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Abstract.—Despite the growing popularity of supertree construction for combining phylogenetic in-
formation to produce more inclusive phylogenies, large-scale performance testing of this method
has not been done. Through simulation, we tested the accuracy of the most widely used supertree
method, matrix representation with parsimony analysis (MRP), with respect to a (maximum parsi-
mony) total evidence solution and a known model tree. When source trees overlap completely, MRP
provided a reasonable approximation of the total evidence tree; agreement was usually >85%. Per-
formance improved slightly when using smaller, more numerous, or more congruent source trees,
and especially when elements were weighted in proportion to the bootstrap frequencies of the nodes
they represented on each source tree (“weighted MRP”). Although total evidence always estimated
the model tree slightly better than nonweighted MRP methods, weighted MRP in turn usually out-
performed total evidence slightly. When source studies were even moderately nonoverlapping (i.e.,
sharing only three-quarters of the taxa), the high proportion of missing data caused a loss in resolu-
tion that severely degraded the performance for all methods, including total evidence. In such cases,
even combining more trees, which had positive effects elsewhere, did not improve accuracy. Instead,
“seeding” the supertree or total evidence analyses with a single largely complete study improved
performance substantially. This �nding could be an important strategy for any studies that seek to
combine phylogenetic information. Overall, our results suggest that MRP supertree construction pro-
vides a reasonable approximation of a total evidence solution and that weighted MRP should be used
whenever possible. [Accuracy; matrix representation; missing data; MRP; phylogenetic supertrees;
resolution; taxonomic congruence; total evidence.]

Supertree construction (sensu Sanderson
et al., 1998) represents an increasingly pop-
ular technique for combining phylogenetic
information. Large-scale supertrees already
exist for all extant species of the mammalian
orders Primates (Purvis, 1995a; Purvis and
Webster, 1999) and Carnivora (Bininda-
Emonds et al., 1999), for the major clades
within the legume subfamily Papilionoideae
(Wojciechowski et al., 2000), and for the
family-level relationships of all extant mam-
mals (Liu et al., 2001). Furthermore, supertree
construction has been identi�ed as the key
to producing comprehensive phylogenies for
problematic clades (e.g., the kinetoplastid
protozoaTrypanosomatidae; Stothard, 2000).

The appeal of supertrees lies in their abil-
ity to synthesize many smaller, disparate
sources of phylogenetic information into a
single more-encompassing, but still well-
resolved tree. This is especially true of
one supertree method, matrix representa-
tion using parsimony (MRP; Baum, 1992; Ra-
gan, 1992; also Brooks, 1981; Doyle, 1992).
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In many cases, comprehensive phyloge-
netic estimates of an entire group cannot
otherwise be obtained by conventional phy-
logenetic methods. For instance, primary
analysis or total evidence (sensu Kluge,
1989) requires the combined data to be
compatible, whereas taxonomic congruence
(sensu Mickevich, 1978) requires that the
studies possess the same set of taxa. Su-
pertrees combine the positive aspects of
both of the latter two approaches to avoid
their individual shortcomings. Like taxo-
nomic congruence, supertree construction
utilizes tree topologies and thus allows phy-
logenetic estimates derived from all possi-
ble data sources (which are often incom-
patible) to be combined—usually retaining
good resolution while doing so (Purvis,
1995b). Like total evidence, supertree con-
struction can combine estimates with dif-
ferent sets of terminal taxa to obtain a so-
lution that contains statements of phylo-
genetic relationship that are not present
in any single source study. Overall, su-
pertree construction seems to show great
promise for phylogenetic inference and the
ultimate goal of estimating the tree of
life on the basis of using all available
information.
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Previous research into supertree construc-
tion has focused on methodological issues
(e.g., different coding methods or optimiza-
tion criteria to derive the supertree) and its
theoretical validity in particular (Baum and
Ragan, 1993; Rodrigo, 1993, 1996; Purvis,
1995b; Ronquist, 1996; Bininda-Emonds and
Bryant, 1998; Wilkinson et al., 2001). Su-
pertree construction has been strongly crit-
icized (e.g., Rodrigo, 1993, 1996) because the
method loses contact with the primary data
and thereby essentially throws out some in-
formation. This is an admittedly undesir-
able, but otherwise necessary, feature of the
method to be able to combine incompatible
data types. What is important is to estab-
lish what is the consequence in practice of
making this tradeoff inherent to supertree
construction. Isolated examples show that
MRP supertree construction will occasion-
ally give “wrong” answers (e.g., Purvis,
1995b; Bininda-Emonds and Bryant, 1998;
Wilkinson et al., 2001). However, large-scale
performance testing of supertree construc-
tion has been limited to a meta-analysis
based on literature sources, which indicated
that MRP supertrees show reasonable simi-
larity to a total evidence solution (Bininda-
Emonds and Bryant, 1998), and a single case
study comparing a supertree of papilionoid
legumes to a phylogeny derived from the
chloroplast matK gene (Wojciechowski et al.,
2000).

Through simulation, we examine the accu-
racy of supertree construction in relation to a
known model tree and an inferred total evi-
dence solution. Variables examined include
the size, number, and degree of incongru-
ence between source trees; the effects of taxon
sampling (i.e., the degree to which source
trees overlap in their taxon sets); and some
suggested modi�cations to the basic MRP
coding procedure. We limit our analyses to
MRP supertree construction because it rep-
resents the most widely used supertree tech-
nique to date—no doubt in part because of
its widespread applicability.

METHODS

Our basic protocol involved evolving nu-
cleotide sequences down known model trees
that were constructed according to a branch-
ing process (see below). The resulting matrix
was subdivided into equal sized data parti-
tions, each of which was analyzed individ-

ually to produce single source trees subse-
quently combined as an MRP supertree. Si-
multaneous parsimony analysis of all parti-
tions yielded a total evidence solution. We
then compared all possible pairs of trees
(i.e., supertree, total evidence tree, and model
tree) to assess the accuracy of MRP supertree
construction. Each setof simulated model pa-
rameters was replicated 1,000 times.

Generating the Model Tree and Primary Data

We constructed model trees, using the de-
fault parameters of the YULE C procedure
in the program r8s (written by M.J.S.; avail-
able from http://loco.ucdavis.edu/r8s/r8s.
html). This procedure obtains trees accord-
ing to a stochastic Yule birth process con-
ditioned on a �xed number of tips and a
�xed time between the root of the tree and
the present (Ross, 1996). Among other things,
this model ensures that the age distribution
of the nodes in the trees is invariant to taxon
number. Rates of character evolution were
modeled to depart from the assumption of
a molecular clock. Speci�cally, branch dura-
tions from the Yule model were multiplied by
branch-speci�c rates of evolution that are the
product of an overall tree-wide substitution
rate and a random normal variate (drawn
from a distribution with a mean of 1.0, stan-
dard deviation of 0.5, and truncated outside
of [0.1, 2.0]).

Nucleotide sequences were evolved on
the model trees according to a standard
Markov model as implemented in the pro-
gram Seq-Gen v1.1 (Rambaut and Grassly,
1997). We used a relatively standard model
of evolution, namely, a Kimura 2-parameter
model with a transition/transversion ratio
of 2.0, different average rates of substitu-
tion across the tree (see below), and site-to-
site rate heterogeneity (with a shape param-
eter of 0.5) (Swofford et al., 1996). The size
of the primary data matrix equaled 500 nu-
cleotides multiplied by the number of source
trees.

Derivation of MRP Supertrees and Total
Evidence Solutions

To obtain the MRP supertree, we divided
the primary data matrix into equal-sized data
partitions of 500 nucleotides according to
the number of source trees that were to be
combined. Because Seq-Gen evolveseach site
independently, we could select contiguous

http://loco.ucdavis.edu/r8s/r8s.html
http://loco.ucdavis.edu/r8s/r8s.html
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blocks of nucleotides to obtain random par-
titions of the data.

The sequences for each data partition were
then analyzed by using weighted parsimony
(with transitions weighted twice as heavily
as transversions in a step matrix approach) to
derive a set of source trees. Use of weighted
parsimony greatly improves performance
over unweighted parsimony (Hillis et al.,
1994) and so represents a best case scenario
for our phylogenetic reconstructions, given
that the weighting scheme exactly matched
the model under which the data were gener-
ated. Analysis was done with PAUP¤ v4.0b2
(Swofford, 1999), using a heuristic search
strategy with a random addition sequence
(25 replicates), TBR branch swapping, and
1,000 MAXTREES. Source trees were taken
to be the strict consensus of all equally most-
parsimonious solutions and were saved into
a single tree �le to be coded for the MRP
analysis. Brie�y, MRP encodes the topology
of a tree as a series of binary elements, one
for each (informative) node in the tree. Taxa
that are derived from a given node are scored
as 1, those that are not so derived but are
still present on the tree are scored as 0, and
all other taxa are scored as ?. The matrix
representations for all source trees are then
combined into a single matrix that is ana-
lyzed by parsimony. Given a tree �le with de-
scriptions of all the source trees, r8s can pro-
duce a NEXUS formatted matrix (see Mad-
dison et al., 1997) for analysis in PAUP¤ (as
can PAUP¤). Determination of the supertree
in PAUP¤ used the same heuristic search
strategy as described above for the source
trees. The supertree was taken to be the strict
consensus of all equally most-parsimonious
solutions.

We obtained the total evidence solution
through the combined analysis of all data
partitions. Weighted parsimony analysis fol-
lowed the search strategy described above
for each individual partition (i.e., the strict
consensus of all equally most-parsimonious
solutions derived from a heuristic search).

Comparing Tree Topologies

To assess the accuracy of supertree con-
struction, we checked the three pairwise
combinations of the actual model tree and
the supertree and total evidence estimates
of it. The metrics we used compared tree
topologies either in isolation (partition met-

ric and consensus fork index) or taking the
underlying simulated sequence data into ac-
count (Kishino–Hasegawa test; Kishino and
Hasegawa, 1989). Although the consensus
fork index (CFI; Colless, 1980, 1981) is strictly
speaking a “consensus object invariant”(Day
and McMorris, 1985), it can also be adapted
as a tree comparison metric (e.g., Swofford,
1991).

Both the partition metric (dS; Robinson and
Foulds, 1981) and CFI are based on the num-
ber of common bipartitions between two
trees. They differ in how they treat poly-
tomies. The former views them as “hard” (see
Maddison, 1989) so that the same polytomy
on two trees is held to be “correct”. In con-
trast, our adaptation of the CFI essentially
views polytomies as “soft”, thereby holding
two identically placed polytomies as “incor-
rect”. This distinction is important, depend-
ing on the reference tree. In comparing the
MRP supertree to the total evidence tree, we
ideally want to reproduce any polytomies on
the latter exactly. Thus, dS is the appropri-
ate choice for this comparison. In contrast,
the model tree is always strictly bifurcating,
and low values for dS can occur only if either
the supertree or total evidence tree is well re-
solved but disagrees strongly with the model
tree. If either test tree is poorly resolved, dS
tends toward 50%. Thus, CFI is more infor-
mative when the model tree is the reference
tree because it counts as incorrect both poly-
tomies and clades of differing membership
on the estimated trees. Values of dS were stan-
dardized for tree size (by dividing through
by 2n 6, where n D number of taxa; Steel
and Penny, 1993) and subtracted from 1.0 to
create a similarity metric equivalent to CFI.

Two trees that possess different topolo-
gies may still not be signi�cantly differ-
ent in the context of the underlying data.
To examine this possibility, we used the
Kishino–Hasegawa test to assess supertree
accuracy relative to the simulated molec-
ular sequences. We restricted our analyses
to the nominal variable of whether or not
a signi�cant difference (i.e., P · 0.05) was
detected for a given replicate. Because the
topologies of both the supertree and the to-
tal evidence tree, and arguably the model
tree, were selected a posteriori, the Kishino–
Hasegawa test as implemented in PAUP¤ is
invalid in this instance (Swofford et al., 1996;
Goldman et al., 2000). Speci�cally, Goldman
et al. (2000) point out that the underlying
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distribution of the test assumes that either
test tree is equally likely to be more parsimo-
nious than the other. Because the total evi-
dence tree will usually be the most optimal
given the data (taking into account the uncer-
tainty of the heuristic search algorithm), this
assumption is ordinarily violated whenever
it forms one of the test trees. We correct for
this by applying the Kishino–Hasegawa test
as a one-tailed test (i.e., P=2 · 0.05; Goldman
et al., 2000).

Variables under Examination

We examined several variables that po-
tentially affect supertree performance: the
coding method used, the size and num-
ber of source trees, the degree of incongru-
ence among source trees, and the degree to
which the source trees overlap (i.e., effect of
nonidentical taxon sets among source trees).
Multivariate ANOVAs were used to deter-
mine whether any of these factors, individu-
ally or in combination, signi�cantly affected
the accuracy of the supertrees in comparison
with either reference tree (i.e., the total evi-
dence or model trees).

Several modi�cations to the basic (“stan-
dard”) MRP procedure described above ex-
ist. In an attempt to minimize perceived re-
dundancy in the basic coding method, Purvis
(1995b) suggested that only taxa forming the
direct sister group to the node under exam-
ination be scored as 0; all remaining taxa
formerly scored as 0 should be scored as
missing instead. In another proposed modi-
�cation, Bininda–Emonds and Bryant (1998)
argued from �rst principles that 0s in the
MRP matrix should not be used as evidence
to cluster taxa because they denote a lack
of membership in a clade; instead, perhaps
the MRP matrix should be analyzed with re-
versals (i.e., 1 ! 0 transformations) prohib-
ited. Finally, as has been widely suggested
(Baum, 1992; Purvis, 1995b; Ronquist, 1996;
Bininda–Emonds and Bryant, 1998), the in-
dividual elements in the MRP matrix should
be weighted in proportion to the evidential
support of the nodes they represent to retain
greater contact with the raw data. We refer
to these modi�cations as Purvis, irreversible,
and weighted MRP, respectively.

r8s produces both standard and Purvis
MRP codings. The latter were analyzed ex-
actly in the same way as the former. For
irreversible MRP, we speci�ed that rever-

sals be prohibited (Camin–Sokal parsimony)
during the parsimony analysis in PAUP¤.
To obtain a weighted MRP supertree, we
performed a fast heuristic bootstrap analy-
sis (Felsenstein, 1985; see Swofford, 1999) of
1,000 replicates in PAUP¤ for each data parti-
tion subsequent to the basic (weighted) par-
simony analysis. The fully resolved majority
rule bootstrap tree (Margush and McMorris,
1981) was saved to a tree �le with bootstrap
proportions saved as branch lengths. r8s can
distill branch length information from a tree
description to derive a MRP matrix with an
associated character weighting set for analy-
sis in PAUP¤ in the manner described above
for standard MRP. Thus, all four versions of
MRP supertree were derived from the same
set of simulated data.

Of the remaining variables, source tree
number (that is, the number of data parti-
tions of 500 bp each) was set to either 2 or
10, and source tree size was 8, 16, or 32 taxa
per set of replicates. We mimicked increasing
incongruence among source trees by increas-
ing the rate of evolution for the simulated
sequence data in Seq-Gen, thereby making
it less likely that two partitions would give
the same source tree. Average rates of evo-
lution, representing the number of substitu-
tions per site measured along a path from
the root to any tip of the tree, were in-
creased from the default of 0.1 (“no incon-
gruence”) to 0.5 (“low”), 1.0 (“medium”),
or 1.5 (“high”). These runs were performed
on source trees with 16 taxa. Admittedly,
this procedure may not model incongruence
adequately or realistically. For instance, a
key source of incongruence in practice is
combining source trees representing differ-
ent phylogenetic histories (e.g., gene trees
vs. species trees), whereas our source trees
are ultimately derived from a single model
tree. However, there is no ideal way to model
incongruence quantitatively, especially with
different model trees. Minimally, our proce-
dure yielded source trees that were increas-
ingly different, and signi�cantly so, as the
rate of evolution was increased, as measured
by both dS and CFI (results not shown).

Finally, we deleted taxa from each partition
to simulate the effect of nonidentical taxon
sets among source trees. Except for the �rst
(outgroup) taxon, which we retained to pro-
vide an unambiguous root for all trees, each
taxon had a �xed probability of being deleted
from each partition (25%, 50%, or 75%). Thus,
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source trees varied in size according to a bi-
nomial probability distribution (with an ex-
pected mean of the total number of taxa mul-
tiplied by the inclusion probability), and the
same taxon could be deleted from more than
one partition. If a taxon was deemed to be
absent from a given partition, it was either
removed from the initial parsimony analysis
(supertree) or its nucleotides were replaced
with missing data for that partition (total
evidence). Because parsimony analysis can-
not be performed with fewer than four taxa,
all deletion runs were performed on source
trees with 32 taxa to minimize the likelihood
of all but three or fewer taxa being deleted.
If the latter condition still occurred, we re-
cast the replicate. We did not verify whether
the data partitions ful�lled the minimum re-
quirement for supertree construction—that
each source tree shares at least two taxa
with the rest of the source trees combined—
because this was unlikely to not occur and
would affect both supertree construction and
total evidence analyses similarly.

RESULTS

For each factor (source tree size, incon-
gruence between source trees, and degree
of taxon overlap), we initially describe the
trends for when two source trees are com-
bined using standard MRP as a baseline for
comparison. Thereafter, we describe the ef-
fect of combining more source trees or us-
ing different coding methods. Unless oth-
erwise speci�ed, all signi�cant differences
were highly signi�cant (i.e., P < 0:0001).

Effect of Source Tree Size

A multivariate ANOVA revealed that cod-
ing method, source tree size, and source
tree number, both individually and in most
combinations thereof, had a signi�cant ef-
fect on supertree accuracy with respect to
either the total evidence tree or the model
tree. The only exceptions were the lack of
a coding £ size interaction when compared
to the total evidence tree by dS (P D 0.6636)
and of a coding £ size £ number interac-
tion when compared to the model tree by
CFI (P D 0.8865). Contingency tables also
revealed highly signi�cant differences at-
tributable to each individual factor (interac-
tions could not be analyzed) with respect to
whether a Kishino-Hasegawa test indicated a

signi�cant difference between the supertree
and either reference tree.

In particular, supertree accuracy decreased
signi�cantly as the source trees became
larger. In practical terms, however, most of
the differences were small. Two source trees
of eight taxa combined by using standard
MRP showed 94.8% similarity with respect
to the total evidence tree; this decreased to
only 91.6% when the source trees were four-
fold larger, at 32 taxa (Table 1). Equivalent
values in comparison with the model tree
were 87.1% and 79.9%, respectively (Table 2).
A more obviousdecrease in performancewas
detected by the Kishino-Hasegawa test. For
eight taxa, 31.3% of the 1,000 simulation runs
detected a signi�cant difference between the
supertree and the total evidence tree. This
value jumped to 71.3% with 32 taxa (Table 3).
Analogous numbers for comparisons with
the model tree were slightly better: 30.6% and
57.4%, respectively (Table 4).

Combining 10 source trees signi�cantly
improved the accuracy of the supertree in
all cases, although the same negative trend
with increasing tree size remained. When
10 source trees of 32 taxa were combined
using standard MRP, the supertree showed
95.2% similarity with the total evidence tree
and 91.4% similarity with the model tree
(Tables 1 and 2, respectively). Both values
were better than their respective best case
scenarios using only two source trees (i.e., of
eight taxa). Improvement was not as marked
with the Kishino-Hasegawa test: between
11% and 14% of the replicates indicated sig-
ni�cant differences with either reference tree
for eight taxa and 46% to 60% for 32 taxa
(Tables 3 and 4).

Except for (bootstrap) weighted MRP, the
behavior of the remaining coding methods
was generally indistinguishable statistically
from standard MRP. Weighted MRP, in con-
trast, performed signi�cantly better than the
nonweighted methods for nearly all cases.
The only exceptions to this �nding were
when the total evidence tree was used as the
reference tree, but only when dS was used
to measure accuracy (Table 1); the Kishino-
Hasegawa test revealed a signi�cantly im-
proved performance by weighted MRP. Sig-
ni�cant differences detected by the latter
test always occurred in <30% of the repli-
cates, and usually <20%, for weighted MRP
(Table 3). The trend is more de�nite when
comparing with the model tree: Weighted
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TABLE 1. Difference in topology between various MRP supertrees and the total evidence solution of the same
data set as measured by dS (presented as a similarity metric). Values presented are means with standard deviations
appearing below each mean in parentheses (n D 1,000). For each coding method, 2 or 10 source trees were combined
for each factor. Size values represent the number of taxa in the source tree. Incongruence values represent the average
rate of evolution in number of substitutions per site for the simulated data generated with Seq-Gen. Deletion values
represent the probability that a given taxon was missing from each source tree partition.

Standard MRP Purvis MRP Irreversible MRP Weighted MRP

Factor Value 2 10 2 10 2 10 2 10

Size 8 0.948 0.973 0.946 0.971 0.948 0.969 0.961 0.970
(0.083) (0.067) (0.087) (0.071) (0.082) (0.070) (0.079) (0.076)

16 0.926 0.962 0.923 0.958 0.927 0.954 0.935 0.960
(0.070) (0.051) (0.071) (0.055) (0.068) (0.057) (0.070) (0.055)

32 0.916 0.952 0.914 0.946 0.916 0.944 0.916 0.953
(0.053) (0.042) (0.054) (0.046) (0.053) (0.044) (0.052) (0.043)

Incongruence None (0.1) 0.926 0.962 0.923 0.958 0.927 0.954 0.935 0.960
(16 taxa) (0.070) (0.051) (0.071) (0.055) (0.068) (0.057) (0.070) (0.055)

Low (0.5) 0.900 0.944 0.896 0.937 0.902 0.933 0.915 0.942
(0.076) (0.068) (0.082) (0.076) (0.073) (0.076) (0.086) (0.074)

Medium (1.0) 0.882 0.931 0.877 0.920 0.884 0.913 0.896 0.925
(0.088) (0.079) (0.090) (0.091) (0.085) (0.085) (0.095) (0.085)

High (1.5) 0.856 0.925 0.849 0.913 0.860 0.909 0.880 0.923
(0.097) (0.080) (0.101) (0.091) (0.095) (0.089) (0.100) (0.084)

Deletion None (0.1) 0.916 0.952 0.914 0.946 0.916 0.944 0.916 0.953
(32 taxa) (0.053) (0.042) (0.054) (0.046) (0.053) (0.044) (0.052) (0.043)

Low (0.25) 0.924 0.941 0.913 0.937 0.924 0.934 0.901 0.940
(0.057) (0.044) (0.064) (0.046) (0.057) (0.047) (0.064) (0.047)

Medium (0.50) 0.934 0.911 0.924 0.901 0.925 0.905 0.889 0.912
(0.071) (0.059) (0.074) (0.063) (0.083) (0.063) (0.089) (0.065)

High (0.75) 0.982 0.927 0.980 0.923 0.952 0.741 0.950 0.912
(0.049) (0.065) (0.051) (0.065) (0.102) (0.181) (0.087) (0.079)

MRP always signi�cantly outperformed the
remaining MRP methods and was at least
on a par with, but usually slightly outper-
formed, total evidence (Tables 2 and 4).

Effect of Source Tree Incongruence

Again, all the individual factors (coding
method, incongruence, and source tree num-
ber) and most combinations thereof signif-
icantly in�uenced the values of all metrics
for both reference trees. The only exceptions
were for dS when comparing with the to-
tal evidence tree for the two interactions
coding £ homoplasy (P D 0.0983) and cod-
ing £ size £ number (P D 0.6057).

As indicated by combining two source
trees (of 16 taxa) using standard MRP, su-
pertree construction became less accurate
with increasingly incongruent source trees.
Again, the decrease, although signi�cant,
was generally small. The percent of clades
shared between the supertree and total evi-
dence tree decreased from 92.6% with “no”
incongruence (rate D 0:1) to only 85.6% with
“high” incongruence (rate D 1:5) (Table 1).
When using the model tree as the refer-
ence tree, accuracy was lower and the de-

crease in performance with increasingly in-
congruent source trees was a little larger. The
analogous values are 83.0% and 72.5%, re-
spectively (Table 2). The Kishino-Hasegawa
test again showed a large decrease (e.g.,
57.6–87.7% of the replicates yielded signi�-
cant differences compared with the total ev-
idence solution), although the trend was not
linear. The smaller value was obtained with
no incongruence; with any substantial level
of incongruence (i.e., rate ¸ 0.5), the values
were all >80% (Table 3). We observed a simi-
lar pattern when the model tree was used as
the reference tree, albeit with a slightly im-
proved performance (Table 4).

Although the same trends were appar-
ent, combining 10 source trees did much to
ameliorate the negative effects of increasing
incongruence among them. Even when 10
“highly” incongruent source trees were com-
bined by using standard MRP, the supertree
showed the same resemblance to the total ev-
idence solution (92.5%) as when only two
congruent source trees were combined
(Table 1). The situation was even better with
respect to the model tree (86.4% vs. 83.0%, re-
spectively; Table 2). A similar improvement
was noted for the Kishino-Hasegawa test,
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TABLE 3. Difference in topology between various MRP supertrees and the total evidence solution of the same
data set as measured by the Kishino–Hasegawa metric. Values presented are the proportion of 1,000 replicates in
which a signi�cant difference was detected (P · 0:05) between the two trees in the context of the simulated DNA
data set. For each coding method, 2 or 10 source trees were combined for each factor (see Table 1).

Standard MRP Purvis MRP Irreversible MRP Weighted MRP

Factor Value 2 10 2 10 2 10 2 10

Size 8 0.272 0.115 0.271 0.123 0.263 0.123 0.054 0.038
16 0.486 0.323 0.505 0.327 0.490 0.320 0.110 0.084
32 0.643 0.561 0.695 0.572 0.649 0.582 0.192 0.153

Incongruence None (0.1) 0.486 0.323 0.505 0.327 0.490 0.320 0.110 0.084
(16 taxa) Low (0.5) 0.811 0.353 0.778 0.371 0.800 0.363 0.146 0.090

Medium (1.0) 0.842 0.393 0.830 0.435 0.842 0.452 0.139 0.112
High (1.5) 0.868 0.379 0.856 0.433 0.864 0.408 0.141 0.114

Deletion None (0) 0.643 0.561 0.695 0.572 0.649 0.582 0.192 0.153
(32 taxa) Low (0.25) 0.686 0.611 0.756 0.659 0.680 0.630 0.435 0.169

Medium (0.50) 0.586 0.744 0.645 0.816 0.598 0.765 0.577 0.335
High (0.75) 0.171 0.739 0.190 0.773 0.275 0.886 0.272 0.669

with supertrees derived from 10 source trees
being signi�cantly different from either the
total evidence or model tree »50% and 30%
less of the time, respectively, than when only
two source trees were used (Tables 3 and 4).

The effect of using different coding meth-
ods was again complicated, although the
general pattern remained that weighted
MRP outperformed both the remaining MRP
methods and total evidence. With two source
trees, using weighted MRP signi�cantly im-
proved the estimate of the total evidence
tree (as measured by dS) relative to the non-
weighted MRP methods. With 10 source
trees, however, standard and weighted MRP
performed equally well, and slightly but
signi�cantly better than the other methods
(Table 1). Weighted MRP always outper-
formed the other MRP methods, which were
indistinguishable, by the Kishino-Hasegawa
test, with signi�cant differences from the to-
tal evidence tree occurring in <20% of the
replicates (Table 3). The ability to recon-
struct the model tree depended somewhat
on the degree of incongruence among source
trees. Weighted MRP was always slightly,
but signi�cantly, better than total evidence
regardless of the metric, and both were al-
ways signi�cantly better than the remaining
MRP coding methods. As the level of incon-
gruence increased, the nonweighted MRP
methods tended to become signi�cantly dif-
ferent from one another with no apparent
pattern (Tables 2 and 4). Again, although
these differences were often statistically sig-
ni�cantly, absolute differences were small,
particular when 10 source trees were
combined.

Effect of Nonidentical Taxon Sets
Multivariate ANOVAs again revealed that

all individual factors (coding method, de-
gree of taxon overlap, and source tree num-
ber) and combinations thereof signi�cantly
affected values of both dS and CFI when us-
ing either reference tree. Similarly, each in-
dividual factor had a highly signi�cant in-
�uence on the nominal Kishino-Hasegawa
variables (for either reference tree) as indi-
cated by contingency tables.

The baseline for comparison of two source
trees (of 32 taxa) combined by using standard
MRP revealed opposing trends depending
on the reference tree. When compared with
the total evidence solution, accuracy in-
creased slightly, but signi�cantly, as the taxon
overlap in the source trees decreased: from
91.6% similarity with complete taxon over-
lap to 98.2% similarity when a taxon had
a 75% probability of being deleted from
a given partition (Table 1). The Kishino-
Hasegawa test mirrored this result, although
the improvement in performance was not
linear and increased markedly beyond a
50% taxon deletion probability (Table 3). In
contrast, when compared with the model
tree, a severe drop in performance occurred
as taxon overlap between the source trees
decreased. Unlike any trends for the previous
factors, this decrease was both signi�cant
and large. With complete taxon overlap,
the supertree and model tree showed 79.9%
similarity. This dropped to 22.7% at the high-
est probability level of taxon deletion of 75%
(Table 2). Moreover, the Kishino-Hasegawa
test revealed that the inferred MRP su-
pertree was usually signi�cantly different
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from the model tree with respect to the
underlying simulated sequence data. Sig-
ni�cant differences were found in 57.4%
(complete overlap) to >90% of the replicates
(deletion probability >50% ) (Table 4).

The otherwise positive effects of increas-
ing the number of source trees witnessed
for other factors were manifested only at the
higher levels of taxon overlap, regardless of
the comparison metric or reference tree. Up
to and including the 50% deletion probabil-
ity level, combining more source trees im-
proved the accuracy of the supertree estimate
with respect to either reference tree. How-
ever, the increases in performance were not
as substantial as for the other factors. For ex-
ample, as measured by either dS (total evi-
dence solution) or CFI (model tree), it was
always better to combine two completely
overlapping source trees than to combine 10
source trees on which any given taxon had a
50% probability of being missing. Moreover,
for highly nonoverlapping source trees (75%
taxon deletion probability), using 10 source
trees produced a more inaccurate estimate
than using only two source trees, indicat-
ing a large decrease in performance for the
former (Tables 1 and 2). Similar trends ob-
tained from the Kishino–Hasegawa test: The
bene�cial effect of combining more source
trees decreased as the extent of taxon over-
lap decreased. At high proportions of over-
lap (deletion probabilities of ·25%), signi�-
cant differences with respect to either refer-
ence tree occurred less frequently than when
two source trees were combined. However, at
greater deletion probabilities, this pattern re-
versed itself such that combining two source
trees yielded greater accuracy (Tables 3 and
4). In particular, supertrees derived from 10
highly nonoverlapping source trees were vir-
tually always signi�cantly different (99.7%;
Table 4) from the model tree. Finally, as mea-
sured by both dS and the Kishino-Hasegawa
test (Tables 1 and 3, respectively), the esti-
mate of the total evidence solution worsened
slightly, but signi�cantly, as taxon overlap
between the 10 source trees decreased. This
trend was the opposite of when two source
trees were combined.

The alternative MRP methods displayed
the same trends as standard MRP noted
above: generally high accuracy with respect
to the total evidence solution (Tables 1 and
3), but noticeably less accuracy with re-
spect to the model tree (Tables 2 and 4).

We focus on comparisons with the model
tree where all methods suffered severely
(i.e., dS or CFI < 50%; Kishino-Hasegawa
> 90%), namely, those beyond the 25%
or 50% deletion probabilities for 2 or 10
source trees, respectively. This list included
weighted MRP, which was otherwise more
resistant to the negative effects of increasing
source tree size and incongruence. However,
whereas the nonweighted supertree methods
were largely indistinguishable statistically,
weighted MRP always performed slightly
better, if still poorly, at severe taxon dele-
tion levels. The improved performance of
weighted MRP was generally more conspic-
uous at the lower taxon deletion levels for
either the tree comparison metrics (Tables 1
and 2) or the Kishino–Hasegawa tests (Tables
3 and 4). Again, total evidence outperformed
nonweighted MRP methods; however, it too
wasaffected adversely by decreasing overlap
between source trees. For instance, as mea-
sured by CFI, the similarity between the to-
tal evidence and model trees was only 18.0%
(10 source trees) or 23.6% (2 source trees)
when there was a 75% taxon deletion proba-
bility (Table 3). Moreover, total evidence was
always slightly outperformed by weighted
MRP at estimating the model tree. Oneexcep-
tion to the above trends was the behavior of
irreversible MRP when 10 source trees were
combined with a 75% taxon deletion proba-
bility. Although this method was otherwise
statistically indistinguishable from the re-
maining nonweighted MRP methods, it was
signi�cantly worse at estimating the total
evidence solution (e.g., dS D 74:1%; Table 1)
but signi�cantly better at reconstructing the
model tree (e.g., CFI D 24.6%; Table 3) in com-
parison with the remaining methods.

DISCUSSION

MRP is necessarily an approximation of
a total evidence solution, intended primar-
ily for those situations when the latter tech-
nique cannot be applied (e.g., incompatible
data types). At least in theory, MRP supertree
construction might also be expected to be
a reasonable approximation. Matrix repre-
sentation is well grounded in basic graph
and network theory, where there is an ex-
act one-to-one correspondence between an
individual tree and its matrix representa-
tion (Poincaré, 1901; Ponstein, 1966; Ragan,
1992). In such cases, parsimony represents
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the “most ef�cient method” to recover the
original tree (Baum and Ragan, 1993:638)
because as a “perfect parsimony” problem,
solutions can be found in polynomial time
scaling according to the number of taxa
(Gus�eld, 1991, 1997). The justi�cation is less
clear when multiple source trees are com-
bined and parsimony must necessarily be
viewed as a heuristic (Baum and Ragan,
1993). However, there is reason for optimism.
By recoding the nodes of a single source tree
as a set of consistent elements (analogous
to single homology statements), each indi-
vidual matrix can be viewed as represent-
ing the primary signal from the original data
stripped of any internal homoplasy (Bininda-
Emonds et al., 1999). Correspondence with
the original data can be improved by weight-
ing the matrix elements according to some
measure of evidential support derived from
the raw data (Ronquist, 1996).

In the majority of cases, we have shown
that MRP does provide a good approxima-
tion of a total evidence solution and, to
a lesser degree, of the model tree. More-
over, this result holds regardless of the type
of MRP method used. Despite theoretical
arguments as to their respective validities
(see Purvis, 1995b; Ronquist, 1996; Bininda-
Emonds and Bryant, 1998), the different vari-
ants of MRP supertree construction were
largely indistinguishable. Some evidence for
this exists in the literature. Bininda-Emonds
and Bryant (1998) found that standard and ir-
reversible MRP gave largely similar answers
in a small-scale meta-analysis of 19 literature
sources and when applied to the carnivore
supertree of Bininda-Emonds et al. (1999).
Two versions of a supertree for all extant
species of primate, one coded with Purvis
MRP (Purvis, 1995a) and a revised version
using standard MRP (Purvis and Webster,
1999), were found to be highly congruent
(Purvis and Webster, 1999). In the current
study, only weighted MRP was noticeably
and statistically better than other MRP meth-
ods. In most situations, it yielded a tree topol-
ogy that was absolutely closer to the total
evidence or model trees and also was signif-
icantly different from those trees less often
given the underlying data. In fact, weighted
MRP usually outperformed a total evidence
analysis of the raw data in reconstructing the
model tree. This result may stem from the de-
creased amount of homoplasy in an MRP ma-
trix. MRP matrices for individual source trees

are necessarily completely congruent; homo-
plasy can occur only between source trees. In
contrast, incongruence can occur both within
and between studies in a total evidence anal-
ysis. A weighted MRP analysis retains most
of the important information from a total
evidence analysis (i.e., differential support
among inferred nodes) without a lot of the at-
tendant noise. Together, these two properties
may explain the improved performance of
weighted MRP relative to both nonweighted
methods (which lack information about dif-
ferential support) and total evidence.

Therefore, we suggest that weighted MRP
be used whenever equivalent metrics of evi-
dential support can be obtained for all source
trees (see Bininda-Emonds and Bryant, 1998).
However, we recognize that the necessary
information is usually unavailable. For this
reason, none of the supertrees that currently
exist in the literature (e.g., Purvis, 1995a;
Bininda-Emonds et al., 1999; Wojciechowski
et al., 2000) make use of weighted MRP. For-
tunately, nonweighted MRP methods pro-
vide reasonable results under most circum-
stances (performing only marginally worse
than total evidence), although the Kishino-
Hasegawa test indicates that the difference in
topology is often signi�cantly different. We
therefore argue that the published supertrees
should be judged and used with about the
same degree of con�dence that a total evi-
dence tree might be. Some caution might be
prudent, however, particularly for the more
weakly supported nodes.

Otherwise, MRP supertree construction
behaved predictably, deviating slightly more
from the total evidence and model trees as
the source trees were fewer, larger, increas-
ingly incongruent, or displayed decreasing
amounts of overlap in their sets of termi-
nal taxa. These represent more dif�cult re-
construction conditions where random noise
is more likely to adversely affect the ability
of MRP to approximate a total evidence ap-
proach. Except for when terminal taxon sets
were not identical, however, congruence re-
mained high, with >85% agreement between
the supertree and total evidence solution.

The most important factor affecting su-
pertree performance is, ironically, the most
attractive feature of the method: the ability to
combine trees with nonidentical taxon sets.
At the most extreme deletion rate we ex-
amined (a 75% probability of a taxon being
deleted from a given partition), supertrees
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from all MRP methods showed <25% simi-
larity to the model tree and were signi�cantly
different from the topology of the model tree
>90% of the time. In virtually every repli-
cate, the model tree was more parsimonious
than the supertree with respect to the pri-
mary data (results not shown). Moreover,
the otherwise positive effects of combining
more source trees were completely negated,
and proved to be detrimental, at the great-
est probabilities of deletion. At best, reason-
able accuracy was achieved only with source
trees that were largely overlapping, although
slightly less overlap (·75% between any pair;
equals 2 £ 50% deletion probability) can be
accommodated by combining more source
trees.

Importantly, however, the fact that to-
tal evidence performed as poorly as MRP
with nonidentical taxon sets suggests that
the decrease in performance does not de-
rive from any explicit shortcoming of MRP
supertree construction. Instead, the cause
may be the large proportion of missing
data in such circumstances. An increase
in the amount, and particularly the pro-
portion, of missing data affects phyloge-
netic inference adversely by increasing the
number of equally most-parsimonious so-
lutions and decreasing the resolution of
the consensus tree (Platnick et al., 1991;
Wilkinson, 1995; Kitching et al., 1998; Wiens,
1998). The decrease in resolution is par-
ticularly important in the current context.
All MRP methods and total evidence pro-
duced increasingly less-resolved solutions as
the degree of overlap of the source trees
decreased (Table 5). At the most extreme
deletion probabilities, the solutions from ei-
ther method were <30% resolved with re-
spect to a fully bifurcating tree, and usually
were <20%. In contrast, solutions derived
from complete data sets were never <80%
resolved.

The loss of resolution also explains the in-
creasing similarity between MRP supertrees
and the total evidence solution as two in-
creasingly nonoverlapping source trees were
combined. Because dS treats polytomies as
hard, two highly unresolved trees will be in-
dicated to be very similar. Thus, the increas-
ing similarity in this one case is the result
of the loss of resolution being inferred as in-
creasing similarity, thereby possibly obscur-
ing actual topological differences. Instead,
the CFI is more instructive here and displays

the expected trends. With two source trees,
accuracy decreases linearly from 82.6% to
26.5% as the trees move from being com-
pletely overlapping to highly nonoverlap-
ping. The respective numbers for 10 source
trees are 92.8% and 15.6%. Again, weighted
MRP slightly, but signi�cantly, outperforms
nonweighted MRP methods.

Fortunately, the problems inherent in com-
bining highly nonoverlapping source studies
can be largely ameliorated by including one
reasonably complete study in the analysis.
When we constrained the relevant simula-
tions such that taxa from the �rst partition
had a deletion probability of 10%, accuracy
with respect to the model tree improved dra-
matically, even when the remaining parti-
tions were highly nonoverlapping (i.e., dele-
tion probability of 75%). For example, when
10 source trees were combined in this man-
ner, the standard MRP supertree was 95.8%
resolved, showed 91.0% similarity to the
model tree, and was signi�cantly different
from the model tree in only 50.0% of the repli-
cates (results not shown). The two former
values are not different statistically from the
case where there was no deletion from any of
the partitions, and the last value is about on a
par with that case. Similar improvements oc-
curred for the remaining MRP methods and
total evidence, and when only two source
trees were used. However, in the latter case,
results were slightly but signi�cantly differ-
ent compared with when no taxon deletion
occured. Instead, performance was equiv-
alent to when both partitions displayed a
10% taxon deletion probability. Therefore, a
good general strategy when combining phy-
logenetic information may be to “seed” any
supertree or total evidence analysis with a
study that includes most of the desired taxa,
even if this study is not that well resolved
(e.g., a taxonomy). Similar results could also
be achieved by imposing topological con-
straints identical to the seed tree. This pro-
cedure could also decrease search times by
eliminating part of the tree search space.
However, the procedure does not allow the
seed tree topology to be contradicted, even
if that topology con�icts with the majority of
the source trees. In both cases, the accuracy
of the supertree depends critically on the ac-
curacy and amount of resolution in the seed
tree. This is true even when the seed tree is
included as a source tree in the MRP anal-
ysis, given that MRP tends to favor larger
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source trees (Ronquist, 1996; but see Bininda-
Emonds and Bryant, 1998).

In conclusion, MRP supertree construction
appears to provide a reasonable approxima-
tion of a total evidence solution and performs
comparably to the latter when estimating the
model tree. Performance is particularly im-
proved when the MRP matrix is weighted
to re�ect evidential support in the original
studies. This overall conclusion is encourag-
ing, given that many of the phylogenetic data
accumulated to date are incompatible and
thus cannot be analyzed within a conven-
tional total evidence framework. We believe
supertrees provide a tractable, accurate pro-
cedure to combine disparate data sources in
the principle of total evidence to derive phy-
logenetic hypotheses based on the widest as-
sortment of independent evidence possible.
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