








mum likelihood). Furthermore, in all three SOC up-regulated
subsets, the number of TAHI was significantly enriched (Fig.
7C). 16TAHIwere identifiedwithin the 912 P4 SOC transcripts
(p � 8.4� 10�8), 17 within the 1,609 P25 SOC transcripts (p�
3.1 � 10�5), and seven within the 453 transcripts from SOC7
brain (p � 9.0 � 10�4). These seven transcripts were Ednrb,
Esrrb, Gata3, Hoxa2, Mitf, Sox10, and Ucn. In the brain, only
the 10 TAHI (Atp2B2, Cacna1d, Cisd2, Coch, Col1a2, Crym,
Gjb2,Hspa1a, SLc26a4, andWFS1) in the Br-P25 subset repre-
sented a significant enrichment (p � 0.03).

To investigate the possible participation of SOC-related
genes in human heritable hearing impairment, we performed
an in silicomapping analysis.We compiled lists of human genes
located in 47 loci associated with heritable hearing impairment
and unknown etiology. Next, we retrieved the human ortho-
logues of the SOC-related subsets in the three signature lists
and mapped them to the 47 loci. For P4, 65 orthologues were
mapped to 24 deafness loci (p � 0.32). For P25 SOC7 brain
and SOC7 brain, the relevant numberswere 97 orthologues to
31 deafness loci and 29 orthologues to 19 loci, respectively (p�
0.13 and p � 0.057) (Table 6). Albeit none of these scores
reached significance, they point to a higher than random cov-
erage of deafness loci by SOC-related genes. This was especially
true for the 453 oligos from the SOC7 brain signature list with
a p value close to significance. Hence, this data set will be useful
to narrowdown candidate genes in loci for hearing impairment.

DISCUSSION

The aim of this comparative time course study was to gain
insight into the genetic program underlying the postnatal mat-
uration of the SOC. Chief among our findings were the
observed enrichment of genes associated with hearing impair-
ment in the SOC and the identification of novel strong candi-
date genes, such as crystallin-� genes, for SOC development
and function.
Study Design and Caveats—To illuminate candidate mole-

cules for distinct phases of SOC development, we investigated
the temporal changes in gene expression profiles. To pinpoint
genes important for SOC maturation and function, we also
compared the SOC data with those of the entire brain. The
rationale of such a comparison is a similar developmental time
scale between the SOC andmost other brain circuits. The peak
of myelination at P18 (53) suggests a similar temporal develop-
ment of many circuits in the rat brain. Furthermore, a tran-
scriptome analysis of the frontal cortex, hypothalamus, and
hippocampus revealed only minor changes in gene expression
after P14 (54). This indicates a rapid postnatal maturation of
many brain circuits, similar to our observation in the SOC.
Retrocochlear Role of Genes Associated with Hearing Im-

pairment—A clinically important finding of our study is the
participation of genes implicated in hearing impairment in the
genetic program of the SOC (Fig. 7). It implies a retrochochlear
function of these genes, which have mainly been considered to
compromise peripheral auditory function. Indeed, we recently
showed an essential retrocochlear function of the peripheral
deafness gene Cacna1d, encoding Cav1.3 (46). Strikingly, four
SOC-related genes associated with hearing impairment already
have a proven role in proper development and function of cen-
tral auditory structures. Hoxa2 is essential for CNC develop-
ment and correct projections to the SOC (55, 56), Gata3 and
Unc are required for correct function of olivocochlear neurons
(57, 58), and Slc17a8 is essential for refining the MNTB-lateral
superior olive projection (11). Adual role in the auditory system
was also established for theTFAtoh1, which is essential for hair
cell development (59) and proper maturation and function of
the SOC (45). These experimental data demonstrate thatmuta-
tions in genes associated with hearing impairment can affect
sensory and neuronal cells alike. The resulting diversity in cen-

FIGURE 5. Crystallin-� in the SOC. A, low magnification photomicrograph of
the SOC-P5, demonstrating crystalline-� immunoreactivity in the lateral
superior olive (LSO), the medial superior olive (MSO), and the MNTB. Fibers in
the ventral acoustic stria (arrowheads) and the trapezoid body medial to the
MNTB (arrows) were also immunoreactive. B, high magnification photomicro-
graph of the trapezoid body, demonstrating the fascicular labeling pattern in
fibers. C, lateral superior olive at higher magnification, with perisomatic label-
ing around spindle-shaped somata (most probably principal neurons). D,
crystallin-� in the SOC-P25. Compared with P5, immunoreactivity was lower
throughout the SOC. E, high magnification photomicrograph of the trapezoid
body medial to the MNTB, demonstrating fewer immunopositive fibers than
at P5. F, MNTB at high magnification, demonstrating weakly immunopositive
somata. G, lateral superior olive at high magnification, with a labeling pattern
similar to that of P5. Dorsal is up and medial to the left in all panels. Scale bars,
200 �m (A), 250 �m (D), and 30 �m (B, C, and E–G).
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tral auditory deficits will contribute to the observed variation in
the benefit that hearing devices, such as cochlear implants, can
provide (52, 60). Deciphering these retrocochlear deficits will
probably result in better tailored therapies and improved audi-
tory rehabilitation.
Our SOC-related signature lists may also provide an impor-

tant resource to gain insight into genetic causes of auditory
processing disorders. These disorders are characterized by
impaired sound processing in the central auditory system in the
absence of considerable peripheral hearing loss, thus resulting
in perceptual dysfunction (61, 62). Currently, the underlying
molecular causes are unknown.
Circuit Organization—Among the SOC-related genes in the

prehearing period were three crystallin-�. These proteins pro-
mote axon regeneration of injured optic nerve fibers (31). Con-
sistent with this, the related crystallin-� subunit b2 accumu-
lates in axons and growth cones of retinal ganglion cells (63).
Our immunohistochemical analysis, which demonstrated the
presence of crystallin-� proteins in fiber tracts and the neuropil
of the SOC (Fig. 5), is in full agreement with these findings. The
observed down-regulation of crystallins between P4 and P16
correlates well with the shift in auditory brainstem neurons
from a state allowing axonal growth and reorganization to a
state of largely fixed connectivity. Neurons of the anteroventral

cochlear nucleus can establish novel projections to the SOC
after unilateral cochlear removal only before P10 (64). In agree-
ment, culturedMNTBneurons lose their capacity to regenerate
connectivity to lateral superior olive neurons at a similar time
point (65). The timing of their down-regulation, as well as their
expression in the entire auditory brainstem, makes crystallin-�
proteins attractive candidates for this shift.
Also of note is the high expression of the serotonin-related

genes Tph2, Slc6a4, and Gchfr in the prehearing SOC. Tran-
siently high serotonin content in developing neurons is often
observed in highly topographically organized sensory systems
(66). Interestingly, deficits in serotonin-moderated synaptic
signaling result in neurodevelopmental disorders, such as
autism spectrum disorder (67), which is linked to altered pro-
cessing of auditory information. Several studies revealed amal-
formed SOCwith a decreased volume (68, 69) and altered audi-
tory brainstem responses (70–72) in patients with autism. It
will therefore be interesting to analyze in detail the role of sero-
tonin in the developing brainstem.
Hearing Onset and the Underlying Genetic Program—The

most remarkable physiological change during our time course
study is the switch from the prehearing to the posthearing con-
dition at around P12. Whereas the neuronal connectivity
becomes implemented in the prehearing period, the hallmarks

TABLE 5
Top 10 up-regulated oligos at SOC-P25 as compared with SOC-P4

Gene symbol Gene name Accession number SOC-P25/SOC-P4 p value

Tmem10 Transmembrane protein 10 NM_001017386 135.07 0.0002
Mobp Myelin-associated oligodendrocytic basic protein X89638 88.9 0.0002
Hapln2 Hyaluronan and proteoglycan link protein 2 NM_022285 69.72 0.0002
Trf Transferrin NM_001013110 65.99 0.0002
Hapln2 Hyaluronan and proteoglycan link protein 2 NM_022285 62.47 0.0002
Mal Myelin and lymphocyte protein, T-cell differentiation protein NM_012798 52.15 0.0002
Mog Myelin oligodendrocyte glycoprotein NM_022668 47.25 0.0002
Apod Apolipoprotein D NM_012777 46.72 0.0002
Mog Myelin oligodendrocyte glycoprotein TC605393 31.14 0.0002
Mobp Myelin-associated oligodendrocytic basic protein NM_012720 30.96 0.0002

FIGURE 6. Expression profiles of selected gene categories with significantly differential regulation between pre- and posthearing stages. Oligos with
significant differences in expression between the SOC and the age-matched brain are marked by triangles (green, higher expression in the SOC; red, lower
expression in the SOC). The blue horizontal plane depicts the border between developmentally up- and down-regulated oligos. Shown are the mean expression
values, normalized to P0 � 1.
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after P12 are secure and high temporal acuity in sound-induced
neurotransmission and high neuronal activity. Our data pro-
vide a comprehensive quantitative and qualitative description

of the underlyingmolecular changes. They extend, for instance,
the repertoire of voltage-gated K� channels, which play an
important role in auditory neurons (73, 74). They furthermore
hint at an important role of G-protein-coupled receptors,
which so far have been poorly analyzed in the auditory system,
despite their emerging importance (75). As an example, Gpr37
and Gpr37l1, encoded by two of the three highest up-regulated
genes, were recently identified as receptors for the neuropro-
tective and glioprotective factor prosaposin (76).
Our study also emphasizes the importance of down regula-

tion in sculpting mature SOC neurons. We observed various
categories in which individual genes displayed SOC-related
down-regulation. These included Ca2�, K�, and Na� channels
(Fig. 6). Their down-regulation (below the level in the entire
brain) suggests that they are not only dispensable for mature
SOC function but impair it. NaV1.2 channels make a good case
for this hypothesis; they promote back-propagation of action
potentials to the soma (77). This process is strongly reduced in
medial superior olive neurons to optimize correct synaptic
integration (78). The fact that half of the molecular specifica-
tion in the mature SOC is caused by significant down-regula-
tion compared with the entire brain (Table 2) underscores the
importance of SOC-related down-regulation.
Coordinated Development of the Auditory System—The

development of sensory pathways requires precise and coordi-
nated orchestration. A striking example is provided by the vis-
ual system inDrosophila, where the same TFs promote the cell
type-specific expression of sensory receptors and cell surface
proteins that regulate target specificity (79). Intriguingly, sev-
eral of the TFs that are up-regulated in the early postnatal SOC
have established functions during development of auditory
structures, such as Gata3 (57) andMafb/Kreisler (80). They are
essential for proper development of the inner ear, and Gata3 is
additionally required for correct olivocochlear projections (57).
Expression of Gata3 has also been reported in cochlear gan-
glion neurons (57), the lateral lemniscus, and the inferior col-
liculus (81), whereas Mafb/Kreisler is present in neurons of the
ventral cochlear nucleus (82).Given these data, theseTFsmight
provide a molecular mechanism for coordinated development
of the auditory system. Finally, the intimate genetic relationship
between the cochlea and the SOC supports the emerging
hypothesis that the sensory cells and auditory brainstem
nuclei arouse jointly by having recourse to common changes in
genetic programs (83).
Taken together, our study provides the first comprehen-

sive and quantitative molecular description of the develop-
ing SOC on the transcriptome level. We identified novel
molecular pathways involved in circuit organization and
function, and our catalogue represents a valuable tool to

FIGURE 7. Significant enrichment of TAHI in SOC-related gene signatures.
A, heat map of 26 TAHI, which are more highly expressed in the SOC than in
the age-matched brain at P4 or P25. Oligos were clustered according to the
similarity of their normalized expression profiles. Colors indicate the expression
level relative to the overall mean intensity (black) of all investigated stages/tis-
sues. Black dots mark statistically significant up-regulation in the SOC (Wilcoxon U
test, fc 
 2, p � 0.05). B, confirmation of seven up-regulated transcripts in the
SOC (cf. A) by semiquantitative RT-PCR (actin as a loading control). Similar
results were obtained in at least two independent experiments. C, significant
enrichment of oligos associated with hearing impairment in SOC-related
genetic programs. Database searches linked 138 oligos of a total of 41,012
(0.34%) to hearing impairment. Of these 138 oligos, 16 (1.75%) were part of
the 912 oligos up-regulated in SOC-P47 Br-P4, 17 (1.06%) were part of the
1,609 oligos up-regulated in the SOC-P257 Br-P25, and 7 (1.61%) were up-
regulated in the SOC at both stages. The enrichment of TAHI was significant
for all three SOC samples. **, p � 0.01; ***, p � 0.001.

TABLE 6
Mapping of SOC-related genes to human genetic loci associated with hearing impairment

Comparison Oligos Rat genes
Human

orthologues
Orthologues located
in a deafness locus

Deafness
loci covered p value

P4 SOC7 brain 912 452 430 65 24 0.3182
P25 SOC7 brain 1,609 817 770 97 31 0.12937
SOC7 brain 453 209 196 29 19 0.05676
All mapped oligos 22,150 18,489 14,790 2,427 39 NAa

a NA, not applicable.
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identify genes involved in normal and abnormal function of
the auditory brainstem.
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46. Satheesh, S. V., Kunert, K., Rüttiger, L., Zuccotti, A., Schönig, K., Friauf, E.,
Knipper,M., Bartsch, D., andNothwang, H.G. (2012) Retrocochlear func-
tion of the peripheral deafness gene Cacna1d. Hum. Mol. Genet. 21,
3896–3909

47. Rosengauer, E., Hartwich, H., Hartmann, A. M., Rudnicki, A., Satheesh,
S. V., Avraham, K. B., and Nothwang, H. G. (2012) Egr2::cre mediated
conditional ablation of dicer disrupts histogenesis of mammalian central
auditory nuclei. PLoS One 7, e49503

48. Kapatos, G., Hirayama, K., Shimoji, M., and Milstien, S. (1999) GTP
cyclohydrolase I feedback regulatory protein is expressed in serotonin
neurons and regulates tetrahydrobiopterin biosynthesis. J. Neurochem.
72, 669–675

49. Hirtz, J. J., Boesen, M., Braun, N., Deitmer, J. W., Kramer, F., Lohr, C.,
Müller, B., Nothwang, H. G., Striessnig, J., Löhrke, S., and Friauf, E. (2011)
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