Carl von Ossietzky Universität Oldenburg

Synthesis of Annulated Benzofuran Derivatives by Ring-**Expansion of \alpha-(lodophenyl)-\beta-oxoesters**

Lukas Fliegel and Jens Christoffers

Institut für Chemie, Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26111 DE-Oldenburg

The [b]-annulated 2,3-dihydrobenzofuran ring system is a characteristic scaffold of the flavaglines, a natural product class. Due to the antiviral activities of some flavaglines against SARS-CoV-2 and many other viruses, the development of a synthetic route to structural analogues of these compounds is a central goal. In this study, we present a new method to construct the scaffold via an Ullmann-like, copper-catalyzed C–O-coupling reaction of various α -arylated β -oxoesters.

Introduction

Several natural products with a [b]-annulated 2,3-dihydrobenzofuran ring system are known.^[1] Most of these belong to the natural product class of the flavaglines. Two examples are Rocaglamid (1) as well as the synthetic CR-31-B (2). Due to recent publications on the antiviral activities of some flavaglines against SARS-CoV-2 and many other viruses, the development of a synthetic route to structural analogues of these compounds is a central goal of organic chemistry in the context of the ongoing corona pandemic.^[2]

Copper-catalyzed C–O-coupling

After an extensive screening the Ullmann-like, copper-catalyzed C– O-coupling reaction of α -arylated β -oxoesters **5** could be optimized and the yield of the annulated benzofuran 6a has been raised from the initial 9% to 69%. With the optimized reaction conditions in hand, we investigated the scope of the transformation to the annulated benzofuran derivatives 6.

We have developed a new method to construct the scaffold of the flavaglines. Here, an Ullmann-like, copper-catalyzed C–O-coupling reaction of various α -arylated β -oxoesters **5** was investigated and optimized. The synthesis of these α -arylated β -oxoesters **5** was previously established by our group via an ioda-Claisen-type rearrangement of β -oxoesters **3** with several PIFA-Derivatives **4**.^[3,4]

In order to explore the scope of the reaction, the ring size was

varied (6a-6c). Furthermore, electron withdrawing substituents in the aromatic ring (6d–6h) as well as heteroatoms in the [b]annulated ring (6i-6j) were introduced. Yields of up to 90% could be obtained by this method, thus the copper-catalyzed C-Ocoupling reaction has a potentially broad range of application.

Examples for further Derivatization

To get closer to our goal of the preparation of structural analogues of flavaglines we further derivatized benzofuranes 6, for example through the introduction of an electron rich aromatic ring or a Ritter reaction in the enol ether position both by acid catalysis to obtain compounds 7 and 8 in yields of 76% and 67%, respectively. Further examples of derivatization comprise of coupling reactions.

A Heck reaction of the brominated annulated benzofuran 6d with styrene resulted in the corresponding product **9** with a yield of 92%. Suzuki coupling reactions of benzofuran 6d with different boronic acids led to the products **10a–10c** in yields of 70–97%. This is just a glimpse at the versatility and possible reactions of the annulated benzofuranes 6.

- H. Greger, *Phytochem. Rev.* **2022**, *21*, 725–764. 1
- C. G. Nebigil, C. Moog, S. Vagner, N. Benkirane-Jessel, D. R. Smith, L. Desaubry, Eur. J. Med. Chem. 2020, 203, 112653. [2]
- A. Dierks, J. Tönjes, M. Schmidtmann, J. Christoffers, Chem. Eur. J. 2019, 25, 14912–14920. [3]
- J. Strehl, C. Kahrs, T. Müller, G. Hilt, J. Christoffers, Chem. Eur. J. 2020, 26, 3222–3225. |4|