Carl von Ossietzky Universität Oldenburg

New Mesityl-Substituted 1,3-Diketone Ligands for Cerium Catalysis

Gülsera Eruçar and Jens Christoffers*

Institut für Chemie, Universität Oldenburg, Carl von Ossietzky-Str. 9-11, D-26129 Oldenburg

The use of a non-toxic cerium catalyst and atmospheric oxygen presents a considerable advantage for sustainability in synthetic organic chemistry. A novel 1,3-diketone ligand was developed to oxidize cerium(III) to cerium(IV) without being consumed as a substrate. This offers the opportunity to develop cerium-catalyzed oxidation reactions.

Previous Work

Our group pioneered the use of cerium as a catalyst metal for reactions, such as coupling β -oxoesters, like compound 1, with enol esters to prepare δ-lactones 6 or 1,4-diketones 5.^[1,2] This environmentally sustainable method utilizes a non-toxic cerium catalyst with atmospheric oxygen, where substrate **1** serves as a ligand for the catalyst, facilitating the oxidation of cerium(III) to cerium(IV) (species $3a$ and $3b$). In the absence of an enol ester, β -oxoester 1 is transformed into its α -hydroxy derivative 4.^[3]

Stability Tests

l

To investigate the stability of the synthesized ligand **9b** it was exposed to conditions for cerium-catalyzed oxidations. In contrast to the decomposition of the phenyl derivate $9a$ to the α -hydroxy compound **10** and a 1,2-diketone **11**, the mesitylated derivative **9b** remains stable.

Concept and Synthesis

We have now proceeded towards the development of a novel type of 1,3-diketone ligand, designed to oxidize cerium(III) to cerium(IV) (species **7a** and **7b**) without consumption as a substrate. This would open up possible pathways for numerous cerium-catalyzed oxidation reactions.

The ligand was synthesized via a three-step process, in which a triaryl bismuthane is prepared by Grignard reaction from $BiCl₃$. Followed by oxidative halogenation with sulfuryl chloride, to then employ the resulting Mes₃BiCl₂ in the α -arylation of acetylacetone, which gave the ligand **9b** in 56% yield. Its phenylated congener **9a** was obtained by Ullmann coupling of iodobenzene and acetylacetone with copper iodide in a 59% yield.

(a) $Ar = Ph$: Cul, L-Pro, K_2CO_3 , Phl, *abs.* DMSO, 100^oC, 18 h (b) $Ar = Mes: Mes_3BiCl_2$, TMG, *abs*. THF, r.t., 48 h

Preliminary Results of Catalytic Activity

Catalytic activity was evaluated through the model reaction of PMB ether deprotection. Experiments were controlled by GLC and GC-MS analysis, tracking the conversion of starting material **12**, formation of cyclohexylmethanol **13** and any byproducts. The traditional method of using stoichiometric CAN posed as a comparison.

[1] I. Geibel, A. Dierks, T. Müller, J. Christoffers, *Chem. Eur. J.* 2017, 23, 7245-7254.

[2] (a) M. Rössle, T. Werner, A. Baro, W. Frey, J. Christoffers, *Angew. Chem. Int. Ed.* **2004**, *43*, 6547 6549; *Angew. Chem.* **2004**, *116*, 6709 6711. (b) I. Geibel, J. Christoffers, *Eur. J. Org. Chem.* **2016**, 918 920.

[3] J. Christoffers, T. Werner, *Synlett* **2002**, 119-121.