
we have generalized the interpretation of SSMT to maxzimum conditional expectation of a
designated variable in [FTEIOD]. Being able to deal with such expectations in SSMT, the
scope of the probabilistic reachability analysis approach of Chapter [il has been extended
to the computation of expected values of probabilistic hybrid systems like, for instance,
mean time to failure. A comprehensive elaboration on this topic is given in Chapter [7.

In Subsection .41l we characterize the notion of SSMT as described in [TF0S], i.e.
SSMT for the theory of non-linear arithmetic over the reals and integers involving tran-
scendental functions. As mentioned above, this definition of SSMT serves as the funda-
mental basis of the symbolic approach to bounded reachability analysis of probabilistic
hybrid systems being introduced in Chapter Bl In Subsection [£.4.2] we then suggest an
extension of SSMT which provides stronger capabilities in problem modeling with a view
to improving performance of SSMT algorithms.

4.4.1 Syntax and semantics

In contrast to SSAT, quantified variables in SSMT need not range over the Boolean
domain but over arbitrary finite domains as in SCSP. We thus write QQx € D, to denote
that variable x over finite domain D, is bound by quantifier (). Without loss of generality,
we demand that D, is given by a set of integers, since each finite domain can be encoded
using the integers. We may moreover assume-again without loss of generality-that D,
can be represented by an integer interval. The latter can be achieved, for instance, by
taking successive integers for the encoding of the finite domain D,. A quantifier @,
associated with variable z, is either ewistential, denoted as 4, or randomized, denoted
as dy4, where d, is a discrete probability distribution over D,. A variable x is called
existential or randomized variable if x is bound by an existential quantifier, i.e. dx €
D,, or by a randomized quantifier, i.e. 45, € D,, respectively. Similar to SSAT, the
value of a randomized variable is determined stochastically according to the corresponding
distribution, while the value of an existential variable can be set arbitrarily. We denote a
probability distribution d, by a function [v; — py, ..., vy — D] With D, = {v1, ..., vy}
associating probability 0 < p; < 1 to value v;. The mapping v; — p; is understood as
p; is the probability of setting variable z to value v;. The distribution satisfies v; # v;
for i # j and Y " | p; = 1. For instance, ¥_1020-051-032 € {—1,0,1} expresses that
the variable x is assigned the values —1, 0, and 1 with probabilities 0.2, 0.5, and 0.3,
respectively.
The formal definition of the syntax and semantics of SSMT is as follows.

Definition 4.4 (Syntax of SSMT)
A stochastic satisfiability modulo theories (SSMT) formula ® is of the form Q : ¢ where

4.4 Stochastic satisfiability modulo theories 47

¢ =3z € {0,1} ¥joo0.31-062-01y € 10,1,2}
((z>1V2a-sin(4b) > 3) A (y > 2V 2a-sin(4b) < 1) A (z < y))

Pr(®) = max(0.1,0.7) = 0.7

X

Pr=03-0+06-1+0.1-1
=0.7

2a - sin(4b) > 3| [2a-sin(4b) > 3| [2a-sin(4b) > 3
2a - sin(A4b) <1| |2a- sin?4b) <1 2a - sin(4b) < 1| |2a-sin(4b) < 1
1<0
unsatisfiable] | unsatisfiable | satisfiable | unsatisfiable satisfiable satisfial
Pr=0 Pr=0 Pr=1 Pr=0 Pr=1 Pr=1

Figure 4.3: Semantics of an SSMT formula ¢ depicted as a tree illustrating the recursive descent
through the quantifier prefix.

1. ¢ is an arbitrary SMT formula with respect to the theory of non-linear arithmetic
over the reals and integers, and

2. Q=Q11r1 € Dy, © ... Qnzy, € Dy, is a quantifier prefix binding some variables
x; € Var(yp) over finite domains D,, by existential and randomized quantifiers Q;.

The quantifier-free SMT formula ¢ is sometimes called the matrix of ®.

Observe that not all variables of matrix ¢ need to be quantified by prefix Q and that non-
quantified variables may range over continuous domains. These non-quantified variables
are interpreted as innermost existentially quantified by Definition

Definition 4.5 (Semantics of SSMT)
The semantics of an SSMT formula ® is given by its maximum probability of satisfaction

Pr(®) defined as follows:

Pr(c:) _ { 0 if @ is unsatisfiable ,

1 if ¢ is satisfiable ,
Pr(3z €D, ® Q:¢) = maxyep, Pr(Q: ¢lv/z]),
Prdg,x €D, ® Q:¢) = ZUGDZ d.(v) - Pr(Q: ¢lv/z]) ,

where £ denotes the empty and Q an arbitrary quantifier prefiz.

48 4 Stochastic Satisfiability Modulo Theories

Definition is an extension of the semantics of SSAT, confer Definition While the
interpretation of quantifiers remains the same as for SSAT, their treatment is adapted
to handle domains with more than two values. That is, the maximum probability of
satisfaction Pr(®) of an SSMT formula ® with a leftmost existential quantifier in the
prefix,i.e. ® =dz € D,0Q : p, is defined as the mazimum of the satisfaction probabilities
of all subformulae Q : p[v/z] that arise by removing the leftmost quantified variable from
the prefix and by substituting values v € D, for variable z in the matrix . If the leftmost
variable is randomized, i.e. ® = ¥4.x € D, ©® Q : ¢, then Pr(®) demands to compute the
weighted sum of the satisfaction probabilities of all subformulae Q : p[v/z]|. The base cases
of this recursion, that are reached whenever the quantifier prefix becomes empty, yield
SMT formulae over the non-quantified variables. This fact differs from SSAT where all
variables are quantified and each base case thus gives a formula equivalent to either true
or false. Being conform with the intuition of the maximum probability of satisfaction,
we assign satisfaction probability 1 to the remaining quantifier-free SMT formula ¢ in
case is satisfiable, and probability 0 otherwise, i.e. if ¢ is unsatisfiable. Therefore,
the non-quantified variables of an SSMT formula can be seen as innermost existentially
quantified.

Intuitively, the above recursive process spans a tree in which the inner nodes represent
quantified variables, the edges encode assignments to the quantified variables, and the
leaves identify quantifier-free SMT formulae. For an example see Figure [4.3

Without loss of generality, we may assume that the matrix of an SSMT formula is in
conjunctive form. The rationale is as follows. Let ® = Q : ¢ be any SSMT formula.
Then, we can apply the generalized Tseitin transformation for SMT formulae, confer
Subsection .31l to rewrite matrix ¢ into an equi-satisfiable SMT formula ¢’ in CF such
that o = 3hq, ..., h,, : @ with hq, ..., h,, being the introduced auxiliary variables. From
Definition 5] it then follows that Pr(Q : ¢) = Pr(Q: ¢').

4.4.2 Extension of SSMT involving dependent probability
distributions

With regard to SSMT solving algorithms, which are dealt with in Chapter[@], it is beneficial
to reduce the potential search space of SSMT problems in order to improve performance.
One direction to attain this objective is to devise powerful algorithmic enhancements and
heuristics. Such latter optimizations are investigated in Section [6.5l Another approach
being as important is to provide SSMT encodings of the problems to be solved that are
eminently suitable for the SSMT procedure employed. As the SSMT solving approach of
this thesis, confer Chapter [0 is based on an explicit traversal through the tree spanned
by the quantifier prefix, as indicated by Figure [4.3] it seems reasonable to favor SSMT
encodings inducing smaller quantifier trees.

In what follows, we suggest an extended notion of the SSMT framework that supports
such problem encodings reducing the potential search space. For a motivating example,
let us assume that we have modeled some problem as an SSMT formula

d = QureD, g, y1 €Dy i, y2 €Dy, : (x>0 = 1) A (<0 =)

where the randomized variables y; and y, occur only in ¢, and in ¢, respectively, i.e.

4.4 Stochastic satisfiability modulo theories 49

Qr €D, d @’ & QreD,
>0 2<0 z>0]2z<0
dy, y1 € Dy, ; d)(20)d,,, (120))Y € Dy UDy,
H(l,/zyQ € D_’L/_:
correspondsto _ | |, corresponds to
dq, y1 € Dy, dq, Y2 € Dy,

Figure 4.4: Reduction of the potential search space by means of SSMT involving dependent
probability distributions: illustration of the tree spanned by the quantifier prefix of the “classical”
SSMT formula @ (left) and the reduced tree for ' using a randomized quantifier with dependent
probability distributions (right).

y1 € Var(p1), yo & Var(yy) and y; ¢ Var(ps), y2 € Var(ps). That is, if variable x takes
a value greater 0 then randomized variable y, becomes unnecessary since, first, y, does
not occur in predicate (z > 0 = ¢) and, second, predicate (z < 0 = o) is trivially
satisfied under each value of y5. The same holds for randomized variable y; whenever x
carries a value at most 0. Such circumstances may often arise in practice, for instance,
in applications where random phenomena are triggered only in certain system states or
where the probability distributions vary in different system states.

Taking the above observation into account, we aim at the possibility of “disabling”
certain quantified variables. Observe that the latter can be simply achieved for existential
variables x, namely by adding a corresponding predicate to the formula that fixes a
value for x whenever the truth value of the remaining formula does not depend on =x.
This treatment is sound since existential variables call for maximizing the satisfaction
probability. The same approach however is infeasible for randomized variables in general
as this would lead to incorrect probability results, more precisely, to results that are too
small. Our solution to this issue is as follows: we enable randomized quantifiers to carry
several probability distributions such that exactly one of them will be activated once all
preceding quantified variables are assigned. The selection of the distribution then depends
on predicates over the preceding quantified variables with the semantic condition that
exactly one of these predicates holds under each assignment to the preceding variables.

Before formally introducing the extended notion of SSMT, we exemplify this con-
cept using the example above. In order to “disable” randomized variable y, and y; if
r > 0 and z < 0 holds, respectively, we first merge the quantifiers 44, y1 € D,, and
da,, Y2 € Dy, to a single one using the idea of dependent probability distributions, namely
to H[(x>0)—>dy1,(x§0)—>dy2}y € D,,UD,,. The latter expresses that distribution d,, is selected
if z > 0 and d,, otherwise. Second, we replace each occurrence of y; in ¢; and of y» in

50 4 Stochastic Satisfiability Modulo Theories

o by y resulting in ¢ and ¢}, respectively. Then, the SSMT formula
P = Qr €D, H[(x>0)%dyl,(m§0)ﬁdy2}y € Dyl U Dy2 : ((:E >0 = (pll) A (ZL‘ <0 = (p;))

characterizes the same problem as ® does but reduces the potential search space, as
illustrated in Figure 4.4]

The formal definition of the syntax and semantics of SSMT involving randomized quan-
tifiers with dependent probability distributions is as follows.

Definition 4.6 (Syntax of SSMT involving dependent distributions)

An SSMT formula involving dependent probability distributions is an SSMT formula
Q : ¢ where each randomized quantifier in Q however is of the form djc, q,.....con—sdm] SUCh
that for each (dic,—q,....cn—dm)® € Dz) € Q where

Q - lel S Dml ©...0 szz S Daﬂ, ®© H[c1—>d1,...,cm—>dm]x S DJ: © Ql Y2
the following conditions are satisfied:
1. each ¢; with j € {1,...,m} is a predicate over variables 1, ..., x;,

2. for each assignment T to variables x1,. .., x;, exactly one of the predicates cy, ..., cp
is satisfied, i.e. 3j € {1,...,m} 7 =c¢; and Yk # j : T = ¢k, and

3. each d; with j € {1,...,m} is a probability distribution, denoted by a function
[v1 = p1,. .0 = i), with {vq,..., v} C D, associating probability 0 < py, < 1 to
value vy, and satisfying v, # vy for k £ k' and 22:1 pr = 1.

Observe that a distribution d; in i, 54, cm—sdn® € D, may be a partial function, i.e.
d;(v) is not necessarily defined for all values v € D,. This is just of technical nature,
namely to avoid probabilities 0 in distributions d;. An alternative definition may enforce
that each d; is total, i.e. defined for all values v € D,, but should then permit that d;(v)
can be 0 for some v € D,,.

We remark that a “classical” randomized quantifier 4;,x € D, can be simply repre-
sented by a randomized quantifier involving dependent probability distributions, namely
by Hjtrue—d,)T € D,. The latter fact becomes clear from the semantics which follows next.

Definition 4.7 (Semantics of SSMT involving dependent distributions)
The semantics of an SSMT formula ® involving dependent probability distributions is
given by its maximum probability of satisfaction Pr(®) defined as follows:

0 if ¢ is unsatisfiable ,
Pr(e: =
r(e:¢) { 1 if o s satisfiable
Pr(3z €D, ® Q: ¢) = max,ep, Pr(Qv/z] : p[v/z]) ,

Pr(a[clﬁdlvmvcmﬁdM]x S Da“ © Q : SO) = E(U—)p)edj with CjEtruep ’ PT(Q[U/:E] : (p[’l}/l‘]))

where € denotes the empty and Q an arbitrary quantifier prefix.

4.4 Stochastic satisfiability modulo theories 51

Note that Q[v/x| substitutes value v for variable x in prefix Q such that all variables
in the predicates ci,...,c, have been substituted in a leftmost randomized quantifier
d [ec1—=d1,..csem—dm] -

It is important to remark that SSMT involving dependent probability distributions,
as formalized in Definition .6, does not establish the basic concept of this thesis. The
following chapters essentially build upon the notion of SSMT from Definition {4 A
pragmatic use case of SSMT involving dependent probability distributions however is
investigated in Sections and and furthermore exploited in Chapter [§], the latter
dealing with the analysis of the NAS case study introduced in Section B.1] and depicted
in Figure 311

5 SSMT-Based Bounded Reachability
Analysis of Probabilistic Hybrid
Automata

After having introduced the formal model of concurrent discrete-time probabilistic hybrid
automata in Chapter [3] and after having explained the logical framework of SSMT in
Chapter [this chapter is devoted to the analysis of concurrent PHAs and is mainly
based on the work described in [TEF11]. We remark that parts of this chapter were
published in [TEF11] by the author of this thesis together with his co-authors.

We start our presentation with the formal definition of the analysis problem, namely
probabilistic bounded state reachability, in Section[5.Il As already sketched in Section [3.2]
our symbolic analysis approach to probabilistic reachability is based on a translation of the
original problem to an SSMT formula. The latter is then solved by an appropriate SSMT
algorithm being introduced in Chapter [0l The reduction to SSMT is first illustrated by
an introductory example in Section and thereafter formally introduced in Section 5.3l

5.1 Probabilistic bounded state reachability

In what follows, let S = {A;, ..., A, } be a system of concurrent discrete-time probabilistic
hybrid automata as in Definition B.I, and Target be a predicate, defining the set of
target states by means of all its models, in the arithmetic theory T over the discrete and
continuous variables in Dy,..., D, and Ry,..., R, of all the automata. With respect to
system analysis, we are interested in the probability of reaching the target states within
a bounded number of transition steps. As usual in models blending non-deterministic
and probabilistic choices, like Markov decision processes [Bel57], we assume that the
dynamics is controlled by a decision maker or scheduler (policy, adversary) resolving
the non-determinism based on (complete) observation of the current state and history.
Based on the system behavior exhibited so far, such a scheduler can decide which global
transition should be executed next by system S§. We allow a rather general notion and
assume that these decisions depend deterministically on the current run prefix, i.e. that
the permissible schedulers are history-dependent and deterministic, confer, for instance,

[BHKHO5).

Definition 5.1 (History-dependent, deterministic scheduler)
Let Rs denote the set of all (finite) runs of S. Then, a history-dependent, deterministic
scheduler o : Rs — NChoice for § maps a run to a global transition choice.

We call a run (sg, (tr1,pcr), s1,. ., (trk, pck), Sk) € Rs of S consistent with scheduler o
if o((sp)) = try and for each 1 < i < k it holds that o({(sq,..., (tr;, pc;),s;)) = triz. A
run (so, (tr1,pcy), s1, .- -, (trg, pck), Sk) € Rs hits the target states if there is at least one

54 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

state in the run that satisfies predicate Target, i.e. 30 € {0,...,k} : s; = Target. We are
now able to define the probabilistic bounded reachability problem with respect to some
scheduler:

Definition 5.2 (Scheduler-dependent probabilistic bounded reachability)

Let k € N be a step bound and o be a history-dependent, deterministic scheduler for S.
For each state s € Statess U{L}, let R , rupei(s) denote the set of all runs r € R such
that

e 1 starts in s, i.e. first(r) = s,
e 7 is of length k, i.e. length(r) = k,
e 1 is consistent with o, and

e 1 hits the target states.

Then, the probability of reaching the target states within k steps under scheduler o is given
bY P& o Turger (1) with o = NI init; being the (unique) initial state of S and PE , purees(S)
for s € Statess U { L} being defined as follows:

Pg,o, Target (8) = ZT‘GRk

S,U,Ta'rget(s)

p(r)

where p(r) denotes the probability of run r.

The above definition can be characterized recursively as follows:

Lemma 5.1 (Recursive characterization)
Let k € N be a step bound, o be a history-dependent, deterministic scheduler for S, and 1
be the (unique) initial state of S, i.e. v = \;_,init;. Then, it holds that

Pl;,a, Target (Z) = Pg,o, Target (<Z>)

where P§ , ronger (1) with 7 € R is defined as follows:

(

1 if last(r) E Target ,

PE urger(r) = 0 if last(r) W Ta:gelt and k=0, |
chepChmce(tT) p(t'r’, pc) ’ PS,O’, Target (T O] <(t7“, pC)a S >)

\ if last(r) = Target and k> 0

with tr = o(r) being the transition scheduled by o and s' = Post(last(r),tr, pc) being the
corresponding successor state. Recall that 1 does not satisfy any T -predicate, in particular
1 |~ Target.

Proof. By induction over k, we show that for all runs r € Rgs the following holds:

Pg,pr,TargetUaSt(T)) = Pg,a,Target<r>

where the history-dependent, deterministic scheduler p, is defined as follows. Let be
r = (sg, (tr1,pc1), 81, - - -, (tri, pe;), si). For each run 1’ € Rg with first(r') = last(r) = s;,

5.1 Probabilistic bounded state reachability 55

we define p,.(r") := o ((s, (tr1, pc1), s1, - - -, (tri, pe;)) ©r'). The lemma then follows directly
from the special case r = (1), since here p,(r') = o(r’) for all runs r’ € Rs starting in the
initial state 2.

Observe that the result obviously holds whenever last(r) |= Target. In this case,

% p Targer (last (7)) contains all runs of length k that start in last(r) and are consistent
with p,. The accumulated probability Pg , 74,.e(last(r)) is therefore 1. Immediately by
definition, P§ , 7,,.0:(7) = 1. We thus assume in the remaining proof that last(r) & Target.

For the base case, let be k = 0. As last(r) = Target, it follows that R , 7y (last(r)) =
0 and thus Pg , 74e(last(r)) = 0, and, immediately by definition, Pg , 7,,.,(r) = 0.

For the induction step, let be £k > 0. We need to conclude that

Patl (last(r)) = P&! (r)

S,pr, Target S,o0,Target

for all runs r € Rs follows from induction hypothesis, i.e. from

Pg,pT/,Target(laSt(T,)) = Pg,a, Target (T,)

for all runs 7’ € Rs.
In what follows, let be r € Rs, o(r) = tr and thus p,((last(r))) = tr, and further

TI = <367 (trllvpc/l)v Sllv] (tr;c+17pcﬁc+l)7 3;~c+1> € Rg;lr,Target(l%t(T)) :

We denote by peq(r') the first probabilistic choice in 77; i.e. pey(r') = pcy. For each such
r’ above, it holds that s; = last(r), tr] = tr, and pci(r’) € PChoice(tr). Using these
properties, we conclude

Pg];:;}«,Target(laSt(r)) - Z p(T/)
TIER‘I;:;IT , Target (S/O)
= X > p(r')
pce PChoice(tr) r’eRg;lr’TMget(sg) with pei (r’)=pc

= > p(tr,pc) - > p(r’)

pc€ PChoice(tr) r’eRg’p,y Target (Post(s(,tr,pc))
with o' = pro((irpe), Post (s irpe)y Deing given by p(r") := o (r©((tr, pc)) ©r") for all 7" € Rs
with first(r") = Post (s, tr, pc). By definition and induction hypothesis:

P«];?;}Target<la5t<r)> = Z p(tT, pC) ’ Plg,p/,Target(POSt<867 tT’, pC))
pce PChoice(tr)

= Z p(t’l“, pc) ’ Pﬁ,o’,Target(r © <(t7“, pC), POSt(36> tr, pC)))
pce PChoice(tr)

= Pg,Jch,lTarget (T)

For the last step, which applies the definition of Pg;}Target('r’), recall that last(r) & Target

and k4 1 > 0. This completes the proof. O

56 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

In the sequel, we are interested in the maximum probability of reaching a given set of
target states under an arbitrary scheduler within a given number k£ € N of transition steps.
Semantically, this is adequate for modeling and analyzing situations where the target
states are considered undesirable and a demonic perspective to non-determinism is taken
(rendering the scheduler adversarial), or symmetrically to cases where the target states
are considered desirable and an angelic perspective (rendering the scheduler cooperative)
is taken. In particular, depth-bounded probabilistic reachability in probabilistic hybrid
systems is representative for a number of verification problems for embedded systems, for
instance

e performing quantitative safety analysis (in the sense of estimating failure proba-
bility) of a conflict resolution scheme which is expected to terminate after a finite
number of actions whenever triggered, like collision avoidance maneuvers in road
traffic,

e performing quantitative safety analysis (in the sense of estimating failure probabil-
ity) of a finite critical mission, like the descent of an airplane,

e assessing the reliability of a system subject to regular maintenance, where the num-
ber of system actions between maintenance is bounded by a constant k, or

e step-bounded region stabilit of hybrid systems subject to probabilistic distur-
bances, i.e. determining whether a system will with sufficient probability converge
into a target region, which is assumed to be stable, within a given step (and thus,
time) bound.

The following definition formalizes this maximum bounded reachability probability as the
maximum over arbitrary schedulers of the scheduler-dependent reachability probability.

Definition 5.3 (Probabilistic bounded reachability)

Let k € N be a step bound, + = N\, init; be the (unique) initial state of S, and Y be the set
of all history-dependent, deterministic schedulers for S. Then, the maximum probability
of reaching the target states within £ steps is defined by

7DIE,Target <Z> = l’élea’r)ﬁ Pg,o, Target <Z>

Similar to Lemma [5.I, we may characterize above notion in a recursive manner.

Lemma 5.2 (Recursive characterization of probabilistic bounded reachability)
Let k € N be a step bound and v = \!_, init; be the (unique) initial state of S. Then, it
holds that

Pg,Target (Z) = Pg, Target(z)

!'Note that eventual stability, while frequently considered due to its simpler mathematics, is hardly
ever a convincing notion in practice. In most practical applications, bounds on stabilization time are
desirable.

5.1 Probabilistic bounded state reachability 57

where P§ 14,00(5) with s € Statess U{ L} is defined as follows:

;

1 if s Target
0 if s Target and k=0,
Pg,Target(S) = max E p(t'r’ pc) . Pg_Tl (POSt(S, tT, pc))
tre NChoice pee PChoice(tr) ’ ,Target
\ if s~ Target and k>0 .

Proof. By Definition and due to Lemma [5.1] it holds that
k k k
PS,Target<Z> = I?ea% PS,J,Target <Z> = r;lea% PS,U, Target<<z>)'
It therefore suffices to show that

rilea%(Pg,a, Target(r) = P‘é’i Target(ZGSt(T))

is true for each run r € Rs. The lemma then follows directly from the special case r = (2).

First observe that the result obviously holds whenever last(r) = Target. In this case,
it follows immediately by definitions that P§7U7Target(r) = 1 for each scheduler ¢ and
P§ purger(last(r)) = 1. We thus assume in the remaining proof that last(r) & Target.

The proof is done via induction over step depth & € N. The base case is given by
k= 0. As last(r) = Target, clearly by definition: Pg 1,,..,(r) = 0 for each scheduler o
and Pg g, (last(r)) = 0.

For the induction step, we assume that above statement holds for £ > 0. We need to
show that

Iglea% Pg,Jch,lTarget (T) = sztzrget(la‘gt(r))

follows from induction hypothesis for each but fixed run r € Rs. Since last(r) = Target
and k + 1 > 0, application of definition yields

Iglea% Pg,Jch,lTarget (T) = Iglea% Z p(O’(T),pC) ’ Pg,a, Target (T © <<0'(7’),p0), SI>)
pc€ PChoice(o(r))

with s = Post(last(r),o(r), pc) being the corresponding successor state. We now prove
that

r;lea%(PE:FT,ITarget (T) = I?ea%{ Z p(O'(T’),pC)) 1(;1,12%((P‘]S?,a/,Target (T © <<0'(7’),p0), SI>))
pe€ PChoice(o(r))

is true. It is not hard to see that the right-hand side is always greater than or equal
to the left-hand side. The proof that the right-hand side is also less than or equal to

k+1 . SRS /
maX,ey PS,J,Target<T> is by contradiction: we first fix two schedulers p and p’ such that
k41 _ pktl
I}Tlea%(PS,O, Target(r) - PS,p,Target (T)) and

max (Pg,a’,Target<T © <(p('r’),pc), S”>)) = P§,p’,Target<T © <(p(7’),pc), SH))

o'er

58 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

with §” = Post(last(r), p(r), pc). Then,

Iglea% PE:FT,ITarget<T> = Z p(p('f’),pC) ' Pg,p,Target (T © <<p<7“),pC), 8”>) :
pe€ PChoice(p(r))

Observe that it suffices to show that

P§,p’,Target<r © <(p(7’),pc), SH)) S P§,p,Target<T © <<p<T>,pC), 8”>) .

Now assume the converse, i.e. P§ , 1,00 (rO{(p(1),p),8")) > P&, 1urges (rO{(p(7), pC), 8")).
Then, we can construct the scheduler p” that works as p for the (fixed) run r, i.e. p”(r) =
p(r), and as p' for all extensions 1’ = rOw € Rgsof r,i.e. p"(r") = p/(r’). As a consequence,

k+1 k+1 k+1 k+1
PS,p”,Target (T) > PS,p,Target (T) From the fact that maXgey PS,U, Target (T) Z PS,p”,Target (T) the
contradiction follows, namely max,cy PgﬁlTMget(r) > P;fJ;lTarget(r).

Since o(r) € NChoice for each scheduler o, we trivially have

I?ea% Pgirr,lTarget <T> < trerl{/lgiﬁice Z p(t?‘, pC) ’ g}g%((P§70/7Target (T © <<t7’, pC), SI/>))
pc€ PChoice(tr)

with s” = Post(last(r),tr, pc). The inequality

Iglea% Pg,Jch,lTarget (T) Z trer]{/lgiﬁice Z p(t?“, pC) ’ 1;[]12%((Pg,a/,Target (T @ <<tT7 pC), SI/>))
pce PChoice(tr)

also holds, which is again proven by contradiction: as above, we first fix scheduler p

with max,ey Pg:;’lTarget(r) = Pg;}Target(r). Now assume that there exists a tr € NChoice

for which the value of the right-hand side is strictly greater than P4'! (r). Clearly,

S,p, Target
p(r) # tr. We can construct a scheduler p’ which is defined as p except for p/'(r) = tr. As
k+1 k+1 k+1 k+1
a consequence, PS,p’,Target<T) > PS,p,Target<T>' From maXger PS,J,Target<T> > PS,p’,Target<T>
- k+1 k+1
the contradiction follows, namely maxX,ex Ps et (") > Ps) 1urget (7)-

Summarizing, we have shown that

Wax Pg L g () = max | Y 0 p(tr,pe) - max (PS gy (r © ((tr.pe), 5")))
pce PChoice(tr)

Application of induction hypothesis yields

k+1 k "
max P r) = max E tr,pc) - P S
ceT S,o, Target() tre NChoice p(P) S, Target ()
pc€ PChoice(tr)

Recall that s” = Post(last(r),tr, pc). Directly by definition, we finally conclude

l’ileaTX PE:FT,ITarget (T) = Pé}irget(laszf(,r))

which establishes the lemma. O

5.2 Introductory example of the reduction to SSMT 59

Lemma actually shows that when considering mazimum step-bounded reachability
probabilities in concurrent PHAs then history-dependent schedulers are not more expres-
sive than schedulers that depend only on the current state and step-depth. A similar result
was shown in [BHKHO05, Theorem 2| for maximum time-bounded reachability probabilities
in continuous-time Markov decision processes.

We finally state the decision problem called probabilistic bounded model checking that
is defined to be the problem of deciding whether the maximum probability of reaching
the target states within a given number of steps is below a given threshold:

Definition 5.4 (Probabilistic bounded model checking)

Given a system S of n concurrent PHAS, a predicate Target defining the target states of
S, a step bound k € N, and a probability threshold 6 € [0,1], the probabilistic bounded
model checking problem (PBMC) with respect to target states Target, step bound k, and
threshold 0 is to decide whether P§ 14,.,(1) < 6 or, equivalently,

Pg,Target(z) S 0
hold with v = \!_, init; being the (unique) initial state of S.

After having formally introduced the notion of probabilistic bounded reachability for sys-
tems of concurrent PHAs, the remainder of this chapter is devoted to a symbolic procedure
for solving probabilistic bounded model checking problems. In contrast to explicit-state
approaches, which many approaches in the realm of hybrid systems belong to with respect
to the discrete state space, confer Section [3.2] the predicative nature of the translation
scheme to SSMT avoids the explicit construction of the product automaton that grows
exponentially in the number of parallel components. This translation to SSMT proceeds
in two phases. First, we generate the matrix of the SSMT formula, i.e. the quantifier-free
SMT part. This matrix encodes all non-deadlocked, anchored runs of system S that reach
the target states and are of the given length k£ € N. The exclusion of deadlocked runs
simplifies the matrix and is justified by the fact that such runs have no contribution to
the probability of reaching the target states due to L [~ Target. Second, we add the
quantifier prefix which encodes the non-deterministic and the probabilistic choices of the
concurrent automata, whereby non-deterministic choices yield existential quantifiers and
probabilistic choices reduce to randomized quantifiers.

Before formally presenting the details of this encoding scheme in Section [5.3] we first
introduce the intuition by means of an example in Section

5.2 Introductory example of the reduction to SSMT

We illustrate the SSMT encoding of concurrent PHAs by the simple example shown in
Figure 5.1l For the sake of simplicity, we just consider a single probabilistic automaton
consisting of only one location being described by the discrete variable d € [1, 1], and of
one continuous variable x. The initial state of this automaton is given by the predicate

Init(d,x) = (d=1ANz =0).

Thus, the (unique) satisfying assignment of Init(d, z) represents the (unique) initial state
of the automaton. To perform a transition step, the automaton may non-deterministically

60 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

non—deterministic choices:

dir € {tl, tg}

"\transition relation:

5_ ((trztl A pep = pi)
” :1 ,:1 g
e A = @=1Ad =1 0)) A
((trztl A pep = pi)
= (d=1Ad =1AN2' =21)) A

probabilistic choices: ‘
dipt50.5,p1-0.5PC1

H[p%—>0.2,p§—>0‘8]p02 ‘< . ((tr =1y Apcy = P?)

”___,.-{:> d=1Ad =1A2"=%)) A
wis ((tr =ty A pes = p3)
A = (d=1Ad=1A0" =2 +1))

initial state: .-+ I
S

&
—

Figure 5.1: Example of the SSMT encoding scheme. Note that the domains of the randomized
variables pc; and pey are omitted for the sake of clarity. (This figure is a slight modification of
Figure 5 from [TEF11].)

select either transition ¢; or ¢y since both transition guards true are trivially satisfied. As
the definition of probabilistic bounded reachability (Definition (.3)) calls for mazimizing
the probability of reaching the target states, we need to select a transition for each step
that maximizes the reachability probability according to Lemma To do so, we encode
the non-deterministic selection of transitions by existential quantification. In the example,
we introduce an existentially quantified variable tr with a domain that consists of both
transitions ¢; and to, i.e.
dtr € {tl,tg}.

Transition selection is then followed by a probabilistic choice of transition alternatives.
When taking transition ¢1, one of alternatives p} and p} are executed with equal probability
0.5. In case ty was selected, alternative p? is performed with probability 0.2 and p3
with probability 0.8. This probabilistic selection of transition alternatives is mapped to
randomized quantification. In the example, we introduce two randomized variables pc;
for the probabilistic choice after transition t;, and pco for s, i.e.

H[p}%0.5,p%~>0.5]pcl € {piapé} and H[p%%0.2,p§~>0.8}p62 € {pf,pi} .

By these quantified variables, we have described the non-deterministic choice of a transi-
tion and the probabilistic choice of a transition alternative for one step in the automaton.

In order to symbolically encode all anchored systems runs, we have to symbolically
describe all possible transition steps in the automaton, i.e. the relation between the pre-
and post-state for all transitions and their transition alternatives. If transition ¢; is
selected non-deterministically and transition alternative pl probabilistically, then the au-
tomaton must currently be in location that is described by d = 1, re-enters this location,

5.2 Introductory example of the reduction to SSMT 61

and doubles the value of variable x. This transition step is encoded by the predicate
(tr =ty Apcy =p}) = (d=1Ad =1Az' =2zx). The primed variables d’ and z’ repre-
sent the values of variables d and x after the system step, respectively. The encodings for
the remaining transition steps are shown in Figure B, By conjoining all these encodings
by logical conjunction, we obtain the transition relation predicate

Trans(d, z, tr, pcy, pes, d', x')

that describes all possible system steps from some state (d,) under some non-deterministic
choice tr and some probabilistic choices pcy, pes to state (d, 2’). Due to Property B for
fixed (d,z), tr, pci, and pcs the post-state (d',2') is unique if existent. Otherwise, i.e.
(d', 2") does not exist, the system deadlocks in the distinguished state L. In our encoding,
we deal with deadlocking as follows: whenever the post-state (d’,z") does not exist then
the predicate Trans(d,x,tr,pcy, pes,d’,x') becomes unsatisfiable, which actually means
that all steps leading to L are excluded. This treatment is sound since a target state will
never be reached once the system has deadlocked.

As the analysis goal is probabilistic bounded state reachability, we furthermore need
to take account of the predicate that specifies the target states. Let us be interested
in reaching states in which the value of variable x exceeds 100. Then, the target states
predicate is given by

Target(d,z) = (x > 100).

We now construct an SMT formula that encodes all anchored system runs of length &k that
reach the target states. Whenever a run r visits the target states in less than k steps, our
encoding ensures that r remains in its current (target) state until step depth & is reached,
i.e. target states are sinks of the transition relation. Formally, the SMT formula (k) is
given by

A /k\ ((—Target(d;—1,x;—1) = Trans(dj_1,xj_1,tr;,pc1j,pCaj, dj, T;)))

j=1 /\(Target(dj_l,xj_l) == (d] = dj—l N T; = ZL‘j_l))

A Target(dg, xy)

where dj, z; are copies of the variables d,z encoding the system state after transition
step j, and tr;, pey ;, pea; are copies of tr, pci, pes representing the non-deterministic and
probabilistic choices of step j.

Taking into account the alternation of non-deterministic selections of transitions and
probabilistic choices of transition alternatives for all k transition steps, we add the quan-
tifier prefix

Jtry € {t1,t2} dpp10.5,p150.5PC1,1 € {p1,p3} dpp2 0.2 p250.8PC21 € {rl, 3}

Eltrk‘ € {tht?} H[p%%O.ES,p%%O.E)}pCLk € {p%vp%} H[p%%0.2,p§%0.8}pc2,k‘ € {p%p%}

to the SMT formula (k) yielding an SSMT formula ®(k). Note that the prefix contains
k copies of the quantified variables to represent all possible combinations of transitions
and transition alternatives for k steps.

62 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

By the construction of the overall SSMT formula ®(k), it follows an important observa-
tion that is formalized in Theorem [B.I]in the next Section B.3t the maximum probability
of satisfaction of ®(k) coincides with the maximum probability of reaching the target
states within k& transition steps, i.e.

Pr(®(k)) = Pg gurges (1)

where ¢ is the initial state of the given system §.

To clarify the basic idea of the symbolic SSMT encoding, we have just illustrated the
translation scheme for a single probabilistic hybrid automaton. Based on this translation
scheme, we can now provide a compact intuition for the SSMT encoding of a system of
concurrent PHAs before presenting the formalized approach in the next section. When
considering a system of concurrently running probabilistic hybrid automata, we separately
construct the transition relation predicate Trans;(-) for each automaton A4;. The conjunc-
tion of all these Trans;(-) then gives the transition relation of the overall system. The
latter is then used to obtain SMT formula (k) as above. For the construction of the quan-
tifier prefix, we need to pay attention to the order of the quantified variables. Before each
transition step, all automata non-deterministically select local transitions synchronously.
After having established consensus on a global transition, each automaton probabilisti-
cally selects one of the available alternatives. In the quantifier prefix, for each unwinding
depth, we thus first compile the existential variables of all automata and thereafter the
randomized ones. The quantifier prefix for £ unwindings of the transition system is then
composed by concatenating these quantifier prefixes in the same manner as was presented
above for the single automaton.

5.3 Reducing probabilistic bounded reachability to
SSMT

After having explained the intuition of encoding probabilistic bounded reachability for
concurrent PHAs into the SSMT framework in the previous section, we now introduce
the formalized reduction scheme. In what follows, let S = {A4;,...,A,,} be a system of
concurrent discrete-time probabilistic hybrid automata as in Definition 3.1l and Target be
a predicate, defining the set of target states by means of all its models, in the arithmetic
theory T over the discrete and continuous variables in Dy,..., D, and Ry,..., R, of all
the automata. Furthermore, let £ € N be the bound on the length of the system runs.

The reduction to SSMT proceeds in two phases: we first generate the matrix of the
SSMT formula encoding all non-deadlocked, anchored runs of system S of length k& that
reach the target states, and we second add the quantifier prefix representing the non-
deterministic and the probabilistic choices of the concurrent automata by means of exis-
tential and randomized quantifiers.

Phase 1: Constructing the matrix. We start by constructing the matrix, that is
denoted by BMC's rarget(k), of the resulting SSMT formula. As said above, each model of
BMC's, 1urget (k) characterizes a non-deadlocked, anchored run of S of length & that reaches
the target states. First of all, we need to declare the variables occurring in BMC's, 1urget (k)

5.3 Reducing probabilistic bounded reachability to SSMT 63

as well as their domains (reduction steps [[H4]). We continue by symbolically encoding the
global initial state, the transition relation, and the target states of S (reduction steps[BHJ),
while reduction step [I0 finally states the matrix BMC's papget (k).

Reduction step 1. For each discrete variable d € D; of automaton A; for 1 < i < n, we
take k+1 integer variables d; for 0 < j < k, each with the integer interval domain dom(d).
An assignment to the variables d’Lj, cee }Cz ; represents the discrete state of automaton
A; at depth j.

Reduction step 2. For each continuous state component x € R; of A; for 1 < i < n, we
take k 4 1 real-valued variables x; for 0 < j < k, each with real-valued interval domain
dom(z). The value of z; encodes the value of = at depth j.

Reduction step 3. For representing the symbolic transitions tr € T'r; of A;, for 1 <i <mn,
we take k variables trj» with domain Tr;, for 1 < 5 < k. We demand here that domain
Tr; is encoded by a set of integers, for instance by the set of the indices 1,...,¢; of
the symbolic transitions, confer Definition B.Il The value of t'r’§ encodes the transition
selection of A; at step j.

Reduction step 4. For representing the symbolic probabilistic transition alternatives in
PCy, for each transition tr € Tr; of A;, for 1 < ¢ < n, we take k variables pc?" with
domain PC,,, for 1 < j < k. As for Tr;, we again assume that PC}, is given as a set
of integers. The value of pcﬁ-” encodes the transition alternative for transition tr of A; at
step 7. It is important to note that the value of such a variable pc?r will be irrelevant
whenever the associated transition ¢r is not selected in step j, i.e. in case tr; # tr.

Reduction step 5. The initial state of system S is encoded by the predicate
INITs(0) := \ initi[di o, ... i o, g T o/ iy 2,]
i=0

where in nit; each variable v is substituted by its representative vy at depth 0.

Reduction step 6. The synchronization conditions of local transitions tr, i.e. validity of
the generalized transition guards g(tr), for all automata A; at step 1 < j < k are enforced
through the constraint system

(tri =tr) =

n
1 1 n n 1 1 n n
/\ /\ gUr)ldy;y,dyy o di o di 5Ty T T 1 T)
i . 1 71 m m 1 /1 n m
g 1t7’ET7’z d17d17"'7 kn’ kn,l’l,l’l,...,l’mn,xmn]

where in transition guard g(t¢r) each undecorated variable v is substituted by its repre-
sentative v;_; at depth j — 1, and each primed variable v’ is replaced by v, for depth j.

Reduction step 7. Likewise, assignments asgn(tr,pc) at step 1 < j < k triggered by
transitions ¢r and probabilistic transition alternatives pc are dealt with by

(tr;- =1trA pcz»” =pc) =

n
1 1 n n 1 1 n n
/\ /\ /\ asgn(tr,pc)[dufl,dl’j, . ,dkmjfl,dkmj,xl,jfl,xl’j,...,xmmjfl,xmmj/

—) 1 g1 mn m 1 ../1 n m
i=1treTr; pc€ PCtr di,dy,....d¢ & oy, o,]

64 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

where, as in previous reduction step [6], each undecorated variable v occurring in asgn(tr, pc)
is substituted by its representative v;_; at depth j — 1, and each primed variable v’ of
asgn(tr, pc) is replaced by v; for depth j.

Reduction step 8. The conjunction of the formulae of reduction steps [6l and [7 yields the
transition relation predicate

TRANSs(j — 1,5)

encoding a transition step from depth j — 1 to 5. Observe that with this predicative
encoding, an infeasible choice of transitions and transition alternatives (for instance due
to inconsistent assignment predicates) that would lead to the distinguished state L in the
semantics immediately causes unsatisfiability of the formula TRANSs(j — 1,7). That is,
system runs reaching the deadlock state 1| do not satisfy the matrix generated by our
translation scheme and are thus excluded. Considering reachability of states satisfying
Target, this handling is correct as runs entering | will never reach any target state and,
vice versa, runs reaching Target will never become deadlocked since both 1 and target
states being sinks. The latter fact, i.e. target states are sinks, is indicated by definition of
P& f4ger in Lemma and enforced by formula BMC's r4get(k) in reduction step

Reduction step 9. The next predicate denotes the target states for step depth 0 < j < k.
TARGET(j) := Target|d} ., ..., ij,xl - mw/d condp sy,]

Ly Lj mn
Predicate TARGET(j) is thus satisfied under an assignment 7 if and only if the system
state at depth 7 encoded by 7 is a target state.

Reduction step 10. It remains to compile the matrix BMC's rurget (k) of the SSMT formula
as follows:

BMCS,TMget(]{Z) =]N]T$<0)
. /k\ ("TARGET(j —1) = TRANSs(j —1,7))
S\ A(TARGET(j — 1) = SELF_LOOPs(j —1,j))

A TARGET(k)

where the predicate

SELF_LOOPs(j —1,) /\ = dgj 1A A déi,j = dy, 5

identifies the values of all variables of & at depth j with the values of the corresponding
variables at depth j — 1. The latter predicate thus encodes a stuttering system step which
is independent of the non-deterministic and probabilistic selections of transitions and tran-
sition alternatives. Satisfying assignments of the quantifier-free formula BMC's r4rget (k)
are in one-to-one correspondence to the anchored and non-deadlocked runs of system S
of length k that reach states satisfying the Target predicate. Whenever a target state is
visited in less than k steps, the system remains in this target state until step depth & is
reached due to SELF_LOOPs(j — 1, 7). This treatment ensures that all target states are
sinks.

5.3 Reducing probabilistic bounded reachability to SSMT 65

Phase 2: Constructing the prefix. To construct the prefix of the SSMT formula
denoted by PBMC's r4rget(k), we need to encode the non-deterministic selection of tran-
sitions by all concurrent automata followed by the probabilistic choice of transition al-
ternatives. Since we aim at maximizing the probability of reaching the target states, the
non-determinism is described by existential quantification in reduction step [[1], while the
probabilistic choices are mapped to randomized quantifiers in reduction step 12l Combin-
ing these quantifiers (reduction step [[3]) then leads to the final PBMC's r4et(k) formula
in reduction step [I4l

Reduction step 11. Before step 7, 1 < 7 < k, can be executed, each automaton A; non-
deterministically selects a transition. This is encoded by existential quantification of the
transition variables tr§ introduced in reduction step

NCHOICEs(j) == (-) 3tr} € Tr;
=1

where (5) denotes concatenation, confer Section 2.1l

Reduction step 12. Non-deterministic choice is followed by a probabilistic choice of a tran-
sition alternative for each automaton A; before step j, 1 < j < k. This is reflected by
randomized quantification of the variables introduced by reduction step @l

PCHOICEs(j) == () (©) ¥a,pc" € PC,,

i=1 treTr;

where dy,. encodes the discrete probability distribution p(¢r) and is syntactically repre-
sented as [v1 — p(tr)(v1), ..., vm — p(tr)(vy,)] with PCy. = {v1, ..., vm}.

Reduction step 13. The combined quantifier sequence for a single computation step j,
1 < j <k, is given by the existential quantifiers followed by the randomized ones.

CHOICEs(j) := NCHOICEs(j) ® PCHOICEs(j)

Reduction step 14. Finally, we construct the SSMT formula PBMC's, ryret(k) by concate-
nating the quantifier prefixes of the different computation steps in their natural sequence,
representing the fact that the scheduler may draw decisions for later computation steps
based on the outcomes of earlier ones, and by then adding the matrix representing an-
chored, non-deadlocked runs of the system reaching target states.

k
PBMC's, turges (k) := (@ CHOICES(]‘)> - BMC's. 7rges ()

j=1

Given the structural similarity between probabilistic bounded reachability and quantifi-
cation in SSMT, the above reduction is correct in the following sense.

66 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

Theorem 5.1 (Correctness of reduction)

Let be given a system S of n concurrent PHAs, a predicate Target defining the target
states of S, and a step bound k € N. Then, the maximum probability of reaching states
satisfying Target within k steps coincides with the mazimum probability of satisfaction of
the symbolic encoding PBMC's rarget(k), i.e.

Pg,Target(z) = PT<PBMC$7Ta7’get<k))
holds with v = \]_, init; being the (unique) initial state of S.

Proof. Within this proof, let the predicate

val(z) :== /\ v =2z(v),

UGU?:I (DZ'URZ')

be a symbolic encoding of a system state z € Statess, where z(v) is the value of variable
v in state z. The substitution of all variables in val(z) by their representatives at depth
J is abbreviated by

val(z, j) = wval(z)[d} ... dp @y .. ap Jdi,. . dg o,]
To prove the theorem, we show that
(51) P§,Tar96t<z> = PT(PBMC:S',TaTget(Zu U, U + k))

holds for each k € N, for each state z € Statess, and for each u € N where

u+k
PBMC:S',Target(Za U, U+ k) = (@ CHO[CES(J)) : BMC:S',Target<z7u7u + k)
j=u+1
and
BMC%7Target(z,u,u+k) = wal(z,u)
Uit ((FTARGET(j —1) = TRANSs(j —1,5)
21 \ A(TARGET(j — 1) = SELF_LOOPs(j — 1, 7))

A TARGET(u+ k).

We remark that the introduction of PBMC's p,,0.,(2,u, u + k) in this very technical man-
ner is necessary for a sound proof. The intuitive meaning, however, is rather simple:
PBMC's pyrger(%,u,u + k) is similar to PBMC's garget(k) but system runs encoded by
PBMC's pyger(2,u,u + k) start in state 2 and the representatives of the variables are
indexed from w to u + k instead of from 0 to k. This “starting index” u is actually re-
dundant (but eases the proof) in the sense that for each u,u € N it obviously holds
that
Pr(PBMC's 1o (2, u,u 4 k)) = Pr(PBMCs qyppe (2,0, 0" + k)

By construction and since initial state 2 is unique, in special case z = ¢ and u = 0,
the SMT formulae BMC's 1,,¢(2, 0, k) and BMC's, rarger(k) are semantically equivalent,

5.3 Reducing probabilistic bounded reachability to SSMT 67

i.e. BMC's 1490:(1,0,k) = BMC's urger(k). As the prefixes of PBMC's 1,,,.;(2,0,k) and
PBMC's, target (k) are equal, we thus have

Pr(PBMC's 100(1: 0, k) = Pr(PBMC's, gurger (k)

In case equation 5.1 holds, we may conclude that P§ p,,..,(2) = Pr(PBMCs ruyge(k)) is
true from which the theorem follows.

It thus remains to prove equation 5.1l which we do by induction over step depth k. For
the base case, let be £ = 0. By Lemma [(.2]

1 if z = Target,

P{ =
S,Target(z) { 0 if z bé Target

for each state z € Statess. Furthermore, PBMC's 1,01 (2,u,u) = BMC's gy (2, 0, 1)
and BMC's ppper(2,u,u) = wval(z,u) AN TARGET (u). Observe that BMC's 1.2, u,u)
is satisfiable if and only if z is a target state, i.e. if and only if z = Target. Since
Pr(PBMC's gypge1(2,u,u)) = Pr(BMC's pye(2,u,u)), it immediately follows from Defi-
nition [4.5] that

1 if z = Target,

PT(PBMC,{S’,Target(Z’u’u)) = { 0 if z lyé Tm’get

holds for each state z € Statess and for each u € N which establishes the base case, i.e.
Pg,Target(z) - PT(PBMCiS,TaTget(Z7u7u)) .

For the induction step, let be k > 0. As induction hypothesis, we assume that equa-
tion [5.1] holds for k&, i.e. for all 2/ € Statess and for all v’ € N

Pé,Target(’Z/) = PT(PBMCiS,TaTget<Z/, U/7 o -+ k))

is true. We now show that induction hypothesis implies that equation [5.1] also holds for
k+ 1, ie. for all z € Statess and for all u € N

Pgﬁlmet('z) - PT(PBMC;’,Target(z7 U, U + k + 1))

is also true.
We first consider the case in which z is a target state, i.e. z = Target. By construc-
tion of BMC's ppget(2,u,u + k + 1), for each assignment to the quantified variables in

@;‘:ﬁﬂ CHOICEs(j) the remaining SMT formula is then satisfiable. A satisfying assign-
ment is achieved by identifying the values of all state variables at all depths with the value
at depth u as given by state z, i.e. for each variable v € |J_,(D; U R;) we set vy qj11 :=
2(v),...,v, = z(v). This assignment clearly satisfies val(z,u), each TARGET (i) for
u<i<wu+k+1,each SELF_LOOPs(j—1,7) foru+1 < j < u+k+1, and thus the whole
formula. The rationale is that quantified variables only occur in TRANSs(j — 1,7) and
all implications (" TARGET(j—1) = TRANSs(j—1, 7)) are therefore trivially satisfied.
Hence, if 2 |= Target then we have Pr(PBMC's gy00(2,u,u+k + 1)) = 1 and, moreover,
PEh et (7) = 1 according to Lemma 5.2 ie. P§Y, (2) = Pr(PBMCls 100(2,u, u 4k +

1)).

68 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

In the remainder of this proof, assume that z [~ Target. Let be Tr; = {t{,...,t}}
for 1 < ¢ < n be the set of symbolic transitions of automaton A;. Then, according to
reduction steps [[1] and

NCHOICEs(u+1) = 3trl, €Tri®...03r0,, €Tr, ,

1
PCHOICEs(u+1) = ¥q,pcl,, € PCy ... 08, pepty € PCy @
1 £1 1

Hdt?pcf}:rl EPCrn©®...0 Hdt?npciﬁl € PCy
By Definition (4.5 it then follows:
P’I“(PBMC:&Target(Z, u,u+k+1))
= maxX¢ eTr, ---Maxe, eTr,
(5.2) Zp%ePCt% d1 (p1) - ((zp;lepct}1 dtl}l (ps,) - <
(Zorercy da @D (- (Zyp epcy, du, 0h,) -
PT(CHCZTFSH : BMC's qupger (25w, u 4k + 1)[£ﬁ/t?,p_é])> .)) . >> .)

where
u+k+1

CHCut5™ = () CHOICEs(j)
j=u+2
and A[t, p/tr,pt] abbreviates the substitution of all non-deterministic choices ¢; and all

. . t
probabilistic choices p; for the corresponding variables ¢;, ., and pc,,; in a predicate A,
respectively, i.e.

- L, = t1 tn
Alt,p/tr,pe] = Altr, ... tay D1, oo D0 [T« oo AT DO - - DO
Due to reduction step[7}, for all assignments to the existential variables tr},, | := t} with t; €
Tr; and 1 < i < n the values of all randomized variables pcff’ﬂ with ¢ # j are irrelevant,

i.e. all implication predicates introduced in reduction step [involving variables pcff‘ﬂ

with ¢ # j are trivially satisfied since 1!, # tz. Since predicates containing randomized

variables are only introduced in reduction step [as well as due to >, cpo . dii(v) = 1
t’L

and due to common arithmetic laws, above observation gives us the possibility to simplify

equation by turning all randomized variables pcff‘ﬂ with ¢ # j into non-quantified
ones:

Pr(PBMC's rype(2,u,u+k + 1))

(53) = MaXyerr ... MaXy, eTr, EplePCtl dt1 (pl) ’ (s <anePCtn dtn (pn))

Pr(CHCY5 BMC's pypger (2, u + k + 1)[157,];;/7577’,]97:’])) .)

5.3 Reducing probabilistic bounded reachability to SSMT 69

with
A[ﬁ,ﬁ/t;’,pz’] = Alty, .. ta, p1, - .pn/triﬂ, o ,t'r’gﬂ,pczlﬂ, .. .pcf[;l]

The intuition of concluding equation is as follows: for each step j the quantifier prefix
of SSMT formula PBM Cg’Target(z, u,u+ k + 1) contains randomized variables pc}" for all
possible transitions ¢tr € Tr; of all automata A; to encode the probabilistic transition
alternatives when taking transition ¢r, confer reduction step [2l These variables are
always present, even so in all cases where transition ¢r is not selected in step j. Though
in such cases the value of randomized variable pc} is irrelevant (as ensured by reduction
step [M), the semantics given in Definition needs to consider such variables pcz»”. This
is reflected in equation 5.2l Exploiting the information about irrelevance of variables pcﬁ-”
and hence ignoring all such pcz»” for step j = u+ 1, we derived the simplified equation

Now observe that for each assignment 7 to the quantified variables ¢y, ..., g, in prefix
CHC"T5™! it holds that

BMC's pupget (2,0, u + k + V), /17, pe) [T (1), - -, T(qw) /a1 - - - Q]

is satisfiable if and only if

BMCfiTarget(z, u,u+ k + 1)[757,];;/t;’,p7:’] T(q1), -, 7(qw) /a1, - - -, G [2(V) /U]

is satisfiable. A[z(7)/t,] means that each representative v, of the discrete and continuous
state variables v € | J;,(D; U R;) at depth u in predicate A is replaced by the value z(v)
of variable v in state z. Above observation relies on the fact that BM 037Target(z, U, u +
k + 1) comprises the predicate val(z,u) and, by construction, val(z,u) permits exactly
one satisfying assignment, namely this given by state z. As z is the same for each 7, we
may move substitution in time and obtain:

BMCfiTarget(z, u,u+ k + 1)[757,];;/t;’,p7:’] [T(q1), -, 7(qw) /a1, - - -, G [2(V) /U]

is satisfiable if and only if

BMC's ppger (2,0, u + k + V) [, /tr!, pe') [2(0) /) [T (1), - - 7(qw) /a1 - - - €]

is satisfiable. Since representatives v, of state variables v € |J!_,(D; U R;) are non-

quantified, i.e. they do not occur in CH C’ZISH, we may conclude using above facts that:

Pr(CHCWE™ : BMCYS pypger (2,0, u 4k + 1)[ﬁ,ﬁ/t?’,p€’])

(5.4) L
= Pr(CHOUE™ - BMCY gyt k4 I, i, p)[=(0),/0.])

Recall that z [~ Target. Then, TARGET (u)[z(¥)/t,] is equivalent to false and pred-
icate TRANSs(u,u + 1)[t/,p/ /tr', p’|[2(7) /T, needs to be satisfied in order to satisfy
BMC's pypger (%, ;1 + k + D[, o' /tr', pc')[2(7) /7,]. Due to construction, confer reduction
steps [0l and [and due to Property B (uniqueness of post-states), TRANSs(u,u +
D[, p' /tr', pe][2(7)/T,] is satisfied by at most one assignment to the representatives v,
of state variables v € J_,(D; U R;) for depth w + 1. Let tr = (¢y,...,t,) € NChoice be
the combined non-deterministic transition choice and pc = (py,...,p,) € PChoice(tr) be

70 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

the combined probabilistic choice with ¢;,p;, 1 < i < n, as in equation Again due
to reduction steps [and [0 and due to Property B, we can conclude the following two
relations: first, if the (unique) post-state 2’ = Post(z,tr,pc) of S exists, i.e. 2/ # L, then

val(?,u+1) = TRANSs(u,u~+ V[, p /tr, pc'[2(7) /5]

and, second, if 2/ = 1 then TRANS s(u,u+1)[t’, ' /tr', pc'][2(7) /7, is unsatisfiable. Thus,
if 2/ # 1 then we have
BMCS gurger (2,0, u+ k + V[, p/ [t pe|[2(9) /5]

val(Z',u+1)

wthtl ((ATARGET(j — 1) = TRANSs(j — 1, 7))
itha \ A(TARGET(j — 1) = SELF_LOOPs(j — 1,5))

A TARGET(u+k+1)

A

= BMC gupyes(?,u+ 1, u+ k4 1)

and, using equation 5.4} definition of PBMC's rypeer(2',u 4 1, (u 4 1) 4 k), and induction
hypothesis,

Pr(CHC St BMCS gypyey(2,u,u + b+ D[,/ /17, pe'])
= Pr(CHCUS™ : BMC's pyrger(? u+ Lu+k + 1))
(5.5) = Pr(PBMC's rygu(7,u+1,(u+1) +k))

= Pr(PBMC ryge(7, 0/, 0/ + k))

= P‘é:, Target(z/)

with v’ = u+1. If 2 = L then unsatisfiability of TRANS s(u,u+ 1)[t’ Pt pel)[2(7)) 5,]
entails unsatisfiability of BMC's qype(2,u,u + k + D[, o'/t pc')[2(7)/3,). By equa-
tion [5.4] we thus conclude

Recall that Post(L,tr',pc’) = L for all tr' € NChoice and pc’ € PChoice(tr) and that
1 [~ Target. As a consequence, Pg:Target(J_) = 0 for each k' € N, confer the definition in
Lemma By observation above and by equation [5.5] we therefore obtain

(5.6) Pr(CHCUE™ - BMC's gypger(2ow,u+ ke + 1)[E, 9/ [tr, pc’]) = PE 100 (2)
equally whether 2’ # 1 or 2/ = L. Application of equation in equation leads to
Pr(PBMC's gypes(2,u,u 4k + 1))

= max ... max . dy(p1)- < . (> dy, (pn) - PgTarget(z’)))

t1€Tr, tn€Trn p1€PCt1 pn€PCYy,

5.3 Reducing probabilistic bounded reachability to SSMT 71

Using definitions, namely tr = (t1,...,t,) € NChoice, pc = (p1,...,pn) € PChoice(tr),
Z' = Post(z,tr,pc), p(tr,pc) = [Ti_, p(t;)(pi), and d(v) = p(t)(v) for all t € |J_, Tr; and
for all v € PC}, as well as common arithmetic laws, we can rewrite statement above to

PT(PBMC:S',Target<Z7u7u + k + 1))

= t - P& Post(z,t
tTEIJ{flgigice PCEPC%ice(tr) p(T pC) S,Target(0s (27 r, pC))

Since z = Target and k+ 1 > 0, application of definition of Pg}fwget(z) gives the desired
result, i.e.
PT(PBMCiS,TaTget(Zv u,u + k + 1)) = Pg,—g’}lrget(z)

This completes the induction step and the theorem follows. O

From Theorem B.1], it trivially follows that the decision version of probabilistic bounded
reachability with respect to probability threshold 6, namely the PBMC problem from Def-
inition [5.4l can be solved by deciding whether the satisfaction probability of the symbolic
encoding PBMC's, rarget(k) is below 6:

Corollary 5.1 (SSMT-based probabilistic bounded model checking)
Let be given a system S of n concurrent PHAs, a target states predicate Target, a step
bound k € N, and a probability threshold 6 € [0,1]. Then,

PgTarget(z) <6 ifand only if Pr(PBMCs rage(k)) <0
with v+ = \[_, init; being the (unique) initial state of S.

To complete the symbolic approach to probabilistic bounded reachability, Chapter [6] in-
troduces algorithms to solve SSMT formulae. In addition to a detailed description of
underlying concepts and a thorough theoretical investigation, an essential part of Chap-
ter [l is devoted to algorithmic optimizations with the objective of saving computational
effort in practice. One such optimization called thresholding is motivated by Corollary b1k
to solve the PBMC problem with respect to threshold #, we need not compute the ex-
act satisfaction probability Pr(PBMCs ruge(k)) but it is sufficient to decide whether
Pr(PBMC' s, 1urget(k)) is below or strictly above 6. The latter fact can be exploited in the
development of SSMT algorithms. While such SSMT algorithms implement a traversal
through the tree given by the quantifier prefix as indicated in Figure [£.3] thresholding
enables aggressive pruning rules that save visits to potentially major parts of the search
space whenever a threshold for some subtree is already exceeded by processed branches
or can no longer be reached by all remaining branches.

6 Algorithms for SSMT Problems

After having introduced the formal model of concurrent probabilistic hybrid automata
in Chapter B and the logical framework of SSMT in Chapter [as well as the reduction
from probabilistic bounded reachability problems for PHAs to SSMT in Chapter B this
chapter finally completes the symbolic reachability analysis approach for concurrent PHAs
by elaborating on algorithms to solve SSMT formulae.

The SSMT algorithm presented in this thesis is based on algorithmic concepts to solve
SSAT as well as SMT formulae, while algorithms for the latter both build on a decision
procedure for the SAT problem. Therefore, we first refer to a procedure for the SAT
problem in Section which is then followed by explaining its extensions to cope with
the more general SSAT and SMT problems in Sections and [6.3] respectively. The
basic SSMT algorithm finally is elaborated on in Section [6.4] while Section proposes
algorithmic enhancements in order to improve performance in practice. The theoretical
considerations of Sections and are implemented in the tool SiSAT, described in
Section [6.6l and empirically evaluated in Section

6.1 Algorithms for SAT

As introduced in Section 4.1l given a propositional formula ¢ in CNF, the Boolean satisfia-
bility problem (SAT) asks whether a satisfying assignment of ¢ exists. Though all existing
SAT algorithms show exponential runtime in worst case, modern approaches to solve SAT
exhibit remarkable performance on practically relevant problems stemming from indus-
trial applications like software and hardware verification. These so-called SAT solvers
are in the majority of cases based on the Davis-Putnam-Logemann-Loveland (DPLL)
procedure [DP60, [DLL6G2] enhanced with various algorithmic optimizations.

The DPLL procedure mainly implements a backtracking algorithm that searches for
a satisfying assignment of ¢ by means of manipulating a partial assignment 7 to the
variables of . This process stops either if 7 could be extended to a satisfying assignment
or if all assignments were probed without finding a satisfying one, the latter proving that ¢
is unsatisfiable. At the beginning of the search process, the partial assignment 7 is empty,
i.e. no variable is assigned a truth value. Then, 7 is incrementally extended by decisions
and accompanied deductions. In a decision step, an unassigned variable = € Var(p), i.e.
7(x) is not defined, is selected and then assigned a truth value ¢ € B, i.e. 7(z) := ¢. Each
decision step is followed by the deduction phase involving the search for unit clauses, i.e.
clauses ¢ € ¢ that have only one unassigned literal ¢ left while all other literals ¢ # ¢ in ¢
are false under current (partial) assignment 7, i.e. 7(¢') = false. The unassigned literal
¢ in a unit clause is called wunit literal. In order to satisfy a unit clause ¢ (and thus prevent
the whole formula ¢ from becoming violated) under an extension of the partial assignment
T, it is clear that we need to satisfy the unit literal ¢ € ¢, i.e. we need to extend 7 in such

74 6 Algorithms for SSMT Problems

a way that 7(¢) = true. For instance, let ¢ = (zV =y V —z) be a clause that is unit under
partial assignment 7 with 7(x) = false and 7(y) = true. To satisfy ¢, we extend 7 by
setting 7(z) := false. Then, 7(—z) = true and thus 7(¢) = true. Such an extension
of 7 is called a deduction, while the mechanism of deducing unit literals is referred to as
unit propagation. Please observe that not only decisions but also deductions can trigger
further deductions. Whenever no new deduction can be performed and no clause became
definitely false under 7, i.e. there is no clause ¢ € ¢ such that V¢ € ¢ : 7({) = false,
the procedure continues with a new decision step. A decision step and its accompanied
deductions are called decision level.

However, deduction may also yield a conflicting clause ¢ € ¢ which has all its literals
assigned false under current 7, i.e. V¢ € ¢ : 7(¢) = false and thus 7 [~ ¢. Such a
situation is called conflict. For instance, consider the small example above and assume
that there is another clause ¢ = (z V -y V z). After deducing 7(z) := false, clause
¢ becomes conflicting as 7(x) = false, 7(—y) = false, and 7(z) = false. Since @
is in CNF and ¢ € ¢, each (complete) assignment 7’ that extends partial assignment
7, i.e. if 7(x) is defined then 7'(x) = 7(x) for each z € Var(y), does not satisfy ¢,
ie. 7 £ . This fact indicates the need for backtracking, i.e. to take back some of
the latter decision levels. This process then retrieves some previous partial assignment
from which the search will be continued. To avoid repeated conflicts due to the same
reason, modern SAT algorithms incorporate conflict-driven clause learning [MSLMO09] to
derive a sufficiently general explanation (a combination of variable assignments) for the
actual conflict. In our running example, assume that first assignment 7(x) = false and
then 7(y) = true were made by decision steps. Then, both variable assignments are an
explanation for the current conflict. Based on that (ideally minimal) set of assignments
that triggered the particular conflict, a conflict clause cc is generated and added to the
clause set to guide the subsequent search. Such a conflict clause cc encodes the negation of
the variable assignment leading to the conflict, and ensures to not visit the same conflicting
assignment again. In the example, we get cc = (z V —y) meaning that x must be set to
true or y to false in order to avoid the previous conflicting situtation. Additionally,
the conflict clause is also used to compute the backtrack level, i.e. the decision level on
which the search will be continued. Most modern SAT solvers implement the first unique
implication point technique from [ZMMMO1]. In the latter, the backtrack level is the oldest
decision level on which the current conflict clause cc becomes unit. This approach leads to
a non-chronological backtracking operation, often jumping back more than just one level,
thus making conflict-driven clause learning combined with non-chronological backtracking
a powerful mechanism to prune large parts of the search space. In our example, we can
go back only one level, namely to decision level starting with 7(z) = false, as conflict
clause cc = (zV —y) is unit there but cc will be no longer unit when also undoing decision
7(z) = false.

The overall DPLL procedure always terminates, namely if an assignment 7 was found
that satisfies formula ¢ or if a conflict cannot be resolved, i.e. there are no decision levels
to be taken back. In the latter case, there does not exist any solution of ¢, i.e. ¢ is
unsatisfiable.

We finally mention that state-of-the-art SAT solvers exploit a vast number of further
algorithmic optimizations that have led to impressive performance gains during the last

6.2 Algorithms for SSAT 75

years. Among others, these are very sophisticated data structures that permit efficient
detection of unit clauses based on so-called two watched literals as well as powerful vari-
able and value decision heuristics [MMZ"01]. For a very detailed account of modern
SAT solving techniques as well as applications of SAT, we refer the interested reader
to [BHYMWOQ9].

6.2 Algorithms for SSAT

As mentioned in Section 4.2 the general SSAT problem is PSPACE-complete. The
plethora of real-world applications like probabilistic planning however calls for practi-
cally efficient algorithms. We therefore explain state-of-the-art SSAT algorithms, being
based on the DPLL procedure, in Subsection In contrast to the aforementioned
DPLL-style backtracking algorithms, a novel approach to solve SSAT problems following
the idea of the resolution principle is suggested in Subsection Completing this
section, a theoretical comparison between this novel SSAT resolution calculus and the
classical DPLL-SSAT procedure as well as potential applications of SSAT resolution are
finally presented in Subsection

6.2.1 DPLL-based SSAT procedure

As pioneered by Littman [Lit99], state-of-the-art SSAT algorithms implement a DPLIL-
style backtracking search that mimics the semantics of SSAT, thereby explicitly traversing
the tree given by the quantifier prefix and recursively computing the individual satisfac-
tion probabilities for each subtree by the scheme illustrated in Figure [£1l To improve
performance in practice, DPLL-SSAT procedures moreover incorporate several algorith-
mic optimizations where the most prominent ones are unit propagation, purification, and
thresholding. Figure[6.Ilshows the standard DPLL-SSAT procedure as presented similarly
in the recent overview article [Maj09] (in a version without universal quantifiers).

In the following, we explain the DPLL-SSAT algorithm from Figure[6.1l In addition to
an SSAT formula ® = Q : ¢ with propositional formula ¢ being in CNF, the algorithm
DPLL-SSAT(®, 6,,6,,) requires as further inputs two rational values 6, and 6, with §; <
0, that are called lower threshold and upper threshold, respectively. The idea of these
additional parameters is to alleviate workload of the algorithm, and thus to improve
performance, whenever precise information about the probability result is not or only
partially necessary. More precisely, in case the probability of satisfaction Pr(®) lies in
the interval [6;, 6,] then the algorithm must return the exact satisfaction probability, i.e.
DPLL-SSAT(®, 6,,6,) = Pr(®). Otherwise, i.e. Pr(®) ¢ [6;,6,], the exact result is not
of interest but only some witness value pr = DPLL-SSAT(®, 6;,6,) with pr < 6, if and
only if Pr(®) < 6, and with pr > 6, if and only if Pr(®) > 6,. These thresholds
are exploited during proof search to boost efficiency by skipping some recursive calls of
DPLL-SSAT which is called thresholding and described later on. Providing the possibility
of thresholding is actually motivated by several industrial applications like the verification
of probabilistic safety properties where the problem is to decide whether the probability of
reaching unsafe states is below or above some acceptable threshold 6, as in Definition [£.4]
In the latter case, the lower threshold and the upper threshold coincide, i.e. 6, = 6, = 6.

76 6 Algorithms for SSMT Problems

DPLL-SSAT(Q: ¢, 6, 6,)
input: SSAT formula Q : ¢ with ¢ in CNF, rational constants 6;, 6, with 6; < 0,.

// Base cases
if ¢ contains a clause equivalent to false then return 0.

if all clauses in ¢ equivalent to true then return 1.
// Unit propagation
if v contains a unit literal ¢ with Var(¢) = {2} then
if 9 = Q;3xQ, then return DPLL-SSAT(9,9, : ¢[v(¢)/x], 0, 6,).
if 9 = 90,8729, then
return p(¢) - DPLL-SSAT(Q1 Q; : plo(?)/a], 81/p(0), 6u/p(1)).
// Purification
if v contains a pure literal ¢ with Var(¢) = {z} then
if Q@ = Q;3xQ, then return DPLL-SSAT(Q, 9, : ¢[v(¢)/x], 0, 6,).
// Branching and thresholding
if @ =329’ then
pr1 := DPLL-SSAT(Q' : ¢[true/z|, 6, 0,).
if pry > 6, then return pr;.
pro := DPLL-SSAT(Q' : p[false/z|, max(0;, pr1), 0,).
return max(pry, pra).
if 9 =429 then
pr1 := DPLL-SSAT(Q' : ¢[true/z], (6, — (1 —p))/p, 0./D).
if p-pry + (1 — p) < 0, then return p - pr;.
if p- pry > 60, then return p - pry.
pro := DPLL-SSAT(Q' : p[false/z|, (6, —p-pri)/(1 —p), (B, —p-pr1)/(1 —Dp)).
return p-pry + (1 —p) - pro.

Figure 6.1: DPLL-based backtracking algorithm for SSAT as presented similarly in [Maj09]. If
literal ¢ is positive then v(¢) = true and p(¢) = p, and otherwise v(¢) = false and p({) = 1 —p.
(This figure is a slight modification of Figure 2 from [TF10].)

The same holds when considering the SSAT decision problem, i.e. to decide whether
Pr(®) > 60 is true: due to above facts, we conclude that Pr(®) > 6 if and only if
DPLL-SSAT(®,0,6) > 6. We furthermore remark that the presence of the threshold
parameters does not restrict the scope of the SSAT procedure. That is, whenever the
exact probability of satisfaction needs to be computed then the lower threshold 6, should
be set to value 0 and the upper threshold 6, to value 1.

Base cases. Algorithm DPLL-SSAT(Q : ¢,0,,0,) first checks whether matrix ¢ con-
tains a clause ¢ € ¢ with ¢ = false. Such clause ¢, which corresponds to a conflicting
clause in the DPLL procedure for SAT, occurs if substitution has replaced the variables of
all positive literals in ¢ by false and the variables of all negative literals in ¢ by true such
that all literals in ¢ are equivalent to false. In this conflicting situation, DPLL-SSAT
correctly returns result 0 since ¢ is unsatisfiable (as ¢ is in CNF) and thus Pr(Q: ¢) =0

6.2 Algorithms for SSAT 7

Figure 6.2: Illustration of pruning the search space: whenever DPLL-SSAT detects that branch
“r = neg(v)” for variable x may be skipped due to some algorithmic optimization like unit
propagation, a potentially huge subtree can be cut off. We denote by neg(v) € B the opposite
of truth value v, i.e. neg(v) = true if and only if v = false.

according to Definition

The next step is to check whether each clause ¢ € ¢ is equivalent to true, i.e. at least
one literal ¢ in each clause c is equivalent to true, i.e. the variable of ¢ was replaced by
true if ¢ is positive or by false if ¢ is negative. If so, ¢ is a tautology, i.e. = ¢, and
consequently Pr(Q : ¢) = 1 according to Definition DPLL-SSAT then returns 1.

If both of the above tests have failed then the algorithm tries to prune the search space
in the sense of skipping some recursive calls by means of three algorithmic optimizations.

Unit propagation. The first such optimization is called unit propagation: as in the
deduction phase of the DPLL algorithm for SAT, this enhancement detects unit clauses ¢
and immediately propagates their unit literals ¢ by substituting the corresponding values
v(¢) for variables x with Var(¢) = {z} such that unit clauses ¢ become true, i.e. v(f) =
true for positive literals ¢ and v(¢) = false for negative literals ¢. Recall that a unit
literal ¢ in a unit clause ¢ is the only unassigned literal while all other literals in ¢ are
assigned false. Observe that unit propagation moves a quantifier in the prefix to the left,
ie. Q1QrQs ~ QrQ;Qs. This is of course not a valid operation in general. However, this
is correct for unit literals ¢ € {x, —z}, i.e. Pr(Q1QxQs : 9 Al) = Pr(QrQ1Qs : ¢ AL), as
the value of x satisfying ¢ does not depend on Q;. This fact is evinced by Lemma [6.2] later
on. Each application of unit propagation clearly saves one recursive call of DPLL-SSAT,
namely this one for the branch where z is set to the opposite of value v(¢). Intuitively,
this optimization cuts off a potentially huge subtree of the overall search tree given by the
quantifier prefix, confer Figure [6.2]

Purification. The next algorithmic enhancement, called purification, is in some sense
similar to unit propagation but it propagates pure literals. A literal ¢ occurring in some

78 6 Algorithms for SSMT Problems

clause of ¢ is called pure if and only if each clause ¢ € ¢ that is not equivalent to true,
i.e. ¢ # true, does not contain the opposite literal neg(¢), i.e. neg(¢) ¢ c. For an example
consider formula (x1 V —x9) A (mx1 V —xo V 23) A (22 V 7y V true). Literals z; and —xy
are clearly not pure, while literals —z9, 3, and —x4 however are. We remark that literal
-y is pure as clause (zy V -y V true), containing the opposite literal xo = neg(—z3),
is equivalent to true. With regard to soundness of purification, we argue as follows. Let
¢ be a propositional formula in CNF and ¢ € {z, -z} be a pure literal. Let us further
denote the set of all clauses in ¢ that are not equivalent to true by U(p) := {c € ¢ :
¢ # true}. We define v(¢) = true and v(¢) = false if ¢ is positive, and v(¢) = false
and 9(¢) = true otherwise. It is not hard to see that U(¢[v(¢)/x]) 2 U(p[v(¢)/x]) and
thus ¢[v(f)/z] = @[v(f)/x] and finally Pr(Q : plo(f)/z]) < Pr(Q : ¢[v(f)/x]). Above
fact justifies the application of purification for existential variables. Moving the quantifier
within the prefix, i.e. Q3dx Qs ~ dxQ;O,, again relies on the observation that the value
of x does not depend on Qj, i.e. for each assignment to the variables in Q;, x is set to
value v(¢). This fact is also evinced by Lemma later on. Purification seems however
not possible for randomized variables as the other branch where z is set to ©(¢) may yield
some contribution, i.e. potentially, Pr(Q;Qs : p[v(¢)/x]) > 0.

A slightly more general definition of pure literals ¢ does not demand that ¢ need be
present in a clause of ¢. Applying the latter definition, literal x4 would also be pure
in above example and clearly each literal ¢ such that neither ¢ nor neg(¢) occurs in the
formula. This more general concept of pure literals does not destroy soundness of pu-
rification and is of practical benefit whenever there are some variables z that occur in
quantifier prefix @ but not in matrix ¢, i.e. Qx € Q but x ¢ Var(y). Such cases are ac-
tually permitted by Definition [4.1] and potentially occur during solving an SSAT formula,
namely when considering all satisfied clauses as “removed” from matrix ¢. Observe that
DPLL-SSAT prevents an infinite application of purification since variable x must occur
in the current quantifier prefix.

Branching and thresholding. In case none of the above checks was successful, the
procedure applies branching thereby trying to exploit another optimization called thresh-
olding. A branching step is similar in nature to a decision step in the DPLL algorithm
for SAT. The difference however lies in the selection of the variable to be assigned a
value. While in the quantifier-free SAT case the decision variable can be freely cho-
sen, variable selection in DPLL-SSAT is more restrictive and depends on the quanti-
fier prefix. According to the semantics of SSAT formalized in Definition 4.2 the algo-
rithm presented in Figure actually selects the leftmost variable in the prefix. We
remark that this selection method can be relaxed to some extent: for an SSAT for-
mula Q171 ...QrrrQ : ¢ where the quantifiers @); for 1 < ¢ < k are the same, i.e.
@1 = ... = @y, one of variables zq,..., 7 can be freely selected for branching. The
rationale is that quantifiers within a block of same quantifiers may be moved arbitrarily.
Formally, Pr(Q:Qr QQy Qs : v) = Pr(Q;Qy QQx Qs :) whenever all variables in
Q are bound by the same quantifier @ € {3,d” }EI The latter proposition follows from
Definition and common arithmetic laws.

"'We remark that the probabilities p of randomized quantifiers ¥” need not be homogeneous.

6.2 Algorithms for SSAT 79

After selection of a variable x for branching, the procedure takes an arbitrary truth value
t € B and then solves the corresponding subformula Q' : ¢[t/z]. For presentation reasons
only, the algorithm in Figure first selects truth value true. This restriction could
however be simply relaxed to the selection of arbitrary truth values with the consequence
of a more technical presentation of the algorithm. Let the result of the first subproblem,
i.e. where x is replaced by true, be satisfaction probability pr;. We first assume that the
conditions in the subsequent if-statements are not satisfied. Then, the other subproblem,
i.e. where false is substituted for z, is solved by recursive call of DPLL-SSAT yielding
satisfaction probability pro. In a final step, DPLL-SSAT returns the corresponding prob-
ability of satisfaction pr according to Definition [£2] i.e. pr = max(pry,prq) if Q = JzQ’
and pr =p-pr; + (1 —p) - pry if Q@ =Pz Q".

We now explain the idea of thresholding, which is another optimization technique to
prune the search space using the threshold parameters 6; and 6,,. Recall that DPLL-SSAT
must return the exact satisfaction probability if the latter lies within the interval [6;, 6,].
Otherwise, just a witness value pr is required such that pr < 6; or pr > 6, if and only
if the actual satisfaction probability is strictly less than 6, or strictly greater than 6,
respectively. As a consequence, the algorithm may skip to solve the second subformula
Q' : p[false/x] whenever the result pr; of DPLL-SSAT for the first subproblem Q' :
p[true/z| is large enough in the sense that the final probability result will exceed the
upper threshold in any case, i.e. whenever pry > 6, in case @ = 3zQ’ and p - pry > 0,
in case @ = dPxQ’. This pruning technique is justified by a monotonicity argument, i.e.
pry > 0, implies max(pry, pre) > 6, and p - pry > 0, implies p - pry + (1 — p) - pro > 0,
due to p,pri,pro € [0,1]. A similar thresholding rule is applicable if probability result
pry for the first branch is too small in the sense that the final probability result will
never reach the lower threshold #;, independent of the actual value of pry for the second
branch. The latter rule is clearly infeasible for existential variables since if pro > 6; then
max(pry, pro) > 0, i.e. for unknown pry there is no way to conclude that max(pry, pro) < 6,
only from information about pry (even if pr; = 0). For the randomized case, however, we
can reason as follows: given probability pr; for the first branch, then the greatest possible
overall probability is obtained if pro = 1, ie. p-pri+ (1 —=p) -pra <p-pri + (1 —p)-1
for each pry € [0, 1]. Therefore, if the greatest possible value p - pry + (1 — p) is already
strictly less than the lower threshold 6; then there is no chance that the final probability
will reach ;. This argument justifies to skip the second branch.

It remains to describe how the lower threshold ¢, and the upper threshold @/, are deter-
mined for recursive calls of the algorithm, and to show that the use of these thresholds is
sound as well as that 6] < 6., holds.

Let us first consider the existential case, i.e. @ = JrQ’. In the first recursion, we
simply transfer the given thresholds 6, and 6,. To recognize soundness of the latter,
let pr’ = Pr(Q : p[v(f)/x]) be the actual satisfaction probability of the first branch,
and pr” = Pr(Q : y[neg(v(f))/z]) be the actual probability of the potential second
branch where neg(v(¢)) is the opposite of truth value v(¢). The actual final probability of
satisfaction then is pr = max(pr’, pr”). For the lower threshold, we first consider the case
where pr’ > pr”. Here, pr = pr’ and thus pr < 6, if and only if pr’ < ;. We now deal with
case pr’ < pr” in which we obtain pr = pr”. This fact implies that the actual value of pr’
is not of interest in order to compute the final result, allowing any lower threshold. Both

80 6 Algorithms for SSMT Problems

observations above justify the use of #; as lower threshold of first recursion. With regard
to upper threshold 6, observe that if pr’ > 6, then pr > 6,. The latter fact permits the
use of upper threshold 6, for first recursive call of DPLL-SSAT. Clearly by assumption,
0, < 0,.

For the second recursion, we potentially strengthen the lower threshold by taking the
maximum max(6;, pry) of the current lower threshold ; and the probability result pr; of
the first branch. This potentially enables more aggressive thresholding within the recursive
call. The upper threshold is as above, namely 6,. Observe that second branch is executed
only if thresholding has failed before, i.e. we assume pr; < 6, in the following. Let
pr' = Pr(Q' : p[false/z]) be the actual satisfaction probability of the second branch and
pr = max(pry, pr’) be the actual final probability result. With regard to lower threshold,
consider the case pry > pr’ first. Then, pr = pr; and thus pr < 6, if and only if pry < 6,
which means that the result pr is independent of the value pr’ of second branch. The
latter fact allows any lower threshold for second recursion. If pry < pr’ then pr = pr’; and
thus pr < 6, if and only if pr’ < 6, if and only if pr’ < max(6;, pry). This establishes the
argument for setting the new lower threshold to max(6;, pry). For the upper threshold, we
have that pr > 0, if and only if pr’ > 6, as pr; < 6,. Note that max(6;,pry) < 6, since
0, <0, and pr; <40,.

In the randomized case, i.e. @ = ¥PxQ’, modifications of the thresholds are a bit more
sophisticated. We first examine the case in which unit propagation applies: here, we
definitely know that the branch where z is replaced by value neg(v(¢)) yields probability
0 since unit literal ¢ is then violated, i.e. Pr(Q;Qs : w[neg(v(f))/x]) = 0. Let be pr’ =
Pr(Q:9Qs : plv(f)/x]). The result returned by DPLL-SSAT then is p(¢) - pr’ with p(¢) = p
if unit literal ¢ is positive and p(¢) = 1 — p if £ is negative. Recall that 0 < p < 1 and thus
p(¢) > 0. We then obtain that p(¢) - pr’ < 6, if and only if pr’ < 0;/p(¢) and p(¢) - pr’ > 0,
if and only if pr’ > 60,/p(¢). This gives us the argument to use ;/p(¢) as the new lower
threshold and 6, /p(¢) as the new upper one. Since 6, < 6, and p(¢) > 0, it follows that
0u/p(£) < 6./p(¢).

We next consider the first recursive call of DPLL-SSAT in case of branching. The new
thresholds are achieved with a similar argument as above. The difference, however, is that
we are unaware of the probability of the second branch. Let us denote by pr’ = Pr(Q’:
pltrue/z]|) and by pr” = Pr(Q' : p|[false/z]) the actual satisfaction probabilities of the
first and second branches, respectively. The actual final probability of satisfaction then is
pr = p-pr'+(1—p)-pr"”. Simply by definition, pr < 6, if and only if p-pr’+(1—p)-pr” < 6,.
Due to arithmetic laws and due to p > 0, we further conclude that pr < 6, if and only
if p-pr’ <0, —(1—p)-pr"” if and only if pr’ < (6, — (1 —p) - pr”)/p. As pr” < 1, we
finally obtain the rationale for the new lower threshold, namely from pr’ < (6, —(1—p))/p
it follows that pr’ < (6, — (1 — p) - pr”)/p. That is, we may use (6, — (1 — p))/p as the
new lower threshold for the first recursion. For the new upper threshold, we reason that
pr > 0, if and only if p - pr' + (1 —p) - pr” > 0, if and only if pr’ > (0, — (1 — p) - pr”) /p.
As pr” > 0, we clearly have that if pr’ > 6,/p then pr’ > (6, — (1 — p) - pr”)/p which
justifies new upper threshold 6, /p for the first recursion of DPLL-SSAT. Since 6, < 6,,,
(1 —p) >0, and p > 0, we deduce that (6, — (1 —p))/p < 0./p.

We now explain the new thresholds for the second recursion. Observe that the second
recursion is executed only if thresholding has failed, confer Figure As a consequence,

6.2 Algorithms for SSAT 81

we know that p-pri+(1—p) > 6, as well as p-pr; < 6, and thus that the result pry of the
first recursion lies within the corresponding thresholds, i.e. pry € [(6; — (1 — p))/p, 0./p].
From the latter observation, we can conclude that pry is the actual satisfaction probability
of the first branch, i.e. pry = Pr(Q’ : pltrue/z]). Let pr' = Pr(Q : y[false/z]) be
the actual satisfaction probability of the second branch. The actual final probability of
satisfaction then is pr = p - pry + (1 — p) - pr’. Using the result pr; of the first branch,
we have to weaken the lower threshold for the second branch on the one hand, but we
can strengthen the corresponding upper threshold on the other hand. For this purpose,
recall that (1 — p) > 0 and consider the following line of reasoning: pr < 6, if and only
if p-pri+ (1 —p)-pr' < 6 if and only if (1 —p)-pr' < 6, — p - pry if and only if
pr’ < (0,—p-pr1)/(1—p), as well as pr > 6, if and only if p-pr; + (1 —p) - pr’ > 0, if and
only if (1—p)-pr’ > 0, —p-pry if and only if pr’ > (6, —p-pr1)/(1 — p). This establishes
the lower threshold (6, —p-pr1)/(1—p) as well as the upper threshold (6, —p-pr1)/(1—p)
for the second recursive call of DPLL-SSAT. From 6, < 6, and (1 — p) > 0 it follows that
(0 —p-pri)/(1=p) < (Ou—p-pr1)/(1 —p).

We finally remark that lower thresholds 6, may become negative, i.e. §; < 0, and that
upper thresholds 6, may exceed 1, i.e. 6, > 1. This fact, however, does not destroy
soundness of thresholding as we have never stated any assumption on the range of 6, and
0.. The only condition is that 6; < 6, holds in each invocation of DPLL-SSAT(®, 6,,6,).
The latter property is actually preserved for each recursive call DPLL-SSAT(®’, 67, 6.,),
i.e. 0 <0, as shown above.

Concluding this subsection about DPLL-based SSAT algorithms, we mention that fur-
ther algorithmic enhancements of DPLL-SSAT were investigated in the literature, con-
fer [Maj09]. One of them is called non-chronological backtracking [MajO4] that works as
follows: whenever DPLL-SSAT has reached a base case, then a minimal partial variable
assignment is created that serves as an explanation for the current conflict or solution.
Based on this explanation, the second branch in DPLL-SSAT can be skipped whenever
the value of the current variable x has no impact on the current conflict or solution, which
is the case if the explanation does not talk about variable z. In [ML98al, a dynamic pro-
gramming technique called memoization was investigated in order to potentially improve
performance of DPLL-SSAT by caching the satisfaction probabilities of already solved
subformulae. Whenever an already processed subformula ¢ needs to be solved again,
the corresponding cached satisfaction probability can be retrieved immediately without
recomputing Pr(®). Another issue that may lead to enormous performance gains is the
development of suitable branching heuristics. As mentioned above, the selection of a
variable for branching in the SSAT case is more restrictive than in the quantifier-free
SAT case, i.e. a decision variable needs to be selected from the leftmost block of same
quantifiers in the prefix. Several sophisticated branching heuristics for DPLL-SSAT were
investigated in [LMPOIl, IMLO03]. In Section 6.5 we elaborate on above-mentioned and
further algorithmic optimizations for the more general SSMT case.

6.2.2 Resolution-based SSAT procedure

As reviewed in Subsection 6.2.1] classical SSAT algorithms implement a DPLL-based
backtracking procedure thereby explicitly traversing the tree given by the quantifier pre-

82 6 Algorithms for SSMT Problems

fix and recursively computing the individual satisfaction probabilities for each subtree. In
this subsection, we propose a novel approach to solve SSAT that is based on the reso-
lution principle. Following the idea of resolution for propositional and first-order formu-
lae [Rob65] and for QBF formulae [BKF95], we develop a sound and complete resolution
calculus for SSAT and theoretically compare it with the classical DPLL-SSAT approach.
The results of this subsection are mainly based on [TF10, [TF11, [TEF12].

We first recall in brief the well-known resolution calculus for propositional formulae
¢ in CNF, confer [Rob65]. Let (¢; V x) and (¢ V =) be two clauses where ¢; and ¢y
are disjunctions of literals and z is a propositional variable. Observe that x and —x are
complementary literals. The resolution rule then derives from above clauses the new clause
(¢1 V) which is logically implied by the given clauses, i.e. (¢;VZ)A(caV—x) = (c1Ve) is
valid. The derived clause (1 V¢s) is also called resolvent of (¢; V) and (co V—z). Starting
with clauses in ¢, resolution successively applies above rule to derive implied clauses. An
essential property of resolution for SAT is that the empty clause) is derivable from the
given formula ¢ if and only if ¢ is unsatisfiable.

Similar to above scheme for the non-stochastic case, resolution for SSAT formulae Q : ¢
also derives new clauses ¢P?*) which are however annotated with a pair of probabilities
(pl,pu) where 0 < pl < pu < 1. More precisely, the resolution calculus derives pairs
c(pl’p“)|Q : ¢ of annotated clauses cPhr) and SSAT formulae Q : . In contrast to
classical resolution, such derived clauses cP*) need not be implications of the given
(or rather derived) formula Q : ¢, but are just entailed with some probability. Loosely
speaking, the derivation of a pair c®"?%|Q : ¢ means that under SSAT formula Q :
p, the clause c¢ is violated with a maximum probability at most pu, i.e. the maximum
satisfaction probability of Q : (p A —¢) is at most pu. More intuitively, the minimum
probability that clause ¢ is implied by ¢ is at least 1 — pu. The latter fact follows from
the observation that Pr(Q : v) =1— Pr(Q : —)), where Q' arises from Q by replacing
existential quantifiers by universal ones, where universal quantifiers call for minimizing
the satisfaction probability, confer the definition of XSSAT in Section We thus have
that Pr(Q : (¢ = ¢)) = 1—-Pr(Q : (¢ A—c)) > 1 — pu holds. Serving the sole
purpose of getting an intuition of derived pairs cP?%)|Q : o, the above interpretation is
however too imprecise to facilitate a similar estimation for pl. Though the exact meaning
of cPPW|Q : ¢ is presented in Lemma [6.1], we are a bit more precise at this point. Let
be the rightmost variable in prefix Q that occurs in clause c¢. Further, let 7 be any partial
assignment that falsifies ¢, i.e. 7(¢) = false, and that is defined for x and all the variables
to the left of x in Q. Finally, let Q' be the prefix that arises when removing all variables
y from Q for which 7(y) is defined, and ¢’ be the resulting matrix when substituting the
values 7(y) for variables y in . Then, the maximum probability of satisfaction of Q" : ¢’
is at least pl and at most pu. Once a pair PPP*)|Q : p comprising the empty clause is
derived, it follows that the maximum satisfaction probability of the derived SSAT formula
lies in the interval [pl, pu|, i.e. pl < Pr(Q: ¢) < pu.

Before we formally introduce the resolution calculus for SSAT, we mention the following
theoretical observation that sheds some light on the nature of a potential SSAT resolution
scheme. Recall that resolution for both SAT and QBF shows polynomial-time solvability
on their restrictions to 2CNF' as each resolution step yields clauses of size at most two,
of which just quadratically many exist. Note that the same property cannot be expected

6.2 Algorithms for SSAT 83

for SSAT resolution due to PSPACE-completeness of S2SAT (Theorem [.T]). Therefore,
a sound and complete resolution calculus for SSAT must involve some rule that destroys
above property (unless P = PSPACE).

Resolution for SSAT. For presentation reasons, we first introduce some notation.

Definition 6.1
For each quantifier prefiz Q = Q121 . .. Qnx,, each propositional formula ¢ with Var(yp) C
{z1,..., 2.}, and each non-tautological clause ¢, i.e. [~ ¢, we define

1. the quantifier prefiz Q(p) to be shortest prefiz of Q that contains all variables from
@, i.e. Q(p) ==z ...Qix; where x; € Var(yp) and for each j > i :x; ¢ Var(p),

2. the set Var(Q) := {x1,...,x,} of variables quantified by Q, and

3. the partial assignment [f . that falsifies ¢ as the mapping ff, : Var(c) — B such that
for all variables x € Var(c) :

| true if —~x€c
fele) = { false if z€c .
Observe that above assignment ff. exists and is unique since clause c is non-tautological,
and that c evaluates to false under assignment ff .

In what follows, let Q : ¢ be an SSAT formula with matrix ¢ being in CNF. Without
loss of generality, ¢ contains only non-tautological clauses, i.e. Ve € ¢ : [~ ¢. With regard
to the latter, note that tautological clauses ¢/, i.e. |= ¢, are redundant in the sense that
Pr(Q: (pAd)) = Pr(Q: ¢). We furthermore demand that ¢ does not comprise the
constants true and false. The latter requirement is also without loss of generality since
for each propositional formula 1) in CNF a semantically equivalent formula ¢/’ in CNF can
simply be achieved such that 1)’ does not contain true and false, confer the notion of a
cleaning as defined in Section

The resolution calculus for SSAT, which we call S-resolution, is defined by the consec-
utive application of below rules R}, R2, [R2E, and R3] to derive pairs cP?")|Q : ¢ where
L) with (0 < pl < pu < 1 is an annotated clause and Q : ¢ an SSAT formula. An
initial pair is given by €|Q : ¢ where € denotes absence of a clause and Q : ¢ is any
SSAT formula that meets the aforementioned conditions. We explicitly point out that e
must not be confused with the empty clause . We further remark that each of the above
rules preserves the given SSAT formula in its derived pair, which in turn means that the
information about Q : ¢ is redundant to some extent. We however opt for the involve-
ment of Q : ¢ since we enhance S-resolution by some additional rules in Subsection [6.2.3]
with some of these rules actually being able to modify the quantifier prefix Q of the given
SSAT formula Q : ¢.

In case we forbid rule R2l and thus allow only rules Rl [R2E, and [R3] we obtain a
stronger version that we refer to as strong S-resolution. The rationale of the stronger
version is that derived clauses cPP") are then forced to have tight bounds pl and pu, i.e.
pl = pu, which give the exact satisfaction probabilities of the corresponding subformulae,

84 6 Algorithms for SSMT Problems

confer Lemma Strong S-resolution furthermore establishes the basis of the procedure
to compute generalized Craig interpolants for SSAT being introduced in Chapter [

Given ¢|Q : ¢, rule R derives a pair c(o’o)|Q : ¢ where clause (00
the smallest possible probability pair (0,0) and c¢ itself is an original clause in ¢. Referring
to the semantics of SSAT given in Definition 2] [R1] corresponds to the quantifier-free
base case where ¢ is equivalent to false under any assignment that falsifies c.

is annotated with

elQ: ¢y,
ceyp

(R].) C(O7O)|Q L

Next rule simply takes any non-tautological disjunction ¢ of literals that talk about
variables occurring in prefix @, and then derives c(o’l)|Q : ¢, where clause %1 is anno-
tated with the pair consisting of the smallest and highest possible probabilities 0 and 1.
Soundness of follows from the trivial fact that 0 < Pr(®) <1 is always true for each
SSAT formula .

elQ: ¢,
c CH{z, x|z € Var(Q)}, ¢

COD[Q

By strengthening the premise of [R.2] we obtain rule R2E. More precisely, does not
take an arbitrary disjunction c of literals, but ¢ here encodes the opposite of a satisfying
(partial) assignment 7 of ¢. That is, substitution of the values given by 7 for the corre-
sponding variables in ¢ yields a tautology, i.e. = p[r(z1)/x1] ... [7(x;)/x;]. Similar to Rl
and according to Definition .2 rule reflects the quantifier-free base case in which ¢
is equivalent to true under any (complete) assignment 7" that is conform to the partial as-
signment 7 since [7(z;)/x1] ... [7(2;)/x;] = true. This justifies derivation of ¢MV|Q : ¢,
LD is annotated with the pair (1,1) of highest possible probabilities.

(R.2)

where clause ¢!

elQ e,
c C{z, x|z € Var(Q)}, Fc,
for each 7 : Var(Q(c)) — B with Vx € Var(c) : 7(z) = ff . (z) :

E olr(xy)/z] .. [7(x;)/2z;] where Q(c) = Q21 ... Qix;
&) e

We remark that finding such a clause c¢ in the premise of is NP-hard as it is equivalent
to finding a satisfying (partial) assignment of a propositional formula in CNF. This strong
application condition of is however justified with regard to a potential integration of S-
resolution into DPLL-SSAT solvers, since DPLL-SSAT strongly relies on finding satisfying
assignments, confer the base case of DPLL-SSAT in Figure where all clauses in ¢ are
equivalent to true. Observe that whenever a satisfying (partial) assignment 7’ of ¢ is
found by a DPLL-SSAT solver then |= o[7'(y1)/v1] - .. [T/ (yx) /yx] with y1, ..., yx € Var(y)
being all variables for which 7/(y;),...,7'(yx) are defined. It is then straightforward
to construct from 7 a clause ¢ which meets the requirements of [R2H, namely for each
x € Var(Q) : x € c if and only if 7/(z) = false, and -z € c if and only if 7/(x) = true.

6.2 Algorithms for SSAT 85

As discussed later on, we actually aim at an integration of S-resolution into DPLL-SSAT
in order to enhance performance as well as applicability of DPLL-SSAT solvers.

Note that such above rules as well as are not present in classical resolution
schemes for SAT and QBF. In the stochastic case, we need one of these rules for achieving
completeness of S-resolution being evinced by Theorem [6.1l Note that each of both rules
impedes a potential polynomial-time solvability for SSAT formulae in 2CNF as sizes of
derived clauses are no longer guaranteed to be at most two. Though completeness might
be obtained in another way, the choice of rule or of rule seems to be justified by
Theorem [4.1] which states PSPACE-completeness of S2SAT, indicating that a polynomial
time algorithm for S2SAT cannot be expected.

Rule [R3/finally constitutes the actual resolution rule as known from the non-stochastic
case. Depending on whether an existential or a randomized variable is resolved upon,
both probabilities pl and pu of the probability pair (pl,pu) of the resolvent clause are
computed according to the semantics Pr(Q : ¢) as given in Definition

(cy V=) Phru)|Q o) (cp v a)Pl2Pu2)|Q o,
Qr e Q, x ¢ Var(Q(c1 V ¢2)), F~ (1 V ea),
(pl, pu) = { (max(ply, pla), max(puy, puz)) ;@ =3,
(p-pli + (1 —p) - pla,p-pus + (1 —p) -pup) ; @ = &
(1 V ep)Phr)|Q =

Note that the SSAT formulae in both input pairs (c; V —=z)P1P)|Q : ¢ and (¢ V
x)(plQ’p“2)|Q : ¢ need to be the same and that Q : ¢ is preserved in the derived pair
(c1 V cp)®PP)|Q : . Moreover, observe that variable z which is resolved upon does not
precede within prefix @ any of the variables in ¢; and ¢y, i.e. x is the rightmost variable
in both prefixes Q(c¢; V —x) and Q(co V x). Though this application condition might seem
too restrictive, it is actually not the case with respect to soundness and completeness of
S-resolution as subsequently shown by Corollary and Theorem

For the purpose of comparing the proof complexity of S-resolution and DPLL-SSAT,
we actually relax above restriction to some extent in Subsection in special cases,
namely whenever literal -~z or z is unit or pure under each assignment that falsifies some
subset ¢ of ¢; or co, respectively, it is allowed to delay resolution upon variable x and to
resolve upon variables y € ¢; \ c or y € ¢3 \ ¢ first. The latter fact is formalized implicitly
by the additional rules and later on, namely by means of moving Qz to the
right within prefix Q, i.e. the quantifier prefix actually changes in the derived pair.

We abbreviate the derivation of a pair c(pl’p“)|Q 0

from £|Q : by rule Rl as €| Q : ¢ g cP*™|Q : ¢,
from £|Q : ¢ by rule R2 as €|Q : ¢ Fggy cPPW|Q : ¢,
from £|Q : ¢ by rule R2H as |Q : ¢ Fgzg c??Y|Q : ¢, and

from Cgp117pu1)|Q . 0 and cngQ’pu2)|Q : o by R3 as (Cgpl17pu1)|Q) Cgpl27pu2)|Q L 0) Fey

To show soundness of S-resolution as well as of strong S-resolution, we first state the
following lemma that permits a precise interpretation of derived pairs c(pl’p“)|Q Q.

(R.3)

86 6 Algorithms for SSMT Problems

Lemma 6.1 (Interpretation of derived pairs c(PvP¥)|Q :)

Let pair ¢PoP9|Q ¢ with Q@ = Q121 ... Qux, and Q(c) = Q21 ... Qx; be derivable by
S-resolution. Then, for each truth assignment T : Var(Q(c)) — B with Yz € Var(c) :
7(z) = ff.() it holds that

pl < Pr(Qivi%iv1 ... Quty : @[r(x1) /1] . [7(2:)/2]) < pu

and, moreover, if cP'PW|Q : ¢ is derivable by strong S-resolution then pl = pu, i.e.

pl = Pr(Qivimit1...Quay :p[r(x1)/x] .. [1(x;)/z5]) = pu .

Proof. First of all, observe that clause c in each pair ¢®*?")|Q : ¢ derivable by S-resolution
is non-tautological, i.e. [~ c¢. The rationale is that each clause in ¢ is non-tautological by
global assumption and, therefore, each rule can only produce non-tautological clauses. As
a consequence, each above truth assignment 7 is well-defined.

We show the lemma by induction over the application of rules Rl R.2], [R25, and R:3l
The base cases are given by rules Rl [R.2] and For rule Rl ie. €|Q : ¢ Hga
%019 : o, the formula @[(x1)/z1] ... [7(2;)/z;] is unsatisfiable due to construction of 7
that falsifies clause ¢ € ¢. Thus,

0 = Pr(Qiniv1-..Quey : or(z1) /2] .. [7(zs)/2s]) = 0 .

For rule R2 i.e. £|Q : o Frz c®V|Q : ¢, we trivially obtain that

0 < Pr(Qiimit1-. Quay :p[r(x)/x] .. [1(x;)/z]) < 1

holds according to Definition For rule R2E, i.e. €|Q : ¢ g ¢V |Q 1 ¢, we immedi-
ately have that formula [7(z1)/z1] ... [7(z;)/x;] is a tautology and therefore that

1 = Pr(QinTit1. .. Quan : (1) /ma] .. [r(2)/zi]) = 1.

The fact that rule is not applicable within strong S-resolution establishes the result
for the base cases.

Now assume that the respective assumptions hold for the pairs in the premise of R3l
That is, if ((c; V —a;) PP |Q) (cp V a;)P2P¥2)|Q 1) g ¢PHPW)|Q : ¢ then for each
truth assignment 71 : Var(Q(c1V-z;)) — Bwith Vo € Var(aV-z;) : 71(2) = [¢y, (@)
and for each truth assignment 7 : Var(Q(cs V z;)) — B with Vo € Var(cy V z;) : 1o(x) =
[(cava,) () it holds that

pli ~ Pr(Qju@jsr ... Qnay @[ni(@r) /@] . [1i(j—1)/zia]lm(z;) [25]) ~ pua
pla ~ Pr(QjTjr1. .. Quan : plra(x1)/m1] .. [1a(j1) /25 a][m2(25) /25]) ~ pus

where ~ is < for S-resolution and ~ is = for strong S-resolution. Observe that 7 >+ 1
since z; ¢ Var(Q(c; V ¢)) and ¢ = (¢1 V ¢z), and that each truth assignment 7 with
7(z) = 1(z) if x € Var(cy) and 7(x) = m(x) if x € Var(cy) is well-defined. The latter
holds due to the fact that if x € Var(c;)N Var(cz) then 7 (z) = m2(x) since }= (¢ Ves). We
furthermore conclude that 71(x;) = true and 73(x;) = false since 71(z;) = ff (¢,v-a,) (T))

6.2 Algorithms for SSAT 87

and 7(z;) = [f (,va,)(7;) by construction. From Definition .2] we may then infer that
for each assignment 7 as defined above it holds that
pl ~ PT(QJ‘.TJ‘ QjJrlijrl e ann . QO[T(.Tl)/.Tl] Ce [T(l’jfl)/l’jfl]) ~ pu .

The lemma directly follows in case j = ¢+1. For j > i+1, note that variables z;41,...,z;_1
do not occur in clause ¢ = (¢; V ¢2). Hence, for k = j — 1 down to i + 1 we successively
conclude that

pl ~ Pr(Qri1%py1...Qney o[m(x1) /1] .. [T(xp_1)/xp_1][tTUE/2K]) ~ PU
pl ~ Pr(QpuTesii-- Qury : p[r(x)/z] .. [T(x1_1)/xp_1][false/x]) ~ pu .

From case k =7 + 1, we finally achieve

pl ~ Pr(Qiimii1.. . Quay :p[r(x1)/x]. .. [7(x;)/z5]) ~ pu
and the lemma follows. O
As a direct consequence of Lemma[6.1] namely for special case cP-P9|Q : o = PPLPW|Q :

(where 7 is the well-defined empty function), we obtain that S-resolution and strong S-
resolution are sound in the following sense.

Corollary 6.1 (Soundness of S-resolution)
If the pair 0PP9|Q : is derivable by S-resolution or by strong S-resolution then pl <
Pr(Q:) <pu orpl = Pr(Q: ¢) = pu, respectively.

In case we explicitly refer to strong S-resolution then the clauses in all derived pairs
cPbP)|Q o carry tight bounds, i.e. pl = pu, according to Lemma For the sake of
simplicity, we then write

0 £[Q: ¢ En Q¢ for £]Q: i g P|Q
o £|Q:pFrm | Q: ¢ for £|Q : ¢ Frzg cPPW|Q : p, and

o (Q: ¢, |0 ¢) Hrg ?|Q: ¢ for (PP Q 1 g, 7 |Q :) by #PW)|Q
2

where p = pl = pu, py = pli = puy, and ps = ply = pus. To further simplify notation,
whenever SSAT formula Q : ¢ is clear from the context we omit Q : ¢, i.e. S-resolution
rules are then denoted by

o g PPy,

o Fgg PPy,

o Frzg PP and

o (Cgpll,pm)’ Céplz,pu2)> s cplpu)

We use above simplifications in the remainder of this subsection as well as in Chapter [
Theorem shows completeness of strong S-resolution from which completeness of
S-resolution immediately follows as the latter allows one more rule.

88 6 Algorithms for SSMT Problems

Theorem 6.1 (Completeness of (strong) S-resolution)
If Pr(Q :) = p for some SSAT formula Q : ¢ with ¢ being in CNF then the pair
0P)Q : @, is derivable by strong S-resolution.

Proof. We prove the theorem by induction over the number of quantifiers in the quantifier
prefix Q. For the base case Q = ¢, we distinguish two cases. First, ¢ = false. Then, ¢
must contain the empty clause, i.e.) € p. As a consequence, p = 0 and the empty clause
()% is derivable by rule Rl i.e. £|Q : ¢ Frg 0°|Q : . Second, ¢ = true. Then, ¢ does
not contain any clause. Clearly, p = 1 and the empty clause (! is derivable by rule [R28,
i.e. €|Q: ¢ Frzg 01 Q : ¢. For the latter step, note that £ ().

In the induction step, we show that 0?|Qx Q : ¢ is derivable such that p = Pr(Qz Q :)
by means of induction hypothesis that (**|Q : p[true/z] and 0P2|Q : p[false/x] are
derivable with p; = Pr(Q : yltrue/z|) and p, = Pr(Q : p[false/z]). Without loss
of generality, we demand that the formulae p[true/z| and p[false/x] are syntactically
represented by their cleanings as defined in Section 2.2] i.e. by the formulae that arise
when removing the constants true and false. Applying the same strong S-resolution
sequence deriving (1| Q : p[true/z] on Qz Q : ¢ yields

PPrHRx Q:p or (mx)PQrQ:p .

With regard to the latter observation, we remark that all clauses ¢ € ¢ containing positive
literal x “disappeared” in the cleaning of p[true/z| as true € c[true/x]. Analogously,

P2QrQ: ¢ or (2)?QrQ:¢

is derivable. If 0P|Qxz Q : ¢ or (P2|Qx Q : ¢ is derivable then p = p; or p = py, respectively,
by Corollary 61l Note that if both (7|Qx Q : ¢ and (P2|Qx Q : ¢ are derivable then
p1 = pe. Otherwise, i.e. only (—z)"'|Qx Q : ¢ and (x)P?|Qx Q : ¢ are derivable, we apply

(m2)Qr Q: p, (2)|Qr Q1) FRa IP|Q Q = ¢
to obtain the desired result. O

We remark that, first, S-resolution as defined above is a generalization of the SSAT reso-
lution calculus presented in [TF10] where derived clauses only provide upper probability

bounds, and that, second, strong S-resolution coincides with the resolution scheme pro-
posed in [TE11] TE12].

Termination. With regard to termination, we remark that, given any SSAT formula
Q : ¢ with ¢ being in CNF, it is easy to devise a strategy of rule applications such
that (strong) S-resolution derives the pair (""?*)|Q : ¢ comprising the empty clause and
satisfying pl = pu = Pr(Q : ¢) after finitely many steps. The rationale is as follows.
Recall that Var(Q) is finite and therefore the number of clauses in ¢ as well as the
number of literals in each clause are finite. Then, the application conditions of each rule
are decidable. Furthermore, rules Rl [R.2] and are only able to derive finitely many
different pairs c??")|Q : o for the same initial pair £|Q : ¢. Finally, rule can produce
from finitely many pairs cP**)|Q : ¢ only finitely many different pairs as well. To obtain
a termination strategy for S-resolution, it hence suffices to fix the initial pair £|Q : ¢ and
to ensure that each pair c(pl’p“)\Q : @ is derived at most once.

6.2 Algorithms for SSAT 89

o = HO‘S.’L'l 3L2 HO’B.’L'g . ((:Ll vV SL'Q) A (_\ZL‘Q vV IL'3) A (_\ZL‘1 V xo V _\IL‘3>)

(f)fl V IQ) (_‘l'g \Y CCg) ("l’l V xo V _L’E3>

l R1 l RI R2 R2 l l RZS
(mza v x3>(0’0) (may VgV W/‘B)(O’O) (ﬁx‘a)(o"l) (1’3)(0’1) (mzg Vv ﬁx‘s)(l’l) (mxy V ag V xs)(l’l)

(a:1)<0'1) <m1>(0,u3) (Il)(u&l) (3:1)(0'3‘0& (ﬁxl)(o.m) (ﬂ:cl)([”’l) (—|x1)<0‘7’“‘7> (_‘x1>((),1)

R3 R3 R3 R3 R3
((0.) ((0.56.0.86) ()(0.06,0.76) (§(0.62.0.62) ()(0.06,0.62) ()(0.62.1) (9(0.56.0.76) (9(0.0.86)

Figure 6.3: Different derivations of pairs V)(pl’p”)\fb comprising the empty clause by S-resolution.
Arrows denote applications of the specified resolution rules.

Example of S-resolution. Consider the SSAT formula
® = "2 Fwy %30 (21 V a2) A (20 V 3) A (—21 V 9 V —13))

Figure shows different derivations of pairs §P"*")|® comprising the empty clause by S-
resolution. Due to Corollary 6.1}, each §P-P")|® proves a lower as well as an upper bound on
the satisfaction probability of ®, i.e. pl < Pr(®) < pu. As the empty clause in ((©-62062)|p
carries tight bounds, we deduce that Pr(®) = 0.62. Observe that generation of ()(*-6%0-62)|
involves rules [R], R.25, and [R3 only, confer bold arrows in Figure [6.3. Concerning steps
Hezg (—weV—as) WY and Hgog (-2 Ve Vas) Y note that for (partial) assignments 71 with
71(22) = true, 7y (x3) = true, and 7o with 75(z1) = true, m(x2) = false, (x3) = false
it holds that |= @[(z2)/xs][m1(x3) /23] and | @[ra(x1)/x1][T2(xs) /22| [T2(23) /23], Tespec-
tively. That is, pair §(®62062)|® is derivable by strong S-resolution. Such a derivation of
PP |® with p = Pr(®) by (strong) S-resolution always exists due to Theorem

6.2.3 Theoretical comparison between S-resolution and
DPLL-SSAT

To shed a bit more light on the computational behavior of S-resolution and its relation to
classical SSAT methods, we theoretically compare S-resolution with the standard SSAT

90 6 Algorithms for SSMT Problems

procedure DPLL-SSAT from Figure As both approaches are sound and complete, we
are interested in their proof complexity, i.e. the size of their proofs. For this purpose, we
consider the following generalized version of the SSAT decision problem: for a given SSAT
formula ® with its matrix being in CNF, a lower threshold 6;, and an upper threshold
0, with 6, < 6,, compute Pr(®) if Pr(®) € [0,,0,] or decide whether Pr(®) < 6, or
Pr(®) > 0, holds otherwise, i.e. if Pr(®) ¢ [0;,0,]. We abbreviate an instance of above
problem as (®,6;,0,). Observe that the original SSAT decision problem (®,0), i.e. to
decide whether Pr(®) > 0, as introduced in Subsection [£.2.1]is a special case of (P, 6;,6,)
in the sense that (®,0) is true if and only if the result of (®,6,0) is 0 if Pr(®) € [0, 6] or
that Pr(®) > 0 holds if Pr(®) ¢ [0,0).

A proof for an instance (®,6;,0,) is given by a terminating execution of a sound and
complete method for the generalized SSAT decision problem. Observe that invocation of
DPLL-SSAT(®, 6;, 6,) precisely solves above problem. As a consequence, each execution
of DPLL-SSAT(®,0,,0,) is a proof for (®,6,,0,). With regard to S-resolution, a proof
for (®,6,,0,) is a sequence of rule applications that derives a pair J®"?")|® comprising
the empty clause with pl = pu = Pr(®) if Pr(®) € [0,,0.], pu < 0, if Pr(®) < 6,, and
pl > 0, if Pr(®) > 0,. By soundness of S-resolution, the reverse directions are also given
in the following sense: if pl = pu € [6;, 0,] then pl = pu = Pr(®) € [0;,0,], if pu < 6, then
Pr(®) < pu < 6, and if pl > 0, then Pr(®) > pl > 60,. We define the size of a proof as
the number of “essential” proof steps, i.e. the number of recursions for DPLL-SSAT and
the number of rule applications for S-resolution.

We remark that both DPLL-SSAT as well as S-resolution may produce proofs of ez-
ponential size in worst case: for the DPLL-SSAT case, we point to the family of SSAT
formulae given in Proposition [6.1l For S-resolution, consider the very simple family of
SSAT instances (®pen.,, 0;, 0,) with

e, = 8%z 80, () A A (20))

and some §; < 6, where Ny := N\ {0}. It is not hard to see that Pr(®,en.,) = 0.5™.
The shortest S-resolution proof clearly is of linear size and involves

e[Prnen-o FRzE (m21 V...V 2,) Y| Dpen

followed by n applications of rule R3] namely for i = n down to 1:

((—ll‘l V...V ﬁxi)(o_‘gn—i’()_g;n—i) |(I>n6N>0>

21 V...V x_ (0.5n_i+170.5n_i+1) @
<xi>(070)‘q)”€N>0) m (1) 1) ‘ neNso

which finally yields ((©-":%5")|®,,cy_ . Note that each pair (x;)%|®,cy., is derivable by
one application of rule Rl Some S-resolution proofs for (®,en.,, 0, 0u), however, may
also comprise “needless” resolution steps like

g‘q)n€N>o }—m (_'.’L'kl V...V _‘xkj)(o’l)|q)n€N>o

with 1 < k; < ... < kj < n. The number of different pairs derived by such latter steps
is given by the number of all combinations of i (different) literals chosen from the set

6.2 Algorithms for SSAT 91

{—z1,...,—x,} for all i € {1,...,n}, which is >, (’:) = 2" — 1. This shows that S-
resolution proofs may be of exponential size in worst case. Our particular interest thus is
to investigate shortest proofs.

In what follows, we show that S-resolution is capable of producing proofs for above
SSAT problem that are never longer and sometimes even significantly shorter than the
shortest proofs generated by DPLL-SSAT. More precisely, we establish the following

results.

1. For any, in particular the shortest, DPLL-SSAT(®, 6;,0,) proof of length k it is
possible to devise a strategy of rule applications such that the resulting S-resolution
proof is also of size k.

2. There are infinitely many SSAT formulae ® such that all and particularly the short-
est DPLL-SSAT(®, 6,,6,) proofs (with 6, > 0) are of exponential size while the
shortest S-resolution proofs for the same instances (®, 6;,6,) are of constant size.

Concerning item [II we devise a strategy of rule applications that is based on the cor-
responding DPLL-SSAT proof in order to produce an S-resolution proof of the desired
size. A bit more precisely, such a strategy is determined by an integration of S-resolution
into the DPLL-SSAT algorithm. For that purpose and to improve clarity of the technical
presentation, we introduce an enhanced version of S-resolution which directly permits to
describe all algorithmic optimizations of DPLL-SSAT. Item [is finally demonstrated by
Corollary With regard to item 2l Proposition states explicitly an infinite family
of SSAT instances for which the shortest S-resolution proofs are of constant size while
DPLL-SSAT needs exponentially many computation steps even in best case.

We first show that item [holds. Before addressing the underlying integration of S-
resolution into DPLL-SSAT, we present the enhanced version of S-resolution: enhanced
S-resolution extends S-resolution, given by rules[R.1] [R.2], [R.25, and[R.3] by four additional
rules R R3H, R3L, and [R3p!

Enhanced S-resolution. Rule [Rg is a generalization of rule [R1] in the sense that
clause ¢ in the derived pair (¢)*?|Q : ¢ does not necessarily coincide with an original
clause ¢ € ¢ but ¢ is a potentially proper superset of ¢. Obviously, whenever €|Q : ¢ Hgy
cPLPi)|Q 1 then also £]Q 1 ¢ Frag PP |Q : . One may also think of [RIg as a special
case of where clause ¢ in the derived pair ¢®?")|Q : ¢ must be a superset of some
original clause in ¢. Clearly, £|Q : ¢ Frag ¢®?|Q : ¢ implies £|Q : ¢ Frz c®Y|Q : . To
some extent, it is unreasonable to derive a clause (¢/)(®% by [RIg although it is possible
to derive a shorter clause ¢(® with ¢ C ¢ by R, which gives a clear argument against
[RIg The only reason of providing [Rlg]is to simplify some technicalities in the proof of
Lemma that states correctness of the integration of S-resolution into DPLL-SSAT.

elQ: o,
ce€yp, cCd CH{x,~x|lr e Var(Q)},

ar) ELLIEHE

The three rules R3t, R3L, and R3p] can be considered as special cases of rule [R3] in
the sense that only one input pair (¢ vV £)P"")|Q : ¢ needs to be explicitly derived by

92 6 Algorithms for SSMT Problems

S-resolution. Derivability of the second input pair (¢’ V neg(£))®*?“)|Q : ¢ is then en-
sured by the application conditions of the rules. Recall that neg(¢) returns the opposite
literal of ¢. Rules [R3t [R3u, and are devised to instantaneously reflect the algorith-
mic optimizations thresholding, unit propagation, and purification, respectively, which are
implemented in DPLL-SSAT.

The next rule R3H characterizes thresholding within S-resolution. Let (cV £)®P%|Q : ¢
be the input pair and let us assume that the probability pair (pl, pu) is “good” enough to
obtain a sufficient probability result (pl’, pu’) for the derived pair ¢ **)|Q : ¢ indepen-
dent of any other input pair. Concerning the integration of S-resolution into DPLL-SSAT,
the latter assessment is performed by means of the application conditions of thresholding,
confer Figure BI Due to rule R2] we may produce the pair (neg(£))®Y|Q : ¢ where
clause (neg(¢))®Y carries the most conservative lower and upper probability bounds 0
and 1. By step ((c V 0)PP9[Q : o, (neg(£))OD)|Q : ¢ Frg ' P*)|Q : ¢, we achieve the
derived pair involving a conservative but—as assumed above—sufficient probability pair
(pl’, pu').

(cv g)(pl,pu)|Q v
le {.T, _|.§L’}, QSL’ € Q7 4 ¢ VGT(Q<C)7

(pl',pu’) = q (-pl,p-pu+(1—p)) ; Q=70 =,
(1=p)-pl,(1=p)-put+p); Q=8 L=z

(R.3t)

c(Pllvpu') | Q 0

To be prepared for the integration of enhanced S-resolution into DPLL-SSAT, we ad-
ditionally need to cope with the operation of moving quantifiers within the quantifier
prefix as it is done within DPLL-SSAT for unit propagation and purification, confer Fig-
ure and the associated explanations in Subsection 5.2l The remaining two rules [R.3u]
and describing unit propagation and purification, respectively, therefore take care of
abovementioned issue.

To cope with unit propagation, rule [R3U takes some derived pair (c V £)P-PW|Q : ¢
with @ = Q' Qx Q1 Qy and ¢ € {x, ~x} as an input and then checks whether some clause
(" V neg(f)) is present in ¢ that is unit under partial assignment ff,, i.e. ¢ C ¢. Then,
neg(¢) must be the unit literal in unit clause (¢ V neg(¢)) since ff.(x) is not defined due
to x ¢ Var(c). In terms of DPLL-SSAT, unit literal neg(¢) is deduced in order to satisfy
the formula. The probability result of the corresponding SSAT subformula is taken into
account by the input pair (cV£)®-P"|Q : . Due to presence of unit clause (¢'Vneg(f)) € o,
application of rule R gives (¢’ V neg(£))®?|Q : ¢, and thus the result of the opposite
branch, i.e. where ¢ holds, is clearly zero. Application of R3 then yields c®'?%)|Q : .
We finally give an intuition why also pair c(pl/vp“/)|Q’ Q1 Qx 9y : ¢ is derivable. Let ¢ be
the cleaning of the formula that arises from ¢ by substituting the values 7(y) for variables
y in ¢, where 7 is any partial assignment that falsifies ¢, i.e. 7(¢) = false. Consequently,
clause (neg(f)) occurs in ¢', and hence Pr(Qx Q1 Qs : ¢') = Pr(Q;Qx Qs : ¢'). The

6.2 Algorithms for SSAT 93

latter is formally shown by Lemma [6.2]

(cv P Q o,
(e {z,~a}, Q=0 QuQ D, ¢ Var(Q(c)),
A Vneg(l)) € p:cd Ce,
(pl, pu) ; Q =3,
(pl',pu') = § (p-pl,p-pu) Q=¥ 0= ",
(I=p)-pl,(L=p)-pu); Q=¥ =2
(R.3u) PP Q1 Qe Qs k¢

Purification is described by rule R3p. This rule is similar in nature to [R.3ul but instead of
searching for unit literals, it checks whether literal neg(¢) is pure under partial assignment
If.. We remark that we use the slightly more general definition of pure literals here, i.e.
where pure literals need not be present in ¢, confer Subsection[6.2.1]. It is therefore checked
whether each clause ¢ € ¢ which is not equivalent to true under ff,, i.e. = (cV), does
not comprise the opposite literal ¢, i.e. £ ¢ /. In terms of DPLL-SSAT, literal neg(¢) is
propagated while the opposite branch, i.e. where ¢ holds, is skipped as the probability of
the latter cannot be greater. This justifies application of rule in order to derive pair
cPbP| Q ¢ o from input pair (¢V£)PPW]Q 1 . The operation of moving the corresponding
existential quantifier within the prefix in order to also derive c(pl’p“)|Q' Q1 dr Qy : p again
relies on the observation that Pr(3z Q; Qs : ¢') = Pr(Q; 3z Qs : ¢') as already considered
above for R3ul The latter is also evinced by Lemma

(c V; g)(pl,pU)|Q L,
(e {r,~x}, Q=09 Ir Q) Qy, x ¢ Var(Q(c)),
Ve € p with £ (eV)0
(R.3p) Pl Q7 Q, 31 Qs ¢

As for S-resolution, ¢|Q : ¢ Hgg c(pl’p“)\Q : i abbreviates the derivation of c(plvp“)|Q)
from £|Q : ¢ by rule[RIE Likewise, c?7"|Q : o Fgrag (¢/)**'7*)|Q : ¢ denotes derivation
of (¢)P'P)|Q : o from cPP9|Q : ¢ by R3L The same meaning applies to cP?%)|Q
¢ g ()P'PQ : p and cPP|Q 1 g (¢)PP)|Q . Note that the latter
rules [R.30] and potentially modify the given quantifier prefix Q to Q'.

Observe that enhanced S-resolution remains complete in the sense of Theorem since
(strong) S-resolution is a special case of enhanced S-resolution. With regard to termi-
nation, a strategy of rule applications such that enhanced S-resolution derives the pair
PP Q o with pl = pu = Pr(Q : ¢) after finitely many steps can be formulated
by simply taking an appropriate strategy for S-resolution. The latter exists and can be
devised as shown in Subsection [6.2.2l To prove soundness of enhanced S-resolution in the
sense of Corollary [6.1] Lemma interprets pairs cP?%)|Q : ¢ derivable by enhanced S-
resolution in the same way as Lemma does for S-resolution. Directly from special case
c(pl’p“)|Q L= ®(pl’p“)|Q ., soundness of enhanced S-resolution then follows. Since the
proof of Lemma deals with the issue of moving quantifiers (stemming from rules R34l
and [R3p)) that itself provokes a rather technical proof, we constitute the latter in an own
lemma before.

Lemma 6.2 (Moving quantifiers within quantifier prefix)
Let Qx Q1 Qs : ¢ be an SSAT formula with matriz @ in CNF. If

94 6 Algorithms for SSMT Problems

1. one of the clauses (x) and (—x) occurs in @, or

2. Q=3 and
a) each non-tautological clause ¢ € ¢ does not contain literal x, i.e. x ¢ ¢, or

b) each non-tautological clause c € ¢ does not contain literal —x, i.e. —x ¢ ¢

then
Pr(Qr Q1 Qy:p)=Pr(QQxQy:p) .

Proof. We prove the lemma by induction over the number of quantifiers in Q;. The result
for both items is obvious in the base case, i.e. if @; = . Now assume that the statement
is true for arbitrary Q;. We show that Pr(QzQ'y Q1 Qs : ¢) = Pr(Qy Q1 Qz Qs : ¢)

then follows.

With regard to item [l we assume that (z) € . The proof for (-z) € ¢ works
analogously. Then, ¢[false/z| is unsatisfiable. We need to distinguish four cases.

First, Q = ¥? and Q' = ¥

(6.6) PrdPz ¥y Q1 Qs - ¢) = p- Pr(d'yQ; Q, : ¢[true/x))
= p- (b Pr(Qi Qs : pltrue/z][true/y])
+(1—9p')- Pr(Q1 Qs : p[true/z][false/y]))
= pp-Pr(Q1 Qs : p[true/z][true/y])
+(1=p)-p- Pr(Q Qs : pltrue/z][false/y])

(6.7) = p - Pr(d’z Q; Q, : p[true/y])
+(1—p) Pr(dz Q, Q, : p[false/y))

(6.8) = p - Pr(Q 4%z Qy : p[true/y])

[

+(1—=p) - Pr(Q 8%z Q, : p[false/y])
= Prd’yQ ¥z Q51) .

Concerning equations and [67 recall that formula p[false/z] is unsatisfiable and
therefore both ¢[false/z|[true/y|] and p[false/x|[false/y| are unsatisfiable. Conse-
quently, Pr(¥7y Q; Q, : p[false/z]) = 0, Pr(Q; Q, : y[false/x][true/y]) = 0, and
Pr(Q, Qy : p[false/z|[false/y|) = 0 by Definition We further remark that equa-
tion exploits induction hypothesis which is applicable since (x) € ¢[true/y] and

(x) € p[false/y].
Second, Q =¥? and ' = 3:

PrdPx3y Q1 Qs :) = p-Pr(3y Qi Qs : p[true/z))
= p-max(Pr(Q; Qs : p[true/x][true/y|),
Pr(Q; Qs : p[true/x][false/y]))
(6.9) = max(p- Pr(Q; Qs : ¢[true/z|[true/y]),
p- Pr(Q1 Qs : pltrue/z|[false/y]))
= max(Pr(dPz Q; Qy : pltrue/y]),
Pr(dPz Q) Qs : p[false/y]))

6.2 Algorithms for SSAT 95

= max(PT(Q1 P Qs ‘P[true/y])v
Pr(Q ¥z Q, : p[false/y]))
= Pr3yoi¥z0,:¢) .

Equation is true as p > 0.
Third, Q = 3 and Q' = ¥*':

Pr(3z¥7y Q1 Qy:) = Pr(¥”yQ; Q,: pltrue/z])

= p - Pr(Q; Q,: pltrue/z][true/y])
+(1—9p')- Pr(Q1 Qs : p[true/z|[false/y])

= p - Pr(3z Q1 Qs : p[true/y])
+(1—9p) - Pr(3z Q1 Qs : p[false/y])

= p - Pr(Q: 3z Qs : p[true/y])
+ (1 —p')- Pr(Q13x Qs : p[false/y])

= Pr¥y@Qi3r Q) .

Fourth, Q = 3 and Q' = 3

Pr(3z3y Q1 Qs :¢) = Pr(JyQ; Qs : pltrue/z])

= max(Pr(Q; Qs : p[true/x][true/y]),
Pr(Q; Qs : p[true/z|[false/y]))

= max(Pr(3x Q1 Qs : pltrue/y]),
Pr(3x Q1 Qs : plfalse/y]))

= max(Pr(Q;dx Qs : pltrue/y]),
Pr(Q;3x Qs : plfalse/y]))

= Pr(3y@Q13xQs:¢) .

With regard to item [2, we prove the statement for subitem 2al The proof for subitem 2hl
works analogously. From the fact that Ve € ¢ : x ¢ ¢, we deduce that p[true/z] =

p|false/z]. Hence, Pr(Q'y Q1 Qs : ¢[true/z]|) < Pr(Q'y Qi Qs : p[false/z]) and
(6.10) Pr(3zQ'y Q1 Qs : ¢) = Pr(Q'y Q1 Qs : p[false/z]) .
Due to ¢[true/z| = p[false/z|, we conclude that both

pltrue/z|[true/y] = ¢[false/z|[true/y] and
pltrue/z|[false/y] = ¢[false/z|[false/y]

hold which in turn gives

Pr(3x Q1 Qs : pltrue/y]) = Pr(Q; Qs : ¢[false/z|[true/y]) ,

(6.11) Pr(3z Q1 Q; : p[false/y]) = Pr(Qi Q. : plfalse/z|[false/y]) .

We distinguish two cases.

96 6 Algorithms for SSMT Problems

First, Q' = ¥”:

(6.12) Pr(3zdPy Q1 Qs :) = Pr(dPy Q; Qs : p[false/z|)
= p-Pr(Q; Qs : p[false/z|[true/y])
+ (1 —p)- Pr(Q; Qs : p[false/z|[false/y])

(6.13) = p-Pr(3x Q; Qs : pltrue/y|)
+(1—p)- Pr(3z Q1 Q, : p[false/y])

(6.14) = p-Pr(Qi3rQ; : pltrue/y))

[

+ (1 —p)- Pr(Q;3dx Qs : plfalse/y])
= Pr(d’y@Q13xQs:) .

Correctness of equations and follows from equations and [6.10] respectively.
Equation exploits induction hypothesis. Regarding the latter, observe that whenever
Ve € p:x ¢ ¢ then also Ve € pltrue/y]: x ¢ c and Ve € p[false/y]: x ¢ c.

Second, @' = 3:

Pr(3z3y Q1 Qs :¢) = Pr(JyQ; Qs : plfalse/x])

= max(Pr(Q; Qs : ¢[false/z|[true/yl),
Pr(Q; Qs : p[false/z|[false/y]))

= max(Pr(3z Q1 Qs : p[true/y)),
Pr(3x Q1 Qs : plfalse/y]))

= max(Pr(Q; 3z Qs : p[true/y)),
Pr(Q;3x Qs : plfalse/y]))

= Pr(3y@Q,3x Qs :p) .

Hence, the result follows. O

Having proven Lemma tackling the issue of moving quantifiers, which arises when ap-
plying unit propagation and purification, we are now prepared to interpret pairs c?%)|Q :
@ derivable by enhanced S-resolution. This interpretation is formalized in the following
Lemma [6.3] namely in the same way as for the case of S-resolution in Lemma 6.1

Lemma 6.3 (Pairs c?"P*)|Q : ¢ derivable by enhanced S-resolution)

Let pair ¢PPW|Q 1 ¢ with Q@ = Qixy...Quz, and Q(c) = Qiz1...Qix; be derivable
by enhanced S-resolution. Then, for each truth assignment 7 : Var(Q(c)) — B with
Vo € Var(c) : 7(z) = ff.(z) it holds that

pl < Pr(QuiTiz1 ... Quay : @[r(x1)/x1] .. [1(x)/xi]) < pu .

Proof. First of all, observe that clause ¢ in each pair c®*?"|Q : ¢ derivable by en-
hanced S-resolution is non-tautological, i.e. = ¢. The rationale is that each clause in
¢ is non-tautological by global assumption and, therefore, each rule can only produce
non-tautological clauses. As a consequence, each above truth assignment 7 is well-defined.

We show the lemma by induction over the application of rules Rl [R.1g R.2] [R.2H, [R.3]
R3t R3, and R3pl The induction proof of this lemma works in the very same way as
the induction proof of Lemma

6.2 Algorithms for SSAT 97

The base cases are given by rules [R1], [R.Ig, [R.2, and R2E As shown in the proof of
Lemma [6.T], the statement holds for Rl [R.2] and R2E For rule R, i.e.

elQ: o rrmc®Q:p |

observe that there exists some clause ¢ € ¢ such that ¢ C ¢. By construction of 7
that falsifies clause ¢ € ¢, it then follows that the formula o[r(z1)/z1]...[7(z;)/z;] is
unsatisfiable. Thus,

0 = Pr(Qis1Tiy1 ... Quay : o[T(x1)/21] .. [T(2:)/25]) = 0 .

For the induction step, assume that the respective assumptions hold for the clauses in
the premise of rules[R.3] [R.3H, R3ul and [R3pl The proof of Lemma [6.1] already shows the
statement for In the remainder of this proof, we use the following definition: for a
truth value v € B, let neg(v) be denote the opposite truth value of v, i.e. neg(v) = true
if and only if v = false.

With regard to rule R3], i.e.

(VO™ PQ: o b P MQ

induction hypothesis gives the following: for each truth assignment 7 : Var(Q(cVv/()) — B
with Vo € Var(cV £) : 7(z) = ff cve () it holds that

pl' < Pr(Qjmmjpr ... Qntn s lr(x1) /@] [7(xjo1) [zl (z;) /25]) < pu’

where ¢ € {z;,~x;}. Clearly, j > i+ 1 as z ¢ Var(Q(c)). Using the trivial observation
that

0 < Pr(QjnTjsr - Qurn:@[r(x1)/z1] .. [T(xj-1)/751][neg(T(x5))/25]) < 1,

we obtain

pl < Pr(Qiz; Qirixjyr - .. Qun [T (x1) /2] . [T(2j21) /2j]) < pu .

The statement for [R.3tl directly follows in case j = ¢+ 1. For j > ¢+ 1, note that variables
Tit1,. .., ;-1 do not occur in clause c. Hence, for k = j —1 down to 7 4 1 we successively
conclude that

IA

pl < Pr(Qri1%pyr- .- Quey : om(x1) /1] . [T(2p_1)/2p_1][tTUE/2}]) pu
pl < Pr(Qrii%rsr- .- Quan : @[m(x1)/x1] ... [T(x)-1)/2k-1][false/xy]) < pu .

From case k = i + 1, we finally achieve the statement for [R.3l, i.e.
pl < Pr(Qiimisr ... Qury :p[r(x)/z] .. [7(x)/25]) < pu .
We now consider rule R34 i.e.

(ev O o b PP Q 1

98 6 Algorithms for SSMT Problems

with @ = Q" Qr Q1 Q> and Q = Q" Q; Qx Q». By induction hypothesis, for each truth
assignment 7 : Var(Q'(c VvV {)) — B with Vy € Var(cV () : 7(y) = ff (cve)(y) it holds that

pll < Pr(Q Qs plr(z)/w]. . [r(x;)/z;][r(x)/2]) < pu’

where (€ {z,—z} and Q" = Qz1...Q;z;. Observe that j > i as x ¢ Var(Q(c))
and thus Var(Q(c)) € Var(Q”). Due to application condition of R3ll there is some
clause (¢’ V neg(¢)) € ¢ such that ¢ C c¢. As a consequence, for each truth assignment
7 Var(Q'(c' V neg(£))) — B with Yy € Var(c' V neg(€)) : 7'(y) = ff (vnegey) () it holds
that

0 = Pr(QQ:ol[r'(z1)/w]. .. [7'(x;) [aj]lr'(x) /z]) = O
Note that 7(y) = 7/(y) for all y € Var(c') as ¢ C ¢, and that 7(z) = neg(7'(x)). Thus,
pl < Pr(Qr Qi Qy:p[r(wy)/mi]. . [T(x;)/7;]) < pu .

Let ¢ be the semantically equivalent cleaning of ¢[7(z1)/z1]...[7(z;)/z;] as defined in
Section 2.2] i.e. the formula that arises when removing the constants true and false.
Obviously,

Pr(Qr Q1 Qs : ¢') = Pr(Qr Q1 Qy : o[r(x1)/x1] ... [T(25)/25])

Observe that (neg(¢)) € ¢ since (¢'Vneg(¢)) € g and (¢'Vneg(£))[r(z1)/x1] ... [7(z;)/z;] =
(neg({)). Instantaneously by Lemma [6.2] item [I]

PT(Q$Q1 % <P/) :PT(QlQl’Qz : SOI) .
It clearly follows that
Pr(Qx Q1 Qz : p[r(w1) /a1 ... [7(2;) [2]) = Pr(Q1 Qu Q2 = p[r(x1)/21] ... [T(25) /74])
and, therefore,
pl < Pr(Q1QwQy:p[r(w1)/mi]. . [7(z)/7;]) < pu

hold. We have that Q1 Qr Qs = Qj+1%j41 ... Qnx, due to Q = Q" Q1 Qx Qy, Q =
Q121 ... Quy, and Q" = Qz1...Q x;. Recall that j > i. Whenever j = i then the
statement for rule R3ul follows immediately. In case j > 4, note that variables z;.1, ..., z;
do not occur in clause c¢. Hence, for £ = j down to 7 + 1 we successively conclude that

pl < Pr(QeaiZisr ... Qun t [T(z1) /1] - . [T(241) /pa][true/z]) < pu
pl < Pr(QpuiTierr-- Quay : p[r(x1) /2] .. [T(xr_1)/2p_1][false/x]) < pu .
From case k = i + 1, we finally achieve the statement for [R.3L i.e.
pl < Pr(Qini%ivi ... Quuy : [r(z1)/mi] .. [7(2)/2]) < pu .

We finally consider rule [R.3p) i.e.

(eVO)PPIQ": p g (P'PV|Q 1

6.2 Algorithms for SSAT 99

with @ = Q" 3dx Q; @y and Q = Q" Q; dx Q,. By induction hypothesis, for each truth
assignment 7 : Var(Q'(c Vv ()) — B with Vy € Var(cV () : 7(y) = ff (cve () it holds that

(6.15) pl < Pr(QiQy:@lr(a)/m] .. [r(x;)/z)][r(x)/x]) < pu
where ¢ € {z,—z} and Q" = Qyz;...Qjz;. Observe that j > i as z ¢ Var(Q(c))

and thus Var(Q(c)) C Var(Q”). Due to application condition of R3p, each clause ¢’ €
¢ with = (¢ V) does not contain literal ¢, i.e. £ ¢ ¢. Observe that = (¢ V ¢) is

equivalent to (& [ff .(y1)/v1] - - [ff c(Um) /ym] With Var(c) = {y1,...,ym} since [~ ¢, and
that 7(neg(€)) = true as 7({) = ff () = false. As a consequence,

plr(@1)/zi]. .. [r(z;)/zi][neg(1(x)) /2] = olr(21)/z1]. .. [7(2;)/2;][7(z)/2]
is true which in turn entails

(6.16) Pr(Q1 Qs : plr(z1)/a]. . . [7(x;)/x;][neg(7(x)) /x])
< Pr(Q1 Qs :@[r(z1)/a] ... [7(z;)/z;][m(x)/z]) .

Inequalities [6.15] and [6.16 give

pl < Pr(3z Q1 Qz :o[r(a1)/x]. .. [7(x))/x]) < pu .

Let ¢ be the semantically equivalent cleaning of ¢[7(z1)/z1]...[7(z;)/z;] as defined in
Section 2.2] i.e. the formula that arises when removing the constants true and false.
Obviously,

Pr(3z Q1 Qs : ¢') = Pr(3x Q1 Qs = @[7(x1)/21] ... [T(2)/xj]) -
As observed above, all clauses ¢ € ¢ with & [ff .(v1)/v1] - - - [ff «(Ym) /Ym] where Var(c) =
{y1,-..,Ym} do not contain literal /. Then, the same holds for all clauses ¢ € ¢ with

¥ d[T(x1)/z1] ... [T(x)/x;]. Consequently, each non-tautological clause ¢ € ¢ does not
contain literal ¢, i.e. ¢ ¢ ¢’. Instantaneously by Lemma [6.2] item [2]

Pr(3z Q1 Qs :¢) = Pr(Q3z Qs : ¢) .

We may thus conclude that

pl < Pr(Q3e Qs olr(a)/m]...Ir(@)/a))) < pu

hold. With the same reasoning as for rule [R3u, we finally achieve the statement for R3]
i.e.

pl < Pr(Quimizy ... Quxy : @[r(xy)/x1] .. [r(x)/xi]) < pu .

This completes the proof and the lemma follows. O

100 6 Algorithms for SSMT Problems

Integration of enhanced S-resolution into DPLL-SSAT. After having introduced
enhanced S-resolution as well as proven its soundness, we now present the integration
of enhanced S-resolution into the classical DPLL-SSAT algorithm from Figure For
that purpose, we extend the DPLL-SSAT procedure and thereby develop the algorithm
DPLL-SSAT-R being introduced below. In addition to the inputs of

DPLL-SSAT(Q: ¢, 6,, 6,) ,

the algorithm
DPLL-SSAT-R(Q: ¢, 6;, 0., Q, 7, ¥)

takes a quantifier prefix Q’, an assignment 7 : Var(Q’) :— B, and a propositional formula
1 as three further inputs where

e prefix @’ reflects in chronological order the sequence of all quantified variables having
been substituted already,

e partial assignment 7 keeps track of all those substitutions, and

e propositional formula 1) simply preserves the original matrix, i.e. when substituting
the values 7(y) for variables y in ¢ we achieve the current matrix .

Observe that above specifications imply that Q'Q : 1 is the original SSAT formula. The
result of a call DPLL-SSAT-R(Q : ¢, 0, 0, Q', 7, ¥) now is a pair

(pr, 7 Q'Q:)
consisting of

e a probability pr and

e another pair cP?% | Q’'Q : 1) comprising
— an annotated clause ¢P-P%) and
— the original SSAT formula Q' Q : .

Apart from the additional inputs and the extended output, DPLL-SSAT-R works as
DPLL-SSAT, i.e. the modifications do not have an impact on the computation of the
probability pr. More precisely,

pr = DPLL-SSAT(Q : ¢, 6,, 0.,) .
We prove later on that

e the pair cP?%) | Q’Q : ¢ is derivable by enhanced S-resolution and satisfies the
following:
— pl = pu=prif prel,0,,
— pu < 6, if pr < 6;, and
— pl >0, if pr > 0,.

=W N =

© 0 = O Ut

11

6.2 Algorithms for SSAT 101

Before presenting DPLL-SSAT-R in full detail, we need to introduce some notation. For
a partial assignment 7 that is not defined on variable z, i.e. 7(x) is not defined, we denote
by 7 @ [v — v] with v € B the extended partial assignment 7" with 7/(x) = v and for all
y#x:7(y) =7(y) if 7(y) is defined and 7’(y) is not defined if 7(y) is not defined. Recall
that neg(¢) returns the opposite literal of ¢. As in Figure 6.1l v(¢) = true for positive
literals ¢, and v(¢) = false for negative ¢. For 4z, we further have p(¢) = p if £ = x, and
p(f) =1 —p if £ = —x. For each propositional formula ¢ and for each partial assignment
7 to the variables Var(v), we define 1, as the formula that arises from 1 by substituting
the values 7(y) for variables y in v, i.e.

e =l (y1) /] - [T (Ym) /Y]

where 7(y;) is defined if and only if 1 <i < m.

In what follows, we give a detailed account of algorithm DPLL-SSAT-R. For the sake
of a convenient and reasonable presentation, we intersperse the formal description with
explanatory comments on the corresponding parts of the algorithm.

The inputs of DPLL-SSAT-R were already specified above.

DPLL-SSAT-R(Q : ¢, 0,, 6, Q, 7, ¢)
input: SSAT formula Q : ¢ with ¢ in CNF, rational constants 6;, 6, with 6; < 0,
quantifier prefix @', assignment 7 : Var(Q') — B, propositional formula 1
in CNF with ¢, = ¢

In the base cases, the partial assignment 7 is used to construct a clause ¢ that encodes
the negation of 7, i.e. 7(¢) = false. In case ¢ contains a clause equivalent to false, the
original matrix v comprises some clause ¢ that is falsified under 7, i.e. 7(¢’) = false,
since ¢, = . Moreover ¢ C ¢, as ¢ contains all variables y for which 7(y) is defined. This
justifies to apply

1QQ:w Hgg VQQ Y

In the other base case, where all clauses in ¢ are equivalent to true, we know that = ¢
and |= 1¢.. We may therefore perform

QQ: ¢ hrm MV|QQ: Y

// Base cases

if ¢ contains a clause equivalent to false then
c:={-z:7(x) =true} U {z : 7(x) = false}.
return (0, c®9|Q'Q :).

if all clauses in ¢ equivalent to true then
c:={-z:7(x) =true} U {z : 7(x) = false}.
return (1, cD|Q'Q :).

In case unit propagation applies, DPLL-SSAT just needs to explore the SSAT subproblem
where unit literal ¢ is equivalent to true after substitution, confer Subsection [6.2.1. The
corresponding recursion of DPLL-SSAT-R then returns the probability pr as well as the
pair ¢PP")|®. We show later on, namely in Lemma 6.4 that the pair ¢P"**)|®, where

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37

102 6 Algorithms for SSMT Problems

® = QQr919y : Y with € {3,4”}, is derivable by S-resolution and that clause c
contains the opposite of unit literal ¢, i.e. neg(¢) € c. We may thus apply

MO Qr Q) Qy v b (e {neg(D)) ™[Q Q1 Qe Qs 0

Let (pr', (¢)P'P)|Q'Q : 1)) be the pair to be returned. Lemma further shows that
pl' = pu’ = pr' if pr’ € 10,,0,], pu' < 0, if pr' < 0;, and pl’ > 0, if pr’ > 0,.

// Unit propagation
if v contains a unit literal ¢ with Var(¢) = {z} then
T =7® [x — v(l)].
if 9 = 0,329, then
(pr, cPbr)|d) .=
DPLL-SSAT-R(Q19> : ¢[v(¢)/x], 6;, 0, Q Fz, T/,).
d:=c\{neg(l)}.
return (pr, (¢)PP9|Q'Q :).
if 9 = 0,479, then
0 = 6,/p(l).
0, = 0,/p(1).
(pr, cPbP)|d) .=
DPLL-SSAT-R(Q195 : ¢[v(¢)/x], 0], 0., Q ¥z, 7',).

pr':=p(l) - pr.
pl' == p(¢) - pl.
pu’ == p({) - pu.

d:=c\{neg(l)}.

return (pr’, (¢)P'7)Q'Q :).

The case of purification is similar to unit propagation. Here, we apply

PO 30 Q) Qy 1 Frag (¢ \ {neg(O)})PP|Q' Q) T Qy : 4

where neg(¢) € c is the opposite of pure literal /.

// Purification
if © contains a pure literal ¢ with Var(¢) = {z} then
T i=7®[xr = v(l)].
if 9 = 0,329, then
(pr, cPbP)|d) .=
DPLL-SSAT-R(Q195 : ¢[v(¢)/x], 0;, 0,,Q Tz, T/,).
d:=c\{neg(l)}.

return (pr, (¢)PP9|Q'Q : 1).

We now consider the optimization of thresholding. The result of the first branch, where
true is substituted for z, is (pry, cgpll’pu1)|Q’Q :). Concerning the existential case, i.e.
Q = dx Q" if the probability result pri already exceeds the upper threshold, i.e. pr; > 6,

then also ply does, i.e. pl; > 6, and application of

Cgpll,plu)‘Q/Q) b (e {_w})(pll,l)|QIQ D

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68

6.2 Algorithms for SSAT 103

is justified.

In the randomized case, i.e. @ = 4Pz Q”, pri = p-pry is the weighted probability of the
first branch, and pl; = p- pl; and pu} = p- pu; + (1 — p) are the updated probabilities for
the derived pair. If value prf is too small in order to reach the lower threshold even if the
probability of the second branch is 1, i.e. if pri + (1 —p) < 6;, or if pr} already exceeds 6,
then also puj < 6, or pl} > 0,, respectively. Thus,

IO ¢ e (o ()| QQ

is feasible.
Whenever thresholding is not possible, we clearly utilize resolution rule R3] i.e.

(P 1QQ b, ™ IQQ:) b (e \ {~ah) U (e \ o)™ 1@ Qv

// Branching and thresholding
if @ =32 Q" then
T =7 ® [z — true].
(pri, Cgpll,pm)m)) —
DPLL-SSAT-R(Q" : ¢[true/z|, 6, 0,, Q Jz, 71, ¥).
=\ {—x}.
if pr; > 0, then return (pr;, (¢})P+Y|Q'Q :).
Ty =T @ [z — false].
0] := max(6;, pry).
(prs, Cgplz,pm)‘q)) —
DPLL-SSAT-R(Q" : p[false/x], 0], 0,, Q Iz, o,).
pr’ = max(pry, pra).
pl’ := max(ply, pls).
pu' = max(puy, pus).
cy=cy\ {z}.
return (pr', (¢, Uc,)P'?)|Q'Q : 1)).
if Q =4°2Q"” then
T =T @ [z — true].
0 = (6 — (1-p)/p.
¢, = 0,/p.
(pro, &"7|®) =

DPLL-SSAT-R(Q" : ¢[true/z|, 6, 0., Q ¥z, 7, 9).
prii=p-pry.
ply ==p-ply.

puy :==p-pu; + (1 —p).

A= \{z}

if pr} 4 (1 — p) < 6; then return (pr}, (¢))PLr)|Q'Q : 1)),
if pr} > 0, then return (pr}, (¢,)P1r)|Q'Q :).

Ty =7 @ [z — false].

00 = (6~ pr1)/(1 - p).

0, := (0w — pr1)/ (1 —p).

69
70
71
72
73
74
75

104 6 Algorithms for SSMT Problems

(pra, &"77|®) =
DPLL-SSAT-R(Q" : p[false/z]|, 0/, 0., QO ¥z, 1,).
pr'=p-pri+ (1 —p)-pra.
pl' :==p-pli+ (1 —p)-ply.
pu' == p-puy + (1 —p) - pus.

cyi=co \ {z}.

return (pr’, (c, Ucy)P'7)|Q'Q :).

The next lemma formalizes above observations, thereby establishing the fact that the
algorithm DPLL-SSAT-R produces an enhanced S-resolution proof for each instance (Q :
©,0;,0,) of the generalized SSAT decision problem as defined at the beginning of this
subsection.

Lemma 6.4 (Correctness of integration)
Let be given an SSAT formula Q' Q : 1, two rational constants 0; and 0, with 6; < 0,
and an assignment T : Var(Q') :— B. Let further be ¢ = 1, and

(pr, | &) = DPLL-SSAT-R(Q:¢, O, 0., Q, 7. ¥) .
It then holds that
1. ©=0909:1,
2. 7(c) = false and Var(c) = Var(Q'),
3. the pair cPP) | & is derivable by enhanced S-resolution, and
4. pl =pu=pr ifpre(0,,0,], pu<6 if pr <6, and pl > 0, if pr > 6,,.

Proof. We prove the lemma by induction over recursive calls of DPLL-SSAT-R. First of
all, observe that item [is trivially true as ® = Q'Q : v in each returned result.

There are two base cases. First, there is a clause ¢ € ¢ = 1, such that ¢ = false.
Then, there is a corresponding clause ¢ € 1 such that ¢’[7(v1)/v1] ... [T(Ym)/ym) = ¢
where 7(y;) is defined if and only if 1 < i < m. Clearly, 7(¢") = false. By construction
of clause ¢, 7(¢) = false and Var(c) = Var(Q'). Thus, item 2 holds. From the latter
facts, it follows that ¢ C c¢. Items Bl and [4] are true since

e|QQ: ¢ trgg “V1QQ Y

is applicable and pl = pu = pr = 0, respectively. In the second base case, all clauses in
@ are equivalent to true. With regard to item 2, we again conclude by construction that
7(c) = false and Var(c) = Var(Q'). Item B holds since |= v, and therefore

€QQ: ¢ trm M|QQ: ¢

is feasible. The fact that pl = pu = pr = 1 shows item [4l
In the induction step, we show that the statement of the lemma for

(pr', ()PP | Q' Q:1p) = DPLL-SSAT-R(Q: ¢, 0, 0., Q, 7, V)

6.2 Algorithms for SSAT 105

follows from induction hypothesis. The latter assumes that the lemma holds for each call
(pr, P | QQrQiQy:¢) = DPLL-SSAT-R(Q:Q:: ¢/, 6], 0, QQz, 7',)

such that @ = Q1 Qr Q with @ € {3,4”} and potentially empty Q1, ¢’ = p[v/x] with
veDB, 0 <0, and 7' =7 @ [— v]. Clearly, ¥ = ¢'. Observe that each recursive call
within DPLL-SSAT-R(Q : ¢, 6;, 0,, Q, 7, ¢) satisfies above conditions on the inputs.

We consider unit propagation first. As ¢ = 1, contains a unit clause with unit literal
¢ € {x,—x}, we conclude that there is a clause (¢’ V ¢) € ¢ with 7(¢") = false. Since
7'(¢) = true, we deduce that neg(¢) € ¢ according to induction hypothesis, item
Thus, ¢ = (¢ V neg(f)) and item 2] holds for ¢ since Var(d) = Var(c \ {neg(¢)}) =
Var(Q'Qx) \ {z} = Var(Q') and 7(c) = 7'(c \ {neg(¢)}) = false. It clearly follows that
" C as 7(¢") = false, 7(¢') = false and Var(c') = Var(Q'). The latter allows us to
perform

PP Q' Qu Q) Qy) g () PPIQ Qe

that proves item [3l With regard to item Ml we conclude from definitions of pr’, pl’, pu’,
0) and @/, by using common arithmetic laws the following: pr’ € [6,,0,] if and only if
pr € (0], 9;] pr’ < 6, if and only if pr < 6], and pr’ > 6, if and only if pr > 6. In case

() = 3, the latter is clear since 0, = ;, 0., = 0,,, pr’ = pr, pl' = pl, and pu’ = pu. If) =
then 0, = 60,/p(¢), 0., = 0, /p(¢), pr' = p(€) - pr, pl' = p(¢) - pl, and pu’ = p(¢) - pu which
also justifies above observation. Therefore, if pr’ € [6;,0,] then pr € [9;,9;] and thus
pl = pu = pr due to induction hypothesis. By construction, pl’ = pu’ = pr’. Likewise, if
pr’ < 0, then pu’ < 6, since pu < 6}, and if pr’ > 0, then pl’ > 0, since pl > 0..

Let us consider purification next, i.e. ¢ = 1, contains a pure literal { € {x,—-z}.
Since 7/(¢) = true, we know that neg(¢) € ¢ according to induction hypothesis, item
Thus, ¢ = (¢ V neg(f)) and item 2] holds for ¢ since Var(d) = Var(c\ {neg(¢)}) =
Var(Q'Qx) \ {z} = Var(Q') and 7(¢) = 7'(c \ {neg(¢)}) = false. As ¢ is pure, each
clause '[7(y1) /1] - - [7(Ym) /ym] € ¥r with & [7(y1) /1] - [T(yYm) /ym] where 7(y;) is
defined if and only if 1 < ¢ < m does not contain literal neg(¢). As a consequence, for
each clause ¢’ € ¢ with [~ (¢ Vv ¢’) it holds that neg(¢) ¢ ¢’. Note that [~ (¢ V ') is
equivalent to F& ¢"[7(v1)/y1] - - - [T(Ym)/ym) since ¢ [7(y1)/y1] - .. [T(Ym)/ym] = false. This
gives us the argument to apply

(plpu|Q Q1 Qo m ()pl pu)‘QQ (0

that proves item Bl As pr’ = pr, pl' = pl, pu' = pu, 0, = 6, and 0., = 0,, item [follows
instantaneously from induction hypothesis.

We finally elaborate on branching and thresholding. For the sake of clarity, we state
explicitly the induction hypothesis, i.e. the statement of the lemma holds for

(pry, PP | QQrQ” i 1p) = DPLL-SSAT-R(Q" : pltrue/z], 6!, 0,, QQx, 1,)
as well as for
(pro, """ Q'QrQ":) = DPLL-SSAT-R(Q" : p[talse/z], 6, 0, Q'Qx, T,)

where

106 6 Algorithms for SSMT Problems

Q = QzQ" with Q € {3,4},

e 7, =7®[r — true], » =7 @ [r — false],

if @ =3 then 0, =46, 0, =0,, 0] =max(0,,pr), 0/ = 6,, and
if @ = 4 then 0) = (0, — (1 —p))/p, 0, = 0u/p, 0/ = (0, —p-pr1)/(1 = p),
0, = (0w —p-pr1)/(1 —p).

Since 71(z) = true and 7y(x) = false, we know that —x € ¢; and x € ¢y, respectively,
according to induction hypothesis, item 2l Let us define ¢} := ¢; \{—z} and ¢, := ¢\ {z}.
Due to above facts, it is clear that ¢; = (¢} V) and ¢o = (¢}, Vx). Observe that 7 (c}) =
7(c)) = false and 7»(c)) = 7(c)) = false as well as that Var(c)) = Var(e \ {—z}) =
Var(Q'Qx) \ {z} = Var(Q') and Var(d,) = Var(cs \ {z}) = Var(Q'Qz) \ {z} = Var(Q’).
This implies that ¢ = ¢},. Above reasoning shows that item [2 holds for ¢| and for ¢} U c}.
Let be

e pri = pry, pl} :=ply, puy :=11if Q =3, and

o prii=p-pri, ply :=p-ply, pul =p-pu; + (1 —p) if Q = .

We first consider the case where thresholding applies, i.e. if pr} > 6, orif pri+(1—p) < 0,
and Q = ¥7, then DPLL-SSAT-R returns (pr, (¢})®4:?%)|Q'Q : 1)). The valid execution
of

" IQQrQ v b (e \ {me)PIQQ

proves item [3 With respect to item M, observe that pr| ¢ [6;,6,] by assumption. This
trivially implies that if pr] € [6;,6,] then pl] = pu} = pry. By above definitions and by
using common arithmetic laws, we have that pr; > 6, if and only if pry > 6. If pr; < 6,
then pri + (1 — p) < 6, and @ = ¥? by assumption above and due to 6; < 6,. Thus,
pri + (1 —p) < 6, if and only if pry < 6] as @ = d”. By induction hypothesis, item [if
pry > 0, then ply > 0/, and if pry < 0] then pu; < 6;. To show item [, we finally reason as
follows: pl; > 6., if and only if pl} > 6, and pu; < 6] if and only if puj < 6, since Q) = ¥*.
Otherwise, i.e. if, let be

e pr’ := max(pry, pro), pl' := max(ply, pls), pu’ := max(pus, pus) if Q = 3, and

o pr':==p-pri+ (1 —p)-pre, pl' :==p-ply + (1 = p) - pla, pu’ :=p-pus + (1 —p) - pusy
if Q = ¥P.

DPLL-SSAT-R then returns (pr', (c;Ucy)®"»)|Q'Q : 1)). Recall that ¢; = (¢} V =) and
co = (cy V) as well as that ¢ = ¢,. The latter ensures applicability of

(" "QQ w, Q') e (U)P IQQ

which proves item Bl We finally need to show item M4 Let first be Q = 3. Then,
pr’ = max(pry, pre). Let be pr’ € [0,,0,]. If pr’ = pry then pr; € [0],0!]. By induction

Yy
hypothesis, ply = pu; = pry. Since pro < pri, we have that ply < pus < ply = puy.
The latter clearly holds if pro € [0/,0!] since then ply = pus = pry < pry by induction

1 Yu

hypothesis. If pro < 6] then pus < 6] by induction hypothesis and therefore ply <

6.2 Algorithms for SSAT 107

puy < 0 = max(6;,pr1) = max(6;, pr1) < pri. By application condition of R3] pl’ = pl;
and pu’ = puy, and thus pl’ = pu’ = pr’. Otherwise, i.e. if pr’ = pro, we have that
pra € [0/, 67]. Induction hypothesis gives ply = pus = pry. Due to the fact that pry < pro,
we infer that ply < puy < ply = pus. As above, if pry € [0}, 0.] then ply = pu; = pry < pry
by induction hypothesis, and if pry < 6] then pu; < 6] by induction hypothesis and
therefore ply < puy <) = 6, < pry. Rule ensures pl’ = ply and pu’ = pusy, and thus
pl' = pu’ = pr’. We next consider case pr’ < 6;. Obviously, pry < 6] and pry < /. By
induction hypothesis, pu; < 6] and pus < 6. Note that §; = 6, by definition and that
0/ = max(6;, pr1) = 6, as pry < 6, = 60,. Therefore, pu; < ; and pus < 6, and thus pu’ < 6,
according to[R3l If pr’ > 6, then pry > 6/ = 6, since thresholding has failed, i.e. pr; < 6,.
It follows that ply > 6, by induction hypothesis, and that pl’ = max(ply, pls) > 6, due to
R.3l

Let second be @ = ¥d”. Then, pr’ = p-pry+ (1 —p) - pro. As thresholding has failed, we
know that p-pri+(1—p) > 6, and that p-pr; < 6,, i.e. pry € [0],6.]. Induction hypothesis
thus yields pl; = puy; = pry. If pr’ € [0,,0,] then pro > (6, — p - pr1)/(1 — p) = 6] and
pra < (0, —p-pr1)/(1—p) = 0. By induction hypothesis, ply = pus = prq. It follows that
pl' = pu’ = pr’ according toR.3l If pr’ <) then pry < (6,—p-pr1)/(1—p) = 6. Induction
hypothesis states that pus < 0" = (6;—p-pr1)/(1—p), and thus p-pri+(1—p)-pus = pu’ < 6,
as pry = puy. If pr’ > 6, then pro > (0, — p-pri1)/(1 —p) = 0. Then, ply > 0! =
(0, —p-pri1)/(1 — p) by induction hypothesis. Finally, p - pry + (1 — p) - plo = pl’ > 0, as
pr1 = ply.

This completes the proof and the lemma follows. O

The next result finally shows that item [from the beginning of this subsection holds.
Loosely speaking, enhanced S-resolution is capable of producing proofs for the general-
ized SSAT decision problem that are never longer than the shortest proofs generated by
DPLL-SSAT.

Corollary 6.2 (Shortest S-resolution proofs never longer than DPLL-SSAT proofs)
Let (®,0,,0,) be an instance of the generalized SSAT decision problem and let some cor-
responding DPLL-SSAT(®, 6,,0,) proof be of length k. Then, it is always feasible to con-
struct an enhanced S-resolution proof for (®,0,,0,) that is of the same size k.

Proof. Let be ® = Q : ¢. We denote the empty function by 73 and the empty quantifier
prefix by €. Let further be

(pr, c®?9 | ®) := DPLL-SSAT-R(®, 6, 0., €, 75, ©) .
First of all, it is not hard to see that
pr = DPLL-SSAT(®, 6, 0,)

and that the number of recursions of DPLL-SSAT-R(®, 6;, 0., ¢, 79, ¢) is the same as of
DPLL-SSAT(®, 6,,0,), namely k. The latter is true since the additional inputs and the
extended output of DPLL-SSAT-R do not have an effect on the computation of the
probabilities pr and on the common inputs ®, ;, and 6,,.

By Lemma [6.4] we have that pair ¢®?")|® is derivable by enhanced S-resolution and
that ¢ = 0 as Var(c) = Var(e) = (. From soundness of DPLL-SSAT, it follows that

108 6 Algorithms for SSMT Problems

pr = Pr(®) if Pr(®) € [0,,0.], pr < 0, it Pr(®) < 6;, and pr > 60, if Pr(®) > 6,. Using
above facts as well as Lemma [6.4] we furthermore conclude that

e if Pr(®) € [0,,0,] then pr = Pr(®) € [0,,0,] and then pl = pu = pr = Pr(®),
e if Pr(®) < 6, then pr < 6, and then pu < 6;, and

o if Pr(®) > 6, then pr > 60, and then pl > 6,.

Summarizing, DPLL-SSAT-R(®, 6;, 0., ¢, 79, ¢) produces an enhanced S-resolution proof
for (@, 6;,6,). We finally observe that in each recursive call of DPLL-SSAT-R exactly one
new pair (¢’)®"»%)|®’' namely the one returned in the result of the call, is derived by some
rule of enhanced S-resolution. Thus, the enhanced S-resolution proof mentioned above is
of size k. This proves the claim. O

We remark that Corollary improves a previous result on the proof complexity of S-
resolution and DPLL-SSAT that was published in [TEF10]. The latter article has shown
that if Pr(®) < 6, then from each DPLL-SSAT(®,6;,0,) proof of size k, it is feasible
to construct an S-resolution proof with a quadratic overhead, i.e. of size O(k?), confer
[TET10, Proposition 2]. This restriction, i.e. Pr(®) < 6, was imposed as [TF10] considers
a version of S-resolution where derived clauses ¢”* provide upper probability bounds pu
only. By extending S-resolution such that derived clauses c¢*) carry lower probability
bounds pl in addition to upper ones pu as it was done in this section, Corollary can
state a more general result by not imposing Pr(®) < ¢, and by improving the S-resolution
proof size to k.

Proposition now deals with item [from the beginning of this subsection, claim-
ing that S-resolution proofs are sometimes significantly shorter than the shortest proofs
generated by DPLL-SSAT. For that purpose, Proposition states explicitly an infinite
family of SSAT instances for which the shortest S-resolution proofs are of constant size
while DPLL-SSAT needs exponentially many computation steps even in best case.

Proposition 6.1 (S-resolution proofs can be much shorter than DPLL-SSAT proofs)
Let

o, = 9,9, ¢
with n € Nyg be an infinite family of SSAT formulae such that

Q, = EI2171,1 EI2171,2 . EI2171,n71 EIll?l,n)
Q;T = Q2,1$2,1 Q2,2$2,2 e QQ,n—1$2,n—1 QQ,an,n)
Q;; = Q3,1373,1 Q3,2373,2 cee Q3,n71x3,n71 Qs,n373,n

where Q;; € {3,497} with 0 < p;; <1 for2<j <3 and for 1 <i<n, as well as

n

On = /\all_comb(x17i,x27i,x3,i)
i=1
where
(x V y VvV 2 A (cz VvV y VvV 2
dlcomb(zy,s) = | A @V oy Vo A (e Vo Vo)
/\(l‘\/—ly\/ Z)/\(_'l‘\/—ly\/ Z)

6.2 Algorithms for SSAT 109

15 a propositional formula in 3CNF that consists of all non-tautological clauses with the
three variables x,y, z. Then, for each instance (®,,,0;,0,) which is non-trivial in the sense
that 6, > 0,

1. there is an enhanced S-resolution proof for (®,,0,,0,) of size (at most) 15, i.e. of
constant size, and

2. each DPLL-SSAT(®,, 0,,0,) proof is of size at least 2", i.e. of size exponential in n.

Proof. First of all, observe that all_comb(xy,,x2;,x3,) is unsatisfiable for each ¢. Since
n > 0, it follows that ¢, is unsatisfiable and thus Pr(®,) = 0.

To show item [Il we present an S-resolution proof with 15 rule applications. As n > 0,
all_comb(x11,221,231) € ¢p. This allows the following rule applications:

1) e|®, Frg (z1,1 V 221 V $3,1)(0’0)|¢n ,
2) |®, Fra (21,1 V 22,1 V —'963,1)(0’0)|(I)n)

8) €|(I)n hﬂ (_':L‘l,l V 21 V _'l‘371)(0’0)|(13n .
We proceed with

9) ((x11 V21V 553,1)(0’0)7 (x11 V@97 V _'2173,1)(0’0))|q>n Frz (211 V 2172,1)(0’0)@11 ;

10)

11)
)

(

(X171 V 29 V 553,1)(0’0)7 (11 V 291 V _'1’3,1)(0’0))|q>n Hez (21,1 V _'1’2,1)(0’0)|q>n ;
(mz11 V221 V 353,1)(0’0), (mz11 V221V _'!E3,1)(0’0))|‘1>n Mz (-2 V !E2,1)(0’0)|‘1>n ;
(

(
(
(

Ty VX V $3,1)(0’0), (mz11 Vg V _'$3,1)(0’0))|(I)n Hr3 (11 V _'$2,1)(0’0)|(I>n .

13) (w11 V 552,1)(0’0)7 (x11 V _‘2172,1)(0’0))@11 'R3 (1’1,1)(0’0)|q>n)
14) ((mx11 V !E2,1)(0’0), (mz11 V _'$2,1)(0’0))|‘1>n Fr3 (_‘$171)(0’0)|q’n ;

and finally
15) ((21,1) 9, (=21,1))| @, bRz 00|, .

For item 2] observe that DPLL-SSAT first assigns successively truth values to all vari-
ables x1 1,19, ..., %11, %1,. During this process, construction of ¢, ensures that, first,
the base cases (where ¢, becomes true or false) are not reached and that, second, no
literal in ¢,, becomes unit or pure. Therafter, branching for variable x5, is executed, i.e.
some truth value v is subsituted for xo;. (Actually, v = true but this does not make
any difference.) As n > 0, the current formula contains exactly two unit clauses, namely
(31) and (—z31) which arise from the corresponding clauses in all_comb(xy 1, %21, %371)
depending on which values are assigned to z;; and z3;. With regard to the latter, note
that for each of the four possible assignments to z;; and z5;, the unit clauses (x3;)
and (—xs3;) exist due to construction of all_comb(zy1,221,231). Then, unit propaga-
tion is performed for one of the unit literals x3; and —x3;. Irrespective of which unit

110 6 Algorithms for SSMT Problems

literal was chosen, one of the clauses (z3;) and (—z3;) becomes equivalent to false af-
ter substitution. As a consequence, DPLL-SSAT has reached the base case where ¢,
evaluates to false under current partial assignment. Therefore, the branch where x4
is set to v yields probability pry = 0. As 6, > 0, thresholding is only applicable if
Q21 =" and 1 — pa; < 6;. In the latter case the returned probability is 0. Otherwise,
i.e. thresholding fails, DPLL-SSAT also investigates the other branch for xs, i.e. where
the opposite value neg(v) is substituted for x5 ;. After substitution, unit clauses (z3;) and
(a3 1) recur, again leading to base case “false”. In this case, the returned probability
result is also 0. Thus, DPLL-SSAT needs to try the other branch for z;, in any case
since 1, is an existential variable and 6, > 0. Then, branching is performed for z,,
again. We now state two simple but important facts. First, base case “false” is revisited
if and only if all variables 1 1,212,...,2Z1,-1,%1,, as well as variable z9; are assigned
truth values by means of substitution. Second, thresholding will never apply for variables
Z11,%12, .-, 2101, %1, since these variables are existentially quantified, the probability
results are always 0, and 6, > 0. The latter implies that each of the opposite branches
for variables z11,%19,...,%10-1, %1, is actually explored. We therefore conclude that
DPLL-SSAT needs to traverse all 2" assignments to the variables x1 1,212, ..., %10-1,Z1n

in order to solve (®,,0;,0,). That is, the number of recursive calls and thus the size of
the DPLL-SSAT(®,,, 6;, 6,) proof is at least 2". O

We would like to clarify that Proposition along with Corollary should not be mis-
conceived in the sense that enhanced S-resolution implements a stand-alone algorithm that
always outperforms DPLL-SSAT. Proposition gives only evidence about the shortest
S-resolution proofs for a particular (yet infinite) family of SSAT formulae. Moreover, it
is not specified how a strategy to produce shortest proofs can be devised. Both Propo-
sition and Corollary should serve the sole purpose of indicating the potential of
S-resolution. It is furthermore important to remark that Proposition 6.1 refers to the clas-
sical DPLL-SSAT procedure which does not take into account the additional algorithmic
enhancements mentioned at the end of Subsection [6.2.1l Without going into detail, the
size of the DPLL-SSAT proof for instance (®,,,6;,6,) from Proposition can be signifi-
cantly reduced to O(n) by exploiting the idea of non-chronological backtracking [Majo4].

We briefly remark that ezplanations for conflicts and solutions that are used for non-
chronological backtracking, confer Subsection [6.2.1] are closely related to clauses derived
by S-resolution. It is moreover feasible to enhance DPLL-SSAT-R such that a non-
chronological backtracking operation can be realized by means of derived clauses. To
this end, clauses ¢ in the base cases of DPLL-SSAT-R, i.e. in lines [{ and [10, should
be minimized by removing “unnecessary” literals as long as the resulting clauses ¢’ are
still derivable by rules R (or rather R1]) and R2E, respectively. Then, a further tech-
nique to skip solving the second subproblems within branching, i.e. to skip recursive calls
in lines 48] and [70], becomes available that corresponds to non-chronological backtracking:
due to clause minimization in the base cases, literal =z need not be present in clause ¢y, i.e.
it potentially holds that ¢ = ¢; \ {2} = ¢1, confer lines] (3, B8, and [63 We now sup-
pose that -z ¢ ¢ is actually true. Let be Q' = Q121 ...Q;x; and Q'(¢1) = Q121 ... Q.
Obviously, i < j. According to Lemma [6.3]

pli < Pr(Qipi%ipr ... Qjx; Qu Q" i [r(xy)/z1] ... [T(2:)/z:]) < pus

6.2 Algorithms for SSAT 111

with 7 : Var(Q'(c1)) — B such that Yy € Var(c) : 7(y) = ff.(y). That is, exactly the
same probability bounds pl; and pu; are valid for the second branch of x. This allows to
skip the second branch and to immediately return (pry, ¢"***V|Q'Q : 1). Moreover, the
same applies successively for all variables x; down to x;;, establishing a non-chronological
backtracking operation.

The quintessence of this subsection is that S-resolution should not be considered as
a competitive approach to solve SSAT problems in practice but as complementary to
DPLL-SSAT as both, S-resolution and DPLL-SSAT are capable of “cross-fertilizing” each
other:

e on the one hand, DPLL-SSAT or rather DPLL-SSAT-R is most likely the best
choice to achieve a general and, at the same time, practically reasonable strategy
for S-resolution and,

e on the other hand, S-resolution opens a variety of new ideas to enhance performance
as well as applicability of DPLL-SSAT solvers, some of them are touched upon
hereafter.

Applications of S-resolution. One promising application of S-resolution is to de-
velop a generalized clause learning scheme for DPLL-SSAT that is motivated by the
success of conflict-driven clause learning for DPLL, confer Section and [MSLMO09).
The DPLL-SSAT-R procedure indicates the construction of clauses c¢P“?*) derivable by
(enhanced) S-resolution. As mentioned before, these clauses can be exploited for non-
chronological backtracking. Recall that unit propagation within the DPLL procedure also
works for conflict clauses as these clauses are implications of the given formula. On the
contrary, clauses ¢??*) derived by S-resolution are not necessarily semantic consequences
but just entailed with some probability. That is, unit propagation is in general not appli-
cable for derived clauses ¢PP"). Notwithstanding, it would be worthwhile and promising
to conceive of a similar scheme for the probabilistic case, i.e. some kind of generalized unit
propagation. We illustrate our idea to the latter issue by means of an example: suppose
that we have derived the clause (—x3Vzy; \/—|x85)(0'5’0'6) at some point of the DPLL-SSAT-R
search. Let us further assume that the current subproblem is Q92199 . .. Qg57859 : ¢ and
that true was substituted for 3 and false for z9; such that above clause becomes “unit”.
Due to derived clause (-3 V 91 V —1g5) %6 and according to Lemma 6.3, we know that
whenever we assign arbitrary values to variables wos, ..., xgs and true to zg; then the
satisfaction probability of the resulting SSAT formula lies within [0.5,0.6]. It is therefore
unreasonable to assign true to g later on as the corresponding satisfaction probability
is already known. That is, we s