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Abstract

Equivalence scales are typically designed for adjusting households’ incomes for differences
in size and composition. On the one hand, there is evidence that the way differences in
needs across households are taken into account has a significant impact on the assess-
ment of inequality in the society. On the other hand, equivalence scales with constant
elasticity with respect to family size have been shown to provide a good approximation
to a large variety of scales used in empirical work. We first show that, if one requires that
the (multidimensional) inequality index is – in addition to standard properties – invari-
ant to modifications of the relative (marginal) distributions of needs and income across
households, then the equivalence scales must be isoelastic. Assuming that all individu-
als have the same preferences and that households maximise the sum of their members’
utilities, we also prove that the only preferences consistent with isoelastic scales are of
the Cobb-Douglas type.
Journal of Economic Literature Classification Number: D31, D63.
Keywords: Inequality of Well-Being, Household Size, Equivalence Scales, Constant Elas-
ticity, Cobb-Douglas Preferences.

1. Introduction and Motivation

The measurement of economic well-being requires among other things that the households’
incomes are adjusted in order to accommodate differences in needs. Equivalence scales are
designed to accomplish this adjustment by taking into account those household characteristics
deemed to affect its needs. 1 Given a reference household type – generally a single adult – the
procedure consists in deflating the household’s original income by a scale factor which reflects
∗ This paper forms part of the research project Heterogeneity and Well-Being Inequality (Contract No.
HEWI/ANR-07-FRAL-020) of the ANR-DFG programme whose financial support is gratefully acknowl-
edged. We are indebted to Stephen Bazen for very useful conversations and suggestions.

† Institut für Volkswirtschaftslehre, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany.
Email: ebert@uni-oldenburg.de.

‡ GREThA (UMR CNRS 5113), Université de Bordeaux, CNRS, Avenue Léon Duguit, F-33608, Pessac, and
IDEP, Centre de la Vieille Charité, F-13002, Marseille, France. Email. patrick.moyes@u-bordeaux4.fr

1 Adjustments for differences in needs by means of equivalence scales may be considered too specific an
approach and an alternative procedure has been proposed by Atkinson and Bourguignon (1987) (see also
Bourguignon (1989), Jenkins and Lambert (1993), Bazen and Moyes (2003), Ebert (2010)). While this
approach has mainly focused on the derivation of quasi-orderings like the sequential Lorenz dominance
criterion for making comparisons of living standards across heterogenous populations, it is equally possible
to use multidimensional (cardinal) indices (see e.g. Maasoumi (1999), Ebert (1995), Gravel, Moyes, and
Tarroux (2009) among others).
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the household’s members’ needs. Typical characteristics include region, location, age of adults
and children but by far the most common factor that affects the household’s members’ well-
being is family size. The equivalence scales currently used in empirical work are extremely
varied both in the way in which they are derived and in their values. Different procedures, such
as expert opinions, interviews with consumers or econometric studies, are used for determining
the values of the equivalence scales (see e.g. Coulter, Cowell, and Jenkins (1992a)). This results
in contrasted figures which in turn significantly affect the normative conclusions to be drawn
(see e.g. Whiteford (1985), Buhmann, Rainwater, Schmaus, and Smeeding (1988), Coulter,
Cowell, and Jenkins (1992b), Figini (1998)).

Among the different formulae proposed in the literature, equivalence scales with a constant
elasticity with respect to family size play a prominent role (see for instance Atkinson, Rain-
water, and Smeeding (1995)). According to such equivalence scales, a proportional increase
in family size results in a proportional – not necessarily of the same magnitude – increase
in the scale. 2 There are a number of reasons that explain why isoelastic equivalence scales
meet such success in empirical work. A first reason – stressed for instance by Buhmann et al.
(1988) – is that equivalence scales with constant elasticity approximate reasonably well the
scales currently used in empirical work. More important is the fact that these scales permit
one to control for the impact of family size on adjusted income through a single parameter that
measures the elasticity of the scale. This in turn may have nice implications for applied work
where one is interested in the changes in the extent of poverty, inequality or welfare implied
by modifications of the distribution of household size. For instance, Coulter et al. (1992b)
showed that the cardinal value of a poverty measure can be sensitive to the choice of the size
elasticity parameter. Lanjouw and Ravallion (1995) addressed the question of whether large
households are poorer than smaller ones and argued that the answer depends critically on the
extent of dispersion in family sizes and the size elasticity of the equivalence scale. 3

In this paper we are interested in the measurement of inequality using the distributions of
the households’ equivalent incomes. Typically, the equivalent income incorporates two main
elements of the household’s well-being: neediness, which is determined by the household’s
socio-demographic characteristics, and household income. Therefore, the equivalent income
can be considered a bidimensional (cardinal) index and inequalities in well-being can be traced
back to differences in neediness and household income. If one thinks of inequality as a multi-
dimensional concept, then one is likely to require that this index reacts in an appropriate way
to particular changes in the (unidimensional) distributions of needs and income as well as to
the way the (joint) distribution of these two elements vary. For instance, modifications of the
way neediness and income are distributed among households that leave unchanged their rela-
tive marginal distributions might be required to have no impact on inequality of well-being.
It is a standard requirement for a (unidimensional) inequality index that equiproportionate
changes in incomes leave inequality unchanged. Similarly, one might want that those changes
in the distribution of demographic variables that do not modify the distribution of needs
across households have no impact on overall inequality. Assimilating neediness with house-
hold size, this would quite naturally translate into the requirement that proportional increases
in neediness do not affect the (relative) inequality of well-being.

2 This makes only sense if the equivalence scales are independent of household income, an assumption that
will be maintained throughout the paper. This assumption is clearly debatable and there is indeed empirical
evidence that it is violated in practice (see e.g. Donaldson and Pendakur (2004), Koulovatianos, Schröder,
and Schmidt (2005a,b)).

3 Under certain conditions, it is indeed possible to establish the existence of a single critical value of the size
elasticity for which the poverty ranking of household-size groups switches (see Lanjouw and Ravallion (1995)
for details).
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The implications for the structure of multidimensional inequality indices of such changes
in the distributions of the households’ needs and incomes is something that – to the best of
our knowledge – has not been explored until now. We will show that the invariance conditions
according to which inequality in well-being is immune to proportional changes in household
income and size actually impose a lot of structure on the multidimensional inequality index.
In particular, only isoelastic scales guarantee that inequality is invariant with respect to demo-
graphic changes: a replication of the population that leaves unchanged the relative distribution
of the households’ types does not modify inequality which is a natural requirement. Admit-
tedly, for this requirement to make sense, a consensus must be reached concerning the way the
index of neediness is derived from household size, something we assume throughout. To see
what this condition means, suppose that the society consists of two types of households: those
composed of a single individual and those comprising two individuals, where individuals are
all alike. Then, the condition requires that, if – other things being equal – all household sizes
double, then inequality of well-being remains the same. However, equivalence scales with a
constant elasticity are very special and they are expected to imply particularly strong restric-
tions on the households’ patterns of preference. It is convenient to distinguish between the
preferences of the individuals who constitute the household and the principles the household’s
members rely on when deciding how to distribute resources among themselves. In this paper,
we make the simplifying assumptions (i) that the household maximises the sum of utilities
of its members so that the household is utilitarian, 4 and (ii) that all individuals within the
household have the same preferences, which is consistent with the former assumption of iden-
tical individuals. Considering an economy with two commodities – a private good and a public
(to the household’s members) good – we show that the only preferences that are consistent
with isoelastic equivalence scales are Cobb-Douglas.

We introduce in Section 2 the framework for our analysis. Section 3 is concerned with
inequality and we show there that invariance of the (multidimensional) inequality index to
neutral changes in income and neediness – coupled with standard properties of inequality
measures – imply that the equivalence scales must be isoelastic. We investigate in Section 4 the
implications of such patterns for the household’s members’ preferences under the assumption
that the household maximises the sum of utilities of its members. Finally, Section 5 concludes
the paper, while the proofs of our results are collected in Section 6.

2. General Framework and Notation

A household is a finite group of (not necessarily identical) individuals and we identify it with
its size n. Typically, household size refers to the number of persons in the household and
it therefore takes its values in the set of positive integers. For technical reasons we assume
throughout that household size is a continuous variable ranging from unity to infinity so that
n ∈ [1,+∞). We find it convenient to think of n as an index of neediness that depends
on the household’s composition and that is increasing with its size. This way of proceeding
allows us to take into account the heterogeneity of the households which typically involves
individuals with differing needs (think of adults and children both of different ages). It is
reasonable to assume that a child contributes less to the household’s expenses than an adult
and she should therefore count less than an adult. A practical way of acknowledging this is
to let n(mA,mC) = mA + λmC measure household size, where mA and mC are respectively
the number of adults and children in the household and λ ∈ [0, 1] is a parameter reflecting
the importance of a child with respect to an adult (see Cutler and Katz (1992)). Given an

4 This is equivalent to assume that the household maximises a symmetric and quasi-concave social welfare
function of its members’ utilities (see e.g. Ebert and Moyes (2009)).
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arbitrary real n ∈ [1,+∞), it is always possible to find two non-negative integers m◦, m∗ and
a real λ ∈ [0, 1] such that n = m◦+λm∗. This procedure can be generalised to an arbitrary list
of individual types acknowledging for differences in age, health and the like. In what follows,
we find convenient to interpret n as the household’s size – measured in terms of equivalent
adults in the household – or equivalently as the household’s type.

There are two commodities: a private good and a public – to the household’s members –
good. The quantity of the private good consumed by member i in the household is denoted
by xi, while Z represents the quantity of the public good purchased by the household. The
prices of the private and public goods are indicated by p > 0 and q > 0, respectively. In order
to allow for the possibility of congestion we denote as

(2.1) G = φ(Z, θ, n) : = Z

ψ(θ, n)

the effective consumption of the public good by any member of a household of type n. The
parameter θ ∈ [0, 1] is a measure of the degree of publicness within the household, where θ = 0
indicates the pure public good case while θ = 1 corresponds to the private good case. The
congestion function ψ(θ, n) has the following (natural) properties:

ψ(θ, n) is continuous in θ and n, ∀ θ ∈ [0, 1], ∀ n ∈ [1,+∞);(2.2a)

ψ(θ, n) is increasing in θ, ∀ n ∈ (1,+∞);(2.2b)

ψ(θ, n) is increasing in n, ∀ θ ∈ [0, 1);(2.2c)

ψ(0, n) = ψ(θ, 1) = 1, ∀ θ ∈ [0, 1], ∀ n ∈ [1,+∞);(2.2d)

ψ(1, n) = n, ∀ n ∈ [1,+∞);(2.2e)

ψ(1, n)/n is strictly monotonic in n, ∀ n ∈ [1,+∞).(2.2f)

This allows for a wide range of specifications where the congestion function can follow different
patterns with respect to n (see e.g. Edwards (1990) and Reiter and Weichenrieder (1999) for
details). We denote as Ψ the set of congestion functions verifying conditions (2.2a) to (2.2f). A
particular instance of such congestion functions, that will be shown to be of particular interest
later on, is given by ψ(θ, n) = nθ (see Borcherding and Deacon (1972)). The possibility of
crowding is best exemplified in the case where the household consists of students sharing
an apartment. While such goods as lightning and heating are clearly – at least in principle
– public, other goods like access to the television, the newspaper(s), the telephone or the
washing machine are partially excludable. Admittedly, congestion also happens in the family
even though its extent is more limited. All individuals have the same preferences and we
denote as U(x,G) the utility derived by an individual consuming x units of the private good
and G units of the public good, where the individual utility function U is assumed to be
continuously differentiable, monotone and strictly concave. 5

Different principles can be used by the household members for allocating resources among
themselves and the way the household decides about this distribution has been shown to
have important consequences (see e.g. Ebert and Moyes (2009)). We assume here that the
individuals who constitute the household agree to allocate their resources between private and
public consumption in such a way that the household’s welfare is maximised. This guarantees
5 In general, the fact that all individuals in the society have the same preferences does not imply that they
have the same utility function. Since in our model individuals are alike it is quite natural to assume that
they all also have the same (cardinal) utility function.
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that the household members do not pursue their own self-interest but rather act in such a
way as to provide all of them with the greater well-being. This cooperative behaviour may be
considered a reasonable approximation of the way resources are distributed when the household
consists of a single family. Formally, the household maximises the sum of the utilities derived
by the equivalent adults who compose it. 6 The cooperative model and the assumption
that individuals are identical may be considered reasonable approximations of the households’
behaviour in modern societies when the household consists of a single family. For cultural and
historical reasons, members of the same family are expected to share some common values,
and cooperation among its members is the founding element of the family. One may therefore
abstract from differences between the individuals who constitute the household – like adults
and children – because they subscribe to the same common objectives and values. Things
are quite different when the household is constituted by different families who join forces to
achieve particular economic objectives. It follows from our assumptions that at the optimum
all the household’s members will get the same amount of the private good. The problem of a
household of type n can be written as

P(H) max nU(x,G) s.t. pnx+ (ψ(θ, n) q)G 5 y,

where x is the consumption of the private good equal for all equivalent adults in the household,
y > 0 is the household’s total income, and ψ(θ, n) q can be interpreted as the price of one unit
of effective consumption of the public good. Denoting asX(p, q, y;ψ, θ, n) andG(p, q, y;ψ, θ, n)
the unique solution to problem P(H) and upon substitution into the utility function, we get
the representative indirect utility function

(2.3) V (p, q, y;ψ, θ, n) : = U(X(p, q, y;ψ, θ, n), G(p, q, y;ψ, θ, n)) .

Letting u = V (p, q, y;ψ, θ, n) and upon inverting, we obtain the household expenditure function
y = C(p, q, u;ψ, θ, n), which indicates the minimum household income that guarantees that
each of its members will reach the utility level u.

We follow the standard practice which involves choosing the household comprising a single
individual as the reference household type (n = 1). Then, the equivalent income function
E(p, q, y;ψ, θ, n) is implicitly defined by

(2.4) V (p, q, y;ψ, θ, n) = V (p, q, E(p, q, y;ψ, θ, n);ψ, θ, 1),

which upon inverting gives

(2.5) E(p, q, y;ψ, θ, n) = C(p, q, V (p, q, y;ψ, θ, n);ψ, θ, 1).

The equivalent income E(p, q, y;ψ, θ, n) represents the income that has to be given to a house-
hold of type n = 1 in order that its member enjoys the same utility as any member of household
n with income y, given the prices p and q, the congestion function ψ, and the degree of pub-
licness θ. It is quite standard in the literature to consider equivalence scales rather than
the more general concept of the equivalent income function. The introduction of equivalence
scales requires extra assumptions to be made about the relationship between the scales and
the equivalent income or the household expenditure function. Starting with the household
expenditure function C(p, q, u;ψ, θ, n), standard (relative) equivalence scales are defined by

(2.6) M(p, q, u;ψ, θ, n) = C(p, q, u;ψ, θ, n)
C(p, q, u;ψ, θ, 1) .

6 This is consistent with the maximisation of a symmetric, monotone non-decreasing and quasi-concave so-
cial welfare function F (U(x1, G), . . . , U(xn, G)) when n is the number of persons in the household (see
Bourguignon (1989), Blackorby and Donaldson (1993)).
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The scale M(p, q, u;ψ, θ, n) measures the extra cost for a household of size n of providing
each of its members with the utility level u relative to that of the single person household.
Equivalence scales can also be defined by using the equivalent income function rather than
the expenditure function. Upon substituting u = V (p, q, y;ψ, θ, n) into (2.6), we obtain

m(p, q, y;ψ, θ, n) : = M(p, q, V (p, q, y;ψ, θ, n);ψ, θ, n)

= y

C(p, q, V (p, q, y;ψ, θ, n);ψ, θ, 1)

= y

E(p, q, y;ψ, θ, n) ,

(2.7)

or equivalently

(2.8) E(p, q, y;ψ, θ, n) = y

m(p, q, y;ψ, θ, n) .

In this case the equivalent income is obtained by deflating household income by a scale factor,
which may depend on household income.

Consider now an individual with utility function U who has to allocate an income y/n
between the consumption of the private good and the public good whose prices are p and
ψ(θ, n) q/n, respectively. The individual’s optimisation problem is given by

P(I) max U (x,G) s.t. px+ ψ(θ, n) q
n

G 5
y

n
,

the solution to which is indicated by X(p, ψ(θ, n) q/n, y/n) and G(p, ψ(θ, n) q/n, y/n). Upon
substitution and insertion into the individual utility function, we get the individual indirect
utility function

(2.9) V

(
p,
ψ(θ, n) q

n
,
y

n

)
: = U

(
X

(
p,
ψ(θ, n) q

n
,
y

n

)
, G

(
p,
ψ(θ, n) q

n
,
y

n

))
,

which upon inversion gives the usual individual expenditure function C(p, ψ(θ, n) q/n, u). We
deduce from the definitions of the household expenditure and the individual expenditure func-
tions that

(2.10) y ≡ C (p, q, u;ψ, θ, n) = nC

(
p,
ψ(θ, n) q

n
, u

)
≡ n

y

n
.

Upon substituting into (2.6) and since q = (ψ(θ, n)/n) q, we finally get

(2.11) M(p, q, u;ψ, θ, n) =
nC

(
p, ψ(θ,n) q

n
, u
)

C(p, q, u)
5 n,

with a strict inequality if θ < 1 and n > 1. It follows from Ebert and Moyes (2009)
that an arbitrary small amount of publicness is a necessary and sufficient condition for
M(p, q, u;ψ, θ, n) > n whenever n > 1 and we therefore impose θ ∈ [0, 1) from now on.

3. Inequality of Well-Being and Isoelastic Scales

We consider populations comprising H households (H = 2), where each household is described
by two attributes: its income and its size. A heterogenous distribution – or for short a situation
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– is a partitioned vector (y; n) : = (y1, . . . , yH ;n1, . . . , nH), where yh > 0 and nh ∈ [1,+∞)
represent respectively the income and the size – or equivalently the degree of neediness – of
household h. The set of situations for a population comprising H households is indicated by
SH . While the household population size H is fixed throughout, we insist on the fact that
the distribution of households according to type n : = (n1, n2, . . . , nH) may vary. Assuming
that prices p and q as well as the degree of publicness θ and the congestion function ψ are
fixed, we drop these from the formulae in the most part of this section in order to simplify the
notation.

For comparisons of living standards across households to be meaningful, it is necessary to
correct household incomes for differences in needs and this adjustment process will involve two
dimensions. On the one hand, the household’s income is converted to an equivalent income
which is the income needed by a household of type n = 1 (the reference household type) in order
to achieve the same level of well-being as that attained by the original household. On the other
hand, this equivalent income is attached a weight that is assumed to depend exclusively on
household size. Formally, we associate to the situation (y; n) : = (y1, . . . , yH ;n1, . . . , nH) ∈ SH

the adjusted income distribution

(3.1) (E(y; n) |w(n)) : = (E(y1;n1), . . . , E(yH ;nH) |w(n1), . . . , w(nH)) ,

where E(yh, nh) and w(nh) > 0 are respectively the equivalent income and the weight assigned
to household h (see e.g. Ebert and Moyes (2003)). It follows from the definition of the
equivalent income and from the properties of the indirect utility function that the equivalent
income function E( · ; · ) has the following properties:

E(y;n) is continuous in y and n, ∀ y > 0, ∀ n ∈ [1,+∞);(3.2a)

E(y;n) is increasing in y, ∀ y > 0, ∀ n ∈ [1,+∞);(3.2b)

E(y;n) is decreasing in n, ∀ y > 0, ∀ n ∈ [1,+∞); and(3.2c)

lim
y→0

E(y;n) = 0, ∀ y > 0, ∀ n ∈ [1,+∞).(3.2d)

The last property follows from taking the limit of (2.8) and from the fact that m(y, n) = 1,
for all n ∈ [1,+∞) and all y > 0. As far as the weighting function w( · ) is concerned, we
assume that

w(n) is continuous in n, ∀ n ∈ [1,+∞) and(3.3a)

w(n) is non-decreasing in n, ∀ n ∈ [1,+∞).(3.3b)

The weighting function allows for different possibilities among which is the standard one
consisting in weighting the equivalent income by the number of persons in the household or
the one that gives each household the same weight irrespective of its size and composition.
The way in which the households’ equivalent incomes are weighted is not innocuous and it
has been shown to have important consequences for normative evaluation. 7 The set of
(unidimensional) income distributions is indicated by

(3.4) DH : = {(s |w) : = (s1, . . . , sH |w1, . . . , wH) | sh > 0 and wh > 0, ∀h = 1, 2, . . . , H }

7 This was first recognised by Glewwe (1991), who showed that a regressive transfer of income between two
households might decrease the inequality of well-being when the equivalent incomes are weighted by the
household sizes.
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and by definition (E(y; n) |w(n)) ∈ DH , for all (y; n) ∈ SH . We use µ(s |w) to represent the
(arithmetic) mean of the income distribution (s |w) ∈ DH .

We are interested in comparing situations from the point of view of inequality of well-being
for populations of households whose members face different circumstances. To this end we
introduce a bidimensional inequality index I : SH −→ R such that I(y; n) measures the extent
of inequality in situation (y; n) with the property that

(3.5) I(y; n) = J(E(y; n) |w(n)),

where J : DH −→ R is a unidimensional inequality index. According to definition (3.5), the
assessment of the inequality in the well-being of the members of households is a two-stage
process, where the two dimensions of the households’ heterogeneity are first aggregated into a
single measure (the equivalent income) and where the distributions of these equivalent incomes
– appropriately weighted – are then compared by means of a standard inequality index. This
two-stage process in the measurement of income inequality for heterogenous populations is
indeed rather natural when one uses equivalence scales to adjust households’ incomes for
differences in needs.

The preceding discussion makes clear that the extent of inequality will – in addition to the
choice of the index J – depend on the equivalent income function E( · ; · ) and on the weighting
function w( · ). For instance, J can be the Gini index, an Atkinson-Kolm-Sen (AKS) index
or a member of the generalised entropy family. There is no need for our purpose to choose
a particular unidimensional inequality index: it suffices that J verifies four natural (in the
inequality literature sense) conditions. The first condition – satisfied by most unidimensional
inequality indices – simply requires that the index takes the value zero only when all incomes
are equal.

Normalisation (UN). For all (s |w) ∈ DH , we have J(s |w) = 0, if and only if s1 = s2 =
· · · = sH .

The second condition is also standard and it states that inequality is not changed when incomes
increase or decrease proportionally.

Scale Invariance (USI). For all (s |w) ∈ DH and all ζ > 0, we have J(ζ s |w) = J(s |w).

The next condition is but an adaptation in our framework of the standard population invari-
ance principle of Dalton (1920) that requires that inequality does change when the population
is replicated.

Distributional Invariance (UDI). For all (s |w) ∈ DH and all λ > 0, we have J(s |λw) =
J(s |w).

Before we turn to the fourth condition, we need to introduce a piece of additional notation.
We indicate by F−1( · ; (s |w)) the inverse cumulative distribution function of (s |w) obtained
by letting F−1(0; (s |w)) : = min{s1, s2, . . . , sH} and

(3.6) F−1(p; (s |w)) : = Inf {z ∈ (−∞,+∞) |F (z; (s |w)) ≥ p} , ∀ p ∈ (0, 1]

(see Gastwirth (1971)). The Lorenz curve of the unidimensional distribution (s |w) ∈ DH –
denoted as L(p; (s |w)) – is then defined by

(3.7) L(p; (s |w)) : =
∫ p

0
F−1(q; (s |w)) dq, ∀ p ∈ [0, 1].

8
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Then, we will say that distribution (s∗ |w∗) Lorenz dominates distribution (s◦ |w◦), which we
write (s∗ |w∗) ≥L (s◦ |w◦), if

(3.8) L(p; (s∗ |w∗)) = L(p; (s◦ |w◦)), ∀ p ∈ (0, 1), and µ(s∗ |w∗) = µ(s◦ |w◦).

The fourth condition captures the very idea of inequality reduction and it requires that in-
equality does not increase when incomes are more equally distributed in the sense that the
Lorenz curve moves upwards.

Lorenz Consistency (ULC). For all (s∗ |w∗), (s◦ |w◦) ∈ DH , we have J(s∗ |w∗) 5 J(s◦ |w◦)
whenever (s∗ |w∗) ≥L (s◦ |w◦).

Clearly, not all indices I as defined by (3.5) are suitable bidimensional inequality indices –
even though the unidimensional index J possesses the four properties above – and we require
I to satisfy two conditions. The first condition is merely a restatement of the standard scale
invariance property in the unidimensional setting and it requires that proportional changes in
the households’ incomes have no impact on the inequality of well-being in the population.

Income Scale Invariance (BISI). For all (y; n) ∈ SH and all ζ > 0, we have I(ζy; n) =
I(y; n).

Similarly, our second condition requires that demographic changes that result in proportional
shifts in the distribution of sizes across households have no impact in the inequality of well-
being.

Neediness Scale Invariance (BNSI). For all (y; n) ∈ SH and all λ > 0, we have
I(y;λn) = I(y; n).

The two conditions above are concerned with the way the marginal distributions of household
income and household size change and with their impact on the inequality of well-being. For-
mally, they impose that changes that do not modify the (relative) inequality of the marginal
distributions of household income and household size have no impact on the inequality of
well-being. Combining these two conditions, we obtain the kind of invariance property consid-
ered in the standard multidimensional literature, where different scalings are used for different
attributes (see e.g. Tsui (1995)). The difference is the particular nature of our second variable
that refers to demographic changes in the households’ composition. However, these two con-
ditions are silent about the incidence on the inequality of well-being of modifications of the
joint distributions of income and neediness that leave unchanged their marginal distributions.

At this stage, and in the absence of further restrictions placed on the adjustment process
– namely the equivalent income function and the weighting function – there is no guarantee
that conditions BISI and BNSI be satisfied. Nor it is clear what the interest is of requiring
that the unidimensional inequality index J is Lorenz consistent. Indeed, the latter property
has no particular meaning in the present context, unless one is able to relate the shifts of
the Lorenz curves of the adjusted income distributions to particular modifications of the joint
distributions of household income and neediness that result in an uncontroversial reduction of
bidimensional inequality. The next transformation (see e.g. Ebert (2000), Gravel and Moyes
(2008)), which fully exploits the bidimensionality of a situation, constitutes in our model a
natural generalisation of the notion of a (unidimensional) progressive transfer. Given two
situations (y∗; n∗), (y◦; n◦) ∈ SH , we will say that (y∗; n∗) is obtained from (y◦; n◦) by means
of a between-type progressive transfer , if there exists ∆ > 0 and two households h, k such that

9
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y◦h < y∗h 5 y∗k < y◦k; n◦k = n∗k < n∗h = n◦h;(3.9a)

y∗h − y◦h = y◦k − y∗k = ∆; and(3.9b)

(y∗g , n∗g) = (y◦g , n◦g), ∀ g 6= h, k.(3.9c)

A between-type progressive transfer fully recognises the multidimensional nature of inequality
– household h is more deprived than household k in both income and need – but only the first
attribute is used for reducing inequality. To this extent, a between-type progressive transfer is
a particular case of the more general transformation introduced by Kolm (1977) who requires
that transfers take place in all attributes. 8 Given the nature of the need variable, it does
not make sense to redistribute needs from needy to less needy households and we therefore
prevent ourselves from so doing. Hence, by definition a between-type progressive transfer does
not modify the distribution of household types in the population: if (y◦; n◦) is converted into
(y∗; n∗) by means of a between-type progressive transfer, then n∗ = n◦. Consider now the
following condition:

Weak Equity (WE). For all (y∗; n∗), (y◦; n◦) ∈ SH , if (y∗; n∗) is obtained from (y◦; n◦) by
means of a between-type progressive transfer, then (E(y∗; n∗) |w(n∗)) ≥L (E(y◦; n◦) |w(n◦)).

This condition – combined with the fact that the equivalent income function is increasing with
income and decreasing with neediness – implies that min{E(y∗g ;n∗g)} = min{E(y◦g ;n◦g)} and

(3.10) µ(E(y∗; n∗) |w(n∗)) = µ(E(y◦; n◦) |w(n◦)),

where n∗ = n◦. Although WE appears at first sight to be a mild condition, it has important
consequences for the structure of the adjustment process as the next result demonstrates.

Proposition 3.1. The adjustment process (E( · ; · );w( · )) verifies condition WE if and only
if

E(y;n) = y

K(n) , ∀ y > 0, ∀ n ∈ [1,+∞), and(3.11a)

w(n) = ηK(n), ∀ n ∈ [1,+∞) and for some η > 0.(3.11b)

According to Proposition 3.1, the imposition of WE restricts the way the adjusted income
distributions are derived in two respects. Firstly, the equivalence scale must be independent
of household income: in other terms, the equivalence scale verifies the relative equivalence scale
exactness condition of Blackorby and Donaldson (1993), or equivalently the independence of
base level condition due to Lewbel (1989) (see also Blundell and Lewbel (1991)). Secondly,
the weights associated to the households’ equivalent incomes must be proportional to the
equivalence scale. It follows that the equivalent income function and the weighting function
cannot be chosen independently from each other if we want the adjustment process to verify
WE. 9

8 It must also be stressed that Kolm (1977) imposes no particular restrictions concerning the respective
positions with respect to the different attributes of the households involved in this generalised transfer. In
particular, it is not necessary that one household is richer than another in all attributes for the transfer to
make sense.

9 This result is reminiscent of Ebert and Moyes (2003) who obtained similar restrictions on the adjustment
process but using a slightly different approach.

10
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On the other hand, Proposition 3.1 does not give any indication about the form of the
size dependency of the equivalence scale and there are a number possibilities consistent with
(3.11). Upon substituting (3.11) into (3.5), we obtain

(3.12) I(y; n) = J

(
y1

K(n1) , . . . ,
yH

K(nH)

∣∣∣∣∣ ηK(n1), . . . , ηK(nH)
)

= : J
(

y
K(n)

∣∣∣∣∣ ηK(n)
)
.

Clearly, since by definition the unidimensional inequality index J is scale invariant, all bidi-
mensional inequality indices I as defined by (3.12) verify BISI. But scale invariance (USI) –
even combined with distributional invariance (UDI) – does not guarantee that a bidimensional
inequality indices I of the form (3.12) will obey BNSI. However, WE in conjunction with the
four standard properties UN, USI, UDI and ULC ensures that the bidimensional inequality
index I verifies BNSI as the next result formally demonstrates.

Proposition 3.2. Consider a bidimensional inequality index I as defined by (3.5), where the
unidimensional inequality index J verifies UN, USI, UDI and ULC, and assume in addition
that the adjustment process (E( · ; · );w( · )) verifies WE. Then, the condition that

(3.13) K(n) = ξ nε, where ξ, ε > 0,

is necessary and sufficient for BNSI to be fulfilled.

While the imposition of BNSI in a heterogenous setting is admittedly open to debate, we
insist on the fact that it is this condition which – combined with standard properties of
unidimensional inequality indices and a natural restriction imposed on the adjustment process
– precipitates isoelastic equivalence scales.

Upon substituting ξ = : g̃(p, q, y;ψ, θ, 1) and ε = : f̃(p, q, y;ψ, θ, 1) into (3.13), we obtain

(3.14) m(p, q, y;ψ, θ, n) = g̃(p, q, y;ψ, θ, 1)nf̃(p,q,y;ψ,θ,1),

which holds for all ψ ∈ Ψ, n = 1, θ ∈ [0, 1), y > 0 and all (p, q) � (0, 0). Finally, appeal-
ing to (2.7), we get a similar condition when the equivalence scale refers to the household
representative member’s utility. More precisely:

(3.15) M(p, q, u;ψ, θ, n) = g(p, q, u;ψ, θ, 1)nf(p,q,u;ψ,θ,1),

for all ψ ∈ Ψ, n = 1, θ ∈ [0, 1), u ∈ R and all (p, q)� (0, 0).

4. Recovering the Household’s Members’ Preferences

By definition the equivalence scale M(p, q, u;ψ, θ, n) is isoelastic if (3.13) holds, for all ψ ∈ Ψ,
all n ∈ [1,+∞), all θ ∈ [0, 1), and all u ∈ R and all (p, q)� (0, 0). In this case, the equivalent
income is proportional to household income, where the factor of proportionality is a non-
increasing function of household size. This is equivalent to requiring that the relative change
in the equivalence scale resulting from a proportional increase of household size is independent
of household size. Formally

(4.1) M(p, q, u;ψ, θ, λn◦)
M(p, q, u;ψ, θ, n◦) = M(p, q, u;ψ, θ, λn∗)

M(p, q, u;ψ, θ, n∗) , ∀n
◦, n∗ = 1, ∀λ > 1, ∀ (p, q, u;ψ, θ).

It can be shown (see Aczel (1966, Chapter 3)) that the solution of (4.1) is precisely (3.15). Now
consider an individual who has Cobb-Douglas preferences represented by the utility function

11
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U(x,G) = xϑG1−ϑ, where 0 < ϑ < 1. Letting n = 1, the solutions to problem P(I) are
x =X(p, q, y) = ϑy/p and G =G(p, q, y) = (1− ϑ)y/q. Upon substitution into U(x,G), we
obtain the individual indirect utility function

(4.2) V (p, q, y) =
(
ϑ

p

)ϑ (1− ϑ
q

)1−ϑ

y,

which upon inverting gives the individual expenditure function

(4.3) C(p, q, u) =
(
p

ϑ

)ϑ ( q

1− ϑ

)1−ϑ
u.

Substituting ψ(θ, n)q/n for q into (4.3) and using (2.10), we get the household expenditure
function

(4.4) C (p, q, u;ψ, θ, n) = nC

(
p,
ψ(θ, n) q

n
, u

)
= n

(
p

ϑ

)ϑ ( ψ(θ, n) q
(1− ϑ)n

)1−ϑ

u,

which can be rewritten as

(4.5) C (p, q, u;ψ, θ, n) = n

(
ψ(θ, n)
n

)1−ϑ (
p

ϑ

)ϑ ( q

1− ϑ

)1−ϑ
u.

We derive the household (relative) equivalence scale

(4.6) M (p, q, u;ψ, θ, n) = n

(
ψ(θ, n)
n

)1−ϑ

,

which is independent of the household representative utility. If ψ(θ, n) = nρ(θ), then we get
M (p, q, u;ψ, θ, n) = nϑ+(1−ϑ) ρ(θ): the equivalence scale is isoelastic with respect to household
size. We conclude that, (i) if preferences are Cobb-Douglas, and (ii) if the congestion function
is isoelastic, then the (relative) equivalence scale is isoelastic. Actually, these two conditions
are also necessary as indicated in the following result.

Proposition 4.1. Assume that ψ ∈ Ψ and θ ∈ [0, 1). Then, M (p, q, u;ψ, θ, n) verifies condi-
tion (4.1) if and only if:

(a) There exists ρ(θ) ∈ [0, 1) such that ψ(θ, n) = nρ(θ), and

(b) U(x,G) = xϑG1−ϑ, for some ϑ ∈ (0, 1).

5. Concluding Remarks

We have argued in the paper that, under mild requirements concerning the inequality index,
isoelastic equivalence scales have the property that inequality of well-being is not affected
when both households’ incomes and household’s needs vary proportionally. Within a simple
model where all individuals have identical preferences and households maximise a symmetric,
monotone and quasi-concave social welfare function, we have also shown that Cobb-Douglas
preferences are necessary and sufficient for such equivalence scales to arise. While it is generally
claimed that isoelastic scales provide reasonable approximations of the scales currently used
in practice, our second result uncovers the restrictions one has to place implicitly on the
household’s members preferences as well as on the way the intra-allocation of resources is
determined by the household in order to generate such scales. It is interesting to note that
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isoelastic scales can also be recovered from personal judgements within the subjective approach
model of Kapteyn and van Praag (1976).

According to definition (2.5), the equivalence scale depends in theory on the household
welfare measured by the utility of a representative member and on the prices of the private
and public goods. There is experimental evidence that suggests that equivalence scales are not
independent of household income – or equivalently of household welfare – as shown for instance
by Koulovatianos et al. (2005a,b). This is supported by econometric studies that indicate
that the scales values vary significantly with the income of the household (see Donaldson
and Pendakur (2004)). Equation (4.6) makes clear that, if the household maximises the
sum of utilities of its members and if the latter have the same Cobb-Douglas preferences,
then the resulting equivalence scales are independent of the utility achieved by a typical
household member or equivalently of household income. Isoelastic equivalence scales verify
the condition of relative equivalence scale exactness (Blackorby and Donaldson (1993)) or
independence of base level (Lewbel (1989), Blundell and Lewbel (1991)). Proposition 4.1
indicates in addition that, if households behave cooperatively and individuals have the same
Cobb-Douglas preferences, then the equivalence scales are also independent of prices.

Crucial for our result are the assumptions that the household members behave in a coop-
erative way and that they are identical in all respects. Suppose the household members do
not cooperate – every household member decides in isolation the amount she is willing to con-
tribute to the household public good – and that preferences are identical and Cobb-Douglas.
Then, the (relative) equivalence scale is

(5.1) M (p, q, u;ψ, θ, n) = (1 + ϑ(n− 1))ψ(θ, n)1−ϑ,

which reduces to

(5.2) M (p, q, u;ψ, θ, n) = (1− ϑ)n(1−ϑ)θ + ϑn(1−ϑ)θ+1,

if the congestion function is isoelastic. Thus, as far as our first assumption is concerned, we
note that in the non-cooperative case Cobb-Douglas preferences no longer lead to isoelastic
scales. However, equivalence scales are isoelastic for sufficiently small values of ϑ. But, the
main limitation of our approach is certainly the strong assumption that individuals are per-
fectly identical. This is at variance with the real world where households typically consist of
individuals of different types, for instance adults and children. Allowing for such a hetero-
geneity into the model and investigating its implications for the structure of the equivalence
scales is certainly the next step to be taken.

6. Proofs

Before we proceed to the proof of Proposition 3.1, we find convenient to introduce two technical
results, the first one being a generalisation of the Cauchy equation.

Lemma 6.1. Let F : [1,+∞) −→ R and H : R++ × [1,+∞) −→ R. Then:

(6.1) F (m)H(u+ ∆;m) + F (q)H(v −∆; q) = F (m)H(u;m) + F (q)H(v; q),

for all ∆ > 0, all u, v > 0 such that u + ∆ 5 v − ∆ and all m, q ∈ [1,+∞), if and only if,
there exist χ : R++ × [1,+∞) −→ R and η > 0 such that

(6.2) F (m)H(y;m) = χ(m) + ηy, ∀ y > 0, ∀ m ∈ [1,+∞).

13
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Proof. Since it is obvious that (6.2) implies (6.1), we only prove the converse implication.
Let us rewrite (6.1) as follows:

(6.3) F (m)H(u+ ∆;m)− F (q)H(v; q) = F (m)H(u;m)− F (q)H(v −∆; q).

Fix v = ṽ > 0 and consider the following functions:

f(ṽ, t;m, q) ≡ f̃(t) : = F (m)H(t;m)− F (q)H(ṽ; q),(6.4a)

g(t;m) ≡ g̃(t) : = F (m)H(t;m), and(6.4b)

φ(ṽ, t; q) ≡ φ̃(t) : = −F (q)H(ṽ − t; q).(6.4c)

Then, condition (6.3) implies that

(6.5) f̃(u+ ∆) = g̃(u) + φ̃(∆), ∀ u,∆ > 0 such that u+ ∆ 5 v −∆.

This is a Pexider equation the solution of which (Aczel (1966, Theorem 1, p. 142)) is

f̃(t) = α̃ + γ̃ + β̃t ≡ f(ṽ, t;m, q),(6.6a)

g̃(t) = α̃ + β̃t ≡ g(ṽ, t;m) and(6.6b)

φ̃(t) = γ̃ + β̃t ≡ φ(ṽ, t; q),(6.6c)

from which we deduce that α̃ = α(ṽ;m), γ̃ = γ(ṽ; q) and β̃ = β(ṽ). Substituting into (6.4a),
(6.4b) and (6.4c), we get

f̃(t) : =F (m)H(t;m)− F (q)H(ṽ; q) = α̃ + γ̃ + β̃t = α(ṽ;m) + γ(ṽ; q) + β(ṽ)t,(6.7a)

g̃(t) : =F (m)H(t;m) = α̃ + β̃t = α(ṽ;m) + β(ṽ)t,(6.7b)

φ̃(t) : =− F (q)H(ṽ − t; q) = γ̃ + β̃t = γ(ṽ; q) + β(ṽ)t.(6.7c)

Subtracting (6.7b) from (6.7a), we obtain

(6.8) γ̃ ≡ γ(ṽ; q) = −F (q)H(ṽ; q).

Fixing now v = v̂ 6= ṽ and using a similar reasoning as above, we get

f̂(t) : =F (m)H(t;m)− F (q)H(v̂; q) = α̂ + γ̂ + β̂t = α(v̂;m) + γ(v̂; q) + β(v̂)t,(6.9a)

ĝ(t) : =F (m)H(t;m) = α̂ + β̂t = α(v̂;m) + β(v̂)t,(6.9b)

φ̂(t) : =F (q)H(v̂ − t; q) = γ̂ + β̂t = γ(v̂; q) + β(v̂)t,(6.9c)

where α̂ = α(v̂;m), γ̂ = γ(v̂; q), β̂ = β(v̂), and we deduce that

(6.10) γ̂ ≡ γ(v̂; q) = −F (q)H(v̂; q).

Subtracting (6.9b) from (6.7b), we get

(6.11) [α̃− α̂] +
[
β̃ − β̂

]
t = 0, ∀ t > 0,

which implies that α̂ ≡ α(v̂,m) = α(ṽ, m) ≡ α̃ = α and β̂ ≡ β(v̂) = β(ṽ) = β̃ = β.
Substituting the value of γ̃ given by (6.8) into (6.7c), we obtain

(6.12) F (q)H(ṽ − t; q) = F (q)H(ṽ; q)− βt.
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Letting s = ṽ − t, this can be rewritten as

(6.13) F (q)H(s+ t; q) = F (q)H(s; q) + βt.

Defining

f ∗(z) : = F (q)H(z; q),(6.14a)

g∗(z) : = F (q)H(z; q), and(6.14b)

φ∗(z) = βz,(6.14c)

condition (6.13) can be rewritten as

(6.15) f ∗(s+ t) = g∗(s) + φ∗(t), ∀ s, t > 0.

Appealing to Aczel (1966, Theorem 1, p. 142) again, we obtain

f ∗(z) : =F (q)H(z; q) = a+ c+ bz,(6.16a)

g∗(z) : =F (q)H(z; q) = a+ bz,(6.16b)

φ∗(z) : = βz = c+ bz,(6.16c)

where a = χ(q) while b and c are independent of q. Comparing (6.16a) and (6.16b), we
conclude that c = 0, which upon substituting into (6.14c) and letting b = η implies that

(6.17) f ∗(z) : = F (q)H(z; q) = χ(q) + ηz, ∀ z > 0,

and the proof is complete.

Our second technical result exploits the separability of the Lorenz quasi-ordering and it shows
that the unconcerned individuals play no role in the ranking of the distributions under com-
parison.

Lemma 6.2. Let (s∗ |w∗), (s◦ |w◦) ∈ Dm (m = 2) such that w∗ = w◦ and let (̃s | w̃) ∈ Dq

(q = 1). Then:

(6.18) ((s∗ |w∗); (̃s | w̃)) ≥L ((s◦ |w◦); (̃s | w̃))

if and only if

(6.19) (s∗ |w∗) ≥L (s◦ |w∗).

Proof. Given two distributions (̂s∗ | ŵ), (̂s◦ | ŵ) ∈ Dr (r = 2), we know that (̂s∗ | ŵ) ≥L
(̂s◦ | ŵ) if and only if

(6.20)
r∑

h=1
ŵh φ (ŝ∗h) =

r∑
h=1

ŵh φ (ŝ◦h) , ∀ φ concave

(see e.g. Ebert and Moyes (2002, Prop. 3.1), Marshall and Olkin (1979, Chap 4)). The result
follows from noticing that

(6.21)
m∑
h=1

w∗h φ (s∗h) +
q∑

h=1
w̃h φ (s̃h) =

m∑
h=1

w◦h φ (s◦h) +
q∑

h=1
w̃h φ (s̃h) , ∀ φ,
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is equivalent to

(6.22)
m∑
h=1

w∗h φ (s∗h) =
m∑
h=1

w◦h φ (s◦h) , ∀ φ,

where w∗h = w◦h, for all h = 1, 2, . . . ,m.

Proof of Proposition 3.1.
Sufficiency. We show that, if the equivalent income function and the weighting functions
verify conditions (3.11a) and (3.11b), respectively, then the adjustment process satisfies WE.
Consider two situations (y∗; n∗), (y◦; n◦) ∈ SH such that (y∗; n∗) is obtained from (y◦; n◦) by
means of a between-type progressive transfer, hence there exists ∆ > 0 and two households
h, k such that conditions (3.9a), (3.9b) and (3.9c) hold. To simplify notation, let us indicate
by

(e∗ |w∗) = (e∗1, . . . , e∗H |w∗1, . . . , w∗H) : = (E(y∗; n∗) |w(n∗)) and(6.23a)

(e◦ |w◦) = (e◦1, . . . , e◦H |w◦1, . . . , w◦H) : = (E(y◦; n◦) |w(n◦))(6.23b)

the corresponding adjusted income distributions. By definition of a between-type progressive
transfer, we have n∗ = n◦ = n, hence w∗ = w◦ = w. Furthermore, since E( · ; · ) is in-
creasing in household income and decreasing in household size (conditions (3.2a) and (3.2b),
respectively), we have

(6.24) E(y◦h;nh) < E(y∗h;nh) < E(y∗k;nh) < E(y∗k;nk) < E(y◦k;nh),

hence e◦h < e∗h < e∗k < e◦k. Using (3.11a) and (3.11b), we verify that

w∗h
w∗h + w∗h

e∗h = y◦h + ∆
K(n∗h) +K(n∗k)

>
y◦h

K(n◦h) +K(n◦k)
= w◦h
w◦h + w◦h

e◦h and(6.25a)

µ (e∗ |w∗) = (y◦h + ∆) + (y◦k −∆)
K(n∗h) +K(n∗k)

= y◦h + y◦k
K(n∗h) +K(n∗k)

= µ (e◦ |w◦) ,(6.25b)

hence (e∗h, e∗k |w∗h, w∗k) ≥L (e◦h, e◦k |w◦h, w◦k). Invoking Lemma 6.2, we conclude that

(6.26) (E(y∗; n∗) |w(n∗)) = (e∗ |w∗) ≥L (e◦ |w◦) = (E(y◦; n◦) |w(n◦)),

and condition WE is verified.
Necessity. Consider now the situations

(y∗; n∗) : = (u+ ∆, v −∆, v, . . . , v;n,m,m, . . . ,m) and(6.27a)

(y◦; n◦) : = (u, v, v, . . . , v;n,m,m, . . . ,m),(6.27b)

where u < u + ∆ 5 v −∆ < v and 1 5 m < n. Clearly, (y∗; n∗) is obtained from (y◦; n◦) by
means of a between-type progressive transfer involving households h = 1 and k = 2. Assuming
that condition WE holds, we must have

(6.28) (E(y∗; n∗) |w(n∗)) ≥L (E(y◦; n◦) |w(n◦)).

This implies that

(6.29) w(n)E(u+ ∆;n) + w(m)E(v −∆;m) = w(n)E(u;n) + w(m)E(v;m),
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which holds for all u < u+ ∆ 5 v −∆ < v and 1 5 m < n. Application of Lemma 6.1 gives

(6.30) w(n)E(y;n) = χ(n) + η y, ∀ y > 0, ∀ n ∈ [1,+∞).

Letting L(n) : = χ(n)/w(n) and H(n) : = η/w(n), (6.30) can be equivalently rewritten as

(6.31) E(y;n) = χ(n)
w(n) + η

w(n) y = L(n) +H(n) y, ∀ y > 0, ∀ n ∈ [1,+∞).

Now we have to show that L(n) : = χ(n)/w(n) = 0, for all n ∈ [1,+∞). Clearly, we cannot
have L(n) < 0, for some n ∈ [1,+∞). Indeed, if it were the case, then for sufficiently small
values of y > 0 we would get E(y;n) < 0, which is excluded since, by definition of the
equivalent income function, E(y;n) > 0, for all y > 0 and all n ∈ [1,+∞). Suppose next
that L(n) = ξ > 0, for some n ∈ [1,+∞). Then, E(y;n) −→ ξ 6= 0 whenever y −→ 0, which
contradicts condition (3.2d). Thus, we have L(n) : = χ(n)/w(n) = 0, for all n ∈ [1,+∞).
Letting K(n) = 1/H(n), we conclude that E(y;n) = y/K(n) and w(n) = η K(n), for all
y > 0 and all n ∈ [1,+∞), which makes the proof complete.

Proof of Proposition 3.2.
Necessity. Assume that the unidimensional inequality index J verifies UN, USI, UDI and
ULC, and that the adjustment process (E( · ; · );w( · )) verifies WE. We have to show that,
if the bidimensional inequality index J fulfills BNSI, then the equivalence scale is isoelastic.
Choosing (y◦; n◦) = (K(n1), . . . , K(nH);n1, . . . , nH), we get

I(y◦; n◦) = J (E(y◦1;n◦1), . . . , E(y◦H ;n◦H) | w(n◦1), . . . , w(n◦H)) (by (3.3))(6.32)

= J

(
K(n1)
K(n1) , . . . ,

K(nH)
K(nH)

∣∣∣∣∣ η K(n1), . . . , η K(nH)
)

(by Prop. 3.1)

= J (1, . . . , 1 | η K(n1), . . . , η K(nH))

= J (1, . . . , 1 | K(n1), . . . , K(nH)) (by UDI)

= 0. (by UN)

Choosing next (y∗; n∗) = (K(n1), . . . , K(nH);λn1, . . . , λ nH) with λ > 0, we obtain by a
similar reasoning

I(y∗; n∗) = J (E(y∗1;n∗1), . . . , E(y∗H ;n∗H) | w(n∗1), . . . , w(n∗H)) (by (3.3))(6.33)

= J

(
K(n1)
K(λn1) , . . . ,

K(nH)
K(λnH)

∣∣∣∣∣ η K(λn1), . . . , η K(λnH)
)

(by Prop. 3.1)

= J

(
K(n1)
K(λn1) , . . . ,

K(nH)
K(λnH)

∣∣∣∣∣ K(λn1), . . . , K(λnH)
)
. (by UDI)

Invoking BNSI, we have I(y∗; n∗) = I(y◦; n◦), which, upon using (6.32) and (6.33), implies
that

(6.34) J

(
K(n1)
K(λn1) , . . . ,

K(nH)
K(λnH)

∣∣∣∣∣ K(λn1), . . . , K(λnH)
)

= 0,
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which holds true whatever the equivalence scale function K( · ), the distribution of size n : =
(n1, . . . , nH) and λ > 0. This implies that

(6.35) K(λn1)
K(n1) = K(λn2)

K(n2) = · · · = K(λnH)
K(nH) .

Because (6.35) holds true for all n = (n1, . . . , nH) ∈ [1,+∞)H and all λ > 0, we deduce that

(6.36) K(λn) = φ(λ)K(n), ∀ λ > 0, ∀ n ∈ [1,+∞),

a functional equation the solution of which (see Aczel (1966, Chapter 2)) is precisely (3.11).
Sufficiency. Assume that condition (3.13) holds and consider an arbitrary situation (y; n) :
= (y1, . . . , yH ;n1, . . . , nH). Choosing any λ > 0, we have

I(y;λn) = J (E(y1;λn1), . . . , E(yH ;λnH) | w(λn1), . . . , w(λnH)) (by (3.3))(6.37)

= J

(
y1

K(λn1) , . . . ,
yH

K(λnH)

∣∣∣∣∣ η K(λn1), . . . , η K(λnH)
)

(by Prop. 3.1)

= J

(
y1

ξ(λn1)ε , . . . ,
yH

ξ(λn1)ε

∣∣∣∣∣ η ξ(λn1)ε, . . . , η ξ(λnH)ε
)

(by assumption)

= J

(
1
λε

y1

ξnε1
, . . . ,

1
λε

yH
ξnεH

∣∣∣∣∣ η λε(ξnε1), . . . , η λε(ξnεH)
)

= J

(
1
λε

y1

ξnε1
, . . . ,

1
λε

yH
ξnεH

∣∣∣∣∣ η ξnε1, . . . , η ξnεH
)

(by UDI)

= J

(
y1

ξnε1
, . . . ,

yH
ξnεH

∣∣∣∣∣ η ξnε1, . . . , η ξnεH
)

(by USI)

= J

(
y1

K(n1) , . . . ,
yH

K(nH)

∣∣∣∣∣ η K(n1), . . . , η K(nH)
)

(by assumption)

= J (E(y1;n1), . . . , E(yH ;nH) | w(n1), . . . , w(nH)) (by Prop. 3.1)

= I(y; n), (by (3.3))

hence condition BNSI is verified.
Before we proceed to the proof of Proposition 4.1, we find it convenient to introduce the
following intermediate result that will be used repeatedly.

Lemma 6.3. Let J : = [1, c) whenever c > 1 and J : = (d, 1] whenever 0 5 d < 1. Then, there
exist a non-constant function h and a function k such that

(6.38) h(ab) = h(a) + k(a)h(b), ∀ a, b, ab ∈ J,

if and only if

either h(a) = α ln a and k(a) = 1, ∀ a ∈ J,(6.39a)

or h(a) = α [aη − 1] and k(a) = aη (λ 6= 0), ∀ a ∈ J.(6.39b)

Furthermore, the functions h and k defined in (6.39) satisfy (6.38) for all a, b, ab > 0.
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Proof of Lemma 6.3. The proof is analogous to that of Aczel (1984, Lemma 3) to which
we refer the interested reader and it is therefore omitted.

Proof of Proposition 4.1. We have already established that conditions (a) and (b) are
sufficient for the (relative) equivalence scale to be isoelastic and we therefore confine ourselves
to showing that they are also necessary. While the function ψ ∈ Ψ and the parameter θ ∈ [0, 1)
are kept fixed throughout the proof, we maintain them for clarity even though that makes
notation more complicated. Suppose thatM(p, q, u;ψ, θ, n) is isoelastic with respect to house-
hold size n, in which case there exist continuous functions g(p, q, u;ψ, θ, 1) and f(p, q, u;ψ, θ, 1)
such that

(6.40) M(p, q, u;ψ, θ, n) = g(p, q, u;ψ, θ, 1)nf(p,q,u;ψ,θ,1),

for all n = 1 and all (p, q, u). The proof proceeds in four successive steps. In Step 1 we
derive the implications of our assumptions for the expenditure function C(p, ψ(θ, n) q/n, u).
We obtain a complicated functional equation which is simplified in Step 2, and its solutions
are derived in Step 3. Finally, the consequences for the expenditure function are examined in
Step 4 and it turns out that preferences must be Cobb-Douglas and the congestion function
isoelastic.

Step 1. Making use of (2.10) and (6.40), we obtain the functional equation

(6.41) C(p, q, u;ψ, θ, n) = C(p, q, u;ψ, θ, 1) g(p, q, u;ψ, θ, 1)nf(p,q,u;ψ,θ,1), ∀n = 1, ∀ (p, q, u).

Setting n = 1 in (6.41) implies that

(6.42) g(p, q, u;ψ, θ, 1) = 1, ∀ (p, q, u),

which upon substituting into (6.41) and making use of (2.10) and (2.2d) gives

(6.43) nC

(
p,
ψ(θ, n) q

n
, u

)
= C(p, q, u)nf(p,q,u;ψ,θ,1), ∀n = 1, ∀ (p, q, u).

Substituting (1, q/p) for (p, q) in (6.43) and dividing both sides by n, we obtain

(6.44) C

(
1, ψ(θ, n)

n

q

p
, u

)
= C

(
1, q
p
, u

)
nf(1, q

p
,u;ψ,θ,1)−1, ∀n = 1, ∀ (p, q, u).

Letting ξ(θ, n) : = n/ψ(θ, n), equation (6.44) rewrites

(6.45) C

(
1, 1
ξ(θ, n)

q

p
, u

)
= C

(
1, q
p
, u

)
nf(1, q

p
,u;ψ,θ,1)−1, ∀n = 1, ∀ (p, q, u).

Since ξ(θ, n) is strictly monotone in n, it has an inverse ϕ(θ, r) defined by

(6.46) ξ(θ, ϕ(θ, r)) = r, ∀ r ∈ I(θ) : = {s | ∃n ∈ [1,+∞) : ξ(θ, n) = s},

where

I(θ) ⊆ (0, 1] if ξ(θ, n) is decreasing in n, and(6.47a)

I(θ) ⊆ [1,+∞) if ξ(θ, n) is increasing in n.(6.47b)

For later use, we find convenient to introduce the set

(6.48) J(θ) : = {s | ∃ r ∈ I(θ) : s = 1/r},
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where

J(θ) ⊆ (0, 1] if ξ(θ, n) is decreasing in n, and(6.49a)

J(θ) ⊆ [1,+∞) if ξ(θ, n) is increasing in n.(6.49b)

Replacing n by ϕ(θ, r) in (6.45), we obtain

(6.50) C

(
1, q
p

1
r
, u

)
= C

(
1, q
p
, u

)
ϕ(θ, r)f(1, q

p
,u;ψ,θ,1)−1, ∀ r ∈ I(θ), ∀ (p, q, u).

Step 2. Now define

h(a, u) : = lnC(1, a, u), (a = q/p)(6.51a)

k(θ; a, u) : = f(1, a, u;ψ, θ, 1)− 1,(6.51b)

`(θ; b) : = ln ϕ(θ, 1/b). (b = 1/r)(6.51c)

For later use, we note that the function h(a, u) inherits the properties of the (individual)
expenditure function: in particular, it is increasing in a. Similarly, `(θ; b) is strictly monotonic
in b since the inverse ϕ(θ, r) of ξ(θ, n) is strictly monotonic in r. Then (6.50) can be rewritten
as

(6.52) h

(
q

p

1
r
, u

)
= h

(
q

p
, u

)
+ k

(
θ; q
p
, u

)
`
(
θ; 1
r

)
, ∀ r ∈ I(θ), ∀ (p, q, u),

which is equivalent to the following functional equation

(6.53) h(ab, u) = h(a, u) + k(θ; a, u) `(θ; b), ∀ b ∈ J(θ), ∀ a > 0, ∀u.

Setting a = 1 in the preceding equation, we get

(6.54) h(b, u) = h(1, u) + k(θ; 1, u) `(θ; b), ∀ b ∈ J(θ), ∀u.

Because h( · , u) is increasing, we must have k(θ; 1, u) 6= 0, and we deduce from (6.54) that

(6.55) `(θ; b) = h(b, u)− h(1, u)
k(θ; 1, u) , ∀ b ∈ J(θ), ∀u.

Substituting into (6.53) and subtracting h(1, u) from both sides, we get

(6.56) h(ab, u)− h(1, u) = h(a, u)− h(1, u) + k(θ; a, u)
k(θ; 1, u) [h(b, u)− h(1, u)],

for all b ∈ J(θ), all a > 0, and all u. Now define

ĥ(a, u) : = h(a, u)− h(1, u),(6.57a)

k̂(θ; a, u) : = k(θ; a, u)/k(θ; 1, u),(6.57b)

and substitute into (6.56) to get

(6.58) ĥ(ab, u) = ĥ(a, u) + k̂(θ; a, u) ĥ(b, u), ∀ a > 0, ∀ b ∈ J(θ), ∀u,

which implies that k̂(θ; a, u) is independent of θ, hence k̂(θ; a, u) = k̃(a, u).
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Step 3. Given θ ∈ [0, 1) and u ∈ R, we want to solve the functional equation

(6.59) ĥ(ab, u) = ĥ(a, u) + k̃(a, u) ĥ(b, u), where a, b, ab ∈ J(θ).

Invoking Lemma 6.3 and letting

(6.60) β(u) : = h(1, u) and γ(θ;u) : = k(θ; 1, u),

there are two cases to be considered.

Case 1: ĥ(a, u) = α(u) ln a and k̃(a, u) = 1, for all a ∈ R++.
Making use of (6.57a), (6.57b), (6.60), and upon substituting into (6.51a), (6.51b) and (6.51c),
we obtain

h(a, u) = ĥ(a, u) + h(1, u) = α(u) ln a+ β(u), ∀ a ∈ R++;(6.61a)

k(θ; a, u) = k̃(a, u) k(θ; 1, u) = γ(θ;u), ∀ a ∈ R++;(6.61b)

`(θ; a) = h(a, u)− h(1, u)
k(θ; 1, u) = α(u) ln a

γ(θ;u) , ∀ a ∈ R++.(6.61c)

Case 2: ĥ(a, u) = α[aη − 1] and k̃(a, u) = aη (η 6= 0), for all a ∈ R++. Making use again of
(6.57a), (6.57b), (6.60), and upon substituting into (6.51a), (6.51b) and (6.51c), we obtain

h(a, u) = ĥ(a, u) + h(1, u) = α(u) [ aη(u) − 1 ] + β(u), ∀ a ∈ R++;(6.62a)

k(θ; a, u) = k̃(a, u) k(θ; 1, u) = γ(θ;u), ∀ a ∈ R++;(6.62b)

`(θ; a) = h(a, u)− h(1, u)
k(θ; 1, u) = α(u) [ aη(u) − 1 ], ∀ a ∈ R++.(6.62c)

Step 4. Now we examine the implications for the expenditure function and the congestion
function of the two solutions we have obtained above.

Case 1. h(t, u) = α(u) ln t+ β(u). Then we have

(6.63) eh(t,u) = eα(u) ln t+β(u) = eβ(u) eln tα(u) = δ(u) tα(u),

where δ(u) : = eβ(u), for all t > 0 and all u. Substituting into (6.51a) and acknowledging the
linear homogeneity in prices of the expenditure function, we get

(6.64) C(p, q, u) = pC

(
1, q
p
, u

)
= p eh(

q
p
,u) = p δ(u)

(
q

p

)α(u)

= δ(u) p1−α(u) qα(u),

for all (p, q)� (0, 0) and all u. The monotonicity of the expenditure function in prices implies
that 1 − α(u) > 0 and α(u) > 0, hence 0 < α(u) < 1, for all u. By definition, the individual
expenditure function is strictly increasing in u, which implies that

∂ C(p, q, u)
∂ u

= δ′(u) p1−α(u) qα(u) + δ(u) p1−α(u) qα(u) [α′(u) ln q − α′(u) ln p ]

= p1−α(u) qα(u)
[
δ′(u) + δ(u)α′(u) ln

(
q

p

)]
> 0,

(6.65)
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where α′(u) is the derivative of α(u) with respect to u. Since ln(q/p) ∈ (−∞,+∞), it is
necessary for (6.65) to hold that α′(u) = 0, hence α(u) is independent of u and α(u) = ε ∈
(0, 1), for all u. Furthermore, we have

(6.66) `(θ; s) = ln sα(u)/γ(θ;u) = ln sε/γ(θ;u), ∀ s > 0, ∀u,

and we conclude that γ(θ;u) is independent of u, hence γ(θ;u) = ζ(θ). By definition

(6.67) `(θ; s) : = ln ϕ(θ, 1/s) = ln sε/ζ(θ), ∀ s > 0,

which implies that

(6.68) ϕ(θ, 1/s) = sε/ζ(θ), ∀ s > 0,

or equivalently

(6.69) ϕ(θ, r) = (1/r)ε/ζ(θ) = r−ε/ζ(θ), ∀ r > 0.

Using the fact that by definition ϕ(θ, r) = n, we obtain

(6.70) ξ(θ, n) = ξ(θ, ϕ(θ, r)) = r = n−ζ(θ)/ε,

and finally

(6.71) ψ(θ, n) = n

ξ(θ, n) = n

n−ζ(θ)/ε = nρ(θ),

where ρ(θ) : = 1 + ζ(θ)/ε, and it is an admissible congestion function.

Case 2. h(t, u) = α(u) [ tη(u) − 1 ] + β(u). Then we have

(6.72) eh(t,u) = eα(u) [ tη(u)−1 ]+β(u) = eβ(u) eα(u) [ tη(u)−1 ] = : δ(u) eα(u) [ tη(u)−1 ],

for all t > 0 and all u. Substituting into (6.51a) and using the linear homogeneity in prices of
the expenditure function, we obtain

(6.73) C(p, q, u) = pC

(
1, q
p
, u

)
= p eh(

q
p
,u) = δ(u) p eα(u)

[
( qp)

η(u)
−1
]
,

for all (p, q)� 0 and all u. By definition, the expenditure function C(p, q, u) must be increasing
in prices. On the one hand, we must have

(6.74) ∂ C(p, q, u)
∂ q

= δ(u) p eα(u)
[
( qp)

η(u)
−1
]
α(u) η(u)

p

(
q

p

)η(u)−1

> 0,

which simplifies to

(6.75) ∂ C(p, q, u)
∂ q

= δ(u) eα(u)
[
( qp)

η(u)
−1
]
α(u) η(u)

(
q

p

)η(u)−1

> 0.

Since δ(u) > 0, it is necessary for (6.75) to hold that α(u) η(u) > 0. On the other hand, it
must be the case that

(6.76) ∂ C(p, q, u)
∂ p

= δ(u) eα(u)
[
( qp)

η(u)
−1
]
− δ(u) eα(u)

[
( qp)

η(u)
−1
]
α(u) η(u)

(
q

p

)η(u)

> 0,
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which simplifies to

(6.77) ∂ C(p, q, u)
∂ p

= δ(u) eα(u)
[
( qp)

η(u)
−1
] [

1− α(u) η(u)
(
q

p

)η(u)]
> 0.

Since δ(u) > 0, it is necessary for (6.77) to hold that the term within squared brackets is
positive. However, depending on the values of q/p and η(u) − 1, this term can be positive,
negative, or zero, and we therefore conclude that Case 2 is impossible.
To sum up, we have shown that

C(p, q, u) = δ(u) p1−ε qε (0 < ε < 1), ∀ (p, q)� (0, 0), ∀ u, and(6.78)

ψ(θ, n) = nρ(θ) where θ ∈ [0, 1), ∀ n ∈ [1,+∞),(6.79)

and the proof is complete.
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