# Is Sequence Heterochrony an Important Evolutionary Mechanism in Mammals?

Olaf R. P. Bininda-Emonds,<sup>1,2</sup> Jonathan E. Jeffrey,<sup>1</sup> and Michael K. Richardson<sup>1</sup>

It is postulated widely that changes in developmental timing (i.e., heterochrony) represent a major mechanism of evolutionary change. However, it is only with recent methodological advances that changes in the order in which development proceeds (sequence heterochrony) can be identified and quantified. We apply these techniques to examine whether heterochrony in the early embryonic (organogenetic) period has played an important role in the diversification of mammals. Although we find clear instances of sequence heterochrony in mammals, particularly between eutherians and marsupials, the majority of mammalian lineages that we could examine (those within the major clades Euarchontoglires and Laurasiatheria) show few or no heterochronic changes in the 116 events examined (e.g., Artiodactyla, Euarchonta, Fereuungulata, Glires, Primates, Rodentia). This is in contrast with the timing shifts reported between and within other tetrapod clades. Our results suggest that sequence heterochrony in embryonic stages has not been a major feature of mammalian evolution. This might be because mammals, and perhaps amniotes in general, develop for an extended time in a protected environment, which could shield the embryos from strong diversifying selection. Our results are also consistent with the view that mammal embryos are subject to special developmental constraints. Therefore, other mechanisms explaining the diversity of extant mammals must be sought.

**KEY WORDS:** development, event-pair, heterochrony, Mammalia, Eutheria, event-pair cracking.

#### **INTRODUCTION**

Mammals are a diverse clade of tetrapods divided into about 26 major lineages ("orders"; Wilson and Reeder, 1993). From its origin approximately 195 million years ago (Luo *et al.*, 2001), the ancestral mammalian (adult) body plan of a small shrew-like animal has evolved many distinct morphologies, including forms adapted for flying (bats), swimming (cetaceans and pinnipeds), burrowing and digging (moles and anteaters), climbing and brachiation (primates), and running (artiodactyls), among others (Nowak, 1999). It is largely agreed that the major eutherian lineages arose in a rapid adaptive radiation, although molecular phylogeneticists and paleontologists tend to disagree about whether

<sup>&</sup>lt;sup>1</sup>Institute of Biology, Leiden University, Leiden The Netherlands.

<sup>&</sup>lt;sup>2</sup>To whom correspondence should be addressed at Lehrstuhl für Tierzucht, Technical University of Munich, D-85354 Freising-Weihenstephan, Germany. E-mail: Olaf.Bininda@tierzucht.tum.de

this radiation occurred before or after the Cretaceous-Tertiary boundary, respectively (see Alroy, 1999; Springer *et al.*, 2003).

The evolutionary mechanism behind the adaptive radiation of mammals is unclear. Certainly, an increase in average adult body size has occurred during the evolution of mammals, but this appears to be a post-Cretaceous event associated with the mass extinction at the Cretaceous-Tertiary boundary (the "KT event") that removed many competing large-bodied forms, particularly the dinosaurs (Alroy, 1999). One possible mechanism might be changes in developmental timing (heterochrony), which are held widely to represent a major mechanism of evolutionary change (Gould, 1977, 1982; Shubin and Alberch, 1986; McKinney and McNamara, 1991; Raff, 1996). Most studies of heterochrony have concentrated on changes in growth rates (allometric heterochrony). However, recent methodological advances (Mabee and Trendler, 1996; Smith, 1996; Jeffery *et al.*, 2002b) allow us to test the hypothesis that changes in the order in which events occur in development (sequence or event heterochrony) have been important in mammalian evolution.

Previous studies of sequence heterochrony within mammals have focused on differences between marsupial and eutherian mammals, where obvious changes in developmental timing have long been recognized (e.g., McCrady, 1938). It has been shown that the two groups differ largely in the relative timings of the development of the central nervous systems and craniofacial structures (Smith, 1997; Nunn and Smith, 1998), although methods for localizing the lineage in which any changes have occurred and which of the two systems they involve have been lacking until recently (Jeffery *et al.*, 2002b). However, heterochrony may be more widespread among mammals. In a previous study examining sequence heterochrony within tetrapods (Jeffery *et al.*, 2002a), we documented unexpected heterochronic shifts within eutherian mammals such as a possible delay in eye development in most groups.

We therefore sought to characterize sequence heterochronies in mammals more fully, specifically those involving structures from the organogenetic period. This was done both to understand the evolution of the group better, and also as part of our ongoing efforts (e.g., Jeffery *et al.*, 2002a; Richardson and Oelschläger, 2002) to quantify the prevalence of sequence heterochrony in vertebrate evolution.

### METHODS AND MATERIALS

#### The Data Set

Detailed developmental timing information was obtained from the literature, primarily from the series of "Normal Tables" (Normentafeln) edited by Keibel (1897–1938). Initially, information for all "major" developmental events was recorded for each of 22 mammalian species using the descriptions provided in the source studies (Table I). However, timing information for many of these 809 events was restricted to very few species. Thus, the data set was pruned according to two guidelines. First, only well-defined events of certain homology, within the limits of the provided descriptions, were included. Second, preference was given to events for which timing information was present for as many species as possible, while attempting to represent both the entire organogenetic

| Taxon      | Species                   | Common Name               | Source                         |
|------------|---------------------------|---------------------------|--------------------------------|
| "Reptilia" | Lacerta agilis            | Sand lizard               | Peter (1904)                   |
| Aves       | Gallus gallus             | Chicken                   | Keibel and Abraham (1900)      |
| Mammalia   | Didelphis virginiana      | Virginia opossum          | McCrady (1938)                 |
|            | Erinaceus europaeus       | Western European hedgehog | Jacobfeuerborn (1908)          |
|            | Suncus murinus            | Asian house shrew         | Yasui (1992, 1993)             |
|            | Talpa europaea            | European mole             | Heape (1883a,b)                |
|            | Oryctolagus cuniculus     | European rabbit           | Minot and Taylor (1905)        |
|            | Cavia porcellus           | Guinea pig                | Harman and Prickett (1932);    |
|            |                           |                           | Harman and Prickett            |
|            |                           |                           | Dobrovolny (1933)              |
|            | Cavia porcellus           | Guinea pig                | Scott (1937)                   |
|            | Spermophilus citellus     | European ground squirrel  | Völker-Brünn (1922)            |
|            | Mus musculus              | House mouse               | Theiler (1989)                 |
|            | Rattus norvegicus         | Brown rat                 | Henneberg (1937)               |
|            | Manis javanica            | Malayan pangolin          | Huisman and de Lange (1937)    |
|            | Delphinus delphis,        | "Dolphins" (Delphinidae)  | Sterba et al. (2000)           |
|            | Phocoena phocoena,        |                           |                                |
|            | Stenella attenuata,       |                           |                                |
|            | and Stenella longirostris |                           |                                |
|            | Capreolus capreolus       | Western roe deer          | Sakurai (1906)                 |
|            | Ovis aries                | Mouflon (sheep)           | Bryden et al. (1972)           |
|            | Sus scrofa                | Wild boar                 | Keibel (1897)                  |
|            | Tupaia javanica           | Javan tree shrew          | de Lange and Nierstrasz (1932) |
|            | Loris tardigradus         | Slender loris             | Hubrecht and Keibel (1907)     |
|            | Tarsius spectrum          | Spectral tarsier          | Hubrecht and Keibel (1907)     |
|            | Homo sapiens              | Human                     | Keibel and Elze (1908)         |
|            | Homo sapiens              | Human                     | O'Rahilly and Muller (1987)    |
|            | Macaca mulatta            | Rhesus monkey             | Gribnau and Geijsberts (1981)  |

Table I. Species Examined and Literature Source of Developmental Data<sup>a</sup>

<sup>a</sup>Mammalian nomenclature follows Wilson and Reeder (1993) and may not match that in the source study.

period and the various organ systems as completely as possible. The final developmental sequence thus consisted of 116 events (Appendix 1), the vast majority of which (100) were present in at least half of the mammalian species examined. All 41 events examined by Jeffery *et al.* (2002a) are included in this set of 116. The least represented event was "first post-otic somite pair present" (event no. 1), which was present in six species. The next least represented events were "scapula cartilaginous" and "primitive streak no longer present" (events no. 98 and 114, respectively), which were present in eight species apiece.

The data set was pruned further by removing species for which data on less than half of the developmental sequence were available: *Erinaceus europaeus, Suncus murinus, Talpa europaea*, the "Harman" sequence for *Cavia porcellus*, the four species of Delphinidae, *Ovis aries*, and *Macaca mulatta* (see Table II). Doing so unfortunately removed the only representatives of the major mammal lineage Afrotheria (no suitable data exist for any member of the Xenarthra), but reduced the amount of missing data dramatically. For example, 78 of the 116 events were present in at least 75% of the remaining 15 species, compared to only 28 before. In pruning these seven taxa, we are not making any statement as to the quality of the developmental information contained, merely that the quantity was insufficient for the present study. An extended discussion on the effects of

|                          | Number of      |                       | Sta    | iges     |                         |             |
|--------------------------|----------------|-----------------------|--------|----------|-------------------------|-------------|
| Species                  | Events Present | System                | Lowest | Highest  | Stage Span <sup>a</sup> | Number Used |
| Lacerta agilis           | 92 (79.3%)     | Stages                | 31     | 122      | 92                      | 49 (53.3%)  |
| Gallus gallus            | 81 (69.8%)     | Stages                | 4      | 81       | 78                      | 51 (65.4%)  |
| Didelphis virginiana     | 86 (74.1%)     | Stages                | 23     | $36^{b}$ | 14                      | 14 (100.0%) |
| Erinaceus europaeus      | 37 (31.9%)     | Individual<br>embryos | 1      | 24       | 37 <sup>c</sup>         | 19 (51.4%)  |
| Suncus murinus           | 51 (44.0%)     | Stages<br>(Carnegie)  | 9      | 12.9     | 10                      | 10 (100.0%) |
| Talpa europaea           | 19 (16.4%)     | Stages                | 4      | 10       | 7                       | 6 (85.7%)   |
| Oryctolagus cuniculus    | 102 (87.9%)    | Stages                | 2      | 24       | 23                      | 20 (87.0%)  |
| Cavia porcellus (Harman) | 31 (26.7%)     | Time<br>(hours)       | 14     | 31       | 18                      | 10 (55.6%)  |
| Cavia porcellus (Scott)  | 72 (62.1%)     | Time<br>(hours)       | 12.7   | 26.1     | $21^{d}$                | 13 (61.9%)  |
| Spermophilus citellus    | 110 (94.8%)    | Stages                | 25     | 134      | 109                     | 54 (49.5%)  |
| Mus musculus             | 91 (78.4%)     | Stages                | 11     | 25       | 15                      | 14 (93.3%)  |
| Rattus norvegicus        | 109 (94.0%)    | Stages                | 22     | 125      | 104                     | 60 (57.7%)  |
| Manis javanica           | 83 (71.6%)     | Stages                | 1      | 22       | 22                      | 20 (90.9%)  |
| Delphinidae              | 31 (26.7%)     | Stages                | 3      | 8        | 6                       | 6 (100.0%)  |
| Capreolus capreolus      | 103 (88.8%)    | Stages                | 9      | 57       | 49                      | 41 (83.7%)  |
| Ovis aries               | 23 (19.8%)     | Time<br>(days)        | 15     | 29       | 15                      | 13 (86.7%)  |
| Sus scrofa               | 93 (80.2%)     | Stages                | 1      | 94       | 94                      | 46 (48.9%)  |
| Tupaia javanica          | 99 (85.3%)     | Stages                | 1      | 24       | 24                      | 21 (87.5%)  |
| Loris tardigradus        | 83 (71.6%)     | Stages                | 1      | 10       | 10                      | 10 (100.0%) |
| Tarsius spectrum         | 103 (88.8%)    | Stages                | 1      | 35       | 35                      | 31 (88.6%)  |
| Homo sapiens (Keibel)    | 109 (94.0%)    | Stages                | 1      | 80       | 80                      | 49 (61.3%)  |
| Homo sapiens (O'Rahilly) | 94 (81.0%)     | Stages<br>(Carnegie)  | 6      | 24       | 19                      | 16 (84.2%)  |
| Macaca mulatta           | 40 (34.5%)     | Stages<br>(Carnegie)  | 10     | 23       | 14                      | 14 (100.0%) |

Table II. Descriptive Statistics for Developmental Timing Data Set (See Appendices 1 and 2)

<sup>a</sup>Stage span is the number of stages between the lowest and highest stage in the source study; it need not equal the difference between these two values (e.g., if the staging system is not restricted to whole numbers).

<sup>b</sup>Postpartum development was not staged by McCrady (1938), but given in absolute time. The single postpartum event examined was thus given a stage number one greater than the highest used by McCrady.

<sup>c,d</sup> The stage span was taken as the number of embryos examined by Jacobfeuerborn (1908) and Scott (1937), respectively.

missing data on analyses of developmental sequences can be found in Bininda-Emonds *et al.* (2002).

The data set therefore contains information for two of the four major clades of mammals, Euarchontoglires and Laurasiatheria (together, the Boreotheria) and two developmental sequences for *Homo sapiens* that are derived from separate studies. The final data set (Appendix 2) was produced by adding information for two outgroup species, *Lacerta agilis* and *Gallus gallus*. Timing information was available for the majority of events for both species (92 and 81, respectively), although some mammal-specific events (e.g., nos. 38, 70, 108, and 109) were inapplicable and coded as missing data (see Bininda-Emonds *et al.*, 2002).

#### Analysis

Raw timing data, whether in the form of absolute chronological age or developmental stages, are highly species-specific. Instead, to allow comparisons among species, the relative timing of developmental events should be used (Bininda-Emonds *et al.*, 2002). Therefore, the raw timing data within each species were encoded by the method of event-pairing (Mabee and Trendler, 1996; Smith, 1996; Velhagen, 1997). Event-pairing records the relative timing relationship between all possible pairwise combinations of events. For instance, for the hypothetical events A and B, A can occur either before (coded as 0), simultaneous with (1), or after (2) event B. If no timing data exist for either or both events, the event-pair is coded as "?". The comparisons are made in one direction only (i.e., A is compared to B, but B is not compared to A because it yields the same information), giving  $\frac{1}{2}(n)(n-1)$  event-pairs for a developmental sequence of *n* events.

As with conventional characters, the individual event-pairs across all species can be mapped on to a phylogenetic tree (e.g., Smith, 1997). Reconstructed apomorphic changes in the state of an event-pair indicate a timing change between the constituent events (i.e., heterochrony). However, changes in a single event-pair cannot reveal which of the two constituent events in the event-pair have actually moved, nor in which direction (early or later in development). It is also possible that both events have moved (see Jeffery *et al.*, 2002b). For instance, if the event-pair "AB" has changed from state 0 to state 2, all we can state is that events A and B have changed their relative timing relationship. This change could have arisen in five possible ways, of which A moving later or B moving earlier in development represent only two possibilities (see Figure 2 in Jeffery *et al.*, 2002b).

Instead, the method of event-pair cracking (Jeffery *et al.*, 2002b) analyzes all the eventpair apomorphies for a given branch en bloc to reveal those events that are more likely to have moved "actively" and which events they have moved relative to. Briefly, the method operates on the principle that actively moving events will be moving relative to a large number of other events and in a consistent direction (e.g., always later in development). Actively moving events are thus identified by having a relative movement score larger than some threshold value determined from the relative movement scores of all events. Again, consider the event-pair "AB" from above. By examining all other apomorphic changes on the same branch, we might determine that event A has also moved relative to events C, D, and E (and in a consistent direction), whereas event B has only moved relative to A. In this case, we would suspect that it is event A only that has actively changed its developmental timing. Event-pair cracking can indicate this via the higher relative movement score of A compared to B. A complete worked example of event-pair cracking can be found in Jeffery *et al.* (2002b).

Therefore, to reconstruct heterochronic changes in mammals, we mapped our developmental timing data on to a phylogeny and applied the method of event-pair cracking. Higher-level relationships among mammals are controversial. We based the underlying phylogeny on the family-level mammal supertree of Liu *et al.* (2001; see Fig. 1) because it is the only recent comprehensive mammal phylogeny based on a rigorous methodology to detail the relationships among all the species in this study. However, we modified the phylogeny to place Euarchonta and Glires as sister taxa (together, the Euarchontoglires) in agreement with numerous recent molecular studies (Madsen *et al.*,



Fig. 1. The phylogeny upon which developmental timing data were mapped (adapted mainly from Liu *et al.*, 2001). Names of higher-level mammalian taxa follow Wilson and Reeder (1993), Waddell *et al.* (1999), and Amrine-Madsen *et al.* (2003).

2001; Murphy *et al.*, 2001a,b; Corneli, 2002; Amrine-Madsen *et al.*, 2003; de Jong *et al.*, 2003; Thomas *et al.*, 2003). We note that this change did not affect the results appreciably.

Inferred instances of heterochrony will depend highly on how the event-pairs are optimized on to the phylogeny. We therefore mapped our data under both ACCTRAN and DELTRAN optimization criteria (Swofford and Maddison, 1987), and cracked each optimized set of event-pair synapomorphies individually. These criteria represent opposite extremes. Given conflicting equally parsimonious reconstructions of a character, ACCTRAN (accelerated transformation) optimization will favor an early origin of the derived state, followed by a reversal to the primitive condition. In contrast, DELTRAN (delayed transformation) optimization will favor later, parallel derivations of the derived state (Swofford and Maddison, 1987). The cracking procedure followed that described in Jeffery *et al.* (2002b), with the "threshold" value to identify actively moving events being the median of the relative movements of all events (see Jeffery *et al.*, 2002b). Only events identified under both ACCTRAN and DELTRAN character optimizations were used in our final hypothesis of event movements. Altogether, this procedure will yield a conservative estimate of the heterochronic changes that have occurred during the evolution of mammals.

To reduce any confusion associated with the distinction between event-pairs and the events that contribute to them, we will use the words apomorphy or plesiomorphy (or derivatives thereof) to refer to evolutionary transformations in the event-pairs. We restrict our use of heterochronic shifts or timing shifts to changes in the timing of the actual events.

#### **Correcting for Simultaneous Events**

Developmental events that occur simultaneously pose a serious problem for studies of sequence heterochrony. Most instances of simultaneity are probably artifactual (Smith, 1997; Nunn and Smith, 1998), arising from a failure to sample an embryo that would resolve the timing difference between two events. However, this apparent timing change (from simultaneous to not simultaneous, and vice versa) has the effect of suggesting real evolutionary differences between species where none exist (see Bininda-Emonds *et al.*, 2002).

Initial results (not shown) displayed this phenomenon, showing a highly skewed distribution of timing shifts. In all cases, the numbers of events inferred to be moving early ("advances") versus late ("delays") on a given branch were about equal. However, far fewer shared changes were inferred to have occurred on internal branches than did unshared changes on terminal branches (on average, 3.3 vs. 22.8 events, respectively). A cogent example was the two *Homo sapiens* sequences. Although these sequences should be similar, numerous heterochronic shifts were inferred along each terminal branch. This was particularly true for the O'Rahilly sequence, which has twice as many simultaneous event-pairs than does the Keibel sequence (366 vs. 183) because it describes the same period of developmental time using far fewer stages (19 vs. 80). In fact, the number of changes along the terminal branches correlates significantly with the number of simultaneous event-pairs for the species in question (p = 0.0415).

We therefore used simulation to quantify the distribution of developmental events for each species in our data set and thus to judge the level of simultaneity present. The simulation was based on two pieces of data for each species: (1) the number of events present ( $n_E$ ) and (2) the number of stages between the first and last events ( $n_S$ ; the "stage span"). For each simulated replicate, the  $n_E$  events were assigned randomly to the  $n_S$  stages. Thus, some stages may have had no events allocated to it. For each species, the number of stages used and the number of simultaneous event-pairs calculated were averaged over all replicates and compared to the actual values. A significant difference (with  $\alpha = 0.05$ ) was held to occur when the actual values fell more than 1.96 standard deviations from the mean of the simulated values (i.e., fall into either tail of the distribution of simulated values). These differences reveal developmental sequences that might have an excessively clumped distribution of events or are otherwise nonlinear (e.g., due to irregular sampling in time).

The results of our simulation (based on 10,000 replicates) showed significant clumping of events and a significantly high number of simultaneous event-pairs in most species (Table III). Only *Gallus gallus, Suncus murinus, Rattus norvegicus, Ovis aries, Tarsius spectrum,* and *Macaca mulatta* did not display a significant difference in either case. Therefore, given the global presence of "significant" (artifactual) simultaneity in the data set, we followed the suggestion of Velhagen (1997) and coded simultaneous events as missing unless strong evidence for true simultaneity existed (which was never the case here).

|                             | Ν                            | Number of Events U              | Jsed                 | Numb            | er of Simultaneous Ev           | ent-Pairs            |
|-----------------------------|------------------------------|---------------------------------|----------------------|-----------------|---------------------------------|----------------------|
| Species                     | Actual<br>Value <sup>b</sup> | Simulated<br>Value <sup>c</sup> | Z-Score <sup>d</sup> | Actual<br>Value | Simulated<br>Value <sup>c</sup> | Z-Score <sup>d</sup> |
| Lacerta agilis              | 49                           | $56.333 \pm 3.011$              | -2.436*              | 77              | $76.601 \pm 8.645$              | 0.046                |
| Gallus gallus               | 51                           | $49.257 \pm 2.756$              | 0.632                | 56              | $57.426 \pm 7.354$              | -0.194               |
| Didelphis virginiana        | 14                           | $13.975 \pm 0.156$              | 0.16                 | 303             | $254.546 \pm 14.775$            | 3.279*               |
| Erinaceus europaeus         | 19                           | $23.631 \pm 1.875$              | $-2.470^{*}$         | 39              | $35.181 \pm 5.614$              | 0.68                 |
| Suncus murinus              | 10                           | $9.942 \pm 0.238$               | 0.244                | 119             | $117.381 \pm 10.136$            | 0.16                 |
| Talpa europaea              | 6                            | $6.486 \pm 0.625$               | -0.778               | 34              | $22.693 \pm 4.159$              | $2.719^{*}$          |
| Cavia porcellus<br>(Harman) | 10                           | $14.312 \pm 1.389$              | -3.103*              | 55              | $38.105\pm 6.028$               | 2.803*               |
| Cavia porcellus<br>(Scott)  | 13                           | $20.318\pm0.786$                | -9.313*              | 249             | $191.066 \pm 12.229$            | 4.737*               |
| Spermophilus citellus       | 54                           | $68.117 \pm 3.202$              | $-4.409^{*}$         | 126             | $103.286 \pm 9.765$             | 2.326*               |
| Mus musculus                | 14                           | $14.965 \pm 0.184$              | $-5.248^{*}$         | 351             | $261.762 \pm 16.240$            | 5.495*               |
| Rattus norvegicus           | 60                           | $65.799 \pm 3.248$              | -1.786               | 85              | $89.103 \pm 9.732$              | -0.422               |
| Oryctolagus cuniculus       | 20                           | $22.711 \pm 0.525$              | $-5.163^{*}$         | 345             | $247.736 \pm 15.378$            | 6.325*               |
| Manis javanica              | 20                           | $21.473 \pm 0.674$              | $-2.187^{*}$         | 262             | $162.107 \pm 12.266$            | 8.144*               |
| Delphinidae                 | 6                            | $5.976 \pm 0.153$               | 0.157                | 92              | $72.460 \pm 7.994$              | 2.444*               |
| Capreolus capreolus         | 41                           | $42.661 \pm 1.987$              | -0.836               | 161             | $118.544 \pm 10.406$            | $4.080^{*}$          |
| Sus scrofa                  | 46                           | $57.887 \pm 2.983$              | $-3.985^{*}$         | 91              | $85.440 \pm 9.254$              | 0.601                |
| Ovis aries                  | 13                           | $11.899 \pm 1.199$              | 0.918                | 14              | $19.540 \pm 4.294$              | -1.29                |
| Tupaia javanica             | 21                           | $23.597 \pm 0.606$              | $-4.287^{*}$         | 278             | $217.047 \pm 14.153$            | 4.307*               |
| Tarsius spectrum            | 31                           | $33.146 \pm 1.227$              | -1.749               | 186             | $162.402 \pm 12.441$            | 1.897                |
| Loris tardigradus           | 10                           | $9.998 \pm 0.045$               | 0.045                | 480             | $324.115 \pm 18.152$            | 8.588*               |
| Homo sapiens<br>(Keibel)    | 49                           | $58.886\pm2.849$                | -3.470*              | 183             | $113.327 \pm 10.313$            | 6.756*               |
| Homo sapiens<br>(O'Rahilly) | 16                           | $18.875 \pm 0.349$              | -8.248*              | 366             | $256.410 \pm 14.875$            | 7.367*               |
| Macaca mulatta              | 14                           | $13.308\pm0.756$                | 0.915                | 60              | $55.488\pm 6.932$               | 0.651                |

Table III. Results of a Simulation Study Examining the Distribution of Developmental Events<sup>a</sup>

<sup>a</sup>The number of events and stage span for each species are found in Table II.

<sup>b</sup>Simulated values are presented as means  $\pm$  standard deviation (n = 10000).

<sup>c</sup>Significant differences are indicated with an asterisk (two-tailed  $\alpha = 0.05$ ).

#### RESULTS

#### **Distribution of Heterochrony**

It is apparent immediately that the distribution of timing shifts within mammals remained highly skewed in favor of unshared changes on terminal branches (Table IV). On average, 1.85 events were inferred to have changed their timing significantly along each internal branch (1.00 advances, 0.85 delays), compared to an average of 9.75 events (4.81 advances, 4.94 delays) along each terminal branch. Several internal branches did not have any heterochronic shifts inferred for them (e.g., the branches leading to Rodentia, Muridae, Fereuungulata, Primates, and *Tarsius* plus *Homo*). Only the branches leading to Eutheria, Euarchonta, and *Homo* showed more than a handful of timing shifts.

Levels of homoplasy are much higher on terminal branches. Of the 22 events (19.0%) that changed their developmental timing on an internal branch, only two (no. 99: humerus chondrification beginning; no. 104: expansion of allantois) changed

|                                                        | Inferred heterochr                        | onic changes <sup>c</sup>                   |
|--------------------------------------------------------|-------------------------------------------|---------------------------------------------|
| Lineage <sup>b</sup>                                   | Events moving early (advances)            | Events moving late (delays)                 |
| $Root \rightarrow Diapsida/Mammalia$                   | 22 (to Diapsida)                          | 22 (to Mammalia)                            |
| Mammalia $\rightarrow$ Eutheria                        | 5, 15, 19, 35, 92                         | 23, 89, 116                                 |
| Eutheria $\rightarrow$ Fereuungulata                   | None                                      | None                                        |
| Fereuungulata $\rightarrow$ Artiodactyla               | 104                                       | None                                        |
| Eutheria $\rightarrow$ Euarchontoglires                | 99                                        | None                                        |
| Euarchontoglires $\rightarrow$ Euarchonta              | 91, 99                                    | 16, 58                                      |
| Euarchonta $\rightarrow$ Primates                      | None                                      | None                                        |
| Primates $\rightarrow$ Tarsius + Homo                  | None                                      | None                                        |
| Tarsius + Homo $\rightarrow$ Homo sapiens              | 90, 105                                   | 17, 43, 45, 86                              |
| Euarchontoglires $\rightarrow$ Glires                  | 106                                       | 104                                         |
| Glires $\rightarrow$ Rodentia                          | None                                      | None                                        |
| Rodentia $\rightarrow$ Sciurognathi                    | 78                                        | None                                        |
| Sciurognathi $\rightarrow$ Muridae                     | None                                      | None                                        |
| Diapsida $\rightarrow$ Gallus gallus                   | 4, 15, 22, 67, 73, 100, 102               | 39, 78, 91, 96, 105                         |
| Diapsida $\rightarrow$ Lacerta agilis                  | 12, 23, 27, 37, 41, 42, 44,               | 7, 15, 30, 59, 74, 80,                      |
|                                                        | 45, 84, 91, 104                           | 81, 93, 94, 95                              |
| Mammalia $\rightarrow$ Didelphis virginiana            | 23, 28, 32, 42, 47, 56, 61,<br>85, 94, 95 | 84, 103, 105, 114                           |
| Fereuungulata $\rightarrow$ Manis javanica             | 70                                        | 74.104                                      |
| Artiodactyla $\rightarrow$ Capreolus capreolus         | 36, 63, 65, 66, 105                       | 25, 35, 48, 109                             |
| Artiodactyla $\rightarrow$ Sus scrofa                  | 7, 16, 35, 75                             | 36, 39, 53                                  |
| Euarchonta $\rightarrow$ <i>Tupaia javanica</i>        | 30, 35, 41, 91, 102                       | 39, 68, 85, 114                             |
| Primates $\rightarrow$ Loris tardigradus               | 89                                        | 77                                          |
| Tarsius + Homo $\rightarrow$                           | 98, 100                                   | 31, 48, 90, 93, 106                         |
| Tarsius spectrum                                       |                                           |                                             |
| Homo sapiens $\rightarrow$ Homo sapiens<br>(O'Rahilly) | 10, 16, 18, 85, 87                        | 17, 45, 76, 86, 89, 115                     |
| Homo sapiens $\rightarrow$ Homo sapiens<br>(Keibel)    | 89, 104, 106                              | 5, 63, 87                                   |
| Glires $\rightarrow$ Oryctolagus cuniculus             | 21, 31, 59, 83, 100                       | 10, 12, 13, 46, 47, 67,<br>81, 91, 113, 115 |
| Rodentia $\rightarrow$ <i>Cavia porcellus</i>          | 51, 103, 113                              | 78,90                                       |
| Sciurognathi $\rightarrow$ Spermophilus citellus       | 11, 13, 14, 16, 37, 60,<br>64, 66, 91     | 4, 26, 31, 35, 53, 54,<br>59, 83, 100, 104  |
| Muridae $\rightarrow$ Mus musculus                     | 25, 35, 41, 80                            | 9, 12, 63, 74, 88                           |
| Muridae $\rightarrow Rattus norvegicus$                | 12. 28                                    | 13. 41. 82. 91                              |
|                                                        | ,                                         | ,, -=-, > 1                                 |

Table IV. Inferred Heterochronic Changes along Each Branch in Figure 1<sup>a</sup>

<sup>*a*</sup> Tree statistics for event-paired data: length = 4196 steps, CI = 0.543 (0.413 excluding uninformative characters), RI = 0.302 and RC = 0.164.

<sup>b</sup>Lineages on internal branches are presented first, followed by those on terminal branches.

<sup>c</sup>Developmental events are listed by their numbers as given in Appendix 1.

more than once (each showing two changes). In contrast, 50 of the 81 events inferred to change along terminal branches changed along more than one branch. Many of these events changed their relative timing up to four times, with one event (no. 91; anlage of adrenal cortex) moving earlier or later in development a total of six times. The high degree of homoplasy is reflected in the low values of various goodnessof-fit statistics (Table IV). The value for CI in particular is lower than the value expected for a study with 16 taxa (0.602; derived from Sanderson and Donoghue, 1989).

#### **Heterochrony in Mammals**

We focus largely on heterochronic shifts inferred along the internal branches of the tree. This is both because the shared changes are more interesting from a macroevolutionary perspective and because terminal changes are difficult to interpret objectively. The species examined represent exemplars for various higher-level taxa, and with the exception of the two *Homo sapiens* sequences, are not each other's closest relatives among extant mammals. Therefore, at least some terminal shifts may represent shared changes at a higher level within mammals. However, it is impossible to determine which changes these are.

Apart from the eutherian-metatherian comparison, the inferred heterochronic shifts do not reveal any obvious developmental modules (*sensu* Wagner, 1996), such as a possible delay in eye development (Jeffery *et al.*, 2002a), or have an obvious functional role. Some inferred shifts also seem contradictory. For instance, despite possessing proportionately the largest brain and especially forebrain of any mammal (Jerison, 1973), *Homo sapiens* is characterized by a delay in the formation of the cerebral hemispheres. In fact, except for an advanced appearance of the epiphysis in *Homo*, there are no advances in brain development among primates. The latter two observations contradict the idea that the delayed onset of organ development results in the organ being ultimately of a reduced size (see Gould, 1982), but agrees with the observed rapid postembryonic growth of the forebrain in humans (Langman, 2000). An analogous mechanism was also inferred to account for the relatively large eyes in *Tarsius spectrum* despite an observed general delay in the onset of eye development in mammals (Jeffery *et al.*, 2002a).

The general developmental timing shifts we observed between eutherians and marsupials (see Table V) largely match those found by Smith and colleagues, who summarized the shift as involving features of the central nervous system relative to those of the craniofacial apparatus. Eutherians display a relative advance in the former, while marsupials display a

| Taxon       | Advances                                                                                                                                                                                                                                                                                                                          | Delays                                                                                                                        |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Eutheria    | Mesencephalic flexure first indicated<br>Septum primum broken through<br>1st aortic arch formed<br>Anlage of utricle<br>Bericardial acalam baginning                                                                                                                                                                              | Optic stalk invaded by retinal nerve fibers<br>Infundibular groove forms<br>First ribs appearing                              |
| Marsupialia | Optic stalk invaded by retinal nerve fibers<br>Eyelid anlage appears<br>Otocyst detached from ectoderm<br>Nasal placodes depressed<br>Anlage of nasolacrimal duct<br>2nd visceral pouch contacts ectoderm<br>Mandible beginning to ossify<br>Rhombomeres start to appear<br>Lung buds first visible<br>Forelimb bud first visible | <b>Posterior neuropore closed</b><br>Allantoic diverticulum appears<br>Amniopore closed<br>Primitive streak no longer present |

Table V. Inferred Heterochronic Changes in the Lineages Leading to Marsupials<sup>a</sup> and Eutherians<sup>b</sup>

<sup>a</sup>Represented by *Didelphis virginiana*.

<sup>b</sup>Changes listed in bold face agree with the general pattern identified by Smith and colleagues (Smith, 1997; Nunn and Smith, 1998), those in italics run counter to this pattern.

relative advance in the latter (Smith, 1997; Nunn and Smith, 1998), with the latter being determined independently as the actual heterochronic shift (Jeffery *et al.*, 2002b). Additionally, *Didelphis virginiana* displays an advance in the first appearance of the forelimb relative to eutherian mammals (McCrady, 1938; Sánchez-Villagra, 2002), although more detailed observations suggest that the initial appearance of both sets of limb buds is relatively synchronous in marsupials followed by accelerated development of the forelimb (Jeffery *et al.*, unpublished data). Altogether, these observations have clear functional correlates with the life history strategies in each group (see also McCrady, 1938), particularly with marsupials being born and commencing suckling at a relatively earlier stage.

It is not possible to assess which changes occurring along the branch leading to *Didelphis virginiana* are specific to this species and which characterize marsupials as a whole. We note that several heterochronic changes also occur along the branch leading to eutherians, disagreeing with previous suggestions based on a more restricted data set that the differences between the two groups are due exclusively to heterochronic changes within marsupials (Jeffery *et al.*, 2002b). Our more comprehensive data set also suggests that the heterochronic changes differentiating eutherian and marsupial mammals extend beyond central nervous system and craniofacial structures.

### DISCUSSION

#### **Macroevolutionary Changes**

Our findings indicate that embryonic sequence heterochrony has not played an important role in the diversification of at least those mammalian lineages we could examine (also Sánchez-Villagra, 2002). Many of these lineages are characterized by few or no timing shifts (e.g., primates, rodents, or artiodactyls). Instead, heterochrony among mammals appears to have occurred much more recently in evolutionary time, possibly implying an increased role in speciation. However, these terminal changes seem to show no concerted pattern such that they become swamped, erased, or diluted with time to no longer define most of the major lineages (with a few notable exceptions such as the origins of Eutheria and Marsupialia).

We would suggest that the low number of heterochronic shifts inferred along internal branches, with its implications for the macroevolutionary history of mammals, is reasonably accurate. The diversity of mammals belies the conservativeness of the underlying mammalian body plan (e.g. with respect to phalangeal and vertebral count, and the morphology of the wrist, cranium, ribs, and pectoral and pelvic girdles), from which there are few significant departures. Instead, our results agree with the hypothesis that many of the differences among mammals can be accounted for by differential postembryonic and postnatal growth (Vogel, 1973; Bard, 1977; Raff, 1996; see Alberch, 1985), a form of allometric heterochrony (see Gould, 1977). The one clear example of sequence heterochrony in mammals, that between eutherians and marsupials, derives largely from the vastly different life history strategies of each group, rather than from different adult body plans. Important sequence heterochronies may typify the evolution of clades such as Cetacea (Richardson and Oelschläger, 2002) or Chiroptera (Adams, 1992) that diverge more sharply from the ancestral body plan. Unfortunately, detailed developmental information for both groups is

lacking. But, available evidence suggests that even the wings of bats are again the result of allometric, rather than sequence heterochrony (Adams, 1992; Raff, 1996; van Leeuwen *et al.*, unpublished data).

The number of timing changes we observed along internal branches within mammals was also proportionately smaller than we found in our more restricted (only 41 events) previous study examining tetrapods (Jeffery *et al.*, 2002a). However, in that study, we reconstructed character evolution using ACCTRAN optimization only; using the consensus of ACCTRAN and DELTRAN optimizations decreases the number of changes to a comparable level (results not shown). The delay in several eye events from Jeffery *et al.* (2002a) was also not apparent here. This was true regardless of the position of *Rattus norvegicus* (as a member of Glires) in the phylogeny, a factor that affected the presence of this putative developmental module in the previous study (see Jeffery *et al.*, 2002a).

#### A Comparison with Other Tetrapods

Of more interest, perhaps, is the number of heterochronic events in mammals compared to other tetrapods. To address this question, we added the additional mammal species examined herein to the data set of Jeffery *et al.* (2002a) and mapped the 41 events on to a combined tree (results not shown) following the methodology herein. We compared all possible paired combinations of the following three groups for both the total number of internal and terminal changes: mammals, diapsids (Aves + *Lacerta agilis*), and amphibians. The only significant difference was that mammals show fewer changes along internal branches than do amphibians ( $t_{14,4} = -3.344$ ; p = 0.0041;  $\alpha = 0.05$ , corrected for multiple comparisons). This correlates with the diversity of body plans seen in living amphibians together with the well-documented instances of heterochrony within this group (see Duellman and Trueb, 1994). However, although the amphibian and mammalian crown groups are of comparable ages (Wake, 1997; Luo *et al.*, 2001), the possible effect of differences in the timescales of the internal branches between mammals and amphibians (and also the diapsids) was not taken into account.

Mammals (and amniotes in general) may show comparatively fewer heterochronic shifts because the organogenetic period in this group is spent entirely in the protected environment of the amniotic egg, shielding the embryo from diversifying selection. Wolpert (1994) described such embryos as being evolutionarily "privileged" and predicted low phenotypic diversity among amniote embryos as a consequence. In mammals, there is also a direct (biochemical) connection between the mother and embryo during embryonic development, meaning that any heterochronic changes in the embryo may require concomitant changes in the mother. In contrast, because amphibians hatch at a comparatively earlier stage, the juvenile phenotype is more subject to strong diversifying selection.

Although tentatively supported by our results, the privileged embryo hypothesis may not be absolute. Richardson (1999) has pointed out that amniote embryos are only shielded from diversifying selection acting on larval adaptations (i.e., those associated with the free-living stages of many anamniotes). He contended that "privileged" amniote embryos are not shielded necessarily from diversifying selection acting on adult characters. Thus, snake embryos show elongation of the primary axis and acceleration

of somitogenesis even at early embryonic stages when they are protected in the egg (Richardson *et al.*, 1998). These changes are presumably driven by selection for adult body elongation.

### Simultaneous Events and Inferring Sequence Heterochrony

Interestingly, most of the species that did not display either a significant clumping of events or a significantly high number of simultaneous event-pairs (Gallus gallus, Suncus murinus, Rattus norvegicus, Ovis aries, Tarsius spectrum, and Macaca mulatta) were "data poor" species. This suggests that there may be a maximum number of events that can reasonably be examined for a given developmental time span. Even examining an increased number of embryos (e.g., as for Lacerta agilis, Spermophilus citellus, and the Keibel Homo sapiens sequence) might not overcome the problems associated with embryo sampling and intraspecific variation, both of which will generate instances of simultaneity (see Bininda-Emonds et al., 2002). Further support for this conjecture is provided by the tetrapod data set of Jeffery et al. (2002a), which covers approximately the same developmental time span as the current study but examines fewer events. Only three species out of 14 had more simultaneous event-pairs than expected by chance: Lacerta agilis, Gallus gallus, Rattus norvegicus (results not shown). Interestingly, the latter two species showed no significant differences in the current study, reinforcing the fact that data set quality is highly dependent on the exact events being examined (Wheeler, 1990; Bininda-Emonds et al., 2002). About the same proportion of species ( $\sim$ 50%) for both data sets used significantly fewer stages than expected by chance, suggesting that development events may in fact be slightly clumped in their distribution.

### **Concluding Thoughts**

Most of the mammalian lineages that we examined here are characterized by few or no changes in the sequence of key developmental events. Two exceptions include the eutherian-marsupial split and the lineage leading to the common ancestor of Euarchonta. For the former, many of the sequence heterochronies that we identify agree with historical and more recent observations; however, other instances of heterochrony are also apparent. Compared to other tetrapods, mammals display an equal number of sequence heterochronies as do other amniotes, but significantly fewer than amphibians. Therefore, we suggest that sequence heterochrony has not been a key factor contributing to mammalian diversity in general, although it may still play an important role in the origin of some lineages that we could not examine in detail (e.g. Cetacea or Chiroptera). For instance, Richardson and Oelschläger (2002) provide evidence that the cetacean flipper with its characteristic hyperphalangy may have evolved, at least in part, through delayed offset of outgrowth in the embryonic limb bud.

It is surprising that the extraordinary diversification of adult mammals has not forced significant changes on early developmental stages. One explanation is that mammals are subject to special developmental constraints not present in other vertebrate clades (e.g., Galis, 1999). If this is the case, then the adult diversity of mammals may be explained more readily by changes in postembryonic growth (allometric heterochrony). Further work is required to examine these ideas.

#### ACKNOWLEDGMENTS

We thank Marcelo Sánchez-Villagra for kindly providing a preprint of his paper and for his comments on this paper. We also thank Mark Springer and an anonymous referee for their helpful comments. The programs used in this paper are available for download at http://www.tierzucht.tum.de/Bininda-Emonds or on request from the first author. Funding for this project was provided by the van der Leeuw Fonds (OBE and MKR) and the Leverhulme Trust (JEJ).

#### LITERATURE CITED

- Adams, R. A. (1992). Stages of development and sequence of bone formation in the little brown bat, *Myotis lucifigus. J. Mammal.* 73: 160–167.
- Alberch, P. (1985). Problems with the interpretation of developmental sequences. Syst. Zool. 34: 46-58.
- Alroy, J. (1999). The fossil record of North American mammals: Evidence for a Paleocene evolutionary radiation. Syst. Biol. 48: 107–118.
- Amrine-Madsen, H., Koepfli, K. P., Wayne, R. K., and Springer, M. S. (2003). A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships. *Mol. Phylogenet. Evol.* 28: 225– 240.
- Bard, J. B. L. (1977). A unity underlying the different zebra striping patterns. J. Zool. 183: 527-539.
- Bininda-Emonds, O. R. P., Jeffery, J. E., Coates, M. I., and Richardson, M. K. (2002). From Haeckel to eventpairing: The evolution of developmental sequences. *Theory Biosci.* 121: 297–320.
- Bryden, M. M., Evans, H. E., and Binns, W. (1972). Embryology of the sheep. I. Extraembryonic membranes and the development of body form. J. Morphol. 138: 169–186.
- Corneli, P. S. (2002). Complete mitochondrial genomes and eutherian evolution. J. Mammal. Evol. 9: 281-305.
- de Jong, W. W., van Dijk, M. A., Poux, C., Kappe, G., van Rheede, T., and Madsen, O. (2003). Indels in proteincoding sequences of Euarchontoglires constrain the rooting of the eutherian tree. *Mol. Phylogenet. Evol.* 28: 328–340.
- de Lange, D., Jr., and Nierstrasz, H. F. (1932). Tabellarische Übersicht der Entwicklung von Tupaia javanica Horsf, A. Oosthoek Verlag A.G., Utrecht.
- Duellman, W. E., and Trueb, L. (1994). Biology of Amphibians, Johns Hopkins University Press, Baltimore.
- Galis, F. (1999). Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox genes, and cancer. J. Exp. Zool. 285: 19–26.
- Gould, S. J. (1977). Ontogeny and Phylogeny, Belknap Press, Cambridge, MA.
- Gould, S. J. (1982). Change in developmental timing as a mechanism of macroevolution. In: *Evolution and Development*, J. T. Bonner, ed., pp. 333–346, Springer-Verlag, New York.
- Gribnau, A. A. M., and Geijsberts, L. G. M. (1981). Developmental Stages in the Rhesus Monkey (Macaca mulatta), Springer-Verlag, Berlin.
- Harman, M. T., and Prickett, M. (1932). The development of the external form of the guinea-pig (*Cavia cobaya*) between the ages of eleven days and twenty days of gestation. *Amer. J. Anat.* 49: 351–378.
- Harman, M. T., and Prickett Dobrovolny, M. (1933). The development of the external form of the guinea-pig (*Cavia cobaya*) between the ages of 21 days of and 35 days of gestation. J. Morphol. 54: 493–519.
- Heape, W. (1883a). The development of the mole (*Talpa europea*). The formation of the germinal layers and early development of the meduallry groove and notochord. *Q. J. Microscop. Sci.* 23: 412–452.
- Heape, W. (1883b). The development of the mole (*Talpa europea*). Stage E to J. Q. J. Microscop. Sci. 26: 123– 163.
- Henneberg, B. (1937). Normentafel zur Entwicklungsgeschichte der Wanderratte (Rattus norvegicus Erxleben), Verlag von Gustav Fischer, Jena.
- Hubrecht, A. A. W., and Keibel, F. (1907). Normentafel zur Entwicklungsgeschichte des Koboldmaki (Tarsius spectrum) und des Plumplori (Nycticebus tardigradus), Verlag von Gustav Fischer, Jena.
- Huisman, F. J., and de Lange, D., Jr. (1937). Tabellarische Übersicht der Entwicklung von Manis javanica Desm, A. Oosthoek Verlag A.G., Utrecht.
- Jacobfeuerborn, H. (1908). Die intrauterine Ausbildung der äußeren Körperform des Igels (*Erinaceus europaeus* L.) mit Berücksichtigung der Entwicklung der wichtigeren inneren Organe. Z. Wiss. Zool. 91: 382–420.
- Jeffery, J. E., Bininda-Emonds, O. R. P., Coates, M. I., and Richardson, M. K. (2002a). Analyzing evolutionary patterns in vertebrate embryonic development. *Evol. Dev.* 4: 292–302.
- Jeffery, J. E., Richardson, M. K., Coates, M. I., and Bininda-Emonds, O. R. P. (2002b). Analyzing developmental sequences within a phylogenetic framework. Syst. Biol. 51: 478–491.

- Jerison, H. J. (1973). Evolution of the Brain and Intelligence, Academic Press, New York.
- Keibel, F. (1897). Normentafel zur Entwicklungsgeschichte des Schweines (Sus scrofa domesticus), Verlag von Gustav Fischer, Jena.
- Keibel, F., ed. (1897–1938). Normentafeln zur Entwicklungsgeschichte der Wirbelthiere, Verlag von Gustav Fischer, Jena.
- Keibel, F., and Abraham, K. (1900). Normentafel zur Entwicklungsgeschichte des Huhnes (Gallus domesticus), Verlag von Gustav Fischer, Jena.
- Keibel, F., and Elze, C. (1908). Normentafel zur Entwicklungsgeschichte des Menschen, Verlag von Gustav Fischer, Jena.
- Langman, J. (2000). Langman's Medical Embryology, 8th ed., Lippincott Williams & Wilkins, Philadelphia.
- Liu, F.-G. R., Miyamoto, M. M., Freire, N. P., Ong, P. Q., Tennant, M. R., Young, T. S., and Gugel, K. F. (2001). Molecular and morphological supertrees for eutherian (placental) mammals. *Science* 291: 1786–1789.
- Luo, Z.-X., Crompton, A. W., and Sun, A.-L. (2001). A new mammaliform from the Early Jurassic and evolution of mammalian characteristics. *Science* 292: 1535–1540.
- Mabee, P. M., and Trendler, T. A. (1996). Development of the cranium and paired fins in *Betta splendens* (Teleosti: Percomorpha): Intraspecific variation and interspecific comparisons. J. Morphol. 227: 249–287.
- Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R., Amrine, H. M., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001). Parallel adaptive radiations in two major clades of placental mammals. *Nature* 409: 610–614.
- McCrady, E., Jr. (1938). *The Embryology of the Opossum*, The Wistar Institute of Anatomy and Biology, Philadelphia.
- McKinney, M. L., and McNamara, K. J. (1991). *Heterochrony: The Evolution of Ontogeny*, Plenum Press, New York.
- Minot, C. S., and Taylor, E. (1905). Normal Plates of the Development of the Rabbit (Lepus cuniculus L.) Verlag von Gustav Fischer, Jena.
- Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O'Brien, S. J. (2001a). Molecular phylogenetics and the origins of placental mammals. *Nature* 409: 614–618.
- Murphy, W. J., Eizirik, E., O'Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001b). Resolution of the early placental mammal radiation using Bayesian phylogenetics. *Science* 294: 2348–2351.
- Nowak, R. M. (1999). Walker's Mammals of the World, 6th ed., The John Hopkins University Press, Baltimore.
- Nunn, C. L., and Smith, K. K. (1998). Statistical analyses of developmental sequences: The craniofacial region in marsupial and placental mammals. *Amer. Nat.* 152: 82–101.
- O'Rahilly, R., and Müller, F. (1987). *Developmental Stages in Human Embryos*, Carnegie Institute of Washington, Meriden, CT.
- Peter, K. (1904). Normentafel zur Entwicklungsgeschichte der Zauneidechse (Lacerta agilis), Verlag von Gustav Fischer, Jena.
- Raff, R. A. (1996). The Shape of Life: Genes, Development, and the Evolution of Animal From, University of Chicago Press, Chicago.
- Richardson, M. K. (1999). Vertebrate evolution: The developmental origins of adult variation. *BioEssays* 21: 604–613.
- Richardson, M. K., Allen, S. P., Wright, G. M., Raynaud, A., and Hanken, J. (1998). Somite number and vertebrate evolution. *Development* 125: 151–160.
- Richardson, M. K., and Oelschläger, H. A. (2002). Time, pattern and heterochrony: A study of hyperphalangy in the dolphin embryo flipper. *Evol. Dev.* **4**: 435–444.
- Sakurai, T. (1906). Normentafel zur Entwicklungsgeschichte des Rehes (Cervus capreolus), Verlag von Gustav Fischer, Jena.
- Sánchez-Villagra, M. R. (2002). Comparative patterns of postcranial ontogeny in therian mammals: an analysis of relative timing of ossification events. J. Exp. Zool. (Mol. Dev. Evol.) 294: 264–273.
- Sanderson, M. J., and Donoghue, M. J. (1989). Patterns of variation in levels of homoplasy. *Evolution* 43: 1781– 1795.
- Scott, J. P. (1937). The embryology of the guinea pig I. A table of normal development. Amer. J. Anat. 60: 397– 432.
- Shubin, N. H., and Alberch, P. (1986). A morphogenetic approach to the origin and basic organisation of the tetrapod limb. In: *Evolutionary Biology*, M. K. Hecht, B. Wallace, and G. I. Prance, eds., pp. 319–387, Plenum Press, New York.
- Smith, K. K. (1996). Integration of craniofacial structures during development in mammals. Amer. Zool. 36: 70–79.
- Smith, K. K. (1997). Comparative patterns of craniofacial development in eutherian and metatherian mammals. *Evolution* 51: 1663–1678.
- Springer, M. S., Murphy, W. J., Eizirik, E., and O'Brien, S. J. (2003). Placental mammal diversification and the Cretaceous-Tertiary boundary. *Proc. Natl. Acad. Sci. U.S.A.* 100: 1056–1061.

Sterba, O., Klima, M., and Schildger, B. (2000). Embryology of Dolphins, Springer, Berlin.

- Swofford, D. L., and Maddison, W. P. (1987). Reconstructing ancestral character states under Wagner parsimony. *Math. Biosci.* 87: 199–229.
- Theiler, K. (1989). The House Mouse: Atlas of Embryonic Development, Springer Verlag, New York.
- Thomas, J. W., et al. (70 other authors). (2003). Comparative analysis of multi-species sequences from targeted genomic regions. Nature 424: 788–793.
- Velhagen, W. A. (1997). Analyzing developmental sequences using sequence units. Syst. Biol. 46: 204-210.
- Vogel, P. (1973). Vergleichende Untersuchung zum Ontogenesemodus einheimischer Soriciden (Crocidura russula, Sorex araneus und Neomys fodiens). Rev. Suisse Zool. 79: 1201–1332.
- Völker-Brünn, O. (1922). Normentafel zur Entwicklungsgeschichte des Ziesels (Spermophilus citillus), Verlag von Gustav Fischer, Jena.
- Waddell, P. J., Okada, N., and Hasegawa, M. (1999). Towards resolving the interordinal relationships of placental mammals. Syst. Biol. 48: 1–5.

Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. Amer. Zool. 36: 36-43.

Wake, M. H. (1997). Amphibian locomotion in evolutionary time. Zoology 100: 141-151.

Wanek, N., Muneoka, K., Holler-Dinsmore, G., Burton, R., and Bryant, S. V. (1989). A staging system for mouse limb development. J. Exp. Zool. 249: 41–49.

Wheeler, Q. D. (1990). Ontogeny and character phylogeny. Cladistics 6: 225-268.

- Wilson, D. E., and Reeder, D. M., eds. (1993). Manmal Species of the World: Ataxonomic and Geographic Reference, Smithsonian Institution Press, Washington.
- Wolpert, L. (1994). The evolutionary origin of development: Cycles, patterning, privilege and continuity. Development Supplement 79–84.
- Yasui, K. (1992). Embryonic development of the house shrew (*Suncus murinus*). I. Embryos at stages 9 and 10 with 1 to 12 pairs of somites. *Anat. Embryol.* 186: 49–65.
- Yasui, K. (1993). Embryonic development of the house shrew (*Suncus murinus*). II. Embryos at stages 11 and 12 with 13 to 29 pairs of somites, showing limb bud formation and closed cephalic neural tube. *Anat. Embryol.* 187: 45–65.

# **APPENDIX 1**

| No.     | System         | Subsystem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Event                                           |
|---------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 1*      | External       | Somites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 post-otic somite pair                         |
| 2       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 post-otic somite pairs                        |
| 3       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13 post-otic somite pairs                       |
| 4       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23 post-otic somite pairs                       |
| 5       |                | Miscellaneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mesencephalic (cephalic) flexure first          |
| 6       |                | Miscelluleous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | indicated Externally visible tailbud            |
| 0       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | beginning (all three germ layers need not be    |
|         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | present)                                        |
| 7*      | Cardiovascular | Heart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Endocardial anlage                              |
| ,<br>8* | Curdiovuseului | ficult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Endocardial tubes start to fuse                 |
| Q*      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Heart becoming bent or S-shaped (endocardial    |
| /       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tubes no longer straight)                       |
| 10      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Interventricular sentum just beginning          |
| 11*     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Trabeculae carneae in ventricles of heart       |
| 12*     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Atrioventricular canal indicated by             |
| 12      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | constriction                                    |
| 13*     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Endocardial cushions of atrioventricular canal  |
| 10      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iust beginning                                  |
| 14*     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Septum primum of atrium just beginning          |
| 15      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Septum primum broken through (foramen           |
|         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ovale/secundum)                                 |
| 16*     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Proximal outflow tract cushions appearing       |
| 17      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Truncus arteriosus initially divided (= initial |
|         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fusion of distal bulbar cushions)               |
| 18*     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Semilunar (aortic and pulmonary) valves first   |
| 10      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | appearing                                       |
| 19*     |                | Associated vessels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1st aortic arch formed                          |
| 20      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2nd aortic arch (hyoidean) formed               |
| 21*     | Eve            | Optic vesicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Primary) optic vesicle beginning as distinct   |
|         |                | or contraction of the second sec | lateral evagination from neural tube (not       |
|         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sulcus opticus)                                 |
| 22*     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Primary) optic vesicle starts to invaginate to |
|         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | form optic cup (secondary optic vesicle)        |
| 23      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Optic stalk beginning to be invaded by retinal  |
|         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nerve fibres                                    |
| 24*     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Retinal pigmentation beginning                  |
| 2.5*    |                | Lens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lens placode appears                            |
| 26*     |                | Long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lens placede depressed (formation of optic      |
| 20      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pit)                                            |
| 27*     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lens vesicle pinches off from surface ectoderm  |
| 28      |                | External                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evelid anlage appears                           |
| 29*     | Ear            | Otic placode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Otic placode appears                            |
| 30*     |                | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Otic placode depressed (formation of otic pit)  |
| 31*     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Otocyst closed but still connected with surface |
|         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ectoderm                                        |
| 32*     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Otocyst detached from ectoderm                  |
| 33*     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Endolymphatic appendage appears                 |
| 34      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Auricular tubercles (hillocks) become distinct  |
| 35      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Anlage of utricle                               |
| 36      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Anlage of cochlea                               |
| 37      |                | Semicircular canals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Superior (vertical or anterior) semicircular    |
|         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | canal pinched-off as a tube                     |
| 38      |                | Ossicles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Malleus appears as mesenchymal condensation     |
| 39      | Facial region  | Oropharyngeal membrane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oropharyngeal (buccopharyngeal/oral)            |
|         | C              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | membrane formed                                 |
|         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |

List of Developmental Events Examined in This Study<sup>a</sup>

| No.       | System           | Subsystem                           | Event                                                                                   |
|-----------|------------------|-------------------------------------|-----------------------------------------------------------------------------------------|
| 40<br>41* |                  | Nasal pits                          | Oropharyngeal membrane becomes perforated<br>Nasal placodes appear as ectodermal        |
| 42*       |                  |                                     | Nasal placodes depressed (formation of<br>olfactory pit)                                |
| 43        |                  |                                     | Primitive choanae (posterior nares) open                                                |
| 44        |                  |                                     | Closure of nostrils by epitrichial plugs                                                |
| 45        |                  |                                     | Jacobson's organ beginning as a diverticulum                                            |
| 46        |                  |                                     | Conchae (turbinates) developing                                                         |
| 47        |                  |                                     | Anlage of nasolacrimal duct (as maxillary and                                           |
| 18*       |                  | Miscellaneous                       | Anlage of hypophysis (Rathke's nouch)                                                   |
| 40        |                  | Wiscenaneous                        | Lateral palatine processes appearing on either                                          |
| 72        |                  |                                     | side of tongue                                                                          |
| 50        |                  |                                     | Dental lamina forming                                                                   |
| 51        |                  |                                     | Anlagen of tooth germs appearing in dental<br>lamina                                    |
| 52        |                  |                                     | Parotid gland first indicated                                                           |
| 53*       | Pharynx          | Thyroid                             | Thyroid (or endostyle) depression appears in                                            |
| 51        |                  |                                     | floor of pharynx                                                                        |
| 54        |                  |                                     | Aniage of ultimobranchial bodies (of                                                    |
|           |                  |                                     | parafollicular cells of thyroid)                                                        |
| 55        |                  | Pharyngeal pouches                  | 1st visceral pouch contacts ectoderm                                                    |
| 56*       |                  |                                     | 2nd visceral pouch contacts ectoderm                                                    |
|           |                  |                                     | (formation of hyoid arch)                                                               |
| 57*       |                  |                                     | 3rd visceral pouch contacts ectoderm                                                    |
|           |                  |                                     | (formation of first branchial arch)                                                     |
| 58        |                  |                                     | Cervical sinus formed                                                                   |
| 59        |                  |                                     | Anlage of thymus (of pharyngeal pouch III)                                              |
| 60        |                  | Visceral skeleton                   | Meckel's cartilage cartilaginous                                                        |
| 61<br>62* | Uroconital       | Walffian (masananhria) duat         | Walffier duct appears as a thickening with no                                           |
| 02        | Urogenitai       | wonnan (mesonephric) duct           | lumen                                                                                   |
| 63*       |                  |                                     | Wolffian ducts open into cloaca                                                         |
| 64        |                  | Kidneys                             | Mesonephric (Wolffian) tubules appearing, but still solid                               |
| 65        |                  |                                     | Ureteric bud just forming from Wolffian duct                                            |
| 66        |                  |                                     | Anlagen of metanephric tubules                                                          |
| 67        |                  | Gonad                               | Anlage of gonad (gonadal ridge) appears as a thickening of the coelomic epithelium      |
| 68*       |                  | Mullerian (paramesonephric)<br>duct | Anlagen of Mullerian ducts appear                                                       |
| 69        |                  | CT.                                 | Mullerian ducts fusing caudally                                                         |
| 70        |                  | Cloaca                              | Cloacal partition just completed                                                        |
| /1<br>72* | Intectinal tract | Intestine                           | Anterior intestinal portal beginning as a                                               |
| 12        | intestinai tract | Intestine                           | diverticulum                                                                            |
| 73<br>74  |                  |                                     | Postanal (tail-) gut no longer present<br>(Future) cloacal membrane becomes distinct at |
| 75        |                  |                                     | Closed membrane breaks through (performed)                                              |
| 75<br>76* |                  | Associated glands                   | Liver diverticulum appears                                                              |
| 77*       |                  | Associated Statios                  | Liver cords forming                                                                     |
| 78*       |                  |                                     | Gall bladder beginning as a diverticulum                                                |
| 79*       |                  |                                     | Dorsal pancreas beginning as a diverticulum                                             |
| 80*       |                  |                                     | Ventral pancreas beginning as a diverticulum                                            |

APPENDIX 1 Continued

| No. | System                      | Subsystem      | Event                                                                                                 |
|-----|-----------------------------|----------------|-------------------------------------------------------------------------------------------------------|
| 81* |                             |                | Spleen anlage beginning as thickening of<br>peritoneal epithelium and/or mesenchymal<br>proliferation |
| 82* | Nervous                     | Neural tube    | Neural folds first beginning to fuse                                                                  |
| 83  |                             |                | Anterior neuropore closed                                                                             |
| 84  |                             |                | Posterior neuropore closed                                                                            |
| 85  |                             | Brain          | Rhombomeres start to appear                                                                           |
| 86  |                             |                | Cerebral hemisphere anlagen of telencephalon<br>just beginning (as lateral expansions                 |
| 87  |                             |                | Anlage of optic chiasma                                                                               |
| 88  |                             | Miscellaneous  | Trigeminal ganglion (of cranial nerve V)<br>becomes distinct as cellular aggregate                    |
| 89  |                             |                | Infundibular groove (not recess) forms                                                                |
| 90  |                             |                | Anlage of epiphysis                                                                                   |
| 91  |                             |                | Anlage of adrenal cortex (interrenal gland) as<br>mesodermal proliferation from peritoneum            |
| 92  | Coelom                      | Coelom         | Pericardial coelom beginning                                                                          |
| 93  | Respiratory                 | Respiratory    | Laryngotracheal (part of the median<br>pharyngeal) groove indicated                                   |
| 94* |                             |                | Lung buds as distinct evaginations                                                                    |
| 95* | Limbs                       | Forelimbs      | Wanek <i>et al.</i> (1989) stage 1 (limb bud first visible)                                           |
| 96  |                             |                | Wanek <i>et al.</i> (1989) stage 6 (constricted wrist/dorsoventrally flattened hand plate)            |
| 97  |                             |                | Wanek <i>et al.</i> (1989) stage 8 (initial indentations between digits)                              |
| 98  |                             |                | Scapula cartilaginous                                                                                 |
| 99  |                             |                | Humerus chondrification beginning                                                                     |
| 100 |                             | Hind limbs     | Wanek <i>et al.</i> (1989) stage 1 (limb bud first visible)                                           |
| 101 |                             |                | Wanek <i>et al.</i> (1989) stage 6 (constricted wrist/dorsoventrally flattened hand plate)            |
| 102 |                             |                | Wanek <i>et al.</i> (1989) stage 8 (initial indentations between digits)                              |
| 103 | Extraembryonic<br>membranes | Allantois      | Allantoic diverticulum beginning (mesodermal and endodermal components)                               |
| 104 |                             |                | Expansion of allantois (anlage of bladder)                                                            |
| 105 |                             | Amnion         | Amniopore closed (=amnion complete)                                                                   |
| 106 |                             | Umbilical cord | Umbilical hernia beginning                                                                            |
| 107 |                             |                | Umbilical hernia totally reduced                                                                      |
| 108 | Integument                  | Mammary glands | Milk line appears                                                                                     |
| 109 |                             |                | Anlagen of mammary glands (papillae) appear                                                           |
| 110 |                             | Hair           | Hair papilla appears over eye                                                                         |
| 111 |                             | Claws          | Anlagen of claws                                                                                      |
| 112 | Axial skeleton              | Skull          | Petrosal bone (periotic capsule) as<br>mesenchymal condensation                                       |
| 113 |                             | Vertebrae      | Vertebral bodies are mesenchymal condensations around notochord                                       |
| 114 |                             | Notochord      | Primitive streak no longer present                                                                    |
| 115 |                             |                | Notochord starts separating from alimentary<br>endoderm                                               |
| 116 |                             | Ribs           | Some ribs are appearing as mesenchymal<br>condensations                                               |

APPENDIX 1 Continued

<sup>*a*</sup>Events are subdivided according to organ system and subsystem. Events marked with an asterisk were also used by Jeffery *et al.* (2002a).

|                          |    |      |      | De   | velopmeı | ıtal Timir | ig Inform | ation <sup>a</sup> |      |      |      |    |      |      |      |
|--------------------------|----|------|------|------|----------|------------|-----------|--------------------|------|------|------|----|------|------|------|
| Species                  | 1  | 2    | 3    | 4    | 5        | 9          | 7         | 8                  | 6    | 10   | 11   | 12 | 13   | 14   | 15   |
| Lacerta agilis           | 35 | 40   | 53   | 65   | ė        | 60         | 47        | i                  | 49   | i    | 84   | 49 | 85   | 85   | 118  |
| Gallus gallus            | 4  | 6    | 23   | 38   | ċ        | 43         | 10        | 20                 | 23.5 | 59.6 | ċ    | ċ  | 59.6 | 52   | 69.6 |
| Didelphis virginiana     | د. | 23   | 25   | ċ    | 26       | 29         | ċ         | 25                 | 26   | 30   | ċ    | ċ  | 30   | 30   | 32   |
| Erinaceus europaeus      | ć  | 1    | ċ    | ۰.   | 4        | 6          | 1         | 0                  | 8    | ċ    | ċ    | ċ  | ċ    | ċ    | ċ    |
| Suncus murinus           | 6  | 10.3 | 11.3 | 12.3 | 6        | ċ          | ÷         | 6                  | 10.3 | 12.6 | 10.3 | ċ  | 12.3 | 12.6 | ÷    |
| Talpa europaea           | S  | ċ    | ċ    | ۰.   | 8        | ċ          | 9         | 8                  | ċ    | ċ    | ċ    | ċ  | ċ    | ċ    | ċ    |
| Cavia porcellus (Harman) | 14 | 14   | ÷    | 16   | 16       | ċ          | 15        | 15                 | 15   | ċ    | ċ    | ÷  | ċ    | ċ    | ċ    |
| Cavia porcellus (Scott)  | ċ  | ċ    | 15.5 | 16.5 | ċ        | 16.5       | 14.5      | ċ                  | 15.5 | ċ    | ċ    | ċ  | ċ    | 18.5 | 19.7 |
| Spermophilus citellus    | ÷  | 35   | 56   | 76   | 35       | 68         | 25        | 36                 | 49   | 84   | 48   | 57 | 70   | 53   | 107  |
| Mus musculus             | 12 | 12   | 14   | 15   | ÷        | 16         | 12        | 13                 | 16   | ċ    | ċ    | 17 | 15   | 19   | 19   |
| Rattus norvegicus        | 27 | 31   | 52   | 57   | 46       | 54         | 26        | 35                 | 37   | 62   | 43   | 41 | 70   | 68   | 71   |
| Oryctolagus cuniculus    | ن. | ÷    | ÷.   | 6    | 5        | ċ          | <u>ن</u>  | 9                  | 9    | 15   | 11   | 13 | 15   | 12   | ċ    |
| Manis javanica           | ć  | 1    | 4    | ċ    | ε        | 6          | ε         | 9                  | ċ    | ċ    | ċ    | ن. | ċ    | ċ    | ċ    |
| Delphinidae              | ć  | ċ    | ċ    | ۰.   | ċ        | ċ          | ċ         | ċ                  | ċ    | ċ    | 4    | ċ  | ċ    | ċ    | ċ    |
| Capreolus capreolus      | ć  | 10   | ċ    | 21   | 20       | 21         | 11        | ċ                  | 13   | 22   | 23   | 21 | 23   | 22   | 36   |
| Sus scrofa               | ć  | 15   | 43   | ۰.   | ċ        | 53         | 1         | 29                 | 32   | 62   | 55   | 54 | 62   | 60   | 69   |
| Ovis aries               | ć  | ċ    | ċ    | ۰.   | ċ        | ċ          | ċ         | ċ                  | ċ    | ċ    | ċ    | ċ  | ċ    | ċ    | ċ    |
| Tupaia javanica          | ÷  | ċ    | 4    | 7    | ÷        | 9          | ż         | 4                  | 9    | 15   | 7    | 8  | ċ    | 12   | 15   |
| Tarsius spectrum         | ć. | ÷    | ÷    | 11   | 7        | 4          | ċ.        | 0                  | 5    | 17   | 13   | ÷  | ċ    | 17   | 20   |
| Loris tardigradus        | ć. | 1    | ÷    | ÷    | ÷        | 4          | ć.        | ċ                  | 7    | 9    | 4    | 4  | ċ    | 9    | ×    |
| Homo sapiens (Keibel)    | ÷  | ċ    | 9    | 7    | 5        | 9          | ż         | 4                  | 4    | 12   | 10   | 10 | 22   | 11   | 25   |
| Homo sapiens (O'Rahilly) | ن، | 10   | 11   | 12   | 6        | ċ          | <u>ن</u>  | 10                 | 10   | 11   | 11   | 12 | 13   | 12   | 15   |
| Macaca mulatta           | ¢. | ċ    | ć    | ċ    | 13       | ċ          | ċ         | ċ                  | ċ    | ċ    | ċ    | ċ  | ċ    | ċ    | ċ    |

**APPENDIX 2** 

354

|                              |      |      |      |      | APPE     | NDIX 2 | Continue | p   |     |      |      |      |           |      |      |
|------------------------------|------|------|------|------|----------|--------|----------|-----|-----|------|------|------|-----------|------|------|
| Species                      | 16   | 17   | 18   | 19   | 20       | 21     | 22       | 23  | 24  | 25   | 26   | 27   | 28        | 29   | 30   |
| Lacerta agilis               | 85   | 115  | 122  | 51   | 64       | 42     | 61       | 103 | 91  | 56   | 63   | 73   | 112       | 49   | 51   |
| Gallus gallus                | 59.6 | 78   | ċ    | 37.5 | 39.5     | 13     | 32.5     | ċ   | 4   | 31   | 37   | 47.5 | ċ         | 18   | 19   |
| Didelphis virginiana         | د.   | 31   | 34   | 25   | 24       | 24     | 30       | 30  | 35  | 28   | 29   | 30   | 32        | 24   | 25   |
| Erinaceus europaeus          | ċ    | ċ    | ċ    | ċ    | ċ        | 1      | ċ        | ċ   | ċ   | ċ    | 15   | ۍ.   | 24        | ċ    | 1.27 |
| Suncus murinus               | ż    | ċ    | ÷    | 6    | 10.6     | 10.9   | 12.9     | ÷   | ċ   | 11.9 | 12.6 | ż    | ċ         | 10.6 | 10.9 |
| Talpa europaea               | ć    | ċ    | ċ    | 8    | ċ        | 9      | ć        | ċ   | ċ   | ċ    | ċ    | ć    | ċ         | 8    | 10   |
| Cavia porcellus (Harman)     | ċ    | ċ    | ċ    | ċ    | ċ        | 15     | 16       | ċ   | 19  | ċ    | 16   | ċ    | 24        | 16   | 16   |
| Cavia porcellus (Scott)      | ċ    | 21.6 | 23.7 | 15.5 | 15.5     | ċ      | 18.5     | ċ   | ċ   | 17.5 | 18.5 | 19.7 | 23.7      | ż    | ċ    |
| Spermophilus citellus        | LL   | ċ    | 123  | 33   | 51       | 49     | 85       | 118 | 109 | 79   | 90   | 107  | 120       | 49   | 49   |
| Mus musculus                 | 18   | 21   | 21   | 12   | 15       | 13     | 16       | ۍ   | 19  | 14   | 16   | 19   | 22        | 12   | 14   |
| Rattus norvegicus            | 79   | 86   | 110  | 29   | 43       | 37     | 65       | 105 | ċ   | 57   | 4    | 84   | 94        | 40   | 40   |
| <b>Oryctolagus cuniculus</b> | ن.   | 16   | 20   | 4    | 6        | 7      | 13       | 19  | 15  | 11   | 12   | 14   | 19        | 5    | 7    |
| Manis javanica               | ċ    | ċ    | ċ    | 5    | S        | 4      | 12       | 18  | 17  | 10   | 11   | 15   | 18        | 5    | 8    |
| Delphinidae                  | د.   | ċ    | 9    | ċ    | ć        | ċ      | د.       | ċ   | ÷   | ۍ.   | ċ    | د.   | 5         | ċ    | ċ    |
| Capreolus capreolus          | 28   | 39   | 39   | 13   | 14       | 15     | 31       | 50  | 39  | 32   | 34   | 41   | 52        | 17   | 19   |
| Sus scrofa                   | 62   | LL   | ċ    | ċ    | ċ        | 30     | 68       | ċ   | 74  | 67   | 69   | 84   | 91        | 30   | 39   |
| Ovis aries                   | ċ    | ċ    | ċ    | ċ    | ċ        | ċ      | ċ        | ċ   | ċ   | 19   | ċ    | ċ    | 26        | 17   | 19   |
| Tupaia javanica              | 17   | 14   | 19   | ċ    | ż        | 4      | 12       | 20  | 14  | ż    | 12   | ż    | 20        | ÷    | ŝ    |
| Tarsius spectrum             | 27   | 19   | 28   | 0    | 0        | 4      | 16       | 29  | 20  | 14   | 16   | 19   | 28        | 2    | 9    |
| Loris tardigradus            | ن.   | ċ    | 6    | ċ    | <u>ن</u> | 7      | ٢        | ۍ   | ÷   | 4    | ٢    | ÷    | ÷         | ن،   | 0    |
| Homo sapiens (Keibel)        | 33   | 28   | 57   | ю    | 7        | 9      | 13       | 61  | 28  | 10   | 13   | 33   | <u>66</u> | 4    | 9    |
| Homo sapiens (O'Rahilly)     | 13   | 17   | 16   | 6    | 10       | 11     | 14       | 19  | 15  | 13   | 14   | 15   | 18        | 6    | 10   |
| Macaca mulatta               | ċ    | ċ    | ċ    | ċ    | ċ        | ċ      | 21       | 15  | 13  | 13   | 16   | 19   | 10        | ċ    |      |

|                              |      |      |      |     | Iddy | ENDIX 2 | Continue | p    |      |      |      |      |      |      |      |
|------------------------------|------|------|------|-----|------|---------|----------|------|------|------|------|------|------|------|------|
| Species                      | 31   | 32   | 33   | 34  | 35   | 36      | 37       | 38   | 39   | 40   | 41   | 42   | 43   | 44   | 45   |
| Lacerta agilis               | 71   | 62   | 72   | 110 | ė    | 101     | 112      | ė    | i    | 64   | 49   | 63   | 111  | 112  | 91   |
| Gallus gallus                | 46   | ċ    | 53   | ć.  | ċ    | ċ       | 79.5     | ۰.   | 31   | 46   | 42   | 46   | 76   | 78.5 | ċ    |
| Didelphis virginiana         | 28   | 28   | 29   | 31  | 35   | ċ       | 32       | ċ    | 24   | 29   | ÷    | 28   | 31   | ċ    | 33   |
| Erinaceus europaeus          | ċ    | ċ    | ÷    | 18  | ċ    | ċ       | ċ        | ċ    | ċ    | ċ    | ÷    | 14   | ċ    | ċ    | ċ    |
| Suncus murinus               | 11.9 | 12.9 | 12.9 | ċ   | ċ    | ċ       | ċ        | ċ    | 10.3 | 10.9 | 11.3 | 12.9 | ċ    | ċ    | ċ    |
| Talpa europaea               | ċ    | ċ    | ن.   | ć.  | ċ    | ċ       | ċ        | ۍ    | 10   | ċ    | ċ    | ċ    | ċ    | ċ    | ċ    |
| Cavia porcellus (Harman)     | 17   | 17   | 18   | 21  | ċ    | ċ       | ċ        | ċ    | ć    | ċ    | 16   | 16   | ć    | ć    | ċ    |
| Cavia porcellus (Scott)      | ċ    | 15.5 | 19.1 | ċ   | 19.1 | 19.7    | 26.1     | 23.7 | 14.5 | ċ    | 16.5 | 17.5 | 23.7 | 26.1 | 21.6 |
| Spermophilus citellus        | 80   | ÷    | 80   | 109 | 127  | 108     | 118      | 117  | 35   | 68   | 75   | 85   | 120  | 128  | 104  |
| Mus musculus                 | 15   | 15   | 16   | 19  | 19   | 20      | ÷        | . ک  | 11   | 14   | 14   | 16   | 21   | ċ    | 19   |
| Rattus norvegicus            | 60   | 69   | 99   | 69  | 92   | 82      | 103      | 96   | 29   | 42   | 62   | 68   | 66   | 118  | 80   |
| <b>Oryctolagus cuniculus</b> | 6    | 11   | 12   | 15  | 18   | ċ       | 19       | . ک  | ċ    | 6    | 11   | 13   | 19   | 20   | 14   |
| Manis javanica               | 6    | 14   | 11   | ۍ   | 17   | 16      | ÷        | 19   | 4    | 6    | 6    | 11   | 16   | 18   | 17   |
| Delphinidae                  | ŝ    | ċ    | 4    | ć   | ċ    | ċ       | ċ        | ċ    | ċ    | ċ    | ċ    | ŝ    | ċ    | 7    | ċ    |
| Capreolus capreolus          | 24   | 29   | 32   | 39  | 52   | 36      | 48       | 47   | 14   | 22   | 27   | 35   | 47   | 52   | 43   |
| Sus scrofa                   | 63   | 69   | 70   | LL  | 74   | 86      | 85       | ċ    | 46   | 64   | 4    | 69   | 87   | 94   | 76   |
| Ovis aries                   | ċ    | 20   | ÷    | 25  | ċ    | ċ       | ċ        | ċ    | ċ    | ċ    | 22   | 22   | ċ    | ċ    | ċ    |
| Tupaia javanica              | 8    | 10   | 12   | 15  | 14   | 15      | ÷        | 19   | 9    | 8    | ٢    | 12   | 18   | 21   | 14   |
| Tarsius spectrum             | 15   | ÷    | 14   | 22  | ć.   | 27      | ÷        | 28   | б    | 6    | 12   | 18   | 26   | 32   | 20   |
| Loris tardigradus            | 5    | 9    | S    | 6   | ć.   | 6       | ÷        | . ک  | ÷    | 5    | 5    | 7    | ċ    | 6    | 8    |
| Homo sapiens (Keibel)        | 8    | 10   | 10   | 49  | 37   | 27      | 56       | 61   | ю    | 7    | 10   | 24   | 59   | 67   | 36   |
| Homo sapiens (O'Rahilly)     | 13   | 13   | 13   | 16  | ċ    | 14      | 18       | 17   | 6    | 11   | 11   | 14   | 18   | ÷    | 18   |
| Macaca mulatta               | ċ    | 13   | 13   | 15  | 18   | 17      | 18       | ċ    | ċ    | ċ    | 13   | 14   | 19   | 22   | 18   |

|                          |     |      |      |     | APP | ENDIX 2 | Continue | pe   |     |      |      |      |      |           |     |
|--------------------------|-----|------|------|-----|-----|---------|----------|------|-----|------|------|------|------|-----------|-----|
| Species                  | 46  | 47   | 48   | 49  | 50  | 51      | 52       | 53   | 54  | 55   | 56   | 57   | 58   | 59        | 60  |
| Lacerta agilis           | 108 | 114  | 63   | 109 | 111 | i       | i        | 62   | ė   | 49   | 55   | 64   | 104  | 107       | ί   |
| Gallus gallus            | 75  | 75   | 32.5 | ć   | ċ   | ċ       | ć        | 43   | 54  | 26   | 30   | 43   | ċ    | 71.5      | 81  |
| Didelphis virginiana     | 32  | 28   | ć    | 33  | 35  | ċ       | ډ.       | 27   | ċ   | 24   | 24   | 28   | ć    | ډ.        | د.  |
| Erinaceus europaeus      | ć   | 15   | ċ    | ć   | ċ   | ċ       | ć        | ċ    | ċ   | ċ    | 3.31 | 6    | 13   | ċ         | ć   |
| Suncus murinus           | ċ   | ċ    | 12.6 | ċ   | ċ   | ċ       | ċ        | 6    | ċ   | 10.3 | 10.9 | 11.9 | 12.3 | 11.9      | ċ   |
| Talpa europaea           | ć   | ċ    | ć    | ċ   | ċ   | ċ       | ć        | ċ    | ċ   | 10   | ċ    | ċ    | ċ    | ć         | ċ   |
| Cavia porcellus (Harman) | ć   | ċ    | ć    | ċ   | ċ   | ċ       | ć        | ċ    | ċ   | ċ    | ċ    | ċ    | ċ    | ć         | ċ   |
| Cavia porcellus (Scott)  | ć   | 23.7 | 15.5 | ċ   | ċ   | 20.7    | ć        | 16.5 | ċ   | 16.5 | 16.5 | 16.5 | 15.5 | ć         | ċ   |
| Spermophilus citellus    | 110 | 113  | 65   | 120 | 120 | 125     | 120      | 78   | 113 | 49   | 54   | 69   | 80   | 109       | 120 |
| Mus musculus             | ć   | ۍ    | 15   | 21  | 20  | 22      | ċ        | 13   | 20  | 13   | ċ    | ċ    | 16   | 19        | 22  |
| Rattus norvegicus        | 82  | 68   | 55   | 93  | 94  | 122     | 66       | 36   | 69  | 42   | 54   | 64   | 68   | 80        | 107 |
| Oryctolagus cuniculus    | 21  | 20   | 6    | 20  | 21  | 22      | 19       | 6    | 13  | S    | 7    | 6    | 11   | 12        | 21  |
| Manis javanica           | 18  | ۍ    | 6    | 18  | ċ   | ċ       | 19       | ×    | ċ   | ċ    | ċ    | ċ    | ċ    | 6         | 20  |
| Delphinidae              | ć   | 4    | ċ    | ć   | 4   | 7       | ć        | ċ    | ċ   | ċ    | ċ    | ċ    | ε    | ċ         | ć   |
| Capreolus capreolus      | ć   | 39   | 26   | 50  | 50  | 57      | 50       | 20   | 39  | 17   | 20   | 23   | 28   | 39        | 54  |
| Sus scrofa               | 84  | 81   | 59.3 | 93  | 90  | 93      | ċ        | 62   | 68  | 30   | 43   | 60   | 68   | <i>LL</i> | ċ   |
| Ovis aries               | ÷   | 26   | ÷    | ċ   | ċ   | ċ       | ċ        | ċ    | ÷   | ż    | 17   | 18   | 21   | ċ         | ċ   |
| Tupaia javanica          | 18  | 17   | 6    | 18  | 18  | 20      | 20       | 7    | 16  | S.   | 9    | 8    | 14   | 16        | 20  |
| Tarsisu spectrum         | 29  | 22   | 13   | 27  | 27  | 31      | 28       | 11   | 17  | S.   | 7    | 11   | 20   | 20        | ċ   |
| Loris tardigradus        | 6   | 8    | 4    | ć.  | ¢.  | 6       | 6        | 5    | S   | 0    | 7    | ŝ    | L    | 7         | ć.  |
| Homo sapiens (Keibel)    | 55  | 26   | 9    | 56  | 61  | 73      | 53       | 7    | 19  | 9    | 9    | 7    | 21   | 19        | 58  |
| Homo sapiens (O'Rahilly) | ن.  | 16   | 10   | 17  | ċ   | ċ       | ċ        | 10   | 12  | ن    | 11   | 12   | 12   | 13        | ċ   |
| Macaca mulatta           | 22  | 16   | 12   | 17  | 22  | 23      | ċ        | ċ    | ċ   | ċ    | ċ    | ċ    | ċ    | ċ         | 19  |

|                          |      |      |      |      | APPI | ENDIX 2 | Continue | pa   |           |     |      |      |      |      |     |
|--------------------------|------|------|------|------|------|---------|----------|------|-----------|-----|------|------|------|------|-----|
| Species                  | 61   | 62   | 63   | 64   | 65   | 99      | 67       | 68   | 69        | 70  | 71   | 72   | 73   | 74   | 75  |
| Lacerta agilis           | i    | 49   | LL   | 49   | 101  | 120     | 94       | 108  | i         | i   | 108  | 38   | 118  | 118  | 121 |
| Gallus gallus            | ÷    | 18   | 58   | 30   | 67.6 | 79.5    | 47.6     | 76.3 | ۍ.        | ċ   | 75   | 4    | 67.3 | ċ    | ć.  |
| Didelphis virginiana     | 33   | 24   | 30   | ċ    | 31   | 35      | 30       | 107  | ċ         | 34  | ċ    | 24   | 34   | ċ    | 34  |
| Erinaceus europaeus      | ċ    | 6    | ċ    | ċ    | ċ    | ċ       | ċ        | ċ    | ċ         | ċ   | 23   | 1    | ċ    | ċ    | ċ   |
| Suncus murinus           | ċ    | 11.6 | ÷    | 12.3 | ż    | ż       | ÷        | ċ    | ÷         | ċ   | ċ    | ÷    | ċ    | 11.3 | ż   |
| Talpa europaea           | ċ    | ċ    | ċ    | ċ    | ć.   | ċ       | ۍ.       | ċ    | ċ         | ċ   | ċ    | 4    | ċ    | 8    | ć.  |
| Cavia porcellus (Harman) | ċ    | ċ    | ċ    | ċ    | ډ.   | ć.      | ċ        | ċ    | ۍ.        | ċ   | ċ    | 14   | ċ    | ċ    | ć.  |
| Cavia porcellus (Scott)  | 23.7 | 16.5 | 19.1 | 16.5 | 19.1 | ć.      | 20.7     | 23.7 | ۍ.        | ċ   | 23.7 | 14.5 | ċ    | ċ    | ډ.  |
| Spermophilus citellus    | 123  | 49   | 86   | 48   | 92   | 110     | 108      | 114  | 134       | 123 | 111  | 34   | 119  | 35   | ċ   |
| Mus musculus             | 23   | 14   | 22   | 16   | 17   | 21      | 17       | 21   | ۍ.        | 21  | ċ    | 11   | ċ    | 14   | ć.  |
| Rattus norvegicus        | 120  | 42   | 69   | 55   | 73   | 115     | 72       | 101  | 122       | 111 | 62   | 28   | 85   | 35   | 109 |
| Oryctolagus cuniculus    | 20   | ŝ    | 13   | 6    | 13   | 18      | 17       | 19   | 24        | 19  | 17   | ε    | 18   | ε    | 19  |
| Manis javanica           | ÷    | 4    | 6    | ×    | 13   | 18      | 11       | 18   | 20        | 15  | 13   | 0    | 14   | 6    | 18  |
| Delphinidae              | 9    | ċ    | 4    | ċ    | 4    | ×       | 4        | 7    | ÷         | ċ   | S    | ÷    | ċ    | ċ    | ÷   |
| Capreolus capreolus      | 55   | 11   | 20   | 20   | 27   | 46      | 39       | 45   | 57        | 52  | 39   | 6    | ċ    | 6    | 57  |
| Sus scrofa               | ċ    | 23   | 65   | 32   | 69   | 90      | 75       | 80   | ÷         | 90  | 75   | 0    | 84   | 1    | 90  |
| Ovis aries               | ċ    | ċ    | ÷    | ċ    | ż    | ż       | ÷        | ċ    | ÷         | ċ   | 26   | ÷    | ċ    | ċ    | ż   |
| Tupaia javanica          | 21   | 5    | ÷.   | 7    | 15   | 20      | 14       | 20   | 24        | 19  | 16   | 1    | 19   | 4    | 20  |
| Tarsius spectrum         | 31   | 4    | 14   | 7    | 18   | 31      | 18       | 22   | 33        | 29  | 22   | -    | 27   | -    | 31  |
| Loris tardigradus        | 6    | 0    | 5    | 0    | S    | 6       | 9        | 8    | 6         | 8   | 8    | 0    | 8    | ÷    | ۍ.  |
| Homo sapiens (Keibel)    | 69   | ċ    | 15   | 9    | 14   | 61      | 27       | 45   | <i>6L</i> | 61  | 35   | 7    | 46   | -    | 63  |
| Homo sapiens (O'Rahilly) | 18   | 11   | 13   | 11   | 14   | ċ       | 14       | 16   | 23        | ċ   | ċ    | 6    | ċ    | 6.5  | 18  |
| Macaca mulatta           | ċ    | ċ    | ÷    | ċ    | . ک  | ۍ.      | ċ        | ċ    | ۍ.        | ć.  | ċ    | ¢.   | ċ    | ÷    | . ک |

| ed     |
|--------|
| inu    |
| ont    |
| U<br>U |
| 2      |

|                          |      |    |      |      | APPF | NDIX 2 | Continue | þ    |      |      |      |      |      |      |      |
|--------------------------|------|----|------|------|------|--------|----------|------|------|------|------|------|------|------|------|
| Species                  | 76   | LL | 78   | 62   | 80   | 81     | 82       | 83   | 84   | 85   | 86   | 87   | 88   | 89   | 06   |
| Lacerta agilis           | 61   | 71 | LL   | 65   | 86   | 110    | 40       | 61   | 45   | 56   | 74   | 108  | i    | ί    | 74   |
| Gallus gallus            | 37   | 46 | 66.3 | 46   | 47   | 67.6   | 13       | 23.5 | 34   | 28   | 46   | 76.3 | ċ    | ċ    | 46   |
| Didelphis virginiana     | 28   | 30 | 30   | 29   | 30   | 33     | 25       | 28   | 30   | 24   | ċ    | ċ    | 24   | 24   | ċ    |
| Erinaceus europaeus      | 6    | ċ  | ċ    | ċ    | ċ    | ċ      | ċ        | 9    | ć    | ċ    | 6    | ċ    | 11   | ċ    | ċ    |
| Suncus murinus           | 10.9 | ċ  | 11.9 | 12.6 | 12.9 | ċ      | 10.6     | 11.9 | ċ    | 10.3 | 11.9 | ċ    | 10.9 | 12.9 | ċ    |
| Talpa europaea           | ć    | ć  | ċ    | ċ    | ċ    | ċ      | 7        | 10   | ć    | ċ    | ċ    | ċ    | ċ    | 10   | ć    |
| Cavia porcellus (Harman) | ć    | ć  | ċ    | ċ    | ċ    | ċ      | 15       | ċ    | ć    | ċ    | 18   | ċ    | ċ    | ċ    | ć    |
| Cavia porcellus (Scott)  | 16.5 | ċ  | 19.7 | 17.5 | 17.5 | ċ      | 14.5     | 15.5 | 16.5 | 15.5 | 17.5 | ċ    | 15.5 | 18.5 | 26.1 |
| Spermophilus citellus    | 55   | 69 | 70   | LL   | ċ    | 107    | 30       | 69   | 70   | 48   | 79   | 120  | 50   | 92   | 113  |
| Mus musculus             | 14   | 15 | 15   | 15   | 15   | 18     | 12       | 14   | 16   | 12   | 17   | ċ    | 16   | 18   | 20   |
| Rattus norvegicus        | 42   | 53 | ċ    | 54   | 69   | ÷      | 37       | 51   | 09   | 42   | 65   | 89   | 42   | 69   | 98   |
| Oryctolagus cuniculus    | 6    | 11 | 13   | 12   | 13   | 18     | 4        | 9    | 6    | ċ    | 12   | ċ    | 9    | 14   | 18   |
| Manis javanica           | 6    | 15 | 12   | 12   | 13   | 16     | ε        | 6    | 6    | 11   | 12   | 18   | ۍ    | ۍ    | 18   |
| Delphinidae              | ć.   | ċ  | ċ    | 4    | 4    | ċ      | ċ        | ċ    | ŝ    | ċ    | ε    | 7    | ċ    | ċ    | 7    |
| Capreolus capreolus      | 16   | 20 | ċ    | 22   | 22   | 40     | 12       | 22   | 22   | 29   | 38   | 50   | 28   | 39   | 40   |
| Sus scrofa               | 56   | 62 | 65   | 64   | 64   | 81     | 28       | 59   | 59.6 | ċ    | 75   | ċ    | 64   | 77   | ż    |
| Ovis aries               | ÷    | ċ  | ċ    | ċ    | ċ    | ċ      | 16       | 18   | 20   | ċ    | ċ    | ċ    | ÷    | ċ    | ż    |
| Tupaia javanica          | 9    | 8  | 8    | 6    | 6    | 12     | 4        | 7    | 7    | 10   | 12   | 20   | ÷    | 14   | 20   |
| Tarsius spectrum         | 7    | 11 | 12   | 14   | 16   | ċ      | 7        | 8    | 14   | 6    | 13   | 31   | 4    | 20   | 30   |
| Loris tardigradus        | с    | 9  | S    | 5    | 5    | 7      | 1        | 4    | 5    | 5    | S    | 6    | ÷    | 4    | 6    |
| Homo sapiens (Keibel)    | 9    | ٢  | 6    | 11   | 11   | 21     | 4        | L    | 11   | 9    | 16   | 74   | 7    | 13   | 25   |
| Homo sapiens (O'Rahilly) | 12   | 12 | 12   | 12   | 14   | 13     | 10       | 11   | 12   | 6    | 15   | 10   | 10   | 16   | 15   |
| Macaca mulatta           | ċ    | ċ  | ċ    | ċ    | ċ    | ċ      | ċ        | 11   | 12   | 13   | 14   | 20   | ċ    | 14   | 17   |

|                          |      |      |     |      | APPE | NDIX 2    | Continue | pa  |           |      |      |      |      |      |       |
|--------------------------|------|------|-----|------|------|-----------|----------|-----|-----------|------|------|------|------|------|-------|
| Species                  | 91   | 92   | 93  | 94   | 95   | 96        | 76       | 98  | 66        | 100  | 101  | 102  | 103  | 104  | 105   |
| Lacerta agilis           | 92   | 44   | 83  | 85   | 74   | 105       | 118      | ė   | 120       | 74   | 105  | 118  | ė    | 55   | 53    |
| Gallus gallus            | 79   | ċ    | ۍ   | 46   | 44   | <i>LL</i> | 79       | 81  | <i>6L</i> | 44   | 73   | 76   | ۍ.   | 54.6 | 51.5  |
| Didelphis virginiana     | 32   | 25   | 25  | 27   | 26   | ċ         | 32       | ċ   | ÷         | 29   | 33   | ċ    | 28   | 31   | 29    |
| Erinaceus europaeus      | ċ    | 1    | ÷   | ż    | 6    | 18        | 24       | ċ   | ÷         | 13   | 23   | 24   | 10   | 15   | 13.37 |
| Suncus murinus           | ċ    | ċ    | 6   | 12.6 | 12.3 | ċ         | ċ        | ċ   | ÷         | 11.6 | ċ    | ċ    | ċ    | ÷    | ż     |
| Talpa europaea           | ć    | 10   | ċ   | ć    | ċ    | ċ         | ċ        | ċ   | ć.        | ċ    | ċ    | ć    | 9    | ċ    | 8     |
| Cavia porcellus (Harman) | ć    | ċ    | ċ   | ć    | 18   | ċ         | 24       | ċ   | ć.        | 18   | ċ    | ć    | ċ    | ċ    | ċ     |
| Cavia porcellus (Scott)  | 23.7 | 15.5 | ċ   | ċ    | 16.5 | 20.7      | 23.7     | ċ   | ċ         | 18.5 | 21.6 | 23.7 | 12.7 | 26.1 | ċ     |
| Spermophilus citellus    | 66   | 31   | 65  | LL   | 71   | 111       | 118      | 120 | 120       | 86   | 118  | 125  | 49   | 128  | 48    |
| Mus musculus             | 20   | 12   | 14  | 16   | 15   | 19        | 21       | ÷   | 21        | 16   | 20   | 21   | 12   | ÷    | 11    |
| Rattus norvegicus        | 105  | 24   | 55  | 60   | 53   | 83        | 96       | ċ   | ć.        | 63   | 96   | 104  | ۍ    | 8    | 22    |
| Oryctolagus cuniculus    | 20   | 0    | 6   | 12   | 6    | 15        | 19       | 20  | 19        | 6    | 17   | 19   | 7    | 20   | 6     |
| Manis javanica           | 19   | 0    | 6   | 6    | 6    | 15        | ċ        | ċ   | ć.        | 6    | 16   | 19   | ۍ.   | 19   | 6     |
| Delphinidae              | ć    | ċ    | ċ   | ć    | ċ    | 4         | ċ        | S   | S         | ċ    | ċ    | ć    | ċ    | ċ    | ċ     |
| Capreolus capreolus      | 53   | 6    | ċ   | 23   | 23   | ċ         | 54       | 54  | 54        | 24   | ċ    | 54   | 10   | 18   | 6     |
| Sus scrofa               | 89   | 1    | 62  | 64   | 60   | 85        | 91       | ċ   | ÷         | 64   | 87   | 92   | 15   | 43   | 34    |
| Ovis aries               | ċ    | ċ    | ÷   | ż    | 20   | 24        | 27       | ċ   | ÷         | 20   | 24   | 29   | ċ    | ÷    | 15    |
| Tupaia javanica          | 8    | -    | ×   | 6    | 8    | 16        | 19       | 20  | 18        | 11   | 18   | 19   | . ک  | ÷    | ć.    |
| Tarsius spectrum         | 14   | ċ    | 13  | 14   | 11   | 24        | 28       | 27  | 22        | 11   | 24   | 30   | . ک  | 17   | L     |
| Loris tardigradus        | 5    | -    | . ک | 5    | 5    | 8         | ċ        | 6   | 6         | 5    | 8    | ÷    | 7    | ÷    | 5     |
| Homo sapiens (Keibel)    | 28   | 0    | 7   | 7    | 10   | 34        | 49       | 56  | 4         | 11   | 45   | 65   | . ک  | 10   | -     |
| Homo sapiens (O'Rahilly) | ċ    | 6    | 10  | 12   | 13   | 15        | 17       | ċ   | 17        | 13   | 17   | 19   | L    | 15   | 9     |
| Macaca mulatta           | ċ    | ċ    | ċ   | ċ    | 13   | 16        | 19       | ċ   | ċ         | 14   | 18   | 20   | ċ    | ÷    | ċ     |

360

|                                                                                                 |              |             |              | APPENDIX     | <b>2</b> Continue | pa            |              |               |              |               |              |
|-------------------------------------------------------------------------------------------------|--------------|-------------|--------------|--------------|-------------------|---------------|--------------|---------------|--------------|---------------|--------------|
| Species                                                                                         | 106          | 107         | 108          | 109          | 110               | 111           | 112          | 113           | 114          | 115           | 116          |
| Lacerta agilis                                                                                  | i            | i           | i            | i            | i                 | 121           | 113          | 94            | i            | 31            | i            |
| Gallus gallus                                                                                   | ċ            | ċ           | ċ            | ċ            | ذ                 | ċ             | ċ            | 72            | 4            | 5             | ċ            |
| Didelphis virginiana                                                                            | ċ            | 34          | 34           | 34           | ÷                 | 34            | 31           | 32            | 30           | 23            | 32           |
| Erinaceus europaeus                                                                             | 24           | ċ           | 19           | 21.39        | 23                | ċ             | ć            | ċ             | ż            | ċ             | ć            |
| Suncus murinus                                                                                  | ċ            | ċ           | ċ            | ċ            | ذ                 | ċ             | ċ            | ڼ             | ċ            | 10.3          | ċ            |
| Talpa europaea                                                                                  | ċ            | ċ           | ċ            | ċ            | ċ                 | ċ             | ÷            | ċ             | ċ            | 7             | ÷            |
| Cavia porcellus (Harman)                                                                        | 21           | ċ           | 24           | 27           | 24                | 31            | ÷            | ċ             | ċ            | ż             | ÷            |
| Cavia porcellus (Scott)                                                                         | 19.7         | ċ           | 21.6         | ċ            | 23.7              | ċ             | ÷            | 18.5          | ċ            | 14.5          | ÷            |
| Spermophilus citellus                                                                           | 107          | 133         | 109          | 114          | 123               | 130           | 107          | 106           | ċ            | 47            | 111          |
| Mus musculus                                                                                    | 17           | 25          | ċ            | ċ            | 21                | ċ             | 20           | 19            | ċ            | ċ             | ċ            |
| Rattus norvegicus                                                                               | 69           | 125         | 57           | 93           | 101               | 125           | 89           | 89            | ċ            | 36            | 94           |
| Oryctolagus cuniculus                                                                           | 15           | 24          | 16           | 18           | 19                | ċ             | 19           | 18            | 11           | 6             | ċ            |
| Manis javanica                                                                                  | ċ            | ċ           | 15           | ċ            | 19                | 22            | ċ            | 12            | 6            | 5             | 17           |
| Delphinidae                                                                                     | S            | 7           | ċ            | ċ            | ذ                 | ċ             | ċ            | ю             | ċ            | ċ             | ю            |
| Capreolus capreolus                                                                             | 50           | ė           | ċ            | 53           | 52                | ċ             | 47           | 42            | ċ            | 10            | 47           |
| Sus scrofa                                                                                      | ċ            | ė           | 80           | 86           | 89                | ċ             | ċ            | ċ             | 61           | 9             | ć            |
| Ovis aries                                                                                      | ċ            | ċ           | ċ            | ċ            | ċ                 | ċ             | ċ            | ż             | ċ            | ċ             | ċ            |
| Tupaia javanica                                                                                 | ċ            | 24          | 16           | 16           | 20                | 22            | 18           | 16            | 10           | 4             | 16           |
| Tarsius spectrum                                                                                | 28           | 35          | 22           | 25           | 28                | 32            | 25           | 20            | 13           | 4             | 22           |
| Loris tardigradus                                                                               | ċ            | 10          | 8            | 6            | 6                 | 6             | 8            | 8             | ċ            | 2             | 8            |
| Homo sapiens (Keibel)                                                                           | 27           | ċ           | 21           | 36           | 80                | ċ             | 28           | 27            | 8            | 4             | 28           |
| Homo sapiens (O'Rahilly)                                                                        | 17           | 24          | ċ            | 17           | ċ                 | ċ             | 15           | ċ             | 11           | 11            | ċ            |
| Macaca mulatta                                                                                  | ċ            | ċ           | ċ            | ċ            | 20                | ċ             | ż            | ċ             | ċ            | ċ             | ċ            |
| <sup><i>a</i></sup> Information is listed for each of th<br>indicates no timing data available. | e species in | Table I for | the 116 ever | ıts in Appen | dix 1. Valu       | es for each s | pecies are g | iven in the s | taging syste | m listed in 7 | able II. "?" |