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Abstract.—Supertree methods combine a collection of source trees into a single parent tree or supertree. For almost all
such methods, the terminal taxa across the source trees have to be non-nested for the output supertree to make sense.
Motivated by Page, the first supertree method for combining rooted source trees where the taxa can be hierarchically nested
is called ANCESTRALBUILD. In addition to taxa labeling the leaves, this method allows the rooted source trees to have taxa
labeling some of the interior nodes at a higher taxonomic level than their descendants (e.g., genera vs. species). However,
the utility of ANCESTRALBUILD is somewhat restricted as it is mostly intended to decide if a collection of rooted source trees
is compatible. If the initial collection is not compatible, then no tree is returned. To overcome this restriction, we introduce
here the MULTILEVELSUPERTREE (MLS) supertree method whose input is the same as that for ANCESTRALBUILD, but which
accommodates incompatibilities among rooted source trees using a MINCUT-like procedure. We show that MLS has several
desirable properties including the preservation of common subtrees among the source trees, the preservation of ancestral
relationships whenever they are compatible, as well as running in polynomial time. Furthermore, application to a small
test data set (the mammalian carnivore family Phocidae) indicates that the method correctly places nested taxa at different
taxonomic levels (reflecting vertical signal), even in cases where the input trees harbor a significant level of conflict between
their clades (i.e., in their horizontal signal). [Nested taxa; Phocidae phylogeny; phylogenetics; supertree methods.]

Supertrees were first described formally by Gordon
(1986). However, it was not until Purvis (1995)
that the full potential for supertrees to yield large,
comprehensive phylogenetic hypotheses was realized.
Purvis (1995) used the then recently described supertree
technique Matrix Representation with Parsimony (MRP)
(Baum 1992; Ragan 1992) to combine partial estimates
of primate phylogeny from 112 papers drawn from the
literature to derive one of the first, complete species-level
phylogenies for the order. Since then, this literature-
based application of supertree construction has been
used increasingly for a wide variety of taxonomic groups
(for a now outdated list, see Bininda-Emonds 2004).

Such “traditional” supertree analyses often confront
problems related to taxonomic differences between
published papers. Differences can arise either because
of the use of different names for the same entity
(typically different species synonyms) or because the
trees include terminal taxa at different taxonomic levels
(e.g., trees with families vs. species as terminal taxa). The
former problem is comparatively trivial, with an effective
solution being to standardize all taxon names according
to an explicit synonymy list (see Bininda-Emonds et al.
2004).

By contrast, combining source trees with taxa at
different taxonomic levels (possibly with taxa labeling
internal nodes such as those given in Fig. 1) is more
problematic—most existing supertree techniques are
unable to deal with hierarchically nested terminal taxa
in the complete taxon set drawn across all source trees.

For example, most supertree methods have no option
but to place the taxa Canis lupus, Canis, and Mammalia
as terminal taxa such that these three nested taxa could
end up as sister taxa within a clade or, possibly, not
even closely related to one another. Both solutions are
nonsensical in light of taxonomic information.

The best solution to this problem to date has been
to analogously standardize the taxon names to remove
any instances of nested terminal taxa. This seems to
be acceptable when one is standardizing names to the
highest taxonomic level. Based on explicit taxonomic
information, Canis lupus can, for instance, be easily
assigned to Canis, which, in turn, can be assigned
to Mammalia. Standardizing names to the lowest
taxonomic level, as has usually been the case to derive the
most inclusive supertrees possible, is more problematic.
Which taxon best represents Mammalia, especially if
several different mammal species are present among
all source trees? Two solutions have been used, both of
which have inherent limitations. The first is to represent
the higher level taxon by having all its constituent taxa
form an extra, unresolved node. This solution, however,
strongly presupposes the monophyly of the higher level
taxon and also includes information not potentially
found in the source work (Bininda-Emonds et al. 2004).
An alternative solution has been to use a single taxon in
the form of the “type taxon” of the higher level taxon (as
advocated by Bininda-Emonds et al. 2004). For instance,
Canis lupus is the type species of the genus Canis and
so could be used to represent it. Similarly, Canis is the
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FIGURE 1. Two trees for spiders and related taxa. Internal nodes labeled by higher level taxa (in comparison to the labels at the tips) are
indicated with a circle, while taxa common to both trees are enclosed in boxes. These 2 trees, taken from Page (2004), were originally obtained
from study S1x6x97c14c42c30 in TreeBASE (http://www.treebase.org).

type genus of Canidae. But, because no type taxa exist
for taxa beyond the genus and family levels in botany
and zoology, respectively (e.g., no type or even nominal
taxon exists for Mammalia), this solution only works at
the lowest taxonomic levels unless subjective decisions
are made.

Inspired by problems posed by Page (2004), the
supertree method ANCESTRALBUILD (Daniel and Semple
2004; Berry and Semple 2006) offers a more appealing
solution to the problem of nested terminal taxa.
ANCESTRALBUILD is unique among supertree methods
because it can incorporate hierarchically nested
information in the form of internal node labels on
the rooted source trees to derive the supertree. As
such, the nestings are resolved based purely on
information already present in the source trees and
not on assumptions of the investigator. Like the BUILD
algorithm (Aho et al. 1981) on which it is based,
ANCESTRALBUILD runs in polynomial time, but can
only combine (ancestrally) compatible sets of rooted
source trees (i.e., ones for which a supertree exists
that preserves all groupings of taxa and all ancestral
relationships in the set). In the case of incompatibility
among the source trees, ANCESTRALBUILD returns the
answer “not ancestrally compatible.”

In this article, we generalize ANCESTRALBUILD to
a supertree method whose input is the same as
that for ANCESTRALBUILD, but which allows for
incompatibilities among the rooted source trees.
Called MULTILEVELSUPERTREE (MLS), this generalization
retains many desirable and provable properties. These
properties include the preservation of relationships
common to all source trees, producing a supertree that
is consistent with all of the source trees if the source
trees are compatible, and running in polynomial time.
Moreover, based on a simple empirical data set as a
proof-of-concept, we show that it works at least as well
as the most commonly used supertree method (MRP),
producing trees with reasonable clades.

For the reader familiar with Build and its
generalization MINCUTSUPERTREE (Semple and Steel
2000; Page 2002), the way in which MLS resolves

topological conflicts in the source trees is reminiscent
of the way in which MINCUTSUPERTREE resolves such
conflicts. Thereby, unlike for most supertree methods
(see Wilkinson et al. 2004), it is also possible to document
a number of desirable properties for MLS. However, in
general, both MINCUTSUPERTREE and MLS will produce
different supertrees as the computation used for this
resolution is performed on different graphs and MLS can
also potentially make use of more information. For more
discussion about MINCUTSUPERTREE, see Page (2002).

The article is organized as follows. The next section
contains a high-level description of MLS and its
properties, while the 2 sections after that together with
the appendix, formally presents MLS and establishes
these properties. The article can be read independently
of these latter sections and so a reader may prefer
to skip these sections on a first read. The next 2
sections discuss the possibility of using an additional
source tree to provide a taxonomic framework,
and detail the implementation of MLS, which is
freely available at http://www.atgc-montpellier.fr/
supertree/mls/. These details include various options
that are available to the end-user. The article ends with
an analysis of the application of MLS to a data set of
the phocid seals, including comparisons with previous
studies, and with a brief discussion.

HIGH-LEVEL DESCRIPTION OF MLS AND ITS PROPERTIES

The purpose of this section is to provide a high-level
description of MLS and its properties. The formal details
including verification of these properties are given in the
subsequent 2 sections and the appendix.

The input to MLS is a collection of rooted source
trees with overlapping, but not necessarily identical
taxon sets. Apart from one exception, the output is
a supertree. The source trees need not be compatible
(i.e., a supertree that simultaneously infers all of
the ancestral relationships described by each of the
source trees need not exist). Moreover, unlike traditional
supertree methods, MLS allows the rooted source trees
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FIGURE 2. A collection P of rooted semilabeled trees. For the purposes of a later more detailed example, each tree has been assigned weight 1.

FIGURE 3. A collection P ′ of rooted fullylabeled trees obtained from the collection P shown in Figure 2 by adding distinct new labels.

to have taxa labeling some of the interior nodes,
thereby incorporating vertical (hierarchical) as well as
horizontal taxon overlap. Here, a taxon labeling an
interior node is at a higher taxonomic level than its
descendants. To illustrate, the 2 rooted trees shown in
Figure 1 are allowable source trees to MLS. Like the
rooted source trees, the supertree returned by MLS
may have some of its taxa labeling interior nodes. The
one exception where a supertree is not returned by
MLS is when the vertical relationships of the rooted
source trees imply that there is a pair of taxa each of
which is an ancestor and descendant of the other (cyclic
descendancy).

We next give a high-level description of MLS with
the help of a “toy” example. Suppose that the input
to MLS is the collection of rooted source trees T1, T2,
and T3 shown in Figure 2. In an initial, preprocessing
stage, MLS assigns distinct new labels to each unlabeled
node in each of the source trees. In our example, the 3
rooted trees T ′

1 , T ′
2 , and T ′

3 in Figure 3 have been
obtained from T1, T2, and T3, respectively, through
such assignments. Intuitively, these new labels act as
“ancestral placeholders” and allow for the construction
of a single “descendancy graph” that encodes all of
the taxonomic relationships and is the next step in the
preprocessing stage.

Rather than describe the descendancy graph in
general, we describe its construction for our example.
The nodes of the descendancy graph, which we call
“label” nodes, consist of the taxa and new labels of
T ′

1 , T ′
2 , and T ′

3 . The descendancy graph uses edges and
arcs (directed edges) to represent horizontal and vertical
taxonomic relationships, respectively. An edge joins 2
nodes precisely if the nodes are siblings in at least one of
T ′

1 , T ′
2 , and T ′

3 , whereas an arc joins 2 nodes precisely if
the tail node of the arc is the parent of the head node of
the arc. Because of the placeholders, the resulting graph
displays all the taxonomic relationships of T ′

1 , T ′
2 , and

T ′
3 , and therefore of T1, T2, and T3. The descendancy

graph for our example is shown in Figure 4. It is at this

FIGURE 4. The descendancy graph of the collection P ′ shown in
Figure 3. Arcs are shown as dashed lines with an arrow showing the
direction of the arc, while edges are shown as solid lines.

step that MLS checks for any cyclic descendancies in the
form of any directed cycles in the descendancy graph.
The descendancy graph in Figure 4 has no such cycles.

To complete the preprocessing stage, MLS “weights”
the descendancy graph, which merely encodes
topological relationships and makes no distinction
whether or not these relationships are supported by
one, some, or all source trees. To this end, MLS weights
each edge and arc with the number of trees among
T ′

1 , T ′
2 , and T ′

3 that support the nondescendant or
descendant relationship represented by the edge. As an
illustration, the nondescendant relationship between
taxa a and c in T ′

2 is also supported by T ′
1 , but not by T ′

3
where taxon a is missing. Thus, the edge joining nodes a
and c in the descendancy graph is given weight 2. If all
trees display a descendant relationship between 2 taxa,
or a nondescendant relationship between 2 or among 3
taxa, then these relationships are given weight infinity
such that they must hold in the supertree returned by
MLS. The resulting “weighted-descendancy graph” of
T ′

1 , T ′
2 , and T ′

3 in our example is shown in Figure 5.
For the reader familiar with “rooted triples,” note that
a new node (called a “triple” node) has been adjoined
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FIGURE 5. The weighted-descendancy graph of the collection P ′
shown in Figure 3. The node bd|c is a triple node; together with its
incident arcs, it represents the relationship bd|c among the taxa b, d,
and c supported by each of the trees in P ′. Except for the arcs (bd|c,b)
and (bd|c,d), and the edges {b,d}, {b,c}, {c,d}, and {a,c}, all edges and arcs
have weight 1. For simplicity, these latter weights are omitted from the
weighted-descendancy graph. Again, arcs are shown as dashed lines
with an arrow showing the direction of the arc and edges are shown
as solid lines.

to the original descendancy graph. This node and its 2
incident arcs represent the fact that the relationship bd|c
among taxa b, d, and c is supported by each of the trees
T ′

1 , T ′
2 , and T ′

3 .
Although it is not implemented in the current version

of MLS, the use of the weighted-descendancy graph
means that MLS can easily be extended to account
for differential support between and within trees,
something that has been demonstrated to be beneficial
for MRP-based supertree analysis (Bininda-Emonds and
Sanderson 2001). Currently, MLS assumes that all trees
(with one exception; see next section) and all nodes
within those trees are equally well supported.

Once the preprocessing stage is complete, MLS calls
its one and only subroutine FREE where essentially
all the computation is done. Taking the weighted-
descendancy graph of T ′

1 , T ′
2 , and T ′

3 as input, FREE
outputs a supertree that attempts, if possible, to display
all the topological relationships inferred by T ′

1 , T ′
2 ,

and T ′
3 . In constructing this supertree, FREE begins

at the root and recursively works its way toward
the tips of the supertree. Guiding this process and
paralleling this recursion, FREE recursively dismantles
the inputted weighted-descendancy graph. At each step,
the algorithm finds a node in the graph with no
arcs directed toward it and no incident edges called
a “free” node, which corresponds to the generation
of a new node in the supertree. When this node is
removed from the graph, the disconnected parts of the
graph are analyzed separately; each one giving rise
to a subtree connected to the above-mentioned node
in the supertree. If there are no topological conflicts
among T ′

1 , T ′
2 , and T ′

3 , then FREE returns a supertree
that displays all the topological relationships among

T ′
1 , T ′

2 , and T ′
3 . By contrast, FREE resolves any conflict

among the input trees using the information encoded
in the weighted-descendancy graph. Such conflicts arise
when the algorithm cannot find a free node at some
step when decomposing the graph. The process for
resolving these conflicts involves finding a solution to an
optimization problem (in particular, a minimum-weight
cut in a graph). This process is referred to as “freeing
a node” and the idea is to contradict as few as possible
intertaxa relationships as given by T ′

1 , T ′
2 , and T ′

3 when
producing the supertree for them, in which case the
resulting supertree will not display all the topological
relationships among these trees. In either case, once the
supertree is returned by FREE, it is stripped of its new
labels, and the resulting tree is returned by MLS.

Having given a high-level description of MLS, we end
this section with a high-level description of some of its
properties (proofs can be found in the appendix).

(i) If there are no topological conflicts among the
initial collection of rooted source trees, then MLS
returns a supertree whose intertaxa relationships
are consistent with each of the input trees (i.e.,
no intertaxa relationship inferred by an input tree
conflicts with any relationship inferred by the
supertree).

(ii) If there is a subset of taxa common to each of the
input trees and this common subset induces the
same intertaxa relationships in each of the input
trees, then MLS applied to this input returns a
supertree that preserves these particular intertaxa
relationships.

(iii) MLS runs in time that is polynomial in the number
of input trees and the total number of taxa among
the input trees.

FORMAL DESCRIPTION OF MLS
In this section, we formally present MLS, while the

next section and the appendix formally describe and
verify its properties. Together with the appendix, this
and the next section may be skipped on a first reading
if the reader is satisfied with the high-level description
of MLS given in the previous section and prefers to
read the implementation and application to data set
sections.

Much of the notation and terminology replicates that
which can be found in Berry and Semple (2006) or Semple
and Steel (2003). To avoid repetition, we will assume that
the reader is familiar with standard graph theoretic and
phylogenetic notation and terminology.

Semilabeled Trees
Extending the notion of a rooted phylogenetic tree, a

rooted semilabeled tree T on a taxa set X is an ordered
pair (T;�) consisting of a rooted tree T with root node
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�, and a map � from X into the node set V of T such
that

(i) for all nonroot nodes v of degree at most 2,�assigns
v an element of X and

(ii) if � has degree 0 or 1, then � also assigns � an
element of X.

The taxa set X is the label set of T and is often denoted
L(T ). We say that T is singularly labeled if each node of
T is assigned at most one taxa in X. Furthermore, T
is fully labeled if each node is assigned an element of
X. To illustrate, each of T1, T2, and T3 in Figure 2 is a
rooted semilabeled tree. Moreover, L(T1)={a,b,c,d,g}.
In the context of this article, all rooted semilabeled
trees except possibly the supertree returned by MLS
are singularly labeled. The label set of a collection P of
rooted semilabeled trees is the union of the label sets of
the trees in P and is denoted by L(P).

For a collection P of source trees, it is frequently the
case that each of the trees in P are assigned a specific
weight. This weighting allows one to account for some
trait of the primary data such as dependence among
data sets or to rate the source trees on the basis of
some optimality score. It also allows to represent some
data sets by a set of equally optimal trees instead of a
single tree as happens regularly in maximum parsimony
analyses. To this end, P is said to be weighted if each tree
T in P has been assigned a real-valued weight w(T ).

Descendancy and Compatibility
Let T be a rooted semilabeled tree, and let v be a

nonroot node of T of degree 1 or 2. The tree that is
obtained from T by contracting v is the tree resulting from
contracting the edge incident with v if v has degree 1 or
replacing v and its 2 incident edges with a single edge if
v has degree 2.

Let T = (T;�) be a rooted semilabeled tree on X, and let
a,b∈X. We say that a is a descendant of b (or, alternatively,
b is an ancestor of a) if the path from �(a) to the root of T
includes �(b). Symbolically, we denote this relationship
by b≤T a. Note that a is both a descendant and an
ancestor of itself. If, in addition, �(a) �=�(b), then we
denote the relationship by b<T a. If a is a descendant of
b in T and {�(a),�(b)} is an edge in T, then a is a child of b
(or, alternatively, b is the parent of a). Furthermore, we say
that a and b are not comparable if neither a is a descendant
of b nor b is a descendant of a, in which case we denote
this by a||T b. In the case that a and b are not comparable,
the node of T that is the last common node on the paths
from the root of T to �(a) and from the root of T to �(b)
is called the most recent common ancestor of a and b and is
denoted by mrcaT (a,b). If a is not comparable to b in T ,
and a and b have the same parent, then a and b are siblings.

Let T be a rooted semilabeled tree on X and let
T ′ be a rooted semilabeled tree on X′, where X is a
subset of X′. We say that T ′ ancestrally displays T if, up
to contracting nonroot nodes of degree 2, the minimal

FIGURE 6. The rooted semilabeled tree returned by MLS in the
running example when applied to the collection P of trees shown in
Figure 2.

rooted subtree of T ′ connecting the nodes assigned
elements in X is a refinement of T and, for all a,b∈
X, whenever a is a descendant of b in T , it is still a
descendant in the resulting subtree. Note that refinement
means that T can be obtained from the minimal rooted
subtree of T ′ connecting the nodes assigned elements
in X by contracting edges. A collection P of rooted
semilabeled trees is ancestrally compatible if there is a
rooted semilabeled tree that ancestrally displays each
of the trees in P , in which case we say that this tree
ancestrally displays P . To illustrate, the rooted semilabeled
tree shown in Figure 6 ancestrally displays the tree T3 in
Figure 2.

Mixed Graphs
A mixed graph is a graph that contains both edges

and arcs. For convenience, we sometimes refer to the
edges and arcs as links when there is no need to make
a distinction. The (connected) arc components of a mixed
graph G are the maximal subgraphs obtained from G
by masking the edges of G and whereby nodes u and v
are in the same component if, ignoring the directions
of the arcs, there is a path from u to v. Ignoring the
edges incident with u, the in-degree of a node u in G is the
number of arcs directed into u. Let u and v be 2 nodes in
G. We say that u and v are edge adjacent (respectively, arc
adjacent) if there exists an edge (respectively, arc) joining
u and v. Ignoring the direction of the arcs, a path from u
to v consisting of arcs is called an arc path. Additionally,
if we are always moving with the direction of the arcs
when traversing the path, then the arc path is a directed
path from u to v. A directed cycle is a directed path in which
the first and last nodes are the same.

Let D be a mixed graph with node set V, arc set A,
and edge set E. Let V′, A′, and E′ be subsets of V, A,
and E, respectively. The mixed graph obtained from D by
deleting each of the arcs and edges in A′ ∪E′ is denoted by
D\(A′ ∪E′). Note that A′ or E′ could be empty. The mixed
graph obtained from D by deleting each of the nodes in
V′ together with their incident arcs and edges is denoted
by D\V′. Furthermore, the subgraph of D whose node
set is V′, and whose arc and edge sets are

{(
c,a

) :a,c∈V′ and
(
c,a

)∈A
}

and {{
a,b

} :a,b∈V′ and
{
a,b

}∈E
}

is denoted by D|V′.
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Weighted-descendancy Graph
Central to MLS is the weighted-descendancy graph,

a mixed graph that, as mentioned earlier in the article,
encodes all of the relevant information given by the
initial collection of source trees. Let P be a collection
of weighted rooted semilabeled trees with L(P)=X. We
say that P ′ has been obtained from P by adding distinct
new labels if we replace each tree T = (T;�) in P with
a rooted fully labeled tree T ′ obtained by assigning an
arbitrary label not in X to each node of T not assigned
a label under � so that, across all trees in P , no 2
added labels are the same. For example, recalling our
“toy” example from earlier in the article, the collection
P ′ ={T ′

1 ,T ′
2 ,T ′

3 } shown in Figure 3 has been obtained
from the collection P ={T1,T2,T3} of rooted semilabeled
trees shown in Figure 2 by adding distinct new labels. We
will continue with this example as a way of illustrating
MLS.

Let X′ =L(P ′) and note that X ⊆X′. The descendancy
graph D(P ′) of P ′ is the mixed graph whose node set is
X′, and whose arc and edge sets are

{
(b,a) :a is a child of b in some T ∈P ′}

and
{{

a,b
} :a and b are siblings in some T ∈P ′},

respectively. Figure 4 shows the descendancy graph
corresponding to the collection P ′ of rooted fully labeled
trees shown in Figure 3. Note that the definition of the
descendancy graph given here differs from that given by
Berry and Semple (2006) and Daniel and Semple (2004),
but coincides with the so-called restricted descendancy
graph in Berry and Semple (2006). If D(P ′) contains a
directed cycle, then, as the added new labels only appear
once, the label set of P contains a sequence of nested
taxa that is cyclic. Such cycles are due to vertical conflicts
between taxa in source trees and we refer to them as cyclic
descendancies.

Now weight the trees in P ′ with weight function w
so that the weight of each tree is the same as that of its
counterpart in P . The weighted-descendancy graph of P ′,
denoted Dw(P ′), is the graph that is obtained from D(P ′)
by assigning the weight

∑

T ∈P ′; b<T a

w(T )

to each arc (b,a) and the weight
∑

T ∈P ′; b||T a

w(T )

to each edge {a,b}, and then making the following
modifications:

(i) If there are labels a,b∈X such that a,b∈L(T ) and
b<T a for all T ∈P , then replace the weight of the
arc (b,a) with weight ∞ if (b,a) is an arc in D(P ′);
otherwise add the new arc (b,a) with weight ∞.

(ii) If there are labels a,b∈X such that a,b∈L(T ) and
b||T a for all T ∈P , then replace the weight of the
edge {a,b}with weight∞ if {a,b} is an edge in D(P ′);
otherwise add the new edge {a,b} with weight ∞.

(iii) If there are labels a,b,c∈X such that the rooted
triple ab|c is ancestrally displayed by every tree in
P , then add the new node ab|c, and the new arcs
(ab|c,a) and (ab|c,b) each with weight ∞.

Continuing our running example, suppose that each of
the trees shown in Figure 2 has weight 1. Then, the
weighted-descendancy graph of the collection P ′ shown
in Figure 3 is the mixed graph shown in Figure 5.

Freeing Nodes
The weighted-descendancy graph illustrates

relationships among the taxa. Although MLS works
on this graph, what it is effectively doing is starting
at the roots of the trees in the initial collection and
working toward their leaves, at the same time building
the supertree from its root to its leaves. As part of this
process, it wants to continually recognize nodes of the
weighted-descendancy graph (or one of its subgraphs)
that, in a certain sense, are not constrained by the other
nodes. We call such nodes “free.” At the first iteration,
free nodes will correspond to the root of the supertree
and, in subsequent iterations, to roots of subtrees
of the supertree as the top-down process continues.
Ultimately, free nodes will correspond to the leaves of
the supertree.

Continuing with the notation of the previous
subsection, we call a node of Dw(P ′) a label node if it
is an element of X′; otherwise, we call it a triple node. A
label node x of Dw(P ′) is said to be free if it has in-degree
zero and no incident edges. For example, in Figure 5, bd|c
is a triple node and, furthermore, both u1 and v1 are label
nodes that are free.

Let A and E denote the arc and edge sets of Dw(P ′),
respectively. Let A′ and E′ be (possibly empty) subsets of
A and E, respectively. We say that A′ ∪E′ has finite weight
if ∑

a∈A′
w(a)+

∑

e∈E′
w(e)

is finite. A label node x of in-degree zero is said to be
freed by A′ ∪E′ if A′ ∪E′ has finite weight and the mixed
graph obtained from Dw(P ′) by deleting each of the
arcs and edges in A′ ∪E′ has the property that each of
the remaining edges incident with x joins 2 distinct arc
components. Furthermore, a triple node ab|c of Dw(P ′)
is said to be freed by A′ if A′ has finite weight and the
mixed graph obtained from Dw(P ′) by deleting each of
the arcs in A′ has the property that c is not in the same arc
component as a and b. Because of the requirement that
A′ has finite weight, neither of the arcs incident with ab|c
in Dw(P ′) are in A′ and so if A′ frees ab|c, then a and
b are in the same arc component of Dw(P ′)\A′. In the
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upcoming description of MLS, we refer to a minimum-
weight subset of A∪E that frees either a label node or a
triple node as a minimum-weight cut. As we shall see in
the next section, the reason for this definition is that the
task of selecting such subsets can be viewed as finding a
minimum-weight cut in a certain graph.

For simplicity, the above definitions are in terms of
the weighted-descendancy graph of P ′. However, in the
description of MLS, we are also interested in subgraphs
of this graph. The above definitions extend to such
graphs in the obvious way.

MULTILEVELSUPERTREE

We now give a formal description of MLS.

Algorithm: MLS(P)
Input: A collection P of weighted rooted semilabeled
trees with L(P)=X.
Output: A rooted semilabeled tree T with label set X
or the statement P contains cyclic descendancies.

1. Construct a collection P ′ of weighted rooted fully
labeled trees from P by adding distinct new labels.

2. Construct the descendancy graph D(P ′) of P ′.
If D(P ′) contains a directed cycle, then halt and
return P contains cyclic descendancies

3. Construct the weighted-descendancy graph
Dw(P ′) of P ′.

4. Call the subroutine FREE(Dw(P ′)).

5. Return the semilabeled tree that is returned by
FREE(Dw(P ′)) with the added labels removed, and
unlabeled vertices of degree 1 and unlabeled
nonroot vertices of degree 2 contracted.

Algorithm: FREE(Gw)
Input: A subgraph Gw of Dw(P ′).
Output: A rooted fully labeled tree T ′ with root node v′.

1. (a) Let Q denote the set of triple nodes ab|c in Gw,
where a and b are nodes in Gw, but c is not a
node in Gw. Reset Gw to be the graph Gw\Q.

(b) Find the node sets, S1,S2,...,Sk say, of the arc
components of Gw.

(c) If k =1, then go to Step 2. Otherwise, for
each i∈{1,2,...,k}, call FREE(Gw|Si). Return
the tree whose root node is unlabeled and
which has T ′

1 ,T ′
2 ,...,T ′

k (the trees returned by
the recursive calls) as child subtrees.

2. (a) Let S0 denote the set of free nodes of Gw. If
S0 is empty, then go to Step 3. If S0 comprises
exactly one node labeled � with out-degree
zero, then return the tree composed of just
one leaf labeled �. Otherwise, go to Step 2b

(b) Reset Gw to be the graph Gw\S0.

(c) Find the node sets, S1,S2,...,Sk say, of the arc
components of Gw.

(d) For each i∈{1,2,...,k}, call FREE(Gw|Si).
Return the tree whose root node is labeled
by S0 and which has T ′

1 ,T ′
2 ,...,T ′

k (the trees
returned by the recursive calls) as child
subtrees.

3. (a) Let S0 denote the set of label nodes of Gw that
can be freed with a minimum-weight cut. If
S0 is empty, then go to Step 4. Otherwise go
to Step 3b.

(b) Reset Gw to be the graph obtained from
itself by deleting, for each element x in S0,
a minimum-weight set of edges and arcs that
frees x.

(c) Reset Gw to be the graph Gw\S0. Go to Step 5.

4. (a) Let S0 denote the set of rooted triple nodes of
Gw that can be freed with a minimum-weight
cut. Select one element ab|c in S0.

(b) Reset Gw to be the graph obtained from itself
by deleting a minimum-weight set of arcs that
frees ab|c. Go to Step 5.

5. (a) Find the node sets, S1,S2,...,Sk say, of the arc
components of Gw.

(b) For each i∈{1,2,...,k}, call FREE(Gw|Si).
Return the tree whose root node is labeled
by S0 and which has T ′

1 ,T ′
2 ,...,T ′

k (the trees
returned by the recursive calls) as child
subtrees.

�

Before detailing some formal remarks, we illustrate
MLS by applying it to the collection P of rooted
semilabeled trees shown in Figure 2, where each tree has
weight 1. Suppose that Step 1 constructs the collection
P ′ of rooted fully labeled trees shown in Figure 3. Then,
Step 2 constructs the descendancy graph D(P ′) as shown
in Figure 4. As D(P ′) has no cyclic descendancies, MLS
constructs the weighted-descendancy graph Dw(P ′) as
instructed in the next step and as shown in Figure 5. In
the first iteration of FREE, Dw(P ′) is unchanged at the
end of Step 1. At Step 2a, u1 and v1 are identified as the
only free nodes. Deleting these nodes results in one arc
component and FREE is called in Step 2d just for the mixed
graph, Gw say, obtained from Dw(P ′) by deleting u1 and
v1. In the second iteration, Gw is unchanged at the end
of Steps 1 and 2. At Step 3, h, v2, and g are identified
as the only nodes that can be freed with a minimum-
weight cut. Here, the weight of such a cut is 1. For each
of h and v2, the edge {h,v2} is a minimum-weight cut,
while for g the edge {g,c} is a minimum-weight cut. The
subroutine FREE now deletes the edges and arcs of a
minimum-weight cut for each of h, v2, and g. For the
purposes of the illustration, we have chosen to delete
the edges {h,v2} and {g,c}. This deletion together with
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FIGURE 7. The rooted semilabeled tree returned by FREE in the
running example when applied to the weighted-descendancy graph
shown in Figure 5.

the deletion of h, v2, and g results in the creation of
3 arc components in Step 5. These components have
node sets {a}, {c}, and {u2,v3,w,b,d,bd|c}. Recursive calls
to FREE investigate these 3 components separately. The
subtrees returned by the 3 recursive calls are used as
child subtrees of the root node labeled by the labels g, h,
and v2 at Step 5 in the second iteration of FREE. The tree
eventually returned by FREE is shown in Figure 7, while
the tree returned by MLS is shown in Figure 6.

Remarks

1. For convenience, we have implicitly assumed in the
description of the algorithm that the mixed graph
Dw(P ′) initially inputted to the subroutine FREE is
arc connected. Allowing for Dw(P ′) to not be arc
connected can be easily accommodated by calling
FREE on each arc component of Dw(P ′) and then
returning the tree whose maximal proper subtrees
are the trees returned by each of these calls to FREE
at the beginning of Step 5 in MLS.

2. To determine whether D(P ′) has a cyclic
dependancy, one has to determine whether
D(P ′) has any directed cycles. It is well known that
this can be done by continually finding nodes of
in-degree zero and deleting the resulting nodes. If
at some stage before the null graph is reach, there
is no such node, then D(P ′) has a directed cycle.
On the other hand, if one can always find such a
node, then there is no directed cycles and so no
cyclic descendancies.

3. MLS is well defined, that is, it either returns a
rooted semilabeled tree T with label set X or the
statement P contains cyclic descendancies. This fact
is not immediately clear, as it relies the property
that there is always a nonempty set of free nodes,
or label or triple nodes that can be freed at each
iteration of FREE and will be established in the next
section (and the appendix).

4. MLS extends the algorithm ANCESTRALBUILD.
Recall from the introduction that ANCESTRALBUILD
determines in polynomial time whether or not a
collection of rooted semilabeled trees is ancestrally
compatible. Ignoring the weights and rooted
triple nodes of the weighted-descendancy graph,

ANCESTRALBUILD can be obtained from MLS by
removing the initial check for cyclic descendancies,
replacing FREE with the subroutine FREE′ and
changing Step 5 of MLS appropriately depending
on the outcome of FREE′:

Algorithm: FREE′(G)
Input: A subgraph G of D(P ′).
Output: A rooted fully-labeled tree T ′ with root
node v′ or the statement P is not ancestrally
compatible.

1. Let S0 denote the set of free nodes of G. If S0 is
empty, then halt and return P is not ancestrally
compatible. If S0 comprises exactly one node
labeled � with out-degree zero, then return
the tree composed of just one leaf labeled �.

2. Reset G to be the graph G\S0.

3. Find the node sets, S1,S2,...,Sk say, of the arc
components of G.

4. For each i∈{1,2,...,k}, call FREE′(G|Si). Return
the tree whose root node is labeled by S0 and
which has T ′

1 ,T ′
2 ,...,T ′

k (the trees returned by
the recursive calls) as child subtrees.

Note that FREE′ is simply FREE with Steps 1, 3, 4,
and 5 removed and Step 2a modified in the case
S0 is empty. The check for cyclic descendancies is
implicitly included in finding nodes of in-degree
zero. Observe that it is the simple check of finding
at least one free node at each iteration that decides
whether or not P is ancestrally compatible.

5. Finally, an alternative weighting scheme to
quantify the weight of a cut is to count the
(weighted) number of trees inP ′ whose topological
signal is conflicted if one were to delete the links
of the cut. The idea is to resolve a conflict situation
by contradicting the smallest possible (weighted)
number of source trees. However, optimizing such
a cut is an NP-hard problem. For completeness, a
proof of this hardness is included in the appendix.

PROPERTIES OF MLS
This section establishes some theoretical properties of

MLS. The first result says that MLS is well defined; its
proof is in the appendix.

Proposition 1 Let P be a collection of rooted semilabeled
trees with L(P)=X. Then, MLS applied to P either returns
a rooted semilabeled tree with label set X or the statement P
contains cyclic descendancies.

The next consideration is whether the running time of
MLS is polynomial in the size of the initial collection
P of rooted semilabeled trees. It follows from the
second remark after the description of MLS that one
can decide in polynomial time whether the descendancy
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graph has cyclic descendancies. Thus, as the weighted-
descendancy graph is being reduced at each iteration of
the subroutine FREE, the only other part of the algorithm
that needs to be considered is the time it takes to find
a minimum-weight cut to free a label or triple node in
Steps 3 and 4 of FREE. The next 2 lemmas show that
finding such cuts is equivalent to finding a minimum-
weight cut in an associated network. Since finding the
latter is well known to be polynomial time (e.g., Hao
and Orlin 1994), it follows that MLS is polynomial time.

Let P ′ be a collection of weighted rooted fully labeled
trees, and let Gw be a subgraph of the weighted-
descendancy graph of P ′ with node, arc, and edge
sets V, A, and E, respectively. Because the weighted-
descendancy graph initially inputed to FREE contains
no directed cycles, we may assume that Gw contains no
directed cycles.

We first show the above-mentioned equivalence for
freeing label nodes. The equivalence for freeing triple
nodes is simpler and given afterwards. Let x be a label
node of Gw with in-degree zero that is not free. Thus,
in Gw, there is at least one edge incident with x. Let
{x,y1},{x,y2},...,{x,yk} denote the edges of Gw incident
with x, where k ≥1. Let N denote the graph obtained
from Gw by deleting the edges of Gw, replacing each
arc (a,b) with the edge {a,b}, adding a new node x′
and, for each edge {x,yi} in Gw, adding a new edge
{x′,yi} with weight w({x,yi}). Finding a minimum-weight
subset of A∪E that frees x in Gw is equivalent to finding
a minimum-weight cut in N that separates x and x′,
that is, a subset of edges in N whose removal puts
x and x′ into 2 separate components and, among all
such subsets, the sum of the weights of the edges is
minimized. In particular, identifying each edge of N with
its counterpart in Gw (either an arc or an edge depending
on how it was derived) and using this set-up, we have
the following lemma.

Lemma 2 Let S be a subset of A∪E. Then, S is a minimum-
weight subset of A∪E that frees x if and only if S is a minimum-
weight cut in N that separates x and x′.

Proof . First suppose that S is a minimum-weight
subset of A∪E that frees x in Gw. Then, for each edge
{x,yi}, either

(i) x is not edge adjacent to yi in Gw\S or

(ii) x and yi are in separate arc components in Gw\S.

Consider N\S. If (i) holds, then there is no edge joining
x′ and yi in N\S, while if (ii) holds, then there is no path
in N\S from x to yi using only edges derived from A.
Combining these 2 implications for all yi, we deduce that
in N\S there is no path from x to x′. Thus, the weight of a
minimum cut in N that separates x and x′ is at most the
weight of S.

Now suppose that S is a minimum-weight cut in N
that separates x and x′. Then, for each yi, either

(I) there is no edge joining x′ and yi in N\S or

(II) there is no path from x to yi in N\S.

By combining (I) and (II) for all yi, it follows that S is a
subset of A∪E that frees x in Gw. Thus, the minimum
weight of such a subset is at most the weight of S. The
lemma now follows. �

The equivalence for freeing triple nodes is really just a
straight translation of the problem in terms of minimum-
weight cuts. Let ab|c be a triple node of Gw that is not
free. Now, let N denote the graph obtained from Gw by
deleting the edges of Gw and replacing each arc (a,b)
with the edge {a,b}. Finding a minimum-weight subset
of A that frees ab|c is equivalent to finding a minimum-
weight cut in N that separates ab|c and c. In particular,
with the setup as above, we have the following lemma
whose proof is omitted.

Lemma 3 Let S be a subset of A. Then, S is a minimum-weight
subset of A that frees ab|c if and only if S is a minimum-weight
cut in N that separates ab|c and c.

Combining the last 2 lemmas with the second remark
after the description of MLS, we deduce that the running
time of MLS applied to P is polynomial in |P|+|L(P)|.
The next result makes this more precise.

Theorem 4 Let P be a collection of weighted rooted
semilabeled trees. Then, the running time of MLS applied to
P is polynomial in |P|+|L(P)|.

Proof . The most time-consuming operations depend
on the size of the weighted-descendancy graph Dw(P ′)
of P ′ or one of its subgraphs. Let n=|L(P ′)| and note that
n is polynomial in the size of |P|+|L(P)|. Let n and m
be the number of nodes, and number of arcs and edges
in Dw(P ′), respectively. Then, n is the number n of label
nodes plus the number of rooted triple nodes (which
can be cubic in n), while m=O(n3) in the worst case, as
each rooted triple node contributes a constant number of
arcs. Hence, the size of Dw(P ′) and the time to construct
Dw(P ′) is polynomial in |P|+|L(P)|.

Let Gw be Dw(P ′) or one of its subgraphs. Steps 3 and 4
of the FREE routine require to compute minimum-weight
cuts to find label and triple nodes to free, respectively.
Each running of FREE applied to Gw frees at least one
node, that is then removed, so this routine runs at most
O(n) times. Each such running requires in the worst case
examining each of the O(n) nodes of Gw and determining
whether it can be freed at minimum cost. Lemma 2
states that this can be achieved by the computation of
a minimum-weight cut separating 2 fixed nodes x and
x′ in a network N whose size is proportional to that of
Gw. A well-known result in combinatorial optimization
states that it is possible to do such a computation
in the same time at that required to compute a
maximum flow between x and x′. In particular, we
can resort to the O(m·min{n1/2,m2/3}) with additional
log factors time algorithm of Goldberg and Rao (1998).
Thus, the various runnings of the FREE routine require
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O(n2 ·m·min{n1/2,m2/3}) with additional log factors.
Except for possibly the construction of Dw(P ′), this is
clearly the most time-consuming part of MLS. It now
follows that MLS applied to P runs in time polynomial
in |P|+|L(P)|. �

The last 2 results in this section describe properties
of the tree returned by MLS. Earlier, we showed how
ANCESTRALBUILD can be obtained from MLS. The next
result formalizes this connection; its proof is in the
appendix. One particular outcome of this result is that
if a collection P of rooted source trees are compatible,
then the supertree returned by MLS when applied to
P is consistent with each of the trees in P . Of course,
one would always like any reconstruction method to
have such a consistency property, however, there is no
guarantee that this is the case.
Theorem 5 Let P be a collection of rooted semilabeled trees
and suppose that P is ancestrally compatible. Then, MLS
applied to P returns the same rooted semilabeled tree as
ANCESTRALBUILD applied to P . In particular, MLS returns
a rooted semilabeled tree that ancestrally displays P .

The last result in this section requires some additional
preliminaries. The analog of this result for rooted
phylogenetic trees and MINCUTSUPERTREE is established
in Semple and Steel (2000). A rooted semilabeled tree
T is binary if T is singularly labeled and the degree of
any node is at most 3. Let T = (T;�) be a binary rooted
semilabeled tree and let {a,b,c} be a subset of the label
set of T . Suppose that a||T b and let v denote the most
recent common ancestor of �(a) and �(b). Furthermore,
suppose that �−1(v) is empty and �(c)=u, where u is
the parent of v in T and has degree 2. Then, the rooted
semilabeled tree that is obtained from T by contracting
the edge {u,v} and assigning c to the new identified node
is said to be obtained by a local contraction.
Theorem 6 Let P be a collection of rooted semilabeled
trees and let T be a binary rooted semilabeled tree that is
ancestrally displayed by each of the trees in P . Then, up to local
contractions, MLS applied to P returns a rooted semilabeled
tree that ancestrally displays T .

Proof . Let T ′ be the rooted semilabeled tree
returned by an application of MLS to P . By a
straightforward modification of the last part of the proof
of Proposition 4.3 in Daniel and Semple (2005), to prove
the theorem, it suffices to show that, for all a,b,c∈L(T ),
the following properties are satisfied:

(i) if c<T a, then c<T ′ a;

(ii) if a||T b, then a||T ′b; and

(iii) if ab|c is a rooted triple of T , then ab|c is a rooted
triple of T ′.

Because of the addition of arcs and edges with weight ∞
joining label nodes in the construction of the weighted-
descendancy graph, it is clear that T ′ satisfies (i) and
(ii). Furthermore, if ab|c is a rooted triple of T , then the
triple node ab|c and 2 incident arcs with weight ∞ are
added to the weighted-descendancy graph. As a result,
a and b remain in the same arc component until at least
one iteration beyond that in which c is in a separate
arc component. This guarantee that T ′ also satisfies (iii).
Thus, up to local contractions, T ′ ancestrally displays T ,
completing the proof of the theorem. �

EMPLOYING A TAXONOMIC FRAMEWORK

The supertree framework specifically allows the input
trees to have different input taxon sets. However,
when source trees share increasingly fewer taxa, most
supertree methods output increasingly unresolved
supertrees, reflecting the high number of possibilities
according to which the taxa from the individual source
trees can be interleaved. The problems associated with
insufficient overlap on taxa sets of source trees is a
well-known phenomenon in the supertree literature
(Bininda-Emonds 2004).

Given that MLS is a supertree method, it is not
immune to overlap problems. However, because the
method can deal with taxa at different taxonomic levels,
2 different kinds of overlap become relevant: horizontal
overlap between terminal taxa as in traditional supertree
studies, and vertical overlap between taxa at different
taxonomic levels. Although MLS presents an appealing
solution to the problem of combining source trees
with hierarchically nested taxa because it uses only
the information present in the source trees themselves
(rather than synonymizing taxon names), phylogenies
in the literature generally lack internal node labels. In
other words, sufficient vertical overlap is often missing
from real-life data sets, which, as for horizontal overlap,
can similarly lead to meaningless or artifactual results.
In the absence of such necessary vertical information,
MLS, like other supertree methods, will be unable to
decipher the hierarchical relationships of the various
taxa and can place otherwise nested taxa, such as Canis
and Mammalia, as sister taxa.

To increase the horizontal overlap in a supertree
study, it often suffices to add source trees that make
a bridge between taxon sets of different source trees
(e.g., a complete, but highly down-weighted, seed tree;
[Bininda-Emonds and Sanderson 2001]). Similarly, the
lack of vertical overlap in a multilevel analysis can be
filled by adding additional source trees containing taxa
at different levels, thus making the nested relationships
that exist between several taxa explicit. Therefore, as
suggested by Berry and Semple (2006), it will often be
advisable to include a reference taxonomy—or backbone
tree—specifying the nesting information among all
the taxa and labels in the set of source trees as an
additional source tree. This reference taxonomy will
ideally be composed mainly of poorly resolved clades
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and comparatively down-weighted in the analysis so
as to merely guide it, rather than influence it unduly.
In this way, it fulfills the same role as the seed tree
advocated by Bininda-Emonds and Sanderson (2001) for
conventional supertree analyses. Alternatively, the user
can complement the set of source trees with several
smaller trees having taxa at both internal nodes and
leaves. In fact, such trees can be as small as the tree
allowed by the Newick format, namely containing just
2 taxa one on top of the other (see the implementation
documentation for details).

IMPLEMENTATION

The algorithm MLS has been implemented in Java
using part of the source code of the SplitsTree
v4.6 package (Huson and Bryant 2006)—the latter
is not required to run MLS—using the Mascopt
library to compute minimum cuts (Lalande et al.
2004). The implementation is freely available at
www.atgc-montpellier.fr/supertree/mls. In this section,
we discuss several aspects of this implementation.
Throughout the section, P refers to the initial collection
of weighted source trees, whereas P ′ is a collection of
weighted rooted fully labeled trees obtained from P by
adding distinct new labels. Furthermore, we collectively
refer to arcs and edges as “links” and we often identify
the nodes of the trees in P ′ with their label.

Relative Importance of Descendancy and Sibling Links
Each source tree gives rise to arcs and edges in the

weighted-descendancy graph Dw(P ′) of P ′ to express
topological constraints it induces on its taxa. However, it
might be preferable in some data sets to give more weight
to arcs, which express node descendancies in source
trees, than to edges, which express noncomparability of
sibling nodes in source trees. This differential weighting
only becomes relevant methodologically when Dw(P ′)
or one of its “subgraphs” has no free nodes due to
conflicts among source trees. In such cases, where a
minimum-weight cut in the graph has to be made, one
might prefer favoring the removal of edges (horizontal
signal) over arcs (vertical signal). This is particularly
relevant when the vertical relationships are either held to
be more accurate or more important than the potentially
conflicting horizontal signals. The program has a specific
option allowing more weight to be given to the arcs
contributed by an individual source tree to Dw(P ′)
than to the edges contributed by the same source tree;
otherwise, they both receive the same weight by default.

Using Transitive Arcs
The vertical relationships of the trees in P ′ can be

encoded in the descendancy graph D(P ′) of P ′ either by
encoding only direct arcs between nodes or, alternatively,
by encoding both direct and indirect arcs. For instance,

if, in some source tree, c is the parent of b and b is the
parent of a, then the 2 arcs (c,b) and (b,a) are added in
the construction of D(P ′). However, since c is an ancestor
of a, one might wonder why the “transitive” arc (c,a) is
not added to D(P ′).

We believe that encoding only direct arcs is preferable
for 2 reasons. First, this impedes large trees from exerting
a greater influence on the resulting supertree. Indeed,
if n is the number of taxa in a tree in P ′, there are
only O(n) direct arcs, but up to O(n2) indirect ones.
Secondly, and more practically, the running time is
proportional to the number of links in the graph. Thus,
not encoding transitive arcs also lowers the running
time. Nevertheless, we include a parameter in the
implementation that switches the addition of transitive
arcs on and off in constructing the descendancy graph
D(P ′).

A Preprocessing Step to Deduce Internal Labels
Like some supertree methods such as

MINCUTSUPERTREE and its variant, modified
MINCUTSUPERTREE (Semple and Steel 2000; Page 2002),
MLS is sometimes prone toward producing comb-like
trees. This is due to the iterative approach of the
algorithm, which removes successive minimum-weight
cuts to free labels and triple nodes in subgraphs of
Dw(P ′). The significance of this phenomenon depends
chiefly on the number of labels present in exactly one
tree in P ′. In particular, freeing such uniquely labeled
nodes usually requires the removal of only a single
edge, and thereby costs little in comparison to freeing a
node whose label is shared by several trees in P ′. As a
result, reducing the number of additional labels in the
construction of P ′ as much as possible beforehand is
highly desirable.

The inclusion of a seed taxonomy as described in the
last section can play an important role here because
it facilitates the preprocessing of the regular source
trees to deduce taxon names for some of their internal
nodes, thereby reducing the number of additional labels
required to construct P ′ from P . The preprocessing
considers each taxon ti present at an internal node in
the taxonomy in turn. For each ti, it computes the set Si
of descendant taxa. Then, each source tree not containing
taxon ti is examined. If there exists an unlabeled node in
such trees whose set of descendant taxa is exactly Si, then
this node is assigned label ti. Note that this preprocessing
step is optional and, when selected, the user must also
remember to include a taxonomy in the source-tree file
as the last tree of the file.

Freeing Nodes Sequentially
If, at some step, there are no free nodes, then the

subroutine FREE simultaneously frees all label nodes
that can be freed with a minimum-weight cut, so
as not to favor any one node with respect to the
others. However, when dealing with data sets containing
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intricate topological conflicts, this process can result in
highly unresolved nodes in the supertree. To avoid this,
the user can opt for an alternative behavior where nodes
are freed sequentially one after the other. This option
can, however, result in more comb-like trees.

Choosing Meaningful Minimum-weight Cuts
When selecting a minimum-weight cut for freeing

either a label or a triple node, we are free to choose
any such cut. One could simply find an arbitrary
minimum-weight cut in polynomial time and choose
this cut or one could examine the set of all minimum-
weight cuts and select that one(s) that best fit(s) some
predefined criteria. However, the later selection process
is problematic because there may be exponentially
many such cuts to consider. Nevertheless, despite this
possibility, we include the possibility for the user to
ask for the best minimum-weight cut subject to the
following ordered criteria as this usually provides more
meaningful supertrees and, for commonly sized data
sets, still leads to acceptable running times:

1. The sum of the weights of the trees inP ′ that induce
a link in the cut is minimized. This has the effect of
preferring cuts whose links are supported by the
fewest individual trees.

2. The number of nodes that are simultaneously freed
is maximized.

3. The penalty score for nonrespecting parts of source
trees is minimized, where the penalty score of a cut is
the sum of the weights of the trees in P ′ supporting
the links in the cut minus the sum of weights of the
trees in P ′ contradicting a link in the cut. Thus, cuts
are preferentially made to those links showing the
greatest conflict among the source trees.

If there is only one minimum-weight cut meeting the
first criterion, then this cut is selected. Otherwise, all
those that satisfy this criterion are compared through the
second criterion and so on. If several minimum-weight
cuts remain after the last criterion, then one of these cuts
is chosen arbitrarily.

Shifting Internal Taxa to Their Usual Place
Due to conflicts among source trees, MLS sometimes

outputs a supertree with internal nodes having a single
child. When such a node is unlabeled, it can safely be
suppressed without altering the phylogenetic meaning
of the supertree. On the other hand, if a single-child node
has, say, the label l, then, in phylogenetic terms, all taxa
in the subtree rooted at this node are representative of
the taxonomic group l. Typically, this situation is usually
depicted by l labeling a node with 2 or more children.
To reach this situation from the supertree initially
computed, MLS provides an option called PhyloTree
that moves an internal label such as l toward the tips to

the closest unlabeled node. This move may still result
in the node labeled by l having a single child but, if
it cannot be moved any further toward the tips, this
implies that this single child also has a label, say l′, with
l′ forming a subgroup of taxa within l. As we assume the
program will be used mainly in a phylogenetic context,
the PhyloTree option is switched on by default.

APPLICATION TO A DATA SET

In this section, we apply MLS to an empirical data set
of the mammalian seal family Phocidae and compare
this application with an MRP analysis. This data set is
straightforward in the sense that there are relatively few
conflicting signals and one expects the output to be well
resolved. As such, it provides an appropriate proof-of-
concept for MLS. For the analysis, a taxonomic seed tree
was included and the default parameters for MLS were
used (i.e., without use of transitive arcs and with all
nodes freed simultaneously).

The Phocidae data set comprises a subset of the
literature source trees used to build the Phocidae subtree
of the carnivore supertree (Bininda-Emonds et al. 1999).
The data set spans 43 taxa (20 terminal taxa and
23 higher level taxa) collectively belonging to eight
different taxonomic levels from family to subspecies.
As explicit “links” between higher level taxa are not
deducible from the source trees, we also included a
minimal taxonomic tree derived in part from Wozencraft
(1993). Except for the taxonomic tree, all trees were
weighted equally. The weighted-descendancy graph
computed by MLS contains 88 nodes linked by 96 edges
and 164 arcs. For the MRP analyses, all terminal taxa
were synonymized to the species level using the methods
outlined in the first part of the article (e.g., use of type
species) and an appropriate minimal taxonomic tree was
also included. The MRP supertree was taken to be the
strict consensus of all (16) equally most parsimonious
solutions.

The resulting MLS supertree is shown in Figure 8
and is congruent with the MRP supertree obtained
from the same data set. Importantly, however, the MLS
supertree is both more resolved than the MRP supertree
and was also obtained without having to perform any
taxonomic substitutions to obtain a common taxon set.
For example, the taxon Monachus could be entered as
a terminal taxon rather than being synonymized with
its type species Monachus monachus as was necessary for
the MRP analysis. Similarly, the MLS supertree contains
2 subspecies of Phoca vitulina that were synonymized
away in the MRP analysis. In so doing, the MLS supertree
is able to test the hypothesis that these 2 subspecies
do indeed form a clade, something that is not possible
in the MRP supertree, where their monophyly was
necessarily assumed a priori. Finally, the MLS supertree
also helpfully retains and presents the hierarchical
taxonomic information found among the set of source
trees, presenting them as internal node labels.
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FIGURE 8. The resulting MLS (left) and MRP (right) supertrees for the Phocidae data set obtained from a subset of the source trees used to
build the phocid supertree of the carnivore supertree (Bininda-Emonds et al. 1999).

In summary, MLS obtains a supertree for this test case
that is both reasonable and also accurately reflects the
relationships produced by the standard MRP supertree
method. Moreover, it did so making fewer strong
and occasionally subjective taxonomic assumptions
while simultaneously providing more resolution and
information in the end supertree. Although the data set
is generally well behaved, conflict within it is still present
as witnessed by the 16 equally most parsimonious
solutions in the MRP analysis as well as MLS having to
perform 7 minimum-cut computations. The congruence
between the MLS and MRP supertrees, as well as the

fact that both trees reflect current opinion regarding
relationships within Phocidae, would indicate that MLS
is resolving these conflicts in a reasonable way. Indeed,
all resolutions in the MLS supertree are found at
least implicitly among the source trees and the MLS
supertree is actually identical with the 50% majority-
rule consensus tree for the MRP analyses. This latter
fact reflects both the general sensitivity of parsimony to
conflict as well as the potentially more decisive nature of
MLS in cases of conflict because of its unique ability to
incorporate additional information in the form of vertical
taxonomic signal.
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DISCUSSION

Handling taxonomic differences between different
studies, particularly that of taxa at different taxonomic
levels, has long been recognized as problematic in
supertree analyses. Page (2004) made explicit mention of
this problem and suggested possible solutions. The first
automated and practical way of dealing with it was the
supertree method ANCESTRALBUILD (Daniel and Semple
2004; Berry and Semple 2006). However, this method
returns a supertree only if the source trees are ancestrally
compatible, a requirement that is frequently violated
by real-world data sets. MLS overcomes this restriction
on compatibility by resolving conflicting signals among
the source trees in an optimal way using minimum-
weight cuts and thus presents the first practical supertree
method to tackle the important problem of heterogeneity
of taxonomic levels among the taxa in the source
trees. Moreover, MLS has several desirable properties
including the preservation of common binary subtrees
among the source trees and returning a supertree that
whose intertaxa relationships are consistent with each
of the source trees if they are no topological conflicts
among the source trees. Importantly, our analysis of a
real-world data set shows that it can produce supertrees
with meaningful clades.

Looking forward, MLS not only avoids tedious and
subjective preprocessing tasks involving taxonomic
differences among the source trees, but it might also be
a method of choice for assembling very large trees such
as those considered in “Tree of Life” projects. Here, a
large set of source trees spanning numerous taxa could
be processed with a divide-and-conquer approach, in
a similar but slightly different way to that proposed
by Bininda-Emonds and Stamatakis (2006) as follows.
First, source trees would be augmented with internal
taxon labels in an automated way such as that proposed
by the PhyloExplorer tool (Ranwez et al. 2009). Here,
the genus, family, and other higher level taxonomic
taxa to which the internal nodes correspond would be
inferred from the leaves of the trees. These nested-taxa
trees would then initially be used to resolve the lower
levels of the “Tree of Life.” In particular, these trees
or parts thereof would be clustered in groups with
highly overlapping taxa spanning the lower taxonomic
levels. From each such cluster, MLS would propose a
nested-taxa supertree. Once the lower levels have been
resolved, the process would sequentially resolve the
overlaying taxonomic levels in turn. Doing so would
require identifying those original source trees spanning
more than one of the previous clusters. However, the
resolution of these upper levels would not be done using
the full trees. Instead, to minimize the computational
burden, those parts of the trees concerning the already
resolved lower levels would be replaced by a short
summary of the unified consensus obtained by MLS.
Once the trees are reduced, the taxonomic level for which
they were meant could be resolved by inputting them
into MLS. The procedure would continue climbing the
levels of the “Tree of Life,” iteratively dealing with a

series of higher taxonomic levels until finally reaching
the universal common ancestor level.
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APPENDIX

The appendix consists of 4 parts. The first 2 parts
consist of the proofs of Proposition 1 and Theorem 5. The
third part shows that the alternative weighting scheme
described in the last remark following the description of
MLS in “Formal Description of MLS” section leads to an
NP-hard problem, while the fourth part references the
source trees of the Phocidae data set.

Proof of Proposition 1
For the proof, notation is consistent with the

description of MLS given in “Formal Description of
MLS” section. Suppose that MLS is applied to P . We
may assume that D(P ′) contains no cyclic descendancies,
otherwise MLS returns the statement P contains cyclic
descendancies and the proposition holds. Now, the only
possible way that MLS does not return a rooted
semilabeled tree is if, at some iteration of FREE in the
running of the algorithm, there is no minimum-weight
cut that frees a label or triple node in Steps 3 and 4 of
FREE. The rest of the proof consists of showing that there
is always such a cut.

Let Gw denote the mixed graph inputted at an
arbitrary iteration of FREE and consider FREE applied
to Gw. No generality is loss in assuming that Gw is
unchanged at the end of Step 1. The following is easily
seen.

Lemma 7 Let x and z be two label nodes in Gw. If there is a
directed path in Gw from x to z in which each arc has infinite
weight, then x<T z for all T ∈P .

Lemma 8 Let x and y be label nodes of Gw. Then, x and y
are joined by an arc (x,y) precisely if (x,y) is an arc in D(P ′).

Proof . If the lemma does not hold, then there is an
arc, (x,y) say, in D(P ′) where x and y are nodes in Gw,
but (x,y) is not an arc in Gw. The only way that this could
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happen is that, at some previous iteration, (x,y) is deleted
as part of a minimum weight cut to free either a label or
triple node. But then, as the cut has minimum weight, x
and y would be in different arc components at Step 5 of
FREE in this iteration, and so the node sets of the mixed
graphs inputted to FREE at subsequent iterations contains
at most one of x and y; a contradiction. Thus, Lemma 8
holds. �

Lemma 9 Let Q be an arc path in Gw in which each node is
a label node and each arc has weight ∞. Let x be the initial
node of Q, and suppose that x has in-degree zero in Gw. If z is
a node in Q and z �=x, then x<T z for all T ∈P .

Proof . The proof is by induction on the number k
of nodes in Q. If k =2, then, as x has in-degree zero, Q
consists of the vertices x and z, and the arc (x,z). Since
(x,z) has weight ∞, the lemma holds.

Now suppose that Lemma 9 holds for all such arc paths
beginning at x with at most k−1 nodes, where k ≥3. Let
Q′ be the arc path obtained from Q by restricting it to the
first k−1 nodes. Let y be the last node in Q′ and let z be the
last node in Q. Then, by the induction assumption, x<T y
for all T ∈P . There are 2 cases to consider depending
upon whether the last arc in Q is (i) (y,z) or (ii) (z,y).

First assume that (i) holds. Then, y<T z for all T ∈P
and so, as x<T y for all T ∈P , it follows that x<T z
for all T ∈P . Now assume that (ii) holds. Since z<T y
and x<T y for all T ∈P , we have, for each T ∈P , either
x<T z or z<T x. If x<T z for all T ∈P , then the lemma
holds. Furthermore, if z<T x for all T ∈P , then, by
Lemma 8, Gw contains the arc (z,x), contradicting the
assumption that x has in-degree zero in Gw. Therefore,
we may assume that there are trees T ′,T ′′ ∈P such that
z<T ′ x and x<T ′′ z. But then D(P ′) contains a cyclic
descendancy; a contradiction. Thus, Lemma 9 holds. �

Lemma 10 Let x be a label node in Gw with in-degree zero and
suppose that w is edge adjacent to x such that {x,w} has weight
∞. Then, every arc path from x to w in Gw that contains no
triple node has an arc of finite weight.

Proof . Suppose that Gw contains an arc path from x
to w in which every arc has weight ∞ and no node is
a triple node. Then, by Lemma 9, x<T w for all T ∈P ,
contradicting the assumption that {x,w} has weight ∞.
Thus, the lemma holds. �

It follows from Lemma 10 that there is a label node in
Gw that can be freed unless Gw contains a triple node.
We complete the proof of Proposition 1 by considering
triple nodes.

Lemma 11 Let Q be an arc path in Gw starting at label node
x, ending at label node y, and having the property that each
arc has weight ∞. Let T ∈P and suppose that x||T y. Then,
either there is a label node in Q that is ancestor of both x and y
in T or there is a triple node ab|c in Q such that mrcaT (a,b)
is an ancestor of mrcaT (x,y).

Proof . Since each arc in Q has weight ∞, each label
node in Q is a label of T . Now, by considering Q and, in

particular, the position of the label nodes in this path in
T as one follows it from x to y, it is easily seen that one
of the 2 outcomes in the lemma must hold. �

Now, let T be a tree in P and let ab|c be a triple node
in Gw. Relative to Gw, we say that ab|c is maximal in T if
there is no triple node a′b′|c′ in Gw such that mrcaT (a′,b′)
is a strict ancestor of mrcaT (a,b).

Suppose that no label node of Gw can be freed and
suppose, to the contrary, that no triple node of Gw can
be freed. We next establish 3 properties of a maximal
triple in Gw. These properties will be repeatedly use to
complete the proof of the proposition.

Lemma 12 Let T ∈P , and let ab|c be a triple node in Gw that
is maximal in T .

(I) Let Q be an arc path in Gw either from a to c or from b to
c in which each arc has weight ∞. Then, there is a label
node, x say, in Q that is ancestor of both mrcaT (a,b) and
c in T .

(II) Let x in (I) be chosen to be the closest such label to the
root of T . Then, x does not have in-degree zero in Gw.

(III) Let z be a label node in Gw such that either z has in-
degree zero or z is arc adjacent to a triple node, and there
is a directed path in Gw from z to x. Then, z∈L(T ), and
the label node in Gw, say x′, that is an ancestor of z in T
and is the closest such label to the root of T satisfies the
following:

(i) x is noncomparable to x′ in T and
(ii) there is a triple node in Gw such that x′ is an ancestor

of each of the labels that make up this triple in T .

Proof . By Lemma 11, either (I) holds or there
is a triple node a′b′|c′ in Q such that mrcaT (a′,b′)
is an ancestor of mrcaT (a,c) (and therefore also of
mrcaT (b,c)). But then mrcaT (a′,b′) is a strict ancestor of
mrcaT (a,b), contradicting the maximality of ab|c in T .
Thus, (I) holds.

To see (II), suppose that x has in-degree zero in Gw.
Then, as no label nodes in Gw can be freed, there is a
node, w say, in Gw that is edge adjacent to x with {x,w}
having weight ∞, and there is an arc path Qx in Gw from
x to w in which each arc has weight ∞. By Lemma 11,
either there is a label node in Qx that is an ancestor of
both x and w in T or there is a triple node a′b′|c′ in Qx such
that mrcaT (a′,b′) is an ancestor mrcaT (x,w). The first
possibility contradicts the choice of x, while the second
possibility contradicts the maximality of ab|c. Hence, (II)
holds.

Consider (III). If z is arc adjacent to a triple node, then
z∈L(T ). Furthermore, if z is a label node, then z cannot
be freed and so z is edge-adjacent to a label node, say y,
in Gw and the edge {z,y} has weight ∞, so z∈L(T ). Since
D(P ′) has no directed cycles and there is a directed path
in Gw from z to x, it follows that x is not an ancestor of z in
T and so x is noncomparable to z in T . Thus, because of
the choice of x, any ancestor of z in T that is a label node
in Gw is also noncomparable to x. Hence, to complete the
proof of (III), it suffices to show that x′ satisfies (ii).
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First assume that z has in-degree zero. Then, by
Lemma 10, there is a triple node rs|t on an arc path
from z to y in which each arc has weight ∞. Without
loss of generality, we may assume that this is the first
such triple node and that r appears before s on this path.
By Lemma 9, z<T r. In particular, x is noncomparable to
r in T . Let a′b′|c′ be a triple node in Gw that is maximal in
T and has the property that mrcaT (a′,b′) is an ancestor
of mrcaT (r,s) in T . Since no triple node can be freed
and x′ <T r, it follows by (I) that x′ is an ancestor of both
mrca(a′,b′) and c′ in T .

Now assume that z is arc adjacent to a triple node in
Gw. Making use of this triple node instead of rs|t as in
the previous paragraph and again using (II), we deduce
that there is a triple node in Gw that enables x′ to satisfy
(ii). Thus (III), and therefore Lemma 12, holds. �

Noting that (I)–(III) holds for all triple nodes in Gw
that are maximal in T , we complete the proof of the
proposition by repeatedly using (I)–(III) to obtain a
contradiction to our assumption that Gw has no triple
nodes that can be freed. Before making this completion,
observe that, for (III), one can always find such an
element z by starting at x and continually traversing arcs
in the opposite direction until there are no such arcs to
traverse. Since Gw has no directed cycles, this process
must eventually stop.

Let aibi|ci be a triple node in Gw such that aibi|ci is
maximal in T . Using (I), let xi be the label node in Gw
that is an ancestor of mrcaT (ai,bi) and ci in T and, among
all such nodes, it is the closest label to the root of T . By
(II), xi does not have in-degree zero in Gw. Let zi be a
label node of Gw such that either zi has in-degree zero or
zi is arc adjacent to a triple node, and there is a directed
path in Gw from zi to xi. Let xi+1 be the label node in Gw
that is an ancestor of zi and is the closest such label to the
root of T . By (III), xi+1 is noncomparable to xi in T and
there is a triple node ai+1bi+1|ci+1 in Gw that is maximal
in T and has the property that xi+1 is an ancestor of both
mrcaT (ai+1,bi+1) and ci+1 in T .

Beginning with i=1 and repeatedly applying the
process in the previous paragraph, we obtain a sequence
of labels x1,x2,... in T such that, for all i, the labels xi
and xi+1 are noncomparable. Since T is finite, it follows
that, for some distinct i and j, the label nodes xi and
xj are equal, where i< j. Without loss of generality, we
may assume that xi,xi+1,...,xj−1 are pairwise distinct.
Consider the sequence

xi,zi,xi+1,zi+1,...,xj−1,zj−1,xj =xi.

For all l∈{i+1,i+2,...,j}, xl is an ancestor of zl−1 in T .
This implies that, for all l, there is a directed path in
D(P ′) from xl to zl−1. Moreover, by construction, there
is also a directed path in D(P ′) from zl−1 to xl−1 for
all l. Thus, as xi =xj, the mixed graph D(P ′) contains a
directed cycle; a contradiction. It now follows that there
is a triple node of Gw that can be freed. This completes
the proof of Proposition 1.

Proof of Theorem 5
First recall the description of how ANCESTRALBUILD

can be obtained from MLS in the remarks following
the description of MLS in “Formal Description of MLS”
section. It is easily checked that to establish the theorem,
it suffices to show that, for all i, in iteration i of FREE′ and
FREE,

(i) the set of free nodes in Step 1 of FREE′ is equal to
the set of free nodes in Step 2a of FREE and

(ii) up to triple nodes, the node sets of the arc
components in Step 3 of FREE′ is the same as that
of the node sets of the arc components in Step 2c
of FREE.

Observe that if (i) and (ii) hold at iteration i, then,
up to rooted triple nodes and weightings, the input at
iteration i+1 of FREE′ and FREE coincide. Note that, in the
proof, as in the description of MLS, we will assume that
the weighted-descendancy graph of P ′ is connected. By
applying the proof to each of the connected components
of this graph, it is easily seen that no generality is loss in
making this assumption.

Suppose that either (i) or (ii) does not hold at
some iteration. Let j be the first such iteration. Let
G (respectively Gw) be the subgraph inputed into
FREE′ (respectively FREE) at iteration j. If j=1, then
these subgraphs are D(P ′) and Dw(P ′), respectively.
Let T be the rooted semilabeled tree returned by
ANCESTRALBUILD. We begin with an observation. Since
the node sets of the arc components found in Step 3 of
FREE′ are not constrained by triple nodes and arcs with
weight ∞, there is exactly one arc component at the end
of Step 1 of FREE in the first j iterations; otherwise, we
contradict the fact that (ii) holds in the previous iteration.
Note that, as the weighted-descendancy graph of P ′ is
connected, FREE is not called in Step 1 in the first iteration
of FREE.

We complete the proof by first establishing by
contradiction that j �=1, and so j≥2. For j≥2, the proof
by contradiction is similar and makes use of the fact that
(i) and (ii) hold for j−1. Because of this similarity, we
omit the proof of this case.

Let j=1, and first suppose that (i) does not hold. Let
S ′

0 and S0 denote the set of free nodes in Steps 1 and 2a
of FREE′ and FREE, respectively. Because of the additional
constraints imposed by the triple nodes, and arcs and
edges with weight ∞ in FREE, it follows that S0 is a proper
subset of S ′

0. Let a∈S ′
0 −S0. Then, either there is a triple

node ab|c, an arc (c,a) with weight ∞, or an edge {a,b}
with weight ∞ in Dw(P ′). If there is such a triple node,
then, as T ancestrally displays ab|c, the nodes a and b are
in one arc component of D(P ′) and c is in a separate arc
component. But then, by construction, a is an ancestor
of b in T ; a contradiction. If there is such an arc (c,a),
then c is an ancestor of a in T ; a contradiction. Finally, if
there is such an edge {a,b}, then, as a||T b, it follows that
a and b are in separate arc components of D(P ′). Now a
and b are in the same arc component of Dw(P ′), so, by
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construction, there is an arc in Dw(P ′) with weight ∞ on
every arc path from a to b in Dw(P ′). It now follows that
for one of these arcs with weight ∞, (p,q) say, nodes p
and q are in separate arc components in D(P ′). But then,
by construction, either p is not an ancestor of q in T if
p is a label node or T does not ancestrally display the
rooted triple corresponding to p if p is a triple node; a
contradiction. Thus (i) holds for j=1.

Now assume that (ii) does not hold for j=1. Let
S ′

1,S
′
2,...,S

′
k′ and S1,S2,...,Sk denote the node sets of

the arc components of D(P ′)\S ′
0 in Step 3 of FREE′ and

Dw(P ′)\S0 in Step 2c of FREE, respectively. Because of
the additional constraints imposed by the triple nodes
and arcs with weight ∞, it follows that there is a set, Si
say, such that, up to triple nodes, it is the union of at least
2 sets among S ′

1,S
′
2,...,S

′
k . In particular, either there is a

triple node ab|c with a in one of these sets and b in another,
or an arc (c,a) with weight ∞ with c in one these sets and a
in another. But then, again by construction, either T does
not ancestrally display ab|c or c is not ancestor of a in T ;
a contradiction. Therefore, (ii) holds for j=1.

Freeing Nodes using a List-based Weighting Scheme
is NP hard

Let P be a collection of rooted semilabeled trees and
let P ′ be a collection of rooted fully labeled trees that is
obtained from P by adding distinct new labels. When
MLS meets topological conflicts among source trees, it
frees either label nodes or a triple node by removing
links from a subgraph of Dw(P ′). This leads to the
rooted semilabeled tree eventually returned by MLS to
contradict the topological signal given by the trees in
P ′ that induce these particular links. The intuition
here is that one seeks to remove a set of links that
contradict a minimum number of trees in P ′. MLS
proceeds by weighting each link with the number of
trees that support it and, when “stuck,” removing only
links belonging to a minimum-weight cut to ensure a
small number of source trees will be contradicted. But,
it can be that the same tree contributes to several
links in a minimum-weight cut, and so to contradict a
minimum number of trees in P ′, a finer weighting
scheme is required. The alternative and very natural
way to “weight” the links of D(P ′) is to assign each
link the list of trees in P ′ that induced this link. Then,
when confronted by topological conflicts, the algorithm
would be able to identify a cut that precisely involves a
minimum number of trees in P ′. This number is the size
of the union of the lists of the links that will be deleted if
this cut is chosen. However, as we show next, finding
a minimum-weight cut to free a label node under this
weighting scheme is an NP-hard problem.

More formally, let Dl(P ′) be the graph obtained
from the weighted-descendancy graph Dw(P ′) of P ′ by
replacing the weight of each arc (c,a) with the set

{T ∈P ′ :c<T a}

and that of each edge {a,b} with the set

{T ∈P ′ :b||T a}.
Note that the ∞ weight is replaced with the set P ′. The
graph Dl(P ′) is the list-descendancy graph of P ′ and we
refer to the above sets as lists. We will now show that
applying MLS to P , replacing Dw(P ′) with Dl(P ′) and
using the above list-based weighting scheme, leads to an
NP-hard problem. To establish this hardness result, we
use the classical NP-hard problem VERTEX COVER:

VERTEX COVER
Input: An undirected graph G= (V,E).
Solution: A minimum-sized subset Vm ⊆V such that, for
each edge {u,v}∈E, at least one of u and v belongs to Vm.

Let G= (V,E) be an instance of VERTEX COVER and
arbitrarily assign a direction to each edge of G, thus
viewing G as a directed graph. Let

F=
⋃

e∈E

{e1,e2,e3,e4}.

We now construct a collection of rooted fully labeled
trees P whose label set is V∪F∪{x}, where x is a
distinguished label. In particular, P consists of the
following trees:

(i) For each edge e∈E, the trees (x,e3)e1, (x,e3)e2, are
in P , where (a,b)c is the rooted fully labeled tree
consisting of 2 leaves labeled a and b, and a root
labeled c.

(ii) For each u∈V, the following tree Tu is in P . The
root of Tu is labeled u, and has a first child labeled
x and then a child labeled e3 for each arc e leaving
u in G with each such e3 node itself having e4 as
single child. Furthermore, for each arc e′ coming
into u in G, the node labeled x has a child labeled
e′
4.

Clearly, in the size of G, the set P can be constructed
in polynomial time and its size is polynomial. Now
consider MLS applied to P under the above list-based
weighting scheme. Since P is fully labeled, Dl(P ′)=
Dl(P). Note that Dl(P ′) has no triple nodes, and it is arc
connected because of x. At the completion of the first
iteration of FREE, every node of the form e1, e2 is deleted
as well as all nodes in V. Again because of x, the resulting
graph, D′

l(P
′) say, has exactly one arc component. During

the second iteration of FREE, x is considered as a possible
node that can be freed, as are each of the nodes of the
form e3 which are linked to x by edges. We next show
that G has a minimum-sized vertex cover of size m if
and only if the size of a minimum-weight cut to free
x in D′

l(P
′) is m, thus showing in general that finding

a minimum-weight cut to free a label node under this
alternative weighting scheme is an NP-hard problem.

Now, in D′
l(P

′), the node x is edge-adjacent precisely to
each of the nodes of the form e3. Furthermore, for each e∈
E, there is an arc path involving x,e3 and e4 consisting of
2 arcs (an arc from e3 to e4 and one from x to e4), and these
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arc paths share no arcs. Thus, any minimum-weight cut
to free x corresponds to either deleting the edge {x,e3} or
deleting one of the arcs (x,e4) and (e3,e4) for all e.

For an edge of the form {x,e3}, its corresponding list
includes 2 trees arising via (i) and one tree arising via (ii).
For each such tree from (i), this is the only link whose
list contains it, while the tree from (ii) is Tu where u is
the node in G from which e starts. On the other hand,
for all e, the lists of each of (x,e4) and (e3,e4) consist of
exactly one tree (these 2 trees differing from one another).
Thus, to free x, it is always more parsimonious to remove
the support of either (x,e4) or (e3,e4), than removing the
support of the edge {x,e3}. It now follows that if Cm is
the union of the lists of the links that will be deleted
in a minimum-weight cut to free x, then Cm includes
the single tree in the list associated with one of the arcs
(x,e4) and (e3,e4) for each e in G, and no tree arising via
(i). Observing that the subset

{u :Tu ∈Cm}
of V is a vertex cover of G, it follows that if Vm is a solution
to VERTEX COVER for G, then |Vm|≤|Cm|.

Now suppose that Vm is a minimum-sized vertex cover
of G. Let

C={Tu :u∈Vm}.
There is a one to one correspondence between the edges
of G and the above arc paths joining x and nodes of
the form e3. In particular, this correspondence assigns
the edge e={v,w} of G with the arc path in which the
list of one arc consists of Tv and the list of the other
arc consists of Tw. It now follows that C frees x, and
so if Cm is a minimum-weight cut that frees x, then
|Vm|≥|Cm|. We conclude that |Vm|=|Cm| and so finding
a minimum-weight cut that frees a label node under the
above weighting is an NP-hard problem.

References for the Source Trees of the Phocidae Data Set
Berta and Wyss (1994), Bininda-Emonds and Russell

(1996), Bogdanov and Pastukhov (1982), Burns and Fay
(1970), Chapskii (1955), Hendey (1972), Lento et al. (1995),
Ling (1978), Mouchaty et al. (1995), Nojima (1990), Perry
et al. (1995), Sarich (1976), Slade et al. (1994), Wozencraft
(1993).

REFERENCES

Aho A.V., Sagiv Y., Szymanski T.G., Ullman J.D. 1981. Inferring a
tree from lowest common ancestors with an application to the
optimization of relational expressions. SIAM J. Comput. 10:405–421.

Baum B.R. 1992. Combining trees as a way of combining data sets for
phylogenetic inference, and the desirability of combining gene trees.
Taxon 41:3–10.

Berry V., Semple C. 2006. Fast computation of supertrees for compatible
phylogenies with nested taxa. Syst. Biol. 55:270–288.

Berta A., Wyss A.R. 1994. Pinniped phylogeny. In: Berta A., Deméré
T.A., editors. Contributions in marine mammal paleontology
honoring Frank C. Whitmore, Jr. San Diego (CA): Proceedings of
the San Diego Society of Natural History. p. 33–56.

Bininda-Emonds O.R.P. 2004. The evolution of supertrees. Trends Ecol.
Evol. 19:315–322.

Bininda-Emonds O.R.P., Gittleman J.L., Purvis A. 1999. Building large
trees by combining phylogenetic information: a complete phylogeny
of the extant carnivora (mammalia). Biol. Rev. 74:143–175.

Bininda-Emonds O.R.P., Jones K.E., Price S.A., Cardillo M., Grenyer R.,
Purvis A. 2004. Garbage in, garbage out: data issues in supertree
construction. In: Bininda-Emonds O.R.P., editor. Phylogenetic
supertrees: combining information to reveal the Tree of Life.
Dordrecht (The Netherlands): Kluwer. p. 267–280.

Bininda-Emonds O.R.P., Russell A.P. 1996. A morphological
perspective on the phylogenetic relationships of the extant phocid
seals (mammalia: Carnivora: Phocidae). Bonner zoologische
Monographien 41:1–256.

Bininda-Emonds O.R.P., Sanderson M.J. 2001. Assessment of the
accuracy of matrix representation with parsimony supertree
construction. Syst. Biol. 50:565–579.

Bininda-Emonds O.R.P., Stamatakis A. 2006. Taxon sampling versus
computational complexity and their impact on obtaining the tree of
life. In: Hodkinson T.R., Parnell J.A.N., editors. Reconstructing the
Tree of Life: taxonomy and systematics of species rich taxa. New
York: CRC Press. p. 77–95.

Bogdanov L.V., Pastukhov V.D. 1982. New data on the taxonomic
position of the baikal seal phoca (pusa) sibirica gmel. In: Pastukhov
V.D., editor. Morpho-physiological and ecological studies of the
Baikal seal. Novosibirsk (Russia): Nauka. p. 7–12.

Burns J.J., Fay F.H. 1970. Comparative morphology of the skull of the
ribbon seal, histriophoca fasciata, with remarks on the systematics
of phocidae. J. Zool. 161:363–394.

Chapskii K.K. 1955. An attempt at revision of the systematics
and diagnostics of seals of the subfamily phocinae. Trudy
Zoologicheskovo Instituta Akademii Nauk SSSR 17:160–199.

Daniel P., Semple C. 2004. Supertree algorithms for nested taxa. In:
Bininda-Emonds O.R.P., editor. Phylogenetic supertrees: combining
information to reveal the Tree of Life. Dordrecht (The Netherlands):
Kluwer. p. 151–171.

Daniel P., Semple C. 2005. A class of general supertree methods for
nested taxa. SIAM J. Discrete Math. 19:463–480.

Goldberg A.V., Rao S. 1998. Beyond the flow decomposition barrier. J.
ACM 45:783–797.

Gordon A.D. 1986. Consensus supertrees: the synthesis of rooted trees
containing overlapping sets of labeled leaves. J. Classif. 3:31–39.

Hao J., Orlin J.B. 1994. A faster algorithm for finding the minimum cut
in a directed graph. J. Algorithm 17:424–446.

Hendey Q.B. 1972. The evolution and dispersal of the monachinae
(mammalia: Pinnipedia). Ann. South African Museum 59:99–113.

Huson D.H., Bryant D. 2006. Application of phylogenetic networks in
evolutionary studies. Mol. Biol. Evol. 23:254–267.

Lalande J.F., Syska M., Verhoeven Y. 2004. Mascopt—a network
optimization library: graph manipulation. Tech. Rep. RT-0293,
INRIA.

Lento G.M., Hickson R.E., Chambers G.K., Penny D. 1995. Use of
spectral analysis to test hypotheses on the origin of pinnipeds. Mol.
Biol. Evol. 12:28–52.

Ling J.K. 1978. Pelage characteristics and systematic relationships in
the pinnipedia. Mammalia 42:305–313.

Mouchaty S., Cook J.A., Shields G.F. 1995. Phylogenetic analysis
of northern hair seals based on nucleotide sequences of the
mitochondrial cytochrome b gene. J. Mammalia 76:1178–1185.

Nojima T. 1990. A morphological consideration of the relationships of
pinnipedia to other carnivorans based on the bony tentorium and
bony falx. Mar. Mammal. Sci. 6:54–74.

Page R.D.M. 2002. Modified mincut supertrees. In: Guig R., Gusfield
D., editors. Second International Workshop on Algorithms in
Bioinformatics. New York: Springer. p. 537–552.

Page R.D.M. 2004. Taxonomy, supertrees, and the tree of life. In:
Bininda-Emonds O.R.P., editor. Phylogenetic supertrees: combining
information to reveal the Tree of Life. Dordrecht (The Netherlands):
Kluwer. p. 247–265.

Perry E.A., Carr S.M., Bartlett S.E., Davidson W.S. 1995. A phylogenetic
perspective on the evolution of reproductive behavior in pagophilic
seals of the northwest atlantic as indicated by mitochondrial DNA
sequences. J. Mammal. 76:22–31.

 at B
ibliotheks und Infosystem

 der U
niversitaet O

ldenburg on February 11, 2013
http://sysbio.oxfordjournals.org/

D
ow

nloaded from
 

http://sysbio.oxfordjournals.org/


[13:29 28/1/2013 Sysbio-sys090.tex] Page: 249 231–249

2013 BERRY ET AL.—AMALGAMATING SOURCE TREES 249

Purvis A. 1995. A composite estimate of primate phylogeny. Philos. T.
Roy. Soc. B 348:405–421.

Ragan M.A. 1992. Phylogenetic inference based on matrix
representation of trees. Mol. Phylogenet. Evol. 1:53–58.

Ranwez V., Clairon N., Delsuc F., Pourali S., Auberval N., Diser S., Berry
V. 2009. Phyloexplorer: a web server to validate, explore and query
phylogenetic trees. BMC Evol. Biol. 9:108.

Sarich V.M. 1976. Transferrin. Trans. Zool. Soc. Lond. 33:165–171.
Semple C., Steel M. 2000. A supertree method for rooted trees. Discrete

Appl. Math. 105:147–158.
Semple C., Steel M. 2003. Phylogenetics. Oxford: Oxford University

Press.

Slade R.W., Moritz C., Heideman A. 1994. Multiple nuclear-gene
phylogenies: application to pinnipeds and comparison with a
mitochondrial DNA gene phylogeny. Mol. Biol. Evol. 11:341–356.

Wilkinson M., Thorley J.L., Pisani D., Lapointe F.-J., McInerney J.O.
2004. Some desiderata for liberal supertrees. In: Bininda-Emonds
O.R.P., editor. Phylogenetic supertrees: combining information to
reveal the Tree of Life. Dordrecht (The Netherlands): Kluwer. p.
227–246.

Wozencraft W.C. 1993. Order carnivora. In: Wilson D.E., Reeder D.M.,
editors. Mammal species of the world: a taxonomic and geographic
reference. Washington (DC): Smithsonian Institution Press.
p. 279–348.

 at B
ibliotheks und Infosystem

 der U
niversitaet O

ldenburg on February 11, 2013
http://sysbio.oxfordjournals.org/

D
ow

nloaded from
 

http://sysbio.oxfordjournals.org/

	Amalgamating Source Trees with Different Taxonomic Levels

