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Abstract
Deployment policies basedon economic incentives are among themost effective tools for speedingup
the diffusionof clean energy technologies. Policy instruments such as feed-in tariffs haveplayed a critical
role in driving the growth of solar photovoltaics, and could accelerate the uptake of other technologies
that are key to thedecarbonizationof energy systems.Historical experiences, however, show that failing
to adjust economic incentives to falling technology prices can fundamentally undermine these policies’
effectiveness and cost-efficiency. This paper addresses this challenge by assessing three novel policy
designs. Basedon control-theory principles, theproposedmechanismsmodify incentives in response to
changes indeployment, policy costs, or profitability for adopters.We assess the outcomes that each
policy designwouldhave achievedwhen applied toGermany’s feed-in tariff for solar photovoltaics
between2000 and2016. For this purpose,wedeveloped an agent-basedmodel that allows us to simulate
the adoptiondecisions of individual households andmedium-sized and largefirms, aswell as the
evolutionof technology prices.Our results show that responsive designs inspired by control theory
might produce policies that follow their targetsmore closely, and at a lower cost. In addition, our analysis
suggests that the studieddesigns could greatly reduce uncertainty over policy outcomes andwindfall
profits. This research alsohighlights the role of the temporal distribution of policy targets, and identifies
policy design tradeoffs, drawing relevant implications for the design of future deploymentpolicies.

1. Introduction

Deployment policies that aim to foster the uptake of
clean energy through economic incentives, such as
feed-in tariffs (FITs), investment subsidies, or tax
credits, have proved effective tools for accelerating the
growth of renewable energy technologies such as solar
photovoltaics (PV) (Jenner et al 2013, Dijkgraaf et al
2014). Similar policies could speed up the diffusion of
emerging technologies—such as energy storage or
electric vehicles—upon which many decarbonization
strategies depend (IRENA et al 2018, Rogelj et al 2018).
However, historical experiences highlight the difficulty
of adjusting incentives over time as technology prices
fall, and raise questions about the cost-efficiency of such
policies (Frondel et al2010,Vaishnav et al 2017).

As economic incentives boost adoption, learning
effects typically reduce technology costs, which con-
tributes to the effectiveness of deployment policies (i.e.
the policy’s ability to accelerate the technology’s diffu-
sion) (Bollinger and Gillingham 2014). At the same
time, as technology costs fall, if incentives are not
adjusted, investors can often reap windfall profits that
erode the policy’s cost-efficiency (i.e. the ratio between
deployment and policy cost) (Hoppmann et al 2014a).
In countries such as Spain or the Czech Republic, slow
incentive adjustments and rapid price reductions gen-
erated large windfall profits for PV adopters. These
triggered surges in deployment that sent annual policy
costs into the billions of euros, eventually leading to
the dismantling of the policies (Gürtler et al 2019).
These historical experiences, and others, demonstrate
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the need to adjust incentives adequately as technology
prices evolve in order to keep policies both effective
and cost-efficient. Although this has long been recog-
nized in both theory (Haas et al 2004) and practice
(Sijm 2002), debate continues over how to achieve
it (Wand and Leuthold 2011, Créti and Jouag 2012,
Alizamir et al 2016, Li et al 2019).

Policymakers have tried out multiple mechanisms
for adjusting the incentives of policies supporting
renewable energies (Klein et al 2008, Mendonça et al
2009, Kreycik et al 2011). The latest attempts—
responsive, automatic mechanisms—react to the
attainment of specific policy targets (e.g. deployment
milestones) by modifying incentives (e.g. reducing the
FIT), and have been used, for example, in California,
Germany, and Spain (German Parliament 2008, Span-
ish Parliament 2008, California PUC 2017). Although
the available designs of such mechanisms are better
than previous ones at keeping the policy cost-efficient,
they can also endanger its effectiveness. For instance,
while Germany and Spain avoided deployment surges
after introducing responsive, automatic adjustments
into their FITs, both countries missed their PV
deployment targets (del Río and Mir-Artigues 2012,
Bundesnetzagentur 2017a).

More recently, numerous countries have intro-
duced competitive bidding mechanisms (e.g. auc-
tions) to ascertain adequate levels of support for
renewable energies. Although competitive mechan-
isms can promote the deployment of large installa-
tions ofmature technologies successfully, such as wind
energy, they are less well suited to promoting earlier-
stage technologies for smaller-scale, distributed appli-
cations (e.g. residential energy storage, electric vehi-
cles, or renewable heating) (Winkler et al 2018). For
administratively-set incentives in policy instruments
such as investment subsidies, tax credits, or FITs, the
quest continues for a suitable mechanism to adjust
incentives over time.

To our knowledge, only a handful of studies have
quantitatively evaluated alternative policy designs to
address this challenge. Leepa and Unfried (2013)
showed with an econometric model that adjustments
responsive to changes in technology prices could be
more effective and efficient than non-responsive ones.
Grau (2014) andYaquob andYamaguchi (2015) inves-
tigated the impact of different frequencies of respon-
sive adjustments. Grau, using another econometric
model, concluded that monthly adjustments are able
to steer deployment towards policy goals, even with
sudden changes in technology prices, while Yaquob
and Yamaguchi, employing a system dynamics model,
warned that adjustments made more frequently than
monthly could slow down deployment. Pearce and
Slade (2018) developed an agent-basedmodel to reveal
that a responsive adjustment based on deployment

milestones would be more cost-efficient and less
uncertain than a linear reduction of incentives.

This study extends previous knowledge by (1)
evaluating three novel policy designs based on con-
trol-theory principles that respond not only to the
evolution of deployment or profitability but also to
policy costs; (2) explicitly analyzing the designs’ abil-
ity to curb windfall profits and reduce uncertainty
over policy outcomes; and (3) assessing alternative
ways of distributing policy targets. For this purpose,
we simulate the policy designs for the case of Ger-
many’s FIT for PV during 2000–2016 using an agent-
basedmodel.

2.Method

In this paper, we develop an agent-based model
(ABM) (see section 2.1 and details in the supplemen-
tary information (SI)) to study the adoption of PV by
households and firms under different policy scenarios
(see section 2.2). ABMs have been used extensively to
study the influence of policy on the diffusion of PV
(Haelg et al 2018, Schwarz et al 2019, Schiera et al
2019).

2.1. Agent-basedmodel
2.1.1.Model overview and outputs
Our ABM aims to represent the diffusion of PV in
Germany in order to evaluate policy designs for
adjusting the FIT between 2000 and 2016. The model
creates an artificial population of heterogeneous
households and firms that take decisions, which
determine the evolution of solar deployment, based on
their own attributes, variables in their environment,
and their interactions with other agents.

The ABM has three modules: (A) policy adjustment,
(B) adoption decision-making, and (C) technological learn-
ing, which it follows each time step (see figure 1). First,
the FIT is adjusted according to the policy design being
simulated. Second, agents decidewhether to adopt PVor
not. Third, PV prices progress along the technology’s
experience curvedependingon the added capacity.

The ABM reports the installed capacity, policy
costs, and windfall profits to adopters, which allow us
to evaluate how successful each design is at keeping the
policy (1) effective and (2) cost-efficient, and (3) to
what extent it prevents windfall profits.

Deployment ismeasured by the PV capacity instal-
led. Policy costs are the sum of PCi t, the incentives
paid to each adopter i, calculated as the present cost
of the annual FIT payments over the contract’s
duration (i.e. 20 years) since the installationmonth t (see
equation (1)). This measure neglects other costs asso-
ciated with the policy, such as administrative costs, since
historically administrative costs account for a very small
fraction of FIT payments in Germany (Netztransparenz.
de 2019).
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Policy costs arise from the difference between the
FITt and the yearly wholesale electricity market price
EPWyear for the solar generation GENi year, fed into the
grid (i.e. not self-consumed SCi). EPWyear prices are
historical prices until 2016, after which we assume a
1.5% annual increase (see SI available online at stacks.
iop.org/ERL/15/044002/mmedia) (Hoppmann et al
2014b). To discount future payments, we use the his-
torical interest rates of German bonds DGt for the
month of installation (OECD 2017). Windfall profits
WPi t, are the subsidies paid to each adopter above
those required to induce them to invest (see
section 2.1.4).

2.1.2.Model entities
There are two types of entities in the model: the
observer and potential adopters. The observer is
a system-level entity responsible for timekeeping,
global variables, policy adjustment, and technological
learning.

Potential adopters are individual, heterogeneous
agents representing the population of electricity con-
sumers in Germany. There are three categories of
agents: residential; commercial and industrial; and
utility-scale. According to their category, agents differ
in PV system sizes, self-consumption ratios, electricity
prices, discount rates, and FIT levels (see table 1).

Agents are distributed across urban and rural areas
of Germany according to the density of residential
buildings, where they receive the local annual irradia-
tion (German Census 2014, NASA 2016). In addition
to the category-dependent attributes, each agent has
unique values for production factor, environmental

awareness, and individual discount rate (see tables
S1–6 in SI).

2.1.3. Scale, temporal and spatial resolution
Due to computational power constraints, the popula-
tion of agents was scaled down to 1:1000 (i.e. one agent
in the model represents 1000 in reality), leading to
20 829 agents. Simulations ran from January 1992 to
December 2016 on amonthly basis, using 10×10 km
geographical patches.

2.1.4. Process scheduling
At each time step, the model proceeds through: (1)
policy adjustment, (2) adoption decision-making, and
(3) technological learning. The policies are in place
between April, 2000 and December, 2016—as the
historical FIT did in Germany (German Parliament
2000, BMWi 2016).

2.1.4.1. Policy adjustment
While the scheme is in place, the policy adjustment
module monitors policy outcomes and, according to
the design being simulated, corrects the FIT each
month (see section 2.2).

2.1.4.2. Consumers’ adoption decision-making
Agents decide whether to adopt or not, following a
two-step process that non-adopters undergo every
month.

Figure 1. Schematic representation of the agent-basedmodel. TheABM’smodules: (A) policy adjustment, (B) adoption decision-
making, and (C) technological learning influence each other directly and through feedback loops. Loop (I) [dotted, red line] connects
policy adjustment and adoption decision-making. A higher feed-in tariff encourages adoption, which triggers the responsive
adjustment of the feed-in tariff. Loop (II) [dotted, grey line] connects adoption decision-making and technological learning. As
installed capacity grows, the technology progresses along the experience curve, lowering prices and, in turn, increasing adoption. Loop
(III) [dotted, blue line] connects policy adjustment and technological learning. A higher feed-in tariff leads tomore installed capacity,
which pushes technology prices along their experience curve. This influences the policy adjustment directly or through the adoption
decision-makingmodule. Themodel includes exogenous variables such as the historical evolution of PVdeployment in the rest of the
world, which influences technological learning and adoption.
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Table 1.Main attributes of agents according to their category.

Type of agent Number of agents inmodela System sizeb Average solar self-consumptionc Electricity rate Average discount rated Feed-in tariff levele

Households 16 891f 0–10 kWp 30%i Historical rates for householdsj Historical lending ratek 100%

Commercial and Industrial 3853g 10–40 kWp 20%i Estimated historical ratesj Historical lending ratek 90%

Utility-scale 85h 40–10 000 kWp 40%i Historical rates for industryj Historical lending ratek 70%

a Average number of firms over several years are used to account for the variation in their populations during the years under study scaled down 1:1000.
b The relative frequency of sizes within the range for each category, which reflects the categories considered in the German feed-in tariff in 2000, follows the empirical distribution observed in solar installations between 2009 and 2016 in

Germany; see 11 in SI (Bundesnetzagentur 2017a).
c Solar self-consumption rate is the fraction of electricity generated from the solar PV system that is consumed on-site by the adopter.
d The historical lending rate for each adopter type is added to the individual discount rate of each agent.
e Fraction of the feed-in tariff received by each adopter type based on the historical ratios between the feed-in tariffs for large and small installations inGermany (Bundesnetzagentur 2017a).
f Based on the number of owner-occupied households inGermany (GermanCensus 2014).
g Average number offirms, except insurance activities of holdings, electricity, and finance firms, from2008 to 2014 and average number of farms between 2000 and 2010 inGermany (Eurostat 2017a, 2017b).
h Average number of electricity,financial, and insurance firms between 2008 and 2014 inGermany (Eurostat 2017a).
i The self-consumption rate of each agent is randomly assigned from a truncated normal distribution between 0 and 1, with the abovemean, an assumed standard deviation of 0.05 (Fraunhofer ISE 2017).
j Estimatedmonthly electricity rates based on historical values; see 13 in SI (Eurostat 2017c, 2017d).
k Historical lending rates based on long-term loans at interest rates ranging from1.4% to 9.6%; see 14 in SI (Deutsche Bundesbank 2017).
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2.1.4.2.1. Getting the idea
Agents develop the idea of installing PV when the
weighted sum of four variables exceeds a threshold of
0.5 (see equation (2) and SI). The variables represent:
(1) peer effects, measured by the fraction of adopters
among the agent’s neighbors within a radius of 1 km
(Müller and Rode 2013); (2) available information,
simulated as the available news articles about PV
through an empirically derived relation with deploy-
ment (see 15 in SI); (3) environmental awareness, as a
constant awareness between 0 and 1 from a truncated
normal distribution; and (4) the attractiveness
of investing in PV, as the IRR for the average house-
hold adopter (Rai and Robinson 2015). All four
variables range between 0 and 1, and their weights
k k k k, , ,peers info awareness attractive are model calibration
parameters
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+ +
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2.1.4.2.2. Economic evaluation
Agents with the idea of adopting perform an economic
evaluation calculating the net present value of their
installation, and adopt if it is not negative (see
equation (3))
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Alternatively, highly environmentally aware
agents—about 1.8% of the model’s population—
represent innovators who skip the economic evalua-
tion and adopt as soon as they developed the idea
(Rogers 1995). The environmental awareness thresh-
old is a calibration parameter.

Agents estimate investment costs INVi t, according
to: its system’s size PVSIZE ,i PV prices PVPRICE ,t

and scale effects SEi (see equations (4) and 16 in SI).

=INV PVSIZE PVPRICE SE , 4i t i t i, · · ( )

= -SE PVSIZE1.1246 . 5i i
0.051· ( )

Avoided costs ACi t, from self-consumption SCi

and revenue from policy incentives FITRi t, are posi-
tive cash flows that depend on the solar generation

GEN ,i the electricity prices EP ,i t, and the FITt (see
equations (6), (7)). Annual operation and main-
tenance costs are the only negative cash flow, assumed
to be 1.5% of the investment costs (Hoppmann et al
2014b).

=AC SC GEN EP , 6i t i i i t, ,· · ( )

= -FITR SC GEN FIT1 . 7i t i i t, ( ) · · ( )

Solar generation depends on the irradiation at the
agent’s location SUN ,i the system size, the perfor-
mance ratio PVPR (assumed to be 0.85), and the
agent’s production factor PVPFi that accounts for het-
erogeneity across installations (e.g. shade) (see
equation (8)) (Fraunhofer ISE 2017).

=GEN SUN PVSIZE PVPR PVPF . 8i i i i· · · ( )

2.1.4.3.Windfall profits
Any incentives inducing or increasing a positive
NPVi t, are windfall profits WPi t, because they are not
required tomotivate adoption (see equation (9)).

2.1.4.4. Technological learning
PV system prices comprise module and non-module
elements. Module prices follow an experience curve
that dependson the simulateddeployment inGermany,
and the historical deployment in the rest of the world
(Schaeffer et al 2004, IEA-PVPS 2018, Kavlak et al
2018). Non-module prices (e.g. balance of system,
installation) follow another experience curve that
depends only on the simulated installations in Ger-
many. Based on historical data, we estimated learning
rates of 20.3% for modules and 10.2% for non-module
elements, and limited price reductions to below 2%per
month (see 11 in SI). Random±5%oscillations around
the experience curve represent noise in price signals.

2.1.5.Model calibration and robustness tests
The model was calibrated to the historical cumulative
installations inGermany between 1992 and 2016 (see 4
in SI). The calibration parameters were the k ,info

k ,awareness kattractive weights (kpeers is linearly dependent
so they sumup to 1), and the environmental awareness
threshold, restricted to above 0.88 so innovators are
fewer than 3% of agents (Rogers 1995). The entire
space of calibration parameter combinations was
examined. The selected parameters closely replicate
the historical evolution (see table 2 and figure 2).
Because of the ABM’s stochastic inputs, results were
derived from 60 simulation-runs batches, which
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deviate 2% or less around the mean of a 1000-
simulation-runs sample (see 4 in SI).

A sensitivity analysis to variations of the calibra-
tion parameters is available (see 6 in SI), as well as
robustness tests to: variations of policy parameters (see
7 in SI), policy goals (see 8 in SI) and their temporal
distributions (see 9 in SI), and the impact of solar
deployment on wholesale and retail electricity prices
(see 10 in SI). These analyses support the robustness of
the qualitative implications of this study.

2.2. Policy scenarios
We simulate the historical policy scenario, which
contains the historical FIT, and seven policy scenarios
with designs inspired by control theory (see table 3).

We evaluate three policy designs inspired by con-
trol theory that automatically adjust incentives. In
contrast to historical mechanisms, these designs do
not attempt to predict the pace of technological learn-
ing, and refrain from using predefined adjustments
(Kreycik et al 2011, Grau 2014). Instead, they calculate
an incentive adjustment eachmonth using a PID (pro-
portional, integrative, and derivative)mechanism.

Each design employs different variables to calcu-
late the adjustments depending on how policy targets
are defined. Deployment (DEP) and policy cost
(COST) targets set an overall goal (i.e. a deployment
level or a budget). Profitability (IRR) targets, however,
set a desired internal return rate for the average house-
hold adopter in Germany (see table 1), who receives an
annual solar yield of 950 kWh/kWp (Fraunhofer

ISE 2017), and maintain that target constant through-
out the policy’s duration.

All three designs employ the same PID algorithm,
which is a basic and extensively used tool from control
engineering. The algorithm’s objective is to correct the
deviation frommonthly policy targets e ,t measured as
the difference between the actual and the targeted
monthly installed capacity, policy costs, or profit-
ability to adopters, depending on the policy targets.
The algorithm tries to simultaneously correct the pre-
viousmonth’s deviation (i.e. proportional correction),
compensate for the cumulative deviation since the
policy began (i.e. integrative correction), and reduce
the growth in the deviation over the following month
(i.e. derivative correction). The FIT adjustment is the
weighted sum of these corrections (see equation (10)).
A set of proportionality constants was defined for each
design (see section 2.2.1).
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For deployment and policy-cost targets, we assess
two ways of distributing the overall targets PT
throughout the policy’s duration: linear distribution
(−L), which increases targets by the same amount
every month, trying to benefit from lower technology
costs in later years (see equation (11)), and bell-shaped
distribution (−B), which aims to exploit the typical
s-shaped pattern of the diffusion of innovations (see
equations (12a) and (12b) andfigure 3).

=
å =

=PT linear t
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t
, 11t

t
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= -+PT bell CUMPT CUMPT a, 12t t t1( ) (( ))

Figure 2.Historical and simulated cumulative installed capacity inGermany 1992–2016. Red area indicates 90% confidence interval
around themedian of 60 simulation runs.

Table 2.Calibrated, adimensional parameters ofmodel.

Calibration parameter Calibrated value Value range

kinfo 0.19 [0,1]
kawareness 0.49 [0,1]
kattractive 0.11 [0,1]
Environmental awareness

threshold

0.90 [0.88,1]
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To limit the influence of timing policy targets dif-
ferently, tpeak is set to 142 (i.e. February, 2012) so both
distributions reach 50% and 100% of their overall
goals simultaneously. The steepness of the cumulative
s-curve k is 0.07 based on historical data from

Germany. We decided against uniformly distributed
targets because early results indicated high policy
costs.

We compare the designs to a historical policy sce-
nario that simulates the mechanisms and ad-hoc
adjustments to Germany’s FIT between 2000 and 2016
(see table S7 in SI). We defined the deployment and
policy-cost goals according to the historical policy
outcomes of 41 GWp of PV and €115 billion of total
costs (own estimation) by 2016 (Frondel et al 2010,

Figure 3.Comparison of the linear and bell-shaped distributions formonthly deployment targets and the historicalmonthly evolution
of installed capacity inGermany betweenApril 2000 andDecember 2016. Before 2009, the historicalmonthly installed capacity is
extrapolated from annual data. To limit the influence of timing policy targets differently,monthly policy targets follow a bell-shaped
distribution peak in February 2012 so that they reach half of their cumulative target at the same time as the linear distribution.
Moreover, the steepness of the cumulative s-curve that they generatemirrors that of the historical cumulative installations curve in
Germany. A sensitivity analysis of different temporal distribution settings is included in the supplementary information (see 8 in SI).

Table 3. Summary of the simulated scenarios.

Scenario Policy target Overall target Temporal distribution ofmonthly targets

HISTa Historical policy [-] [-]
DEP-L Deployment 41GWpb Linear

DEP-B Bell-shaped ( =k 0.07, =t 142peak )

COST-L Policy cost €115 billion Linear

COST-B Bell-shaped ( =k 0.07, =t 142peak )

IRR-5% Profitability 5% IRR Uniform

IRR-7% 7% IRR

IRR-9% 9% IRR

a The historical scenario includes the ‘1000 Solar Roofs’ program with 70% investment subsidies (1992–1993) and the ‘100 000 Solar Roofs’
program with 1.91% rate loans (1999–2003), the costs of which are not accounted for due to their small size. The different adjustment

mechanisms in the historical scenario are detailed in the SI (see 2 in SI).
b Watt peak (Wp) is a measurement unit of electrical power that refers to the nominal power output of a photovoltaic device under standard

test conditions in direct current. A sensitivity analysis to overall policy targets is included in the supplementary information (see 8 in SI).

Table 4.Policy parameters for each design.

Policy targets Unit kp ki kd

Deployment [€/kWhperMWp] -4.00 10 5· -2.00 10 6· -1.00 10 8·
Policy cost [€/kWhper €million] -9.00 10 6· -4.00 10 7· -1.00 10 7·
Profitability [€/kWh] 3.40 0.01 1.00
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Bundesnetzagentur 2017b), while using three profit-
ability targets. In all cases, FIT contracts last for 20
years and the initial level is the historical one: 0.5062
€/kWh (German Parliament 2000).

2.2.1. Setting of policy parameters
Analogous to designs employed historically (e.g.
German Parliament 2008, California PUC 2017), the
policy designs require certain parameters to be defined.
In particular, three proportionality constants for each
design’s PID algorithm because they employ different
targets. The parameters selected (1) achieved a median
deviation from the overall policy goals below 5%, and
(2) minimized deviations from monthly targets (see
table 4, and section 5 in SI). We explored the whole
parameter space through iterative runs of our model,
building upon the practice of incorporating models to
policy-making (e.g. EuropeanCommission 2019).

3. Results

We find that the policy designs inspired by control
theory are effective in steering adoption towards the
policy targets, and markedly reduce uncertainty about
policy outcomes. However, not every scenario is more
cost-efficient (i.e. has a higher installed capacity per
unit of policy cost) than the historical policy scenario.
These results imply that small details in the design of
the adjustment mechanism could have large impacts
over policy outcomes.

3.1. Impact of policy design onwindfall profits
Figure 4 shows the total installed capacity, policy cost,
and windfall profits of all individual runs and the
median of each scenario. It also indicates the lines of
constant cost-efficiency. Our results demonstrate that
there is no fixed correlation between the amount spent
on subsidies (i.e. policy cost) and the technology’s
deployment (i.e. installed capacity). Rather, the policy
design for adjusting incentives heavily influences this
relationship—and, thus, the policy’s cost-efficiency.

Adjusting incentives according to deployment or
policy-cost targets leads to a decoupling between final
installations and the cost of the policy. For instance,
the DEP-B scenario achieves the same installed capa-
city as DEP-L, but at much lower policy costs. Simi-
larly, COST-L and COST-B have similar policy costs
but different ranges of installed capacities. In contrast,
adjusting incentives in order to maintain constant
profitability for adopters produces a relation between
policy costs and installed capacity that depends on the
targeted rate of return. The lower the profitability tar-
geted, the larger the gains in installed capacity per
additional unit of policy cost, but also the lower the
total deployment (e.g. IRR-5%).

All scenarios show the expected relation between
windfall profits and policy cost-efficiency, with bubble
sizes decreasing as they approach the upper-left corner
offigure 4 (i.e. as the policy’s cost-efficiency increases).
However, not all designs proved equally good at redu-
cing windfall profits. Adjusting incentives following

Figure 4.Comparison of the cumulative installed capacity, policy costs, windfall profits, and cost-efficiency of the seven policy designs
and the historical policy scenario. The figure shows results for 60 simulation runs per scenario (individual bubbles) and themedian
value for each scenario (annotated bubbles). Scenarios are color-coded. The red lines indicate the overall deployment and policy-cost
targets of 41GWp and €115 billion, respectively. The total installed capacity (vertical axis) ismeasured by adding the sizes of all the
individual solar PV systems adopted during the policy’s active period. Policy costs (horizontal axis) are calculated by adding the
discounted payments for every individual adopter over the 20 years of the feed-in tariff contract.Windfall profits (bubble diameter)
are computed by estimating the discounted payments for every individual adopter over the 20 years of the feed-in tariff that result in a
positive, non-zero net present value for the adopter. The policy’s cost-efficiency (isolines) is calculated by dividing the total installed
capacity by the total policy costs. It represents the average capacity addition per unit of policy cost.
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policy cost targets produces more cost-efficient out-
comes because the mechanism reacts to increases in
windfall profits more strongly than if it followed
deployment or profitability targets. Public funds spent
on windfall profits are determined by the product of
installations and revenues to adopters above those
needed to induce them to invest. Thus, windfall profit
expenses grow in two cases: (1) if installations increase
while the FIT already provides excess revenues; or (2)
if profitability rises so that revenues to adopters sur-
pass those needed to induce adoption and installations
do not fall. A policy design that responds to changes in
installations primarily reacts to the first case, while a
design tracking profitability mainly reacts to the sec-
ond. Only a design following policy costs responds to
both cases, because more windfall profit expenses
directly impact policy costs regardless of what drives
their increase. Although low profitability targets also
limit windfall profits, they induce limited deployment,
which diminishes the policy’s effectiveness.

3.2. Impact of policy design on uncertainty about
policy outcomes
Figure 5 compares installed capacities, policy costs,
and windfall profits across scenarios. The results show
that adjusting incentives using a design inspired by
control theory could markedly reduce uncertainty
over the outcomes of deployment policies.

Adjusting incentives according to changes in
installations or policy costs produces policies that
deviate only slightly from their targets. Adjusting to
changes in the profitability for adopters produces poli-
cies that restrict windfall profits around a value that
increases with higher profitability targets. The PID

algorithmproduces these outcomes by simultaneously
addressing the monthly and cumulative deviations
and trying to prevent their growth. However, this
mechanism does not limit uncertainty about policy
outcomes that are not specifically targeted by the pol-
icy design (e.g. policy costs in DEP scenarios). More-
over, there are important differences between designs
that respond to the same policy variable, due to the dif-
ferent temporal distributions of policy targets (e.g.
DEP-L andDEP-B).

Notably, the historical mechanisms and ad-hoc
adjustments to Germany’s feed-in tariff (HIST) pro-
duce themost scattered policy outcomes (see figure 5).
This highlights how uncertain the outcome of the
scheme was, and how much the novel designs could
improve upon it.

3.3. Impact of temporal distributions of targets on
policy cost-efficiency
Figure 6 shows the temporal evolutions of the median
FIT and monthly installations for each scenario. The
results highlight the influence of the temporal distri-
bution of policy targets for achieving cost-efficient
deployment policies.

For the deployment and policy-cost scenarios,
policy targets distributed linearly caused surges in
installations, during which adopters receive generous
windfall profits, which determined the lower cost-effi-
ciencies of these scenarios compared to those with
bell-shaped distributed targets (see DEP-L, COST-L in
figures 6(a), (b)). The non-economic factors that influ-
ence the behavior of the agents in our model explain
this phenomenon. In the early years of the policy, non-
economic variables such as information about the

Figure 5.Histograms of the total installed capacity inGWp (left), total policy cost in billions of Euros (center), and total windfall
profits in billions of Euros (right) of the 60 simulation runs conducted for each scenario. The scenarios are color-coded. The height of
the bars represents the relative frequency of the policy outcomewithin each scenario. Thewidth of the categories is 1GWp in total
installed capacity distributions, €2 billion in total policy cost andwindfall profit distributions. Vertical red lines indicate the overall
deployment and policy cost targets of 41GWp and €115 billion, respectively.
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technology and peer effects have a low impact because
PV installations are rare. The policy designs try to
compensate for this by increasing the FIT in order to
encourage enough adoption to meet the monthly tar-
gets. However, since the economic attractiveness of
solar PV is just one of the four factors determining
whether agents develop the idea to adopt, the FIT
needs to increase very substantially to have a big
enough influence on the agents. As the months go by,
more information becomes available, peer effects
become stronger, and the very high incentives lead to
deployment overshoots. The behavior observed in our
model is analogous to historical experiences in coun-
tries such as Italy and Spain (Del Río and Mir-Arti-
gues 2014,DiDio et al 2015).

4.Discussion andpolicy implications

This study shows how new policy designs for adjusting
incentives could draw inspiration from control theory
to keep deployment policies effective and cost-effi-
cient, while reducing uncertainty over their outcomes.

First, our results show that adjusting incentives
specifically according to the evolution of policy costs
can produce more cost-efficient deployment policies.
Prior research focused on mechanisms that tracked
the evolution of deployment or profitability for

adopters (Leepa andUnfried 2013, Grau 2014, Yaquob
and Yamaguchi 2015, Pearce and Slade 2018). How-
ever, we find that, compared to the historical policy
scenario (HIST) (not to historical data), in the best
case, Germany could have saved over €320 million
(−11.7%) per gigawatt-peak installed by adjusting
incentives in response to policy costs with targets dis-
tributed following a bell curve (COST-B).

Second, this study suggests that responsive policy
designs based on control-theory principles can sig-
nificantly reduce uncertainty over the outcomes of
future deployment policies. With such designs, policy
outcomes deviated by less than 5% from their targets
for 93%of the simulations—in stark contrast to the his-
torical policy simulations, which, on average, were 40%
off their annual targets of 3000MWpbetween 2012 and
2016 (BMWi 2014, Bundesnetzagentur 2017a). This
should instil confidence in the ability of future policies
to meet their targets. However, our results highlight a
need for limiting uncertainty about policy outcomes
these designs donot respond to (e.g. policy costs inDEP
scenarios), for example, through caps. In addition,
responsive adjustments to incentives could diminish
the ability of investors to predict their evolution, and
increase investor’s perception of risk (Polzin et al 2019).
Policymakers could lessen this tradeoff by transparent
and timely communication about the policy design and
incentive adjustments.

Figure 6.Temporal evolutions of themedian feed-in tariff andmedianmonthly installations of solar PV for each scenario. The top-
left graph (a) compares themedian feed-in tariffs, annual installed capacities, and deployment targets of the designs adjusting
incentives according to deployment targets following a linear (DEP-L) and a bell-shaped (DEP-B) distribution. The top-right
graph (b) shows analogous results for designs adjusting incentives according to policy-cost targets, and the bottom-left graph (c) for
designs adjusting incentives according to profitability targets (IRR-5%, IRR-7%, IRR-9%). The bottom-right graph (d) shows the
results of the historical policy scenario.
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Third, our study reveals the decisive role of the
temporal distribution of policy targets, and highlights
the limitations of economic incentives in driving early
adoption. When there are non-economic barriers to
the diffusion of a technology, as research has shown
e.g. for electric cars, attempting an ambitious ramp-up
through subsidies alone could lead to costly adoption
surges and jeopardize the whole policy (Ragwitz and
Steinhilber 2014, De Rubens et al 2018). To address
this, future policies could employ gradually rising tar-
gets and exploit synergies with non-economic instru-
ments such as information campaigns.

Overall, this analysis overcomes the limitations of
previous studies and bears relevant policy implica-
tions, for instance, for deployment policies targeting
energy storage, electric vehicles, or renewable heating
(IRENA et al 2018). As subsidy schemes are scrutinized
to determine whether they are proving ineffective or
inefficient (Wee et al 2018, Jenn et al 2018), our find-
ings can help to improve their cost-efficiency and
reduce uncertainty over their outcome.

Ourmodel is limited in the representationof techno-
logical change and adoption decision-making, and in its
scope. Future researchmight consider investigating how
market dynamics influence pricing, and how expecta-
tions may change agents’ behaviour. For example, if
agents could form expectations, they might postpone
their investments if they foresee that PV prices will
reduce faster than incentives, or accelerate their adoption
otherwise. Although we would anticipate our results to
remain qualitatively similar, since the policy designs
adjust incentives in response to howdeployment evolves,
we believe this question deserves further analysis. To test
the robustness of our findings, further research could
also studyother countries, policies and technologies.
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