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Abstract 

As sustainability challenges like climate change intensify, pressure grows to transition away 

from unsustainable technologies like internal combustion engine (ICE) vehicles. However, the 

impact of policies to foster innovation in emerging technologies, such as technology-push and 

demand-pull measures for electric vehicles (EVs), on the decline of incumbent technologies 

like ICE vehicles has so far received little attention. This paper addresses this knowledge gap 

by investigating whether innovation policies promoting an emerging technology reduce firms’ 

innovation activities in the incumbent technology. Three hypotheses are derived and 

empirically tested in the automotive industry using data on 29 automakers between 2009 and 

2020. We find robust evidence that demand-pull policies and their interaction with technology-

push policies contribute to technology decline by inducing firms to reduce innovation activities 

in the incumbent technology. In contrast, we find some evidence that technology-push policies 

may not discourage firms from continuing innovation activities in the incumbent technology. 

These findings contribute to the literature on technology decline, innovation policy, and 

sustainability transitions and have important implications for addressing global sustainability 

challenges. 

Keywords: Demand-pull; Technology-push; Policy mix; Technology decline; Incumbent 

adaptation; Electric vehicles 
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1 Introduction 

The urgency of the climate crisis is forcing countries worldwide to reassess the technologies 

they use and find ways to reduce greenhouse gas emissions. One major challenge is substituting 

technologies based on fossil fuels (e.g., internal combustion engine (ICE) vehicles) with others 

that are more environmentally friendly, such as electric vehicles (EVs). Against this 

background, it is unsurprising that in recent years, the topic of technology decline has received 

increased attention from practitioners and academics alike. Studies in this field seek to 

understand how different drivers (e.g., public policies) shape decline to derive 

recommendations for how to most effectively transition industries or entire economies toward 

environmentally benign, low-carbon technologies (Bento et al., 2021; Rosenbloom and 

Rinscheid, 2020; Trencher et al., 2022). 

Interestingly, while evidence of the drivers of technology decline is accumulating, thus far, 

studies seeking to understand the impact of public policies on decline have primarily focused 

on the impact of instruments for deliberate technology decline, such as phase-out policies in the 

form of prospective sales bans (Rinscheid et al., 2022; Rosenbloom and Rinscheid, 2020). At 

the same time, we currently lack insights into how policy instruments that are primarily targeted 

at fostering innovation in emerging technologies, such as technology-push and demand-pull 

policies, shape technology decline. Demand-pull policies stimulate demand for new 

technologies, for instance, via purchase grants for consumers (e.g., Peters et al., 2012), while 

technology-push policies foster the supply of new technologies, such as by reducing the cost of 

research and development (R&D) (e.g., Nemet, 2009). The impact of demand-pull and 

technology-push policies on innovation in new technologies has been extensively analyzed 

(Ghisetti, 2017; Hoppmann et al., 2013; Luetkehaus, 2024; Plank and Doblinger, 2018). 

However, although it has been suggested that the same policy mix could simultaneously 

stimulate the “creation” of a technological innovation system (TIS) around an emerging 

technology and the “destruction” of the incumbent technology’s TIS (Kivimaa and Kern, 2016), 

we currently lack empirical studies on the impact of innovation policies on incumbent 

technologies. 

The lack of insights into the impact of innovation policies on technology decline is surprising, 

given that innovation policies have been used extensively by policymakers around the world to 

foster innovation in different technologies. Given their widespread use, understanding how 

different innovation policies influence the decline of environmentally inferior technologies is 

important to design policy mixes in a way that accelerates the ongoing transition toward 
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sustainability. Specifically, if, in addition to fostering the diffusion and innovation of novel 

technologies, a specific policy instrument fosters the decline of incumbent technologies, such 

an instrument can be considered superior to one that does not since this will free up market 

space for the emergent technology, speed up technology substitution, and reduce incumbents’ 

resistance to change. 

In this paper, we argue that demand-pull and technology-push policies influence not only the 

emergent but also the incumbent technology. For instance, demand-pull policies create markets 

for not-yet-competitive technologies, leading to new business opportunities for firms, thereby 

potentially encouraging them to pursue a new technology path and abandon the incumbent 

technology, hence supporting the latter’s decline (e.g., Di Stefano et al., 2012). In general, firms 

may alter their resource allocation between established and emergent technologies in response 

to policy-induced changes in market and knowledge conditions. Therefore, by studying the 

impact of policies at the firm level, in this paper, we investigate whether innovation policies 

promoting alternative technologies influence firms’ innovation activities in incumbent 

technology. 

We investigate our research question through quantitative Poisson regression analysis and set 

our study in the automotive industry using a sample of 29 publicly listed automotive original 

equipment manufacturers (OEMs) between 2009 and 2020. Our findings show that demand-

pull policies induce firms to reduce innovation activities in incumbent technology, thus 

contributing to its decline. Moreover, our findings indicate that there is a significant interaction 

between technology-push and demand-pull policies that yields synergies for incumbent 

technology decline. However, we also provide some evidence suggesting that technology-push 

policies may inhibit this decline. While our findings regarding demand-pull policies and their 

interaction with technology-push policies are robust, our findings regarding technology-push 

policies are significant only in some models. 

Our study makes three contributions to the literature on technology decline, innovation policy, 

and sustainability transitions. First, we show that demand-pull policies and technology-push 

policies are not only instruments to support emergent technology in niches (Kivimaa and Kern, 

2016) but potentially also instruments that lead to technology decline by inducing firms to 

reduce innovation activities in the incumbent technology. This suggests that to understand the 

full impact of innovation policies on technological change, one must study their impact on both 

emerging and incumbent technologies. Second, we add to the literature on innovation policy 

and transitions by showing that the effect of technology-push policies on firms’ innovation 
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activities may be ambiguous and dependent on the complementary use of demand-pull policies. 

Third, we provide evidence that the joint use of technology-push and demand-pull policies is 

better suited to persuading firms to withdraw from incumbent technology than either of them 

individually. In combining both policy types, technology-push policies create technological 

variety and increase the availability of knowledge about emerging technologies to firms, while 

demand-pull policies help to put market dynamics into play.  

2 Literature Review and Hypotheses 

2.1 Innovation Policy and Firms’ Incumbent Technology Strategies 

Innovation policies, such as demand-pull and technology-push policies, spur the development 

of new technologies (Costantini et al., 2017; Peters et al., 2012). When new technologies disrupt 

incumbent technologies, innovation policies may also lead to the decline of incumbent 

technologies. In the following, we elaborate on disruptive technologies and how incumbents 

might embrace them by altering their innovation strategies. Subsequently, we discuss and derive 

hypotheses on how demand-pull and technology-push policies favor different strategic 

responses by firms due to their respective mechanisms for promoting innovation. 

Disruptive technologies simultaneously threaten firms and present them with long-term market 

opportunities should they pursue emergent technologies (Cooper and Smith, 1992; Hill and 

Rothaermel, 2003; Jiang et al., 2011; Tripsas, 1997). However, a core problem in responding 

to technology disruption is that it is usually uncertain whether technological substitution will 

occur and at what pace (Cooper and Smith, 1992; Furr and Snow, 2015). In the case of 

potentially disruptive innovations, the new technology initially offers new features that might 

appeal to niche markets but demonstrate inferior performance in key attributes valued by 

mainstream customers, have a higher price, or both (Adner, 2002; Govindarajan and Kopalle, 

2006). For example, initially, EVs outperformed ICE vehicles on tailpipe emissions but had 

higher purchase prices and inferior performance in driving range and complementary 

infrastructure (Bohnsack and Pinkse, 2017). For the threat of technological substitution to 

become a reality, subsequent technological developments must improve the performance of 

initially inferior attributes to a level that satisfies the needs of mainstream customers at a 

competitive price (Adner, 2002; Govindarajan and Kopalle, 2006). 
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Previous research has shown that firms active in the incumbent technology respond to the threat 

of technological substitution by altering their innovation strategy in the incumbent technology 

in one of two ways: through (1) elevation or (2) withdrawal. Through elevation, firms aim to 

elevate the incumbent technology’s performance by increasing their innovation activity. In this 

way, they try to stay ahead of firms pursuing the emerging technology in a performance race 

that could delay or entirely prevent technological substitution (Adner and Kapoor, 2016; Adner 

and Snow, 2010; Sarkar et al., 2018). For example, in the automotive case, an elevating strategy 

would increase innovation efforts to reduce the tailpipe emissions of ICE vehicles to counter 

the value proposition of EVs and to manufacture larger vehicles competitively to make it harder 

for EV manufacturers to achieve long driving ranges at competitive prices as large EV vehicles 

are heavier and require costlier batteries. In a withdrawal strategy, firms reduce innovation 

activity in the incumbent technology and reallocate resources from related innovation activities. 

This may be part of a deliberate market exit anticipating future challenges (e.g., to compete in 

the market) spurred by the upcoming technology (Howells, 2002). However, the most common 

form of this approach is arguably an exit from the older technology as part of a reorientation 

toward the new technology. 

These two strategies can be perceived as the endpoints of a continuum along which firms active 

in the incumbent technology can combine elements of both to pursue hybrid strategies. For 

example, firms attempting to improve the performance of the incumbent technology (elevation) 

may reduce innovation in aspects of the older technology (withdrawal strategy) to introduce 

“intergenerational hybrids.” Such hybrids are products based on the incumbent technology that 

integrate features from the emerging technology that substantially improve performance in key 

attributes, for example, hybrid vehicles that can run on fossil fuels and electricity (Ansari and 

Garud, 2009; Bergek et al., 2013; Furr and Snow, 2015). Hybrid strategies allow firms to 

maintain existing capabilities while learning about the emerging technology, facilitating a 

switch further down the line (Furr and Snow, 2015). Their implications for firms’ overall 

innovation activity in the incumbent technology are mixed. Some hybrid strategies might 

require firms to increase overall innovation in the incumbent technology to integrate the new 

features (Bergek et al., 2013), while others may allow firms to focus efforts on a few subfields 

and reduce overall innovation activity in the incumbent technology (Aghion et al., 2016).  

Firms need to continuously adapt their strategy choices to align with changing environmental 

conditions, such as the pace and likelihood of technological substitution (Bidmon and 

Bohnsack, 2019; Furr and Snow, 2015; Sick et al., 2016; Song and Aaldering, 2019). As a 

result, it seems plausible that technology-push and demand-pull policies could influence firms’ 
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positioning on the strategy continuum. Both policies accelerate the development of alternative 

technologies (e.g., Costantini et al., 2017; Hille et al., 2020; Johnstone et al., 2010; Peters et al., 

2012), thereby spurring incumbent firms to respond to the threat of substitution. However, 

technology-push and demand-pull policies rely on two distinct mechanisms of technology 

change (Di Stefano et al., 2012; Dosi, 1982; Mowery and Rosenberg, 1979); therefore, they 

might incentivize different responses by firms active in incumbent technologies.  

In the following section, we elaborate on the mechanisms of each innovation policy type and 

derive hypotheses regarding how they influence firms’ innovation activity in incumbent 

technology. In outlining our hypotheses, we structure our line of reasoning along three 

dimensions: (1) resources, (2) market, and (3) technology. Here, ‘resources’ refers to how 

innovation policies shape firm-internal resources. The second dimension, “market,” describes 

how innovation policies influence market dynamics for firms. Finally, the “technology” 

dimension explains how innovation policies shape technological developments in firms. 

2.2 The Role of Technology-Push Policies in Firms’ Incumbent Technology Strategy 

Technology-push policies aim to foster the emergence of new technologies by increasing the 

knowledge supply in at least two ways, including broadening and deepening knowledge within 

firms. Technology-push policies have been shown to broaden firms’ search for technological 

opportunities, contributing to technological variety and even creating new technological 

trajectories (Di Stefano et al., 2012; Dosi, 1982; Freeman, 1996). For example, funds deployed 

to universities and public institutions through technology-push policies build up public 

knowledge about a technology, which, in turn, can be absorbed by private firms (Audretsch and 

Link, 2019; Becker, 2015; Koch and Simmler, 2020; Szücs, 2018). In addition, technology-

push policies reduce the private cost of R&D and induce firms to accelerate innovation (Nemet, 

2009), particularly encouraging more basic research and riskier innovations (Beck et al., 2016; 

Plank and Doblinger, 2018), which deepens their knowledge of current technologies. These two 

mechanisms play out across the three different dimensions – resources, market, and technology 

– and influence firms’ responses to the threat of technology substitution. 

Resources. Faced with a substitution threat, firms have an interest in participating in the new 

technology as a precaution (Cooper and Smith, 1992). However, simultaneously exploring new 

technologies while continuing to exploit existing ones increases resource-allocation tensions 

within firms because both efforts draw from the same pool of resources (Lavie et al., 2010; 

March, 1991). This changes if technology-push policies provide firms with additional 
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resources. In that case, firms can use the additional resources to broaden their knowledge and 

gain competencies in the new technology without reducing their allocation of internal resources 

to the incumbent technology. Therefore, technology-push policies that provide additional 

resources might reduce resource-allocation tensions within firms and encourage them to 

continue allocating resources to the incumbent technology at existing or increased levels. 

Market. Technology-push policies tend to have little direct impact on market conditions or 

adoption challenges (Adner and Kapoor, 2016; Nemet, 2009). Although the new technologies 

that policymakers support through technology-push policies may eventually disrupt entire 

industries, it often takes decades for a new technology to move from its first application to 

commercialization and early adoption (Bento and Wilson, 2016). Therefore, we argue that 

technology-push policies do not directly incentivize firms facing a substitution threat to switch 

to new technologies (Dosi, 1982). Instead, firms active in the incumbent technology may 

continue to invest in it to increase the barriers to entering the market for the new technology 

(Adner and Kapoor, 2016; Adner and Snow, 2010). 

Technology. As mentioned, technology-push policies can encourage firms to broaden their 

knowledge, learn about new technologies, and develop related capabilities. When faced with 

the threat of substitution, these capabilities facilitate the integration of features of the new 

technology into the incumbent one to achieve performance improvements, for example, through 

intergenerational hybrids (Furr and Snow, 2015). However, to successfully integrate these new 

features, firms may need to deepen their knowledge of aspects of the incumbent technology and 

increase their innovation activity (Bergek et al., 2013; Furr and Snow, 2015). In this way, firms 

compete to maintain the incumbent technology’s dominance by improving it (Adner and 

Kapoor, 2016). In turn, this raises the bar for the mass adoption of the new technology (Adner 

and Snow, 2010) and makes it more difficult for the new technology to become competitive 

through economies of scale and learning by doing (Hoppmann et al., 2013; Sagar and van der 

Zwaan, 2006).  

Based on these considerations across resources, market, and technology dimensions, we 

propose the following hypothesis: 

H1: The stronger the technology-push policy for alternative technologies is, the higher 

firms’ innovation activities are in the incumbent technology.  
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2.3 The Role of Demand-Pull Policies in Firms’ Incumbent Technology Strategies 

Demand-pull policies aim to foster the emergence of new technologies by stimulating demand 

for them. With instruments such as tax credits, purchase grants, public procurement, or 

disincentives for incumbent technologies, demand-pull policies try to increase demand for the 

new technologies despite their lower performance or lack of competitiveness (Dechezleprêtre 

and Glachant, 2014; Nemet, 2009; Peters et al., 2012). These interventions influence the 

resources, market, and technology conditions that firms face, leading them to adjust their 

technology strategies in response (Aghion et al., 2016; Barbieri, 2016; Popp and Newell, 2012).  

Resources. Demand-pull policies might increase tensions within firms around allocating 

resources between incumbent and new technologies. Although sales induced by demand-pull 

policies could increase the revenues of firms that commercialize the new technology, 

augmenting their available resources for innovation activities (Hoppmann et al., 2013), this is 

not necessarily true for firms active in the incumbent technology. First, the new product’s profit 

margin is often initially smaller than the margin for products based on the incumbent 

technology. For example, most EV models were reported to have negative profit margins in 

2018 (Hertzke et al., 2019). Second, new product sales often do not add to but rather cannibalize 

the sales of products based on the incumbent technology. For instance, drivers may buy an EV 

instead of an ICE car, but they may not buy an EV and an ICE vehicle. Therefore, when a new 

product with lower profit margins is substituted for products based on the incumbent 

technology, demand-pull policies might increase tensions around resource allocation within 

firms and lead to less innovation activity in the incumbent technology. 

Market. Demand-pull policies create market dynamics that may lead firms to face a concrete 

substitution threat and choose a withdrawal strategy. Initially, policy support enhances market 

opportunities for the new technology, increasing entrepreneurial activity (Hoppmann and 

Vermeer, 2020) and the viability of early movers’ entry into the new technology (Wesseling et 

al., 2015b). As increased demand leads to market diffusion of the new technology, firms begin 

to benefit from economies of scale and learning by doing, which often triggers considerable 

cost reductions (Hoppmann et al., 2013). This feedback loop accelerates the progress of the new 

technology toward price competitiveness and renders the threat of substitution even more acute, 

increasing the pressure on firms to switch to the new technology. In line with this, Popp and 

Newell (2012) found that alternative energy patents crowd out other patents of multi-technology 

firms in the energy industry and suggested that this is a response to changing market 

opportunities.  
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Technology. Demand-pull policies for alternative technologies set several incentives for firms 

to withdraw from the incumbent technology. Policy support for an emergent technology is a 

powerful signal to firms that shapes expectations regarding future market developments 

(Nemet, 2009). Additionally, this signal might direct managers’ attention toward a new 

technology. This managerial attention is then decisive in firms’ technology strategies (Kaplan, 

2008). Moreover, demand-pull policies can reduce uncertainty regarding firms’ future 

innovation trajectories. Recent publications have shown that demand-pull policies tend to favor 

more mature technologies and narrow firms’ search scope, which might lead to technology 

lock-ins (Hoppmann et al., 2013; Hoppmann et al., 2021). While this is negatively connotated 

from an innovation perspective (e.g., Barbieri, 2016), it can be beneficial from a technology 

decline perspective. Reduced uncertainty about the fundamental future technology trajectory 

reduces the risk of committing to a losing technology and can facilitate firms’ decision to 

initiate a transformation (Penna and Geels, 2015) and, thus, to withdraw from the incumbent 

technology.  

Overall, we see strong reasons to propose that demand-pull policies incentivize firms to 

withdraw from innovation in incumbent technologies. Hence, we advance the following 

hypothesis: 

H2: The stronger the demand-pull policy for alternative technologies is, the lower firms’ 
innovation activities are in the incumbent technology.  

2.4 The Interaction of Demand-Pull and Technology-Push Policies in Firms’ 

Incumbent Technology Strategies 

Demand-pull and technology-push policies are distinct but complementary ways of promoting 

innovation and technological change (Di Stefano et al., 2012; Mowery and Rosenberg, 1979). 

Previous research has shed light on the benefits of combining both policy types for the 

emergence of new technologies, from boosting firms’ expenditures on innovation (Guerzoni 

and Raiteri, 2015) and innovation activity (Costantini et al., 2017) to the creation of innovation 

networks (Cantner et al., 2016) and even job creation (Nuñez-Jimenez et al., 2022). Although 

previous research has not investigated this question, it seems likely that the interactions between 

technology-push and demand-pull policies also affect the decline of incumbent technologies by 

influencing firms’ innovation strategies across the resources, market, and technology 

dimensions. 
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Resources. In the previous sections, we suggested that demand-pull policies increase tensions 

in resource allocation within firms and lead to a reduction in innovation activity in the 

incumbent technology. However, how a firm allocates its resources between novel and 

established technologies depends on the expected impact of investments. If policymakers 

implement technology-push policies in parallel with demand-pull policies, the former directly 

reduce the private cost of R&D and help firms build capabilities in novel technologies, which 

facilitates future knowledge absorption (Cohen and Levinthal, 1990; Levinthal and March, 

1993; Levitt and March, 1988). As a result, the additional use of technology-push policies 

increases the incentive for firms to use the scarce resources generated through demand-pull 

policies for novel instead of established technologies. 

Market. The previous sections argued that technology-push policies encourage firms to 

increase their innovation activity in the incumbent technology to enhance its performance and 

to attempt to keep new technologies off the market. However, when demand-pull policies are 

also in place, these explicitly create opportunities for the targeted new technologies to enter the 

market (Fabrizio et al., 2017; Wesseling et al., 2015b); thus, they make fending off the new 

technology through innovation in the incumbent technology much more difficult. Furthermore, 

as demand-pull policies increase the deployment of the new technology, this triggers learning 

effects and economies of scale (Hoppmann et al., 2013), making a defensive stance increasingly 

unlikely to succeed.  

Technology. The combined use of technology-push and demand-pull policies to target a new 

technology signals a more robust commitment of policymakers to supporting technological 

change and a higher credibility of their policy mix (Nemet et al., 2017; Rogge and Dütschke, 

2018). Firms might be persuaded to invest more heavily in the new technology (Rogge and 

Schleich, 2018) and, therefore, be more inclined to reduce innovation activity in the incumbent 

technology. 

Combining technology-push and demand-pull policies provides a stronger incentive for firms 

to withdraw from the incumbent technology. Therefore, we formulate an additional hypothesis 

proposing a negative policy interaction.  

H3: The interaction of demand-pull and technology-push policies reduces firms’ 
innovation activities in incumbent technology.  

Figure 1 provides an overview of our hypotheses. 
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3 Method 

3.1 Research Setting 

To test our hypotheses on the link between innovation policies promoting alternative 

technologies and innovation in incumbent technologies, we chose the automotive industry as 

our research setting. This setting is suitable for three main reasons.  

First, the sector is currently seeing a transition from incumbent ICE vehicles to electric vehicles. 

ICE technology is well established, with large automotive manufacturers that have been 

producing ICEs for more than 100 years and have historically been committed to that 

technology, as shown, for example, by continuous incremental innovation in the technology. In 

this sense, the automotive sector represents an ideal setting for studying incumbent responses 

to technological change. In addition, automotive OEMs are multi-technology firms (i.e., they 

produce both gasoline and diesel engines) and are accustomed to facing tensions in resource 

allocation between different technologies. Thus, they are suitable candidates for investigating 

how firms manage various technologies simultaneously and deal with (technological) 

transitions.  

Second, given the important role that the transportation sector plays in climate change, we have 

seen an increase in policy instruments (demand-pull and technology-push) being implemented 

to promote the development and market diffusion of EVs and the phasing out of ICE 

Technology-Push  

Policy 

Demand-Pull 

Policy 

Innovation Policy 

Innovation Activity 

in Firm’s  
Incumbent 

Technology 

Firm 

H1:
 
> 0 

H3:
 
< 0 

H2: < 0 

Figure 1: Hypotheses 
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technology. The first policy initiatives go back to the 1990s (e.g., the California zero-emission 

vehicle mandate of 1990 or Japan’s Clean Energy Vehicles Project of 1996). However, most of 

these policy instruments failed to make EVs economically and technologically competitive. 

Therefore, all major automotive manufacturers stopped any serious efforts in EV development 

(Bedsworth and Taylor, 2007; Sierzchula et al., 2012). Only in the late 2000s did governmental 

efforts to foster the development and market diffusion of EVs pick up again in countries such 

as Germany, France, China, and the United States. For instance, a large project by the US 

government to foster EV drivetrain and battery development with a funding sum of $2.4 billion 

was announced in 2009, and Germany initiated tax exemptions for EVs in 2008. China 

introduced a public procurement program in 2009 and installed subsidies for new energy 

vehicles in 2010. Hence, policy initiatives to support the rise of EVs intensified. In recent years, 

the phase-out of ICE cars has appeared on the political agenda (Meckling and Nahm, 2019), 

although it has mostly remained a statement of ambition. As a notable exception, in the EU, 

Regulation (EU) 2023/851 has legally enforced a regulation prescribing zero CO2 emissions for 

newly registered vehicles starting in 2035 (European Parliament, 2023). 

Third, many automotive OEMs have recently announced a shift of resources from ICE 

innovation and production toward EV technology, a development whose outcome is shown in 

Figure 2. Figure 2 illustrates how patenting in ICE technology by the seven largest OEMs has 

declined since 2016 despite no binding phase-out policy being passed in major automotive 

markets. For instance, General Motors announced that it would prioritize investments in its 

future EV architectures and redirect resources to achieve this goal (General Motors Company, 

2018). Other firms, such as Nissan, have also declared their intention to end ICE development 

for most major markets, with the exception of the United States, and to shift resources toward 

EV and hybrid development. 
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a Firms with the largest production of passenger cars in 2017, according to the International Organization of Motor 

Vehicle Manufacturers (OICA, (n.d.b), accounting for more than 50% of total production 

b Patents identified by international patent classification codes and automotive keywords (balanced)  

Figure 2: Innovation activity in ICE vehicles for the seven largest OEMsa  

from 2000–2020 

Hence, in this setting, there are (1) large incumbent firms rooted in ICE technology, (2) strong 

innovation policies with the goal of technological substitution, and (3) ambitions of incumbents 

to gradually withdraw from ICE technology without phase-out policies.  

Our analysis focuses on the 2009–2020 period. This period is characterized by an increased use 

of technology-push and demand-pull policies for EVs. At the same time, policies to phase out 

ICEs were not yet prominent. This period has also seen upcoming market pressure from new 

entrants offering EVs, most prominently Tesla. Founded in 2003, Tesla launched the Roadster 

in 2008, the Model S in 2012, and the Model X in 2015, producing more than 100,000 vehicles 

in 2017 (OICA, n.d.b). We cut off our data in 2020 since patents have an 18-month 

confidentiality period, and we allow one additional month for their registration in the relevant 

databases for our analysis.  

3.2 Data collection 

To analyze the relationship between innovation policy and firms’ incumbent technology 

strategy, we used a panel data set of 29 publicly listed incumbent OEMs in the automotive 
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industry, which combines multiple data sources. Using International Organization of Motor 

Vehicle Manufacturers (OICA) world production data over the time horizon 2000–2017, we 

identified large OEMs.1 The sample was limited to firms that (1) are publicly listed to ensure 

reliable access to financial data sourced from DataStream and (2) enable a reliable assignment 

of patent data from the Derwent Innovation Index database (see Table A.1). 

To approximate firms’ incumbent technology strategies in the automotive industry, we 

build on patents in the ICE technology field. Patent data offer the following advantages: (1) the 

data availability is good, and (2) patent data allows for differentiating investments in distinct 

R&D areas, which is not possible with aggregated investment data (Kaplan, 2008). Firm-

specific patent families were extracted from the Derwent Innovation Index database using 

unique firm identifiers. 2 In line with our research interest, we sought to identify patents that are 

related to the ICE powertrain or its manufacturing processes. Ideally, a patent search strategy 

optimizes the error rate of both falsely included and excluded patents (Bruns and Kalthaus, 

2020). However, since ICE technology has represented the dominant standard in the industry, 

many relevant patents do not contain any reference to the technology. Prior research has also 

observed this (Song and Aaldering, 2019). Therefore, the trade-off between errors is strong (i.e., 

not using technology keywords sharply increases the likelihood of falsely identified patents, 

while using technology-specific terms leads to the exclusion of many relevant patents). Hence, 

we applied three alternative search strings – comprehensive, balanced, and precise – that build 

on a previously defined search string (Luetkehaus, 2024). The comprehensive search string is 

based on international patent classification codes, the balanced search string includes 

automotive keywords, and the precise string adds propulsion technology-specific terms (Table 

A.2). Moreover, we extracted all patents of the firms in the data set by means of firm identifiers 

to calculate supplementary measures (i.e., patent scaling factors).  

Data on public policies were obtained from various sources. For demand-pull policies, we 

followed two approaches. First, we acquired detailed new registration data for EVs from IHS 

Markit covering the years 2000–2020 and 85 countries, which represent more than 95% of the 

 

1 After 2017, production figures per manufacturer are not reported by the OICA. Tesla Motors is part of the data 

set but not included in the sample as it was founded only during our sampling period and exclusively focuses on 
BEVs. 
2 Firm identifiers are assigned to firms that have more than 500 patent applications. For Tata Motors, the identifier 
is on a higher company level than the financial data; therefore, we supplemented the Derwent standard code with 
firm names. We consolidated standard codes in cases of mergers and acquisitions where the database continues 
the codes of formerly independent firms. To avoid the double-counting of patents from different jurisdictions, we 
used patent families. We applied a 19-month cut-off period to account for the 18 months until publication and 
allowed time for database indexing. Patents were extracted for index dates between 01/01/1990 and 07/31/2022. 
Hence, the last year of available patent data in our sample is 2020. 
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global vehicle market (OICA, 2022).3 Second, qualitative data on single demand-pull 

instruments applied in OECD, EU, and BRICS countries were obtained from various sources, 

including the PWC Global Automotive and ACEA Tax Guides, the IEA Policy Database, the 

Climate Policy Database, government reports and websites, and newspaper articles. Data on 

technology-push policies were obtained in the form of scientific publications on EVs. The 

scientific publication data were extracted from the Science Citation Index Expanded (SCIE) 

using a keyword search string (Mirzadeh Phirouzabadi et al., 2020; Schmoch, 2007). We used 

previously defined key term search strings to identify publications on hybrid electric vehicles, 

battery electric vehicles, and fuel cell electric vehicles (see Luetkehaus, 2024). To ensure a 

quality threshold, we limited the publications to articles. For additional policy controls, we 

obtained data on average fuel consumption in major LDV markets from 2005–2019 and phase-

out policy announcements,4 both sourced from the IEA (GFEI and IEA, 2021; IEA, 2020, 

2021). To construct firm-specific weight matrices for demand-pull as well as policy controls, 

we collected data on production locations and volumes in 2009 from the OICA (OICA, n.d.a).  

3.3 Variables and Measures 

Our hypotheses suggest links between demand-pull and technology-push policies for EVs 

(independent variables) and OEMs’ technology-specific innovation activities in ICE vehicles 

(dependent variable). In the following sections, we discuss how we operationalized these focal 

variables. Furthermore, we explain our controls for firm-level factors implied by former work 

and consider additional policies to rule out alternative explanations.  

3.3.1 Dependent Variable 

We followed previous literature to measure technology-specific innovation activity in ICE 

vehicles by means of respective patents. A problem with using patents lies in inter-firm 

differences in propensity to patent, which are, for example, caused by different requirements in 

the process of patent registration imposed by national patent offices (Bruns and Kalthaus, 

2020). To account for this phenomenon, we followed the “scaling factor approach” proposed 

by Luetkehaus (2024). This approach is based on the idea that the ratio of R&D investment to 

 
3 EVs include PHEVs, BEVs, and FCEVs. Data gaps for Japan (2015–2020) and Mexico were supplemented 
using IEA (2023) and Statista (2023) data. 
4 Major markets comprise China, the EU-27, Japan, the USA, and developing and emerging countries 
(Argentina, Brazil, Chile, Egypt, Malaysia, Mexico, Peru, the Philippines, the Russian Federation, and Ukraine). 
Missing data points are imputed using linear interpolation. 
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patents is indicative of differences in the propensity to patent (Rassenfosse and van 

Pottelsberghe de Potterie, 2009; Scherer, 1983) and, as such, can be used to harmonize patent 

counts for the comparison of firms embedded in different jurisdictions. Specifically, firms’ 

patent counts were multiplied by firm-level scaling factors and rounded to the nearest integer 

to level measurements while keeping the original count data format. The scaling factors 

represent the focal firms’ R&D investment to patent ratio relative to the average of all firms in 

the data set, calculated as follows: 

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑖 = (∑ 𝑅&𝐷 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑖,𝑡−1𝑡−1 ∑ 𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖,𝑡𝑡 ) / ∑ 1𝑛 (∑ 𝑅&𝐷 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑖,𝑡−1𝑡−1 ∑ 𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖,𝑡𝑡 )𝑛
𝑖 , (1) 

where i = firm, t = year ranging from 2000–2020, and R&D investment reflects purchase power parity adjusted 

for USD2015. In the case of missing R&D investment data at t-1, the corresponding patent count in t is excluded.  

Luetkehaus (2024) shows that these scaling factors are correlated with triadic patent shares of 

firms and resemble country-specific propensities to patent (e.g., due to the different 

requirements of domestic patent offices). However, in comparison with alternative methods, 

such as multinational patents or citation weights (Bruns and Kalthaus, 2020), the scaling factor 

approach holds two important advantages: (1) no additional cut-off periods are imposed, which 

allows for the analysis of more recent developments, and (2) the assumption of the necessity of 

patents in several jurisdictions to protect an invention internationally is relaxed, which arguably 

does not hold in the automotive industry (Hägler, 2020).  

3.3.2 Independent Variables 

For the first independent variable, demand-pull policies for EVs, we see that many different 

policy instruments have been implemented in the automotive industry. Such instruments 

include, among others, tax credits, purchase subsidies for consumers, and public procurement. 

Since every country has its own policy mix, the strength of the instruments depends on their 

exact design and the overall setting in which they are embedded. Hence, this poses the challenge 

of measuring demand-pull policies internationally and comparing them with one another 

(Hoppmann and Vermeer, 2020).  

While much of the previous research has relied on output measures, such as market volume, to 

capture the effect of demand-pull policies (Peters et al., 2012), some studies have used input 

measures, such as binary variables, to account for the different types of demand-pull 
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instruments that are used (Hille et al., 2020). Since both approaches have their drawbacks in 

operationalizing demand-pull instruments, we proxy demand-pull policies via an integrated 

approach that uses both battery electric vehicle market volume and the quality of the demand-

pull policy mix for battery electric vehicles (Luetkehaus, 2024). Specifically, we draw on new 

BEV registrations and multiply them by a qualitative evaluation of the demand-pull policy mix. 

In doing so, we use both output and input measures to construct the variable:  

𝐷𝑒𝑚𝑎𝑛𝑑 − 𝑝𝑢𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠𝑐,𝑡 = 𝑁𝑒𝑤 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝐵𝐸𝑉𝑠𝑐,𝑡 ∗ 𝐷𝑃 𝑝𝑜𝑙𝑖𝑐𝑦 𝑚𝑖𝑥 𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑐,𝑡 ,  (2) 

where c = country and t = year.  

Following Luetkehaus (2024), we determine the quality of the demand-pull policy mix for 

BEVs by measuring their average score on a five-item scale. This scale is based on the policy 

mix concept described by Rogge and Reichardt (2016), which, although developed for the 

holistic evaluation of policy mixes, is well suited to capturing the instrument mix of demand-

pull policies. To assess the quality of the instruments, we rate the demand-pull instruments 

according to the four key characteristics of policy mixes, which are classified into subcategories 

in the paper by Luetkehaus (2024).  

Since demand-pull policies are measured at the country level and firms vary in market coverage, 

it is necessary to both link and apply firm-specific weights to account for direct market access. 

We use this approach because prior research has shown that trade barriers inhibit demand-pull 

policy effects (Dechezleprêtre and Glachant, 2014). Accordingly, we argue that it is more 

challenging for firms to take advantage of demand-pull policies in countries where they have 

no production locations. Therefore, we consider firms’ access to demand-pull policies by means 

of dummy variables for production locations. We assign them a value of 1 if firms have a 

production site in the market and 0 otherwise. Firms’ decisions regarding production location 

may also arise from strategic choices. To avoid endogeneity, we keep the weights for production 

sites constant over time, as prior research has done (Costantini et al., 2017).5 Since some 

markets are linked through free trade zones, we aggregate them accordingly.6  

The second independent variable is technology-push policies for EVs, which we approximate 

with publicly funded science activity in electric vehicles. Science is an integral part of the 

 
5 Weights are based on production locations in 2009. 
6 We treat the European Economic Area (EEA) and the North American Free Trade Area (NAFTA) as single 
markets.  
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technology-push mechanism (Di Stefano et al., 2012). In accordance with former work, we 

measure science activity by publications recorded in the SCIE (Meyer, 2000; Schmoch, 2007). 

Compared to alternative measures, this operationalization based on publication data has the 

advantage of good data availability and coverage. Previous studies on renewable energies draw 

on public funding data from the IEA (e.g., Costantini et al., 2017). However, this data set does 

not cover all relevant countries for our study (e.g., China) and contains major data gaps with 

respect to automotive technology funding. Hence, to enable comprehensive coverage of OEMs 

in our analysis, we use an approximation of technology-push policies by scientific publications, 

as previously used in Luetkehaus (2024).  

As an approximation of technology-push policies, among all scientific publications on EVs, we 

only consider those that have been publicly funded for two reasons: (1) not all scientific work 

is (directly) publicly funded and therefore may not align with policies, and (2) country-level 

differences in the number of higher education institutions could bias the raw publication count. 

We analyzed the funding information in the SCIE, which is available with full coverage from 

2009 onward (Paul-Hus et al., 2016), to identify publicly funded articles.7 Since previous work 

shows that the effect of technology-push policies is limited to domestic policies (e.g., Peters et 

al., 2012), we measured the variable by scientific articles on EV technology attributed to firms’ 

domestic countries. Lastly, we deferred the publication date by one year to consider the time it 

takes to publish an article (Schmoch, 2007). 

3.3.3 Control Variables 

In our econometric analysis, we controlled for firm and time fixed effects to account for the 

time-constant heterogeneity of firms and macro-level time-related effects. Moreover, we 

included time-variant firm-level variables that prior studies have shown have an impact on 

firms’ innovation activity. Lastly, we also considered distinct policies that might be alternative 

explanations for firms’ changes in incumbent technology research activity. 

First, firm size can influence the innovation activity of firms in general (e.g., due to the 

availability of resources), but it can also impact the trajectory of innovation as larger firms tend 

to be the focus of environmental stakeholders and governments (Kesidou and Demirel, 2012). 

We captured firm size by total assets in million USD2015.  

 
7 To this end, we took three steps. (1) We filtered the SCIE database for a country. (2) We identified all national 
and supranational (e.g., EU) governmental or governmentally financed institutions and programs that account for 
more than 1% of funded publications assigned to the respective country (Table A.3). (3) We extracted the 
publication data of articles funded by these institutions and counted the number of publications for each year. 
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We also include R&D intensity since it is not only related to increased innovative activity 

(Audretsch, 1995), but prior studies have also identified it as a driver of eco-innovation (Hojnik 

and Ruzzier, 2016). We measured R&D intensity by the share of R&D expenditures on sales. 

Financial performance can have an immediate impact on innovation activity due to the 

availability of funds (Audretsch, 1995). Moreover, when a decline in financial performance 

persists, firms might respond to it with innovation but also rigidity (McKinley et al., 2014). 

Therefore, we controlled for financial performance by including firms’ return on assets. 

Previous literature has shown that slack resources are a determinant of innovation in general 

(Marlin and Geiger, 2015; Nohria and Gulati, 1996) and are also positively linked to radical 

innovation (Troilo et al., 2014). We operationalized slack resources as the ratio between firms’ 

cash and long-term debt (Hoppmann et al., 2021). 

Moreover, we controlled for alternative explanations of the proposed mechanisms by including 

knowledge stocks and R&D cooperation in internal combustion engine technologies. Prior 

learning and the resulting competencies can form a strong source of path dependency (Levinthal 

and March, 1993). Therefore, we considered firms’ ICE knowledge stock, measured as the 

depreciated sum of previous patents in ICE technologies.8 Another way to increase innovation 

performance is through research collaboration (Ahuja, 2000; Sampson, 2007). Similar to 

Luetkehaus (2024), we used the number of distinct firms and institutions with which a firm 

jointly signed patents in the focal technology to proxy for R&D cooperation.9  

Previous literature implies that uncertainties in the firm environment influence firms’ 

innovation investment timing and trajectories (Hoffmann et al., 2009; Jansen et al., 2006). In 

the case of the transition from ICE vehicles to EVs, uncertainties (e.g., in the EV market 

development or regarding the chip shortage) might diminish or postpone the shift of resources 

to the new technologies. Thus, we proxied environmental uncertainty by the coefficient of 

variation of the firm’s sales calculated over five periods (Ghosh and Olsen, 2009). 

Besides pure demand-pull or technology-push policy, a major policy type is regulatory policies, 

such as fleet- or corporation-wide fuel economy standards (e.g., CAFE in the USA), whose 

impact the prior literature has termed “regulatory push/pull” (Rennings, 2000). Such standards 

may increase innovation in incumbent technologies (Nemet, 2014), but it is also possible that 

 
8 The first year considered for knowledge stock calculation is 1990. The knowledge depreciation rate is set at the 
usual value of 0.15. We also tested alternative depreciation rates of 0.1 and 0.25 for our main model estimations. 
The results were largely unchanged. Regression tables are available upon request. 
9 Only entities with a Derwent standard code are included to avoid double counting. Balanced patent search 
strings were used. 
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they might spur a shift toward EV technologies (Sen et al., 2017), especially in cases where 

incumbent technologies approach technological boundaries. Although how these policies 

impact innovation in incumbent technologies remains unresolved, they represent an alternative 

explanation for either a decrease or an increase in ICE vehicle innovation activity. We 

computed the stringency of fuel economy regulation by taking the inverse of the average fuel 

consumption of new light-duty vehicles multiplied by 100; thus, higher values signal higher 

stringency. We preferred realized fuel economy over targets because the former is comparable 

across countries and mirrors the actual impact of diversely designed regulations. Obviously, not 

every firm is equally impacted by regulations in various markets. Therefore, we weighted 

regulation stringency with firm-specific production shares in respective markets.10 

Finally, we controlled for the announcement of long-term phase-out targets for ICEs. Phase-

out policies can be considered a form of demand-pull policy due to their impact on market 

expectations (Rogge and Johnstone, 2017). However, during our observation period, demand-

pull policies focused on the deployment of EVs, while phase-out announcements remained 

mostly aspirational. Hence, we do not expect phase-out announcements to be a relevant 

mechanism. However, to disentangle potential effects, we explicitly used a control variable. We 

captured phase-out targets with dummies, signifying whether phase-out targets have been 

announced, and weighted them with firms’ production shares in respective markets.11 Tables 

A4 and A5 provide an overview of descriptive statistics and pairwise correlations for the 2009–

2020 time horizon.  

3.4 Empirical Strategy 

To test our hypotheses regarding the impact of demand-pull and technology-push policies on 

firms’ ICE innovation activities, we used a fixed effects Poisson model (FEP) with clustered 

robust standard errors (Cameron and Trivedi, 2013). Since unobserved firm characteristics 

likely impact patenting in incumbent technologies, we prefer FEP over a fixed effects negative 

binomial model, which fully captures firm-level fixed effects only under certain conditions 

(Allison and Waterman, 2002; Guimarães, 2008). In the main models, we conducted our 

 
10 Production shares are calculated relative to production in covered markets (China, the EU-27, Japan, the USA, 
Argentina, Brazil, Chile, Egypt, Malaysia, Mexico, Peru, the Philippines, the Russian Federation, and Ukraine). 
Including production volumes in other markets would entail the assumption that other markets are unregulated, 
which might bias our results. This also prevents us from accounting for FTAs. To avoid endogeneity of weights, 
weights are based on 2009 data and kept constant. 
11 Countries with an announced phase put target are assigned a value of 1, and 0 otherwise. We account for FTAs 
(i.e., EEA and NAFTA) by aggregating phase-out policies and production shares. To aggregate phase put 
policies on the FTA level, we weight country-level dummies with GDP shares on the FTA. To avoid 
endogeneity, we draw on 2009 data and keep weights constant. 
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estimations using scaled patent counts retrieved by the balanced identification strategy with the 

time horizon of 2009–2020. To test the robustness of our results, we repeated our analysis using 

alternative patent identification strategies and unscaled patent counts as the dependent variable. 

Moreover, we extended our sample to 2001–2020 at the cost of a slightly weaker measurement 

of technology-push policies (see Section 4.1 for details) and dropping fuel economy regulation 

as a control due to data constraints. In addition, we tested the influence of potential 

multicollinearity. To avoid omitted variable bias, we included time-fixed effects and controls 

employed by previous literature in all models.  

To ensure the reliability of our results, we addressed endogeneity concerns. Demand-pull and 

technology-push policies have the potential to be somewhat endogenous (e.g., if policymakers 

consider developments in ICE technology when implementing policies). We addressed this 

issue in two ways. First, we lagged all explanatory variables by one year to avoid simultaneity, 

as is common practice in policy research. Second, following Li et al. (2021), we operationalized 

demand-pull and technology-push policies based on a higher level (national) than the dependent 

variables (firm) and subsequently tested for dynamic endogeneity by estimating the effect of 

lagged incumbent innovation on policy variables (Table A.6, Model S1, and Model S2). 

Significant coefficients would signal a substantial risk of endogeneity, which was not found in 

our case.  

The measurement of EV demand-pull policies is potentially particularly vulnerable to 

endogeneity because the innovation activity of OEMs might impact the competitiveness of EVs 

and, in turn, the effectiveness of demand-pull policies. Therefore, we additionally used the two-

step IV control function approach for Poisson regression models suggested in Wooldridge 

(2002) to test for endogeneity of demand-pull policies (for a recent application, see 

Dechezleprêtre and Glachant, 2014). In the first step, we regressed EV demand-pull policies on 

instrument variables, EV technology-push policies, and controls. As instrument variables, we 

used installed on-grid wind power and solar photovoltaic capacity. These are suitable 

instruments because (1) market creation for renewable energy technology is unlikely to impact 

innovation in automotive technology, and (2) to tackle the grand challenge of climate change, 

the diffusion of renewable energies is heavily supported alongside the diffusion of electric 

vehicles. From a statistical viewpoint, the variables are correlated with Pearson correlation 

coefficients of EV demand-pull policies, with wind and solar photovoltaic instrument variables 

of 0.434 and 0.541, respectively. In the second step, the residuals of the first-stage regression 

were included in the main model. A significant coefficient for Residuals stage 1 would lead to 

the rejection of the null hypothesis: EV demand-pull policies are exogenous. The coefficient is 
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not significantly different from zero, and the null hypothesis is therefore not rejected (i.e., 

endogeneity must not be assumed; see Table A.7, Model S3). 

4 Results 

Table 1 shows the results of the main FEP regression models, which we use as the basis for 

discussing the outcome of our hypothesis tests. We first calculated a baseline model that 

included only controls (Model 1). Subsequently, we added the independent variables step by 

step. To analyze the interplay of demand-pull and technology-push policies, we included an 

interaction term (Model 5). The Akaike information criterion indicates that including the 

independent variables improves the fit of the regression models and that the full model with the 

interaction term (Model 5) best describes our data.  

Hypothesis H1 proposed that technology-push policies for EVs are positively related to 

technology-specific innovation activities in ICE vehicles. In contrast to our hypothesis, Models 

2 and 4 show negative coefficients (β = -0.000259; β = -0.000415), but neither is statistically 

significantly different from zero (p > 0.1). Hence, the models without the interaction term 

provide no support for H1. However, in Model 5, with an interaction term between technology-

push and demand-pull policies, we find a positive and highly significant coefficient for EV 

technology-push policies (β = 0.0023, p < 0.001). This suggests that technology-push policies 

positively affect innovation in ICE vehicles, in line with H1, but that the effect depends on the 

level of complementary demand-pull policies. Thus, the statistical insignificance of the 

coefficients in Models 3 and 4 may be due to divergent effects depending on the magnitude of 

demand-pull policies. In our test of hypothesis H3 below, we explain the interaction term in 

more detail. 

Hypothesis H2 suggested that demand-pull policies for EVs are negatively linked to technology-

specific innovation activities in ICE vehicles. We find unambiguous support for this hypothesis 

in all models (Models 3–5). Model 4 without the interaction term (β = -6.62e-07, p < 0.001) 

shows a very highly significant and negative coefficient. The coefficient for EV demand-pull 

policies in Model 4 can be directly interpreted as semi-elasticity. Accordingly, the results 

indicate that an increase of 100,000 units in demand-pull policies leads to a decrease in ICE 

vehicle patenting by 6.22%. It is worthy of note that the statistically highly significant 

(p < 0.001) coefficient in Model 5 with the interaction term (β = -5.25e-07) is lower than in 
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Model 4 (β = -6.62e-07). This suggests that the strength of the demand-pull policy effect partly 

depends on complementary technology-push policies. 

Hypothesis H3 posited that technology-push and demand-pull policies for EVs interact and that 

their joint effect is negatively related to technology-specific innovation activities in ICE 

vehicles. In support of this hypothesis, Model 5 shows a negative and highly significant 

coefficient for the interaction term (β = -2.86e-09, p < 0.001). In addition, the coefficient of EV 

technology-push policies is positive (β = 0.0023), while that of the EV demand-pull policies is 

negative (β = -5.25e-07), and both coefficients are statistically significant at a very high level 

(p < 0.001). Beyond the negative interaction effect, these results highlight two aspects. 

First, both the magnitude and direction of the impact of EV technology-push policies on 

innovation in the incumbent technology depend on complementary EV demand-pull policies. 

Due to the positive coefficient of technology-push policies for EVs and the negative coefficient 

of the interaction with EV demand-pull policies, the impact of technology-push policies highly 

depends on the level of demand-pull policies. When EV technology-push policies are not 

complemented by demand-pull policies (EV demand-pull policies = 0), an increase of one unit 

leads to an increase of 0.23% in incumbent innovation activity. However, the positive effect is 

reduced when demand-pull policies for EVs are implemented (> 0). Eventually, when demand-

pull policies surpass 804,195.8 units, the overall effect direction switches to a negative impact 

(i.e., each unit increase in EV technology-push policies leads to lower innovation activity in the 

incumbent technology). To illustrate, demand-pull policies(t-1) exceeded this threshold for VW 

in 2018, Mazda in 2019, and Renault in 2020. 

Second, the negative impact of EV demand-pull policies on innovation in the incumbent 

technology also depends on complementary EV technology-push policies, but only in 

magnitude, as both the coefficients of the demand-pull policies and the interaction are negative. 

In particular, the impact of EV demand-pull policies is intensified by increasing complementary 

technology-push policies. Model 5 indicates that an increase of 100,000 units in demand-pull 

policies leads to a decrease in ICE vehicle patenting by 5.25% when no technology-push 

policies are implemented. This effect is strengthened by 0.54% when technology-push policies 

increase by one unit.  
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Table 1: Results of the main model (FEP with scaled ICE patents from balanced 

identification strategy as dependent variable) 

VARIABLES Model 1 Model 2 Model 3 Model 4 Model 5 

Firm size(t-1) 

 

0.00132 0.00130 0.00183† 0.00180† 0.00161† 
(0.00113) (0.00112) (0.000972) (0.000947) (0.000845) 

R&D intensity(t-1)  

 
1.065 1.054 0.123 0.0940 1.645 
(3.198) (3.122) (2.823) (2.711) (2.929) 

Financial performance(t-1) 

 
0.603*** 0.604*** 0.535*** 0.536*** 0.498*** 
(0.117) (0.114) (0.121) (0.118) (0.0966) 

Slack resources(t-1) 

 
-0.00208 -0.00238† -0.00109 -0.00161 -0.00207† 
(0.00145) (0.00134) (0.00146) (0.00108) (0.00114) 

ICE knowledge stock(t-1) 

 
9.33e-05* 9.83e-05* 0.000112** 0.000121** 0.000142** 
(4.05e-05) (4.57e-05) (4.01e-05) (4.56e-05) (4.73e-05) 

R&D cooperation(t-1) 

 
0.0315*** 0.0321*** 0.0255*** 0.0263*** 0.0259*** 
(0.00703) (0.00651) (0.00756) (0.00684) (0.00643) 

Environmental uncertainty(t-1) 

 
-0.798† -0.880* -0.520 -0.653† -0.499 
(0.414) (0.409) (0.371) (0.379) (0.363) 

Fuel economy regulation(t-1) 

 
0.119 0.129 0.136 0.155 0.194 
(0.137) (0.151) (0.117) (0.135) (0.138) 

Phase-out announcements(t-1) 

 
0.568** 0.540* 0.0944 0.0389 -0.330 
(0.216) (0.222) (0.342) (0.375) (0.368) 

EV technology-push policies(t-1) 

 
 -0.000259  -0.000415 0.00230*** 
 (0.000782)  (0.000701) (0.000666) 

EV demand-pull policies(t-1) 

 
  -6.51e-07*** -6.62e-07*** -5.25e-07*** 
  (1.78e-07) (1.87e-07) (1.45e-07) 

EV technology-push policies(t-1)*  
EV demand-pull policies (t-1) 

    -2.86e-09*** 
    (7.59e-10) 

Observations 293 293 293 293 293 
Number of firms 28 28 28 28 28 
Year fixed effects Yes Yes Yes Yes Yes 
Firm fixed effects Yes Yes Yes Yes Yes 
AIC 5,111 5,109 4,826 4,816 4,528 

Robust standard errors in parentheses: *** p < 0.001, ** p < 0.01, * p < 0.05, † p < 0.1 

4.1 Robustness Tests 

To test the robustness of our results, we conducted several additional analyses. First, we 

replicated our main model analyses (Models 4 and 5) using scaled patent counts based on 

alternative identification strategies as the dependent variable because the patent identification 

approach might significantly influence econometric results (Bruns and Kalthaus, 2020). In the 

main models, we used a search string that balances the false inclusion of unrelated patents and 

the false exclusion of relevant patents. We tested the robustness of our results using two 

alternative identification strategies: (1) a precise strategy that emphasizes correct identification 

but falsely excludes more patents (Table 2, Models 6 and 7), and (2) a comprehensive strategy 

with a broader coverage that allows more falsely identified patents (Table 2, Models 8 and 9). 

The results for EV demand-pull policies and the interaction term are fully robust. While in 
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Model 9, the coefficient of EV technology-push policies is also robust, in Model 7, the 

coefficient remains positive but is no longer statistically significant (p > 0.1). Drawing on 

Model 9, we test at which values of EV demand-pull policies the coefficient of technology-push 

policies changes its sign due to the interaction with EV demand-pull policies. Based on these 

results, the effect direction becomes positive when complementary EV demand-pull policies 

reach 734,265.73 units, which is reasonably close to the 804,195.8 units based on the main 

results of Model 5.  

Second, we tested the robustness of our results to unscaled patent counts as dependent variables 

(Table 2). The scaling factor approach controls for firms’ propensity to patent but might 

unintendedly cancel out inter-firm differences stemming from research productivity. Hence, a 

robustness test is advisable (Luetkehaus, 2024). The test yields results that are in line with the 

conclusions of our hypothesis tests (Models 10 and 11), except that the coefficient for EV 

technology-push policies is positive but no longer statistically significant in Model 11. 

Accordingly, this robustness test does not support a positive effect of EV technology-push 

policies at lower levels of supplementary demand-pull policies.  

Third, in the main models, we used an integrated approach to measure EV demand-pull policies. 

To test whether our results hold when using alternative operationalizations of EV demand-pull 

policies, we reran our models using only the output measure of demand-pull policies (i.e., new 

registrations of EVs; Table 3, Models 12 and 13) and only using the input measure (i.e., 

demand-pull policy mix quality; Table 3, Models 14 and 15). While the output-based measure 

emphasizes the effectiveness of policies in market creation, the input-based measure highlights 

the qualitative characteristics of the policies. All results are robust, but some significance levels 

are lower in Models 14 and 15 compared to the main analysis. 
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Table 2: Robustness tests for alternative measurements of the dependent variable (FEP with scaled ICE patent counts from the precise 

[Models 6 and 7] and comprehensive [Models 9 and 10] identification strategies, as well as unscaled patent counts [Models 11 and 12] as the 

dependent variable 

VARIABLES Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 

Firm size(t-1) 

 

0.00285** 0.00264** 0.00177 0.00157 0.00179† 0.00185* 
(0.000935) (0.000839) (0.00121) (0.00107) (0.000943) (0.000886) 

R&D intensity(t-1)  

 
-1.689 0.547 0.811 2.296 2.136 2.477 
(2.528) (2.776) (3.100) (3.389) (2.941) (3.012) 

Financial performance(t-1) 

 
0.550*** 0.523*** 0.362** 0.313** 0.691*** 0.651*** 
(0.134) (0.0976) (0.122) (0.0992) (0.154) (0.148) 

Slack resources(t-1) 

 
-0.00391** -0.00436*** -0.00178† -0.00230* -0.00157 -0.00181 
(0.00124) (0.00119) (0.00100) (0.00107) (0.00163) (0.00154) 

ICE knowledge stock(t-1) 

 
0.000191* 0.000205*** 0.000107* 0.000128* 3.74e-05 5.34e-05 
(7.66e-05) (5.62e-05) (4.78e-05) (5.18e-05) (4.47e-05) (5.52e-05) 

R&D cooperation(t-1) 

 
0.0325*** 0.0318*** 0.0214** 0.0205** 0.0377*** 0.0376*** 
(0.00671) (0.00612) (0.00802) (0.00766) (0.00638) (0.00654) 

Environmental uncertainty(t-1) 

 
-1.438** -1.328** -0.441 -0.233 -1.029* -0.974* 
(0.483) (0.406) (0.385) (0.357) (0.464) (0.482) 

Fuel economy regulation(t-1) 

 
0.135 0.190 0.206 0.247† 0.106 0.143 
(0.128) (0.138) (0.149) (0.150) (0.102) (0.114) 

Phase-out announcements(t-1) 

 
-0.00108 -0.405 -0.243 -0.625† -0.0654 -0.272 
(0.376) (0.385) (0.329) (0.333) (0.300) (0.314) 

EV technology-push policies(t-1) 

 
-0.00272 0.00107 -0.000542 0.00210*** -3.93e-05 0.00119 
(0.00252) (0.00160) (0.000683) (0.000629) (0.000577) (0.000740) 

EV demand-pull policies(t-1) 

 
-6.42e-07*** -4.76e-07*** -7.38e-07*** -6.18e-07*** -5.32e-07*** -5.20e-07*** 
(1.84e-07) (1.43e-07) (1.90e-07) (1.37e-07) (1.48e-07) (1.43e-07) 

EV technology-push policies(t-1)*  
EV demand-pull policies (t-1) 

 -3.45e-09***  -2.86e-09***  -1.35e-09* 
 (7.49e-10)  (7.80e-10)  (6.43e-10) 

Observations 286 286 293 293 293 293 
Number of firms 27 27 28 28 28 28 
Year fixed effects Yes Yes Yes Yes Yes Yes 
Firm fixed effects Yes Yes Yes Yes Yes Yes 
AIC 3,255 3,082 6,138 5,742 5,696 5,602 

Robust standard errors in parentheses: *** p < 0.001, ** p < 0.01, * p < 0.05, † p < 0.1 
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Table 3: Robustness tests for demand-pull policies measured as new registrations of EVs 

or demand-pull policy quality (FEP with ICE patents from balanced identification 

strategy as dependent variable) 

VARIABLES Model 12 Model 13 Model 14 Model 15 

Firm size(t-1) 

 

0.00181† 0.00159† 0.00179† 0.000508 
(0.000942) (0.000843) (0.00102) (0.00114) 

R&D intensity(t-1)  

 
0.102 1.676 -0.0418 -0.579 
(2.706) (2.917) (2.514) (1.913) 

Financial performance(t-1) 

 
0.533*** 0.493*** 0.546*** 0.417*** 
(0.118) (0.0952) (0.116) (0.107) 

Slack resources(t-1) 

 
-0.00158 -0.00206† -0.00167† -0.00187 
(0.00108) (0.00114) (0.000958) (0.00116) 

ICE knowledge stock(t-1) 

 
0.000122** 0.000145** 0.000133** 0.000263*** 
(4.57e-05) (4.77e-05) (4.64e-05) (4.17e-05) 

R&D cooperation(t-1) 

 
0.0261*** 0.0258*** 0.0204** 0.0253*** 
(0.00685) (0.00640) (0.00757) (0.00486) 

Environmental uncertainty(t-1) 

 
-0.647† -0.493 -0.729† -0.501 
(0.381) (0.369) (0.402) (0.457) 

Fuel economy regulation(t-1) 

 
0.155 0.193 0.128 0.0357 
(0.135) (0.137) (0.114) (0.102) 

Phase-out announcements(t-1) 

 
0.0345 -0.334 0.306 0.194 
(0.378) (0.367) (0.233) (0.239) 

EV technology-push policies(t-1) 

 
-0.000429 0.00228*** -0.000345 0.00179** 
(0.000700) (0.000652) (0.000630) (0.000567) 

EV demand-pull policies – registrations(t-1) -5.85e-07*** -4.57e-07***   
(1.67e-07) (1.28e-07)   

EV technology-push policies(t-1)*  
EV demand-pull policies – registrations (t-1) 

 -2.55e-09***   
 (6.56e-10)   

EV demand-pull policies – quality(t-1)   -7.08e-08** -3.47e-08† 
  (2.60e-08) (1.83e-08) 

EV technology-push policies(t-1)*  

EV demand-pull policies – quality (t-1) 

   -2.22e-10*** 
   (6.39e-11) 

Observations 293 293 293 293 
Number of firms 28 28 28 28 
Year fixed effects Yes Yes Yes Yes 
Firm fixed effects Yes Yes Yes Yes 
AIC 4,810 4,514 4,713 4,295 

Robust standard errors in parentheses: *** p < 0.001, ** p < 0.01, * p < 0.05, † p < 0.1 

Fourth, we extended the time frame of our analysis to cover the 2001–2020 period, which 

allows us to study the years before the uptake of EV diffusion starting in 2010 (Table 4). With 

this, we significantly increased the number of observations but imposed two limitations: (1) 

Funding information for scientific publications is only available from 2009 onwards; therefore, 

we construct the variable EV technology-push policies extended, drawing on all scientific 

publications on EVs instead of those containing funding information.12 Nevertheless, the 

 
12 We used an approach similar to Luetkehaus (2024) that uses fractional counts of institutional addresses to 
assign an article to one or several countries. 
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resulting measure EV technology-push policies extended is highly correlated with EV 

technology-push policies, with a pairwise correlation of 0.991 (see Table A.5). (2) The 

underlying data for fuel economy regulation were only available from 2005 onwards, as such, 

the control had to be excluded in a fully extended sample. We report estimation results for both 

using EV technology-push policies extended (Models 16 and 17) and, additionally, dropping 

fuel economy regulation (Models 18 and 19). The conclusions from the main models regarding 

demand-pull policies and the policy interaction term are robust, as the respective coefficients 

are all statistically significant, at least at a moderate level (p < 0.05). The coefficients for EV 

technology-push policies extended are positive in all models with policy interaction but not 

statistically significant (p > 0.1). 

Table 4: Robustness tests for extended sample (FEP with scaled ICE patents from 

balanced identification strategy as dependent variable) 

VARIABLES Model 16 Model 17 Model 18 Model 19 

Firm size(t-1) 

 
0.000199 0.000329 0.000148 0.000366 
(0.000971) (0.000863) (0.000747) (0.000664) 

R&D intensity(t-1)  

 
3.265 4.089 2.055 2.515 
(3.602) (3.416) (3.618) (3.316) 

Financial performance(t-1) 

 
0.430*** 0.365*** 0.423* 0.359* 
(0.121) (0.104) (0.164) (0.143) 

Slack resources(t-1) 

 

-0.00278** -0.00262* -0.00252++ -0.00225++ 
(0.00105) (0.00110) (0.00131) (0.00119) 

ICE knowledge stock(t-1) 

 
0.000171** 0.000179*** 0.000190** 0.000184** 
(5.82e-05) (5.28e-05) (6.92e-05) (6.39e-05) 

R&D cooperation(t-1) 

 
0.0184* 0.0193** 0.0168* 0.0174* 
(0.00736) (0.00628) (0.00776) (0.00759) 

Environmental uncertainty(t-1) 

 
-0.260 -0.271 0.105 0.186 
(0.584) (0.597) (0.479) (0.470) 

Fuel economy regulation(t-1) 

 
0.105 0.142   
(0.156) (0.167)   

Phase-out announcements(t-1) 

 
0.000651 -0.386 0.122 -0.226 
(0.441) (0.437) (0.334) (0.250) 

EV technology-push policies – extended(t-1) 

 
-0.000376 0.00138 -9.79e-05 0.00180 
(0.000948) (0.000993) (0.000947) (0.00115) 

EV demand-pull policies(t-1) 

 
-7.17e-07*** -4.57e-07* -7.90e-07*** -5.19e-07* 
(1.83e-07) (1.92e-07) (2.06e-07) (2.46e-07) 

EV technology-push policies – extended(t-1)*  
EV demand-pull policies (t-1) 

 -1.75e-09***  -1.87e-09*** 
 (4.39e-10)  (5.03e-10) 

Observations 360 360 455 455 
Number of firms 29 29 29 29 
Year fixed effects Yes Yes Yes Yes 
Firm fixed effects Yes Yes Yes Yes 
AIC 8,056 7,665 11,480 11,007 

Robust standard errors in parentheses: *** p < 0.001, ** p < 0.01, * p < 0.05, † p < 0.1 
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Finally, we tested for a potential bias due to multicollinearity by estimating additional models 

that either exclude all controls (Table 5, Models 20 and 21) or controls with a pairwise 

correlation of +/- 0.3 (Table 5, Models 22 and 23), as suggested by Kalnins (2018). In our study, 

EV demand-pull policies show moderate correlations with controls for firm size, fuel economy 

regulation, and phase-out announcements. While this is plausible and to be expected, it raises 

multicollinearity concerns. Multicollinearity can inflate effect sizes and, even more severely, 

lead to changes in estimated effect directions (Kalnins, 2018). However, neither was observed 

for the coefficients of EV demand-pull policy registrations or EV demand-pull policy 

instruments (see Table 5).  

Table 5: Robustness test for multicollinearity (FEP with scaled ICE patents from 

balanced identification strategy as dependent variable) 

VARIABLES Model 7 Model 8 Model 20 Model 21 Model 22 Model 23 

Firm size(t-1) 

 
0.00180† 0.00161†     
(0.000947) (0.000845)     

R&D intensity(t-1)  

 
0.0940 1.645   1.697 2.937 
(2.711) (2.929)   (2.632) (2.777) 

Financial performance(t-1) 

 
0.536*** 0.498***   0.602*** 0.574*** 
(0.118) (0.0966)   (0.102) (0.0851) 

Slack resources(t-1) 

 
-0.00161 -0.00207†   -0.00206* -0.00266** 
(0.00108) (0.00114)   (0.00103) (0.00103) 

ICE knowledge stock(t-1) 

 
0.000121** 0.000142**   0.000107** 0.000123** 
(4.56e-05) (4.73e-05)   (3.79e-05) (3.75e-05) 

R&D cooperation(t-1) 

 
0.0263*** 0.0259***   0.0194* 0.0199** 
(0.00684) (0.00643)   (0.00766) (0.00725) 

Environmental 
uncertainty(t-1) 

 

-0.653† -0.499   -0.231 -0.0783 
(0.379) (0.363)   (0.366) (0.327) 

Fuel economy 
regulation(t-1) 

 

0.155 0.194     
(0.135) (0.138)     

Phase-out 
announcements(t-1) 

 

0.0389 -0.330     
(0.375) (0.368)     

EV technology-push 
policies(t-1) 

 

-0.000415 0.00230*** 0.000351 0.00232*** -0.000311 0.00235*** 
(0.000701) (0.000666) (0.000461) (0.000472) (0.000679) (0.000576) 

EV demand-pull 
policies(t-1) 

 

-6.62e-07*** -5.25e-07*** -6.56e-07*** -4.70e-07*** -6.39e-07*** -4.29e-07*** 
(1.87e-07) (1.45e-07) (1.61e-07) (1.31e-07) (1.76e-07) (1.25e-07) 

EV technology-push 
policies(t-1)* EV demand-
pull policies (t-1) 

 -2.86e-09***  -2.19e-09**  -2.69e-09*** 
 (7.59e-10)  (7.06e-10)  (6.31e-10) 

Observations 293 293 320 320 293 293 
Number of firms 28 28 28 28 28 28 
Year fixed effects Yes Yes Yes Yes Yes Yes 
Firm fixed effects Yes Yes Yes Yes Yes Yes 
AIC 4,816 4,528 6,040 5,813 4,975 4,692 

Robust standard errors in parentheses: *** p < 0.001, ** p < 0.01, * p < 0.05, † p < 0.1 
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5 Discussion 

This paper investigated whether innovation policies in alternative technologies contribute to 

technology decline by influencing firms’ innovation activities in incumbent technologies. 

Specifically, we quantitatively analyzed the influence of technology-push and demand-pull 

policies on the innovation activity of 29 publicly listed automotive firms in the context of the 

transition from ICE to EV cars between 2009 and 2020, gleaning three major findings. First, 

demand-pull policies negatively correlate with firms’ innovation activity in incumbent 

technologies. Second, we uncovered robust evidence that the interaction between demand-pull 

and technology-push policies negatively correlates with firms’ innovation activity in incumbent 

technologies. Third, technology-push policies might increase firms’ innovation activity in 

incumbent technologies; however, their effect diminishes and switches direction when 

combined with strong demand-pull policies.  

5.1 Contributions to the Scientific Literature 

Our findings make three contributions to the literature. First, we show quantitatively that policy 

mixes with instruments for supporting new technologies (e.g., technology-push and demand-

pull policies) also contribute to technology decline by inducing firms to reduce innovation 

activity in incumbent technologies. This confirms the suggestion by Kivimaa and Kern (2016) 

that one policy mix could contribute to both the “creation” of a technological innovation system 

(TIS) around an emerging technology and the “destruction” of the incumbent technology’s TIS.  

More specifically, our findings suggest that policy mixes that support key functions in the 

development of a new TIS, such as resource mobilization and market creation (Bergek and 

Jacobsson, 2003), might also influence key processes in the decline of the incumbent TIS, such 

as resource demobilization and guidance toward exit (Bento et al., 2021). For example, the 

significant correlation between stronger demand-pull policies and less innovation activity in the 

incumbent technology supports our argument that such policies induce firms to withdraw 

resources from the incumbent technology, contributing to resource demobilization. Our 

findings on the interaction effect between strong technology-push and demand-pull instruments 

also support the argument that policy mixes with these characteristics negatively influence 

managers’ expectations about the incumbent technology’s future, contributing to guiding them 

toward exiting the incumbent technology. Therefore, to fully understand the behavior of 

incumbent firms, future research on policy mixes for deliberate technology decline should 
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consider the role played by instruments supporting new technologies besides instruments 

addressing incumbent technologies, such as phase-outs and bans. 

Second, we also contribute to the literature on innovation policy by demonstrating that the effect 

of technology-push policies on firms’ innovation activities in the incumbent technology can be 

ambiguous. Prior research has shown that technology-push policies are linked to increases in 

firms’ innovation activities in new technologies (e.g., Costantini et al., 2017). Here, our findings 

suggest that such policies could also be linked to increased innovation activities by firms in 

incumbent technologies when combined with weak demand-pull policies. Although this finding 

may be unsurprising, given the well-documented history of incumbents improving old 

technologies in order not to fall behind across many technological races (De Liso et al., 2023), 

it has major implications. For instance, it advises caution when applying the notion that 

innovation policies should be sequenced, starting with a strong emphasis on technology-push 

and, in later stages, adding demand-pull (Albrecht et al., 2015; Pakizer et al., 2023). Our 

findings suggest that concentrating efforts on technology-push policies, as was the case in 

Germany and Japan (Narassimhan et al., 2024), may have unintended policy outcomes that 

reduce the effectiveness of technology-push policies as transition policies and potentially delay 

technological substitution. Such an effect might partly explain why the transition to EVs has 

been so slow.  

More broadly, our study highlights that to understand the full impact of innovation policies on 

technological change, one must study their impact on both emerging and incumbent 

technologies. If technology-push policies for emerging technologies indeed stimulate 

innovation in incumbent technologies, research that exclusively measures the impact of such 

policies only on emerging technologies might overestimate their effect on technological change. 

On the contrary, studies that exclusively investigate the impact of demand-pull policies only on 

emerging technologies might underestimate the potential of such policies by neglecting the 

positive impact of such policies on the decline of incumbent technologies. 

Third, we further contribute to the literature on sustainability transitions by demonstrating that 

the joint use of technology-push and strong demand-pull policies is best suited to persuade 

incumbents to withdraw from legacy technology. This underscores the importance of 

considering the joint effects of simultaneous policy instruments (Rogge and Reichardt, 2016) 

and suggests that technology-push policies should not be phased out too early since they unfold 

synergies with demand-pull technologies and support the technology-decline effect. The latter 

finding complements previous research that suggests that using technology-push policies in 
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combination with demand-pull policies yields superior outcomes in several dimensions, such 

as innovation (Costantini et al., 2017) and job creation (Nuñez-Jimenez et al., 2022). Moreover, 

the finding that innovation policies are an effective means of incentivizing firms to withdraw 

from incumbent technologies has important implications for policymaking for sustainability 

transitions. Previous work has shown that powerful incumbents tend to resist policies that 

mandate the decline or phase-out of their legacy technologies (Liu and Chao, 2022; Trencher 

et al., 2019). If innovation policies, as a side effect, contribute to technology decline, this has a 

positive impact on transitions since (a) incumbents might not fight innovation policies given 

that their impact on decline is not directly obvious, and (b) over time, the decline in incumbent 

technologies might weaken the power of and reduce resistance by incumbent firms. Indeed, our 

findings suggest that the waning importance of incumbent technologies might force incumbent 

firms to move toward a more proactive policy strategy as policy stimulates demand for 

emerging technologies, which may help overcome battles with incumbents over technology 

phase-outs (Wesseling et al., 2015a). 

5.2 Practical Implications 

In addition to its contributions to the literature, our study has important implications for 

policymakers. First, policymakers should clearly define the goals of their policy mix and 

consider the side effects of the policy instruments they use. For instance, our study shows that 

demand-pull policies are instruments well suited to inducing technology decline in innovation 

activity in the incumbent technologies. This can be problematic when technology substitution 

is not the goal and, instead, policymakers wish to promote the use of multiple technologies 

(e.g., to increase the resilience of complex systems like the electricity grid). If applied to the 

energy sector, innovation policies for one technology type (e.g., solar energy) may 

unintentionally lead to a decline in innovation in other energy technologies. While this is 

beneficial if policymakers seek to achieve decarbonization (e.g., by reducing fossil energy 

technologies, such as gas and coal), it may be problematic if reduced innovation in alternative 

renewable energy technologies is the outcome.  

Second, our findings suggest that policymakers should combine demand-pull and technology-

push policies to accelerate technological substitution. By stimulating a “sail ship effect,” 

technology-push policies might increase firms’ innovation efforts in incumbent technology, 

except when combined with demand-pull policies. While this reduces the effectiveness of 

technology-push instruments as transition policies, policymakers can also purposefully exploit 

the potential of technology-push policies to induce firms to boost their innovation activity in 
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the dominant technology. For example, if sustainable technology alternatives are competing, it 

might be beneficial to increase the threat of substitution to the dominant technology design 

through R&D support for less mature technologies in order to stimulate innovation in the 

technology field. 

5.3 Limitations and Future Research 

Our study has several limitations that offer avenues for future research. First, one limitation of 

our study is that we studied automotive OEMs, which are large companies that have 

traditionally pursued multiple technologies (e.g., using diesel and gasoline technologies 

simultaneously). The effects of demand-pull and technology-push policies on incumbent 

technology may be different for specialized firms, such as component suppliers, which may 

defend themselves against emergent technologies since they may not possess the necessary 

resources to adapt to the technological shift. Consequently, our findings may only apply to 

comparable companies. Future research could extend our findings by analyzing companies that 

may be more inclined to increase innovation in incumbent technologies as a defense 

mechanism.  

Second, future research could investigate the effectiveness of individual innovation policy 

instruments (e.g., tax credits) on technology decline to learn how specific instruments shape 

firms’ strategic responses to technology innovation. Our paper addresses technology-push and 

demand-pull measures without isolating the effect of specific instruments. In this regard, the 

study of whether general R&D funding, as provided in the UK, yields similar effects for 

technology decline as technology-specific technology-push instruments may yield important 

insights.  

Third and finally, we bring forth different explanations for why firms may respond to 

innovation policies either by embracing incumbent technology decline or defending against it, 

with many alternatives possible between these two ends of the continuum. Our reasoning draws 

on prior research to formulate different arguments for our hypotheses, but this study cannot 

attribute the effects to individual mechanisms. This opens an avenue for future work, possibly 

qualitative, to shed light on the mechanisms by which innovation policies lead to technology 

decline. In this context, given that our analysis did not yield unambiguous results, we 

particularly call for future work on technology-push policies to better understand their impact 

on incumbent technologies. 
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Appendix 

Table A.1: Firm sample with Derwent standard codes 

Firm DII Code DII codes of consolidated subsidiaries (see Luetkehaus, 

2024) 

AVTOVAZ ATVZ-C (until 2017) none 

BMW BAYM-C BMCC-C (1994–1999) 

BYD BYDB-C none 

DAIMLER DAIM-C CHRY-C (1998–2006); DTDI-C (since 2000); MOTU-C 
(1985–2002); MESR-C (1993–1999) 

FCA FIAT-C COUA-C; ITMA-C (until 2017); AUTV-C (2001–2017); 
CHRY-C (since 2011) 

FORD FORD-C BMCC-C (2000–2007) 

GAC GAIG-C none 

GM GENK-C OPEL-C (until 2016); HUGA-C (1985–2002); DELP-C (until 
1998) 

GREAT WALL GRWA-C none 

HONDA HOND-C YACH-C (since 2006) 

HYUNDAI HYMR-C KIAK-C (1999–2010) 

ISUZU ISUZ-C none 

JAC JIAN-C none 

KIA KIAK-C (consolidated by 
Hyundai 1998–2010) 

none 

LIFAN  LIFG-C none 

MAHINDRA & 
MAHINDRA 

MAHI-C SSAN-C (since 2011) 

MAZDA MAZD-C none 

MITSUBISHI MITM-C none 

NISSAN NSMO-C JATC-C 

PORSCHE PORS-C (until 2011) none 

PSA CITR-C FAUR-C (1998–2014) 

RENAULT RENA-C ATVZ-C (since 2017) 

SAIC SAMO-C   

SSANGYONG SSAN-C (until 2010) none 

SUBARU FUJH-C none 

SUZUKI SUZM-C none 

TATA TTTA-C AND 
AN=(“Tata Motors Ltd” 
OR “Jaguar Land Rover” 
OR “Jaguar Cars”) 

none 

TOYOTA TOYT-C DAHM-C (since 1998); HINM-C (since 2001); MSWA-C 
(since 2017) 

VW VOLS-C NSUM-C; SKOD-C (since 1994); SCNI-C (since 2008); 
MAUG-C (since 2011); RENK-C (2011–2019); PORS-C 
(since 2012) 
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Table A.2: Comprehensive, balanced, and precise search strings for ICE patent 

identification 

  Compre

hensive 

Balanced Precise 

Index dates 01/01/1990 to 07/31/2022 x x x 

Firm 

identifier 

(AC=(ATVZ-C OR BAYM-C OR BMCC-C OR BYDB-C OR 

DAIM-C OR CHRY-C OR DTDI-C OR MOTU-C OR 

MESR-C OR FIAT-C OR COUA-C OR ITMA-C OR AUTV-

C OR CHRY-C OR FORD-C OR GAIG-C OR GENK-C OR 

OPEL-C OR HUGA-C OR DELP-C OR GRWA-C OR 

HOND-C OR YACH-C OR HYMR-C OR KIAK-C OR ISUZ-

C OR JIAN-C OR LIFG-C OR MAHI-C OR SSAN-C OR 

MAZD-C OR MITM-C OR NSMO-C OR JATC-C OR PORS-

C OR CITR-C OR FAUR-C OR RENA-C OR SAMO-C OR 

FUJH-C OR SUZM-C OR TESM-C OR MAXW-C OR 

TOYT-C OR DAHM-C OR HINM-C OR MSWA-C OR 

VOLS-C OR NSUM-C OR SKOD-C OR MAUG-C OR 

SCNI-C OR RENK-C) OR (AC=TTTA-C AND 

AN=(“JAGUAR LAND ROVER” OR “TATA MOTORS 
LTD” OR “JAGUAR CARS”)))  

x x x 

IPC codes AND IP=(B01D-046* or B01D-053* or B01J-023* or B01J-

035* or B60k-005* or B60K-013* or B60K-015* or B60W-

010/06 or F01L-001* or F01L-013* or F01M-013/02 or 

F01M-013/04 or F01N* or F01P* or F02B* or F02D* or 

F02F* or F02M* or F02N* or F02P* or F16H*) NOT 

IP=(B60K-001* or B60K-006* or B60L-003* or B60L-007/1* 

or B60L-007/20 or B60L-011* or B60L-015* or B60L-050/1* 

or B60L-050/30 or B60L-050/40 or B60L-050/6* or B60L-

050/7* or B60L-053/2* or B60L-058/1* or B60L-058/2* or 

B60L-058/3* or B60L-058/40 or B60W-010/08 or B60W-

010/24 or B60W-010/26 or B60W-010/28 or B60W-020* or 

F17C* or H01G-011* or H01M-002* or H01M-004* or 

H01M-008* or H01M-010* or H01M-012* or H01M-050* or 

B61* or B62B* or B62C* or B62H* or B62J* or B62K* or 

B62L* or B62M* or B63* or B64*)  

x x x 

Automotive 

keywords 

AND TS=(vehicle* or car or cars or automobil* or 

automotive)  
 x x 

Technology 

specific 

keywords 

AND TS=(“internal combustion engine*” or “ic engine*” or 
“gasoline engine*” or “gasoline direct inject*” or “gdi 
engine*” or “petrol engine*” or “spark ignition engine*” or “si 
engine*” or “spark ignition direct inject*” or “sidi engine*” or 
“diesel engine*” or “compression ignition engine*” or “ci 
engine*” or “exhaust system*” or “exhaust control*” or 
“exhaust gas recirculat*” or “egr” or “catalytic converter*” or 
“turbocharg*” or “fuel tank*” or “fuel supply system*” or 
“fuel inject*”) 

  x 

Patents in the sample with priority years 2000 to 2020 163,716 104,609 46,679 

  



 

37 

Table A.3: Public institutions funding publications related to EV technology 

Country Funding agencies and programs 

China National Natural Science Foundation Of China Nsfc; Fundamental Research Funds For The Central 
Universities; National Key Research And Development Program Of China; China Postdoctoral 
Science Foundation; National Key R D Program Of China; China Scholarship Council; National 
High Technology Research And Development Program Of China; National Basic Research 
Program Of China; Natural Science Foundation Of Jiangsu Province; Ministry Of Science And 
Technology China; National Natural Science Foundation Of Guangdong Province; Beijing Natural 
Science Foundation; Hong Kong Research Grants Council; Natural Science Foundation Of 
Zhejiang Province 

United 
States 

United States Department Of Energy Doe; National Science Foundation Nsf; Office Of Naval 
Research; Nsf Directorate For Engineering Eng; United States Department Of Defense 

South 

Korea 

National Research Foundation Of Korea; Ministry Of Trade Industry Energy Motie Republic Of 
Korea; Ministry Of Education Science Technology Mest Republic Of Korea; Korean Government; 
Ministry Of Science Ict Future Planning Republic Of Korea; Korea Institute Of Energy Technology 
Evaluation And Planning Ketep; Ministry Of Education Moe Republic Of Korea; Ministry Of Trade 
Industry Energy Motie Of The Republic Of Korea; Basic Science Research Program Through The 
National Research Foundation Of Korea Nrf Ministry Of Education; National Research Foundation 
Of Korea Nrf Korea Government Msit; Korea Institute Of Energy Technology Evaluation Planning 
Ketep; Ministry Of Science Ict Msit Republic Of Korea; National Research Foundation Of Korea 
Nrf Korea Government Msip; Ministry Of Education Human Resources Development Moehrd 
Republic Of Korea; Ministry Of Trade Industry And Energy Motie Of The Republic Of Korea 

Germany Federal Ministry Of Education Research Bmbf; European Commission; German Research 
Foundation Dfg; Alexander Von Humboldt Foundation; Helmholtz Association; German Federal 
Ministry For Economic Affairs And Energy; European Commission Joint Research Centre; 
Ministry Of Economic Affairs Labour And Housing In Baden Wurttemberg; German Federal 
Ministry Of Transport And Digital Infrastructure; European Union S Horizon 2020 Research And 
Innovation Programme; Federal Ministry For Economic Affairs And Energy Bmwi 

Japan Ministry Of Education Culture Sports Science And Technology Japan Mext; Japan Society For The 

Promotion Of Science; Grants In Aid For Scientific Research Kakenhi; New Energy And Industrial 
Technology Development Organization Nedo; Japan Science Technology Agency Jst; Core 
Research For Evolutional Science And Technology Crest; Ministry Of The Environment Japan 

Italy European Commission; Ministry Of Education Universities And Research Miur; European 
Commission Joint Research Centre; European Research Council Erc; Enea Italy; Istituto Italiano Di 
Tecnologia Iit 

France European Commission; French National Research Agency Anr; Region Hauts De France; Centre 
National De La Recherche Scientifique Cnrs; European Union S Horizon 2020 Research And 
Innovation Programme; Region Auvergne Rhone Alpes; Region Bourgogne Franche Comte; 
Ademe France; Region Nouvelle Aquitaine; European Union S Horizon 2020 Research And 
Innovation Program; Region Ile De France 

India Department Of Science Technology India; Council Of Scientific Industrial Research Csir India; 
Science Engineering Research Board Serb India; University Grants Commission India; Fist Project; 
Science And Engineering Research Board; Ministry Of Electronics And Information Technology 
Government Of India; Ministry Of Skill Development And Entrepreneurship Government Of India 

Russia Russian Foundation For Basic Research Rfbr; Russian Science Foundation Rsf; Ministry Of 
Education And Science Russian Federation; Government Of The Russian Federation; Ministry Of 
Science And Higher Education Of Russian Federation; Act 211 Government Of The Russian 
Federation; Act 211 Of The Government Of The Russian Federation; Complex Program Of The 
Ural Branch Of The Russian Academy Of Sciences; Government Assignment For Scientific 
Research From The Ministry Of Science And Higher Education Of Russia; Government Of Russian 
Federation; Ministry Of Science And Higher Education Of The Russian Federation As Part Of 
World Class Research Center Program Advanced Digital Technologies; Ministry Of Science And 
Higher Education Of The Russian Federation In The Framework Of The Increase Competitiveness 
Program Of Nust Misis; Russian Academy Of Sciences; Russian Government; Russian Government 

Note. Funding agencies and programs are displayed as formatted and used in Web of Science. 
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Table A.4: Descriptive statistics with time horizon 2009–2020 

Variable Obs Mean Std. Dev. Min Max 

(1) scaled patents – balanced(t) 320 184.597 251.673 0 1,483 

(2) scaled patents – comprehensive(t) 320 245.912 326.412 0 1,723 

(3) scaled patents – precise(t) 320 93.313 143.519 0 793 

(4) patents – balanced(t) 320 209.769 254.436 0 1,587 

(5) EV demand-pull policies(t-1) 320 331,912.27 482,901.39 0 1,729,431.8 

(6) EV demand-pull policies – registrations(t-1) 320 384,129.85 553,558.48 0 1,975,029 

(7) EV demand-pull policies – quality (t-1) 320 19,363,867 13,090,202 0 41,206,468 

(8) EV technology-push policies(t-1) 320 110.063 244.51 0 1142 

(9) EV technology-push policies extended(t-1)  320 170.018 287.272 0 1,425.727 

(10) Firm size(t-1) 319 97.529 112.798 .945 501.458 

(11) R&D intensity(t-1) 302 .031 .015 .002 .088 

(12) Financial performance(t-1) 319 .03 .081 -.552 .772 

(13) Slack resources(t-1) 305 3.354 14.83 .002 184.311 

(14) ICE knowledge stock(t-1)  320 1,076.693 1,355.848 .183 6,325.853 

(15) R&D cooperation(t-1) 320 3.6 6.649 0 47 

(16) Environmental uncertainty(t-1) 312 .186 .158 .015 1.028 

(17) Fuel economy regulation(t-1) 320 13.107 4.287 0 18.315 

(18) Phase-out announcements(t-1) 320 .035 .139 0 1 

Table A.5: Pairwise correlations with time horizon 2009–2020 

Variables (1) (2) (3) (4) (5) (6) (7) (8) 

(1) scaled patents – balanced(t) 1.000        

(2) scaled patents – comprehensive(t) 0.989 1.000       

(3) scaled patents – precise(t) 0.986 0.970 1.000      

(4) patents - balanced(t) 0.535 0.585 0.504 1.000     

(5) EV demand-pull policies(t-1) 0.034 0.019 0.029 0.060 1.000    

(6) EV demand-pull policies – 
registrations(t-1) 

0.040 0.025 0.034 0.066 1.000 1.000   

(7) EV demand-pull policies – 
quality (t-1) 

0.470 0.459 0.432 0.474 0.508 0.519 1.000  

(8) EV technology-push policies(t-1) -0.168 -0.174 -0.157 -0.161 0.213 0.199 -0.302 1.000 

(9) EV technology-push policies 
extended(t-1)  

-0.099 -0.111 -0.089 -0.133 0.278 0.265 -0.235 0.991 

(10) Firm size(t-1) 0.655 0.688 0.633 0.651 0.298 0.305 0.606 -0.194 

(11) R&D intensity(t-1) 0.499 0.512 0.469 0.321 0.201 0.206 0.500 -0.113 

(12) Financial performance(t-1) 0.096 0.090 0.078 0.076 0.009 0.010 0.092 -0.003 

(13) Slack resources(t-1) -0.115 -0.115 -0.110 -0.099 0.125 0.127 0.042 0.054 

(14) ICE knowledge stock(t-1)  0.875 0.864 0.861 0.534 0.260 0.267 0.608 -0.173 

(15)) R&D cooperation(t-1) 0.265 0.335 0.229 0.875 0.061 0.066 0.400 -0.192 

(16) Environmental uncertainty(t-1) -0.301 -0.293 -0.289 -0.311 -0.354 -0.359 -0.545 0.079 

(17) Fuel economy regulation(t-1) 0.192 0.199 0.188 0.217 0.327 0.330 0.484 0.026 

(18) Phase-out announcements(t-1) -0.058 -0.060 -0.052 -0.012 0.384 0.386 0.140 -0.083 
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Table A.5: Pairwise correlations with time horizon 2009–2020 (ctd.) 

 (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) 

(1)           

(2)           

(3)           

(4)           

(5)           

(6)           

(7)           

(8)           

(9) 1.000          

(10) -0.145 1.000         

(11) -0.063 0.417 1.000        

(12) 0.002 0.024 0.021 1.000       

(13) 0.046 -0.139 -0.007 0.036 1.000      

(14) -0.085 0.740 0.550 0.038 -0.121 1.000     

(15) -0.193 0.590 0.242 0.026 -0.094 0.336 1.000    

(16) 0.028 -0.349 -0.389 0.124 0.059 -0.392 -0.233 1.000   

(17) 0.042 0.301 0.411 0.060 0.083 0.254 0.134 -0.336 1.000  

(18) -0.073 0.023 0.159 0.050 0.165 0.017 0.014 -0.136 0.212 1.000 

Table A.6: Test for dynamic endogeneity of demand-pull and technology-push policies 

(FEP) 

 Model S1 Model S2  

VARIABLES EV demand-pull policies(t) EV technology-push policies(t)  

scaled patents – 

balanced(t-1) 

 

-5.03e-05 0.000274  

(4.53e-05) (0.000885)  

Observations 318 294  
Number of firms 27 28  
Year fixed effects Yes Yes  
Firm fixed effects Yes Yes  
AIC 2.900e+06 3,330  

Robust standard errors in parentheses: *** p < 0.001, ** p < 0.01, * p < 0.05, † p < 0.1 
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Table A.7: Endogeneity test with IV control function approach (FEP with scaled ICE 

patents from balanced identification strategy as dependent variable) 

VARIABLES Model S3  

Firm size(t-1) 

 
0.00219  
(0.00184)  

R&D intensity(t-1)  

 
-0.0755  
(2.813)  

Financial performance(t-1) 

 
0.491**  
(0.186)  

Slack resources(t-1) 

 
-0.00131  
(0.00160)  

ICE knowledge stock(t-1) 

 
0.000127**  
(4.48e-05)  

R&D cooperation(t-1) 

 
0.0237*  
(0.0116)  

Environmental uncertainty(t-1) 

 
-0.581  
(0.467)  

Fuel economy regulation(t-1) 

 
0.175  
(0.120)  

Phase-out announcements(t-1) 

 
-0.0846  
(0.530)  

EV technology-push policies(t-1) 

 
-0.000505  
(0.000691)  

EV demand-pull policies(t-1) 

 
-8.58e-07  
(6.95e-07)  

Residuals stage 1 
 

2.34e-07  
(9.15e-07)  

Observations 291  
Number of firms 28  
Year fixed effects Yes  
Firm fixed effects Yes  
AIC 4,810  

Robust standard errors in parentheses: *** p < 0.001, ** p < 0.01, * p < 0.05, † p < 0. 
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