Synthetic Studies on Canangone and β-Chamigrene

von der Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky-Universität Oldenburg zur Erlangung des Grades und Titels eines Doktors der Naturwissenschaften
(Dr. rer. nat.)
angenommene Dissertation

von

Girish Kumar Koripelly
geboren am 10. Oktober 1976 in Adilabad/Indien

This work was carried out from Oct 2004 to Feb 2006 at the Institut für Organische Chemie, Universität Stuttgart and from March 2006 to Nov 2007 at the Institut für Reine und Angewandte Chemie, Carl von Ossietzky-Universität Oldenburg under the guidance of Prof. Dr. Jens Christoffers.

Gutachter: Prof. Dr. Jens Christoffers
Zweitgutachter: Prof. Dr. Jürgen Martens

Tag der Disputation: 04. Februar 2008

My brother...
K. Rama Krishna Reddy

Acknowledgements

I would like to express sincere gratitude to my research advisor, Prof. Dr. Jens Christoffers for taking me into his team and giving me an interesting topic as well as guiding me with constant encouragement and patience throughout my Ph. D.

I would like to thank Prof. Dr. Jürgen Martens for reviewing my doctoral thesis and giving valuable comments and suggestions.

I am grateful to all the members of the analytical department at the Institutes of Organic Chemistry, Universities of Stuttgart and Oldenburg.

I wish to express my special thanks to Mr. Wolfgang Saak, Mr. Detlev Hasse for measuring the X-ray structures and Dr. Thomas Glatzel for assisting me in performing the preliminary biological studies.

My heartfelt thanks to all the past and current group members, Dr. Thomas Werner, Dr. Burkard Kreidler, Dr. Heiko Scharl, Dr. Sven Unger, Dr. Thomas Kauf, Dr. Anna Rosiak, Michael Rössle, Ralf M. Müller, Yawei Zhang, Claas Lüder Diedrich, Rebekka Pflantz, Dr.
Herbert Frey, Francesco Fabretti, Dr. Rajamalleswaramma "Mallu" Jogireddy, Alkit Beqiraj, Elisabeth Jaskulska, and Heiko Schramm for providing a social and stimulating work environment in Stuttgart and Oldenburg.

I would like to thank especially Jagan, Banala Srinivas, Bantu Bhasker, Mahendra Gulla, Marthala Ramana and Jatin Kumar Sinha for their support during my stay in Stuttgart and Oldenburg.

Finally and most importantly, I would like to thank my parents, brother, sister and bro-ther-in-law for their love, effection and constant support, without them nothing would have been possible.

Table of Contents

I Kurzzussammenfassung 1
II English Summary 4
1 Introduction 7
1.1 Stereoselective Synthesis 8
1.2 Quaternary Stereocenters 11
1.3 Michael and Conjugate Addition Reactions 12
1.4 Spirocycles 15
1.4.1 Alkylation 16
1.4.2 Rearrangement Reactions 17
1.4.3 Cycloaddition Reactions 18
1.4.4 Conversion of Bridged Systems into Spirocycles 19
1.5 Michael Reaction/Robinson Annulation 19
1.6 Chamigrenes 22
1.6.1 Isolation of Chamigrenes 22
1.6.2 Total Syntheses of β-Chamigrene 23
1.6.2.1 Total Synthesis of $(\pm)-\beta$-Chamigrene by Tanaka et al. 23
1.6.2.2 Total Synthesis of $(\pm)-\beta$-Chamigrene by Ireland et al. 24
1.6.2.3 Total Synthesis of $(\pm)-\beta$-Chamigrene by Martin et al. 25
1.6.2.4 Total Synthesis of $(\pm)-\beta$-Chamigrene by Adams et al. 26
1.6.2.5 Total Synthesis of $(\pm)-\beta$-Chamigrene by Srikrishna et al. 27
1.6.2.6 Attempted Synthesis of β-Chamigrene From Our Group 28
2 Goal of this Work 30
2.1 Retrosynthetic Analysis for Canangone 19 30
2.2 Retrosynthetic Pathway for β-Chamigrene 18 32
3 Results and Discussion 35
3.1 Canangone 35
3.1.1 Synthesis of Michael Acceptors 35
3.1.1.1 Synthesis of Protected Hydroxy Acetic Acid 82 35
3.1.1.2 Synthesis of Weinreb Amide 81 37
3.1.1.3 Synthesis of Vinyl Ketone 9 39
3.1.2 Synthesis of Racemic Canangone 19 41
3.1.2.1 Synthesis of Michael Product 79a Using Lewis Acidic Conditions 41
3.1.2.2 Under Basic Conditions 42
3.1.2.3 Regioselective Spiroannulations Using Acidic Conditions 43
3.1.2.4 Using Buffered Conditions 45
3.1.2.5 Using Lewis Acidic or LDA Conditions 45
3.1.2.6 Spiroannulations Using Enaminolactone 78 47
3.1.2.7 Synthesis of rac-Spirolactone 77b Using Enaminolactone 78 49
3.1.2.8 Attempted Synthesis of Spirolactone 77c from Enaminolactone 78 50
3.1.2.9 Synthesis of Spirolactone 77d from Enaminolactone 78 51
3.1.2.10 Luche Reduction of Spirolactone 62a 52
3.1.2.11 Deprotection of the 3,4-Dimethoxy Benzyl Group of Spirolactone 62a 54
3.1.2.12 Selective Reduction of Enone 75 Using Luche Reduction 55
3.1.2.13 Selective Oxidation of $\operatorname{Diol}\left(5 R^{*}, 6 S^{*}\right)$ - 74 and $\left(R^{*}, R^{*}\right)-74$ 56
3.1.3 Synthesis of Optically Active Canangone 19 58
3.1.3.1 Synthesis of Optically Active Spirolactone 77b 59
3.1.3.2 Synthesis of Optically Active Spirolactone 75 60
3.1.3.3 Brosylation of Spirolactone 75 61
3.1.3.4 Synthesis of Optically Active Diol 74 63
3.1.3.5 TEMPO Oxidation of $(5 R, 6 S)-74$ and $(R, R)-74$ 64
3.1.4 Optically Active Synthesis of (S, S)-Canangone 65
3.1.5 Brief Introduction of Screening on Biologically Active Compounds 68
3.1.5.1 Hatching the Shrimp and Bioassay 68
3.1.5.2 Sample Preparation and the Test for Biological Activity 69
3.2 Attempted Synthesis of Chamigrene 70
3.2.1 Synthesis of Cyclic β-Ketoester 12i 70
3.2.2 Synthesis of Dibromide 83 70
3.2.2.1 Synthesis of β-Methyl Glutaconic Acid 87 70
3.2.2.2 Synthesis of Glutaconic Anhydride 86 72
3.2.2.3 Synthesis of Diol 64 72
3.2.3 Model Study for Alkylation Using Allyl Bromide 117 74
3.2.3.1 Attempted Synthesis for an Exclusive C-Allylated Product 123 77
3.2.4 Second Retrosynthetic Analysis for β-Chamigrene 18 79
3.2.4.1 Synthesis of Acetyl Cyclohexene 130 80
3.2.4.2 Synthesis of Alkylated Product 129 from Acetyl Cyclohexene 130 81
3.2.4.3 Attempted Synthesis for the Spiroannulated Product 42a 84
4 Summary and Conclusion 87
5 Experimental Section 93
5.1 General Information 93
5.1.1 Analytical Methods 93
5.1.2 Chromatography 94
5.1.3 Solvents and Chemicals 95
5.1.4 Working techniques 95
5.2 Experimental Procedures for Canangone 19 and Their Intermediates 96
5.2.1 Synthesis of DMB Protected Vinyl Ketone 9d 96
5.2.1.1 (3,4-Dimethoxybenzyloxy)acetic acid (82a) 96
5.2.1.2 2-(3,4-Dimethoxybenzyloxy)- N -methoxy- N -methylacetamide (81a) 97
5.2.1.3 1-(3,4-Dimethoxybenzyloxy)-3-buten-2-one (9d) 98
5.2.1.4 3-(3,4-Dimethoxybenzyloxymethyl)penta-1,4-dien-3-ol (97) 100
5.2.1.5 1-(3,4-Dimethoxybenzyloxy)-4-(methoxymethylamino)-2-butanone 101 (96)
5.2.2 Synthesis of PMB Protected Vinyl Ketone 9e 102
5.2.2.1 (4-Methoxybenzyloxy)acetic acid ${ }^{[117]}$ (82b) 102
5.2.2.2 $\quad \mathrm{N}$-Methoxy-2-(4-methoxybenzyloxy)-N-methylacetamide (81b) 103
5.2.2.3 1-(4-Methoxybenzyloxy)-3-buten-2-one (9e) 104
5.2.3 Synthesis of Trityl Protected Vinyl Ketone 9f 106
5.2.3.1 Trityloxyacetic acid ${ }^{[119]}$ (82c) 106
5.2.3.2 N-Methoxy-N-methyl-2-trityloxyacetamide (81c) 107
5.2.3.3 1-Trityloxy-3-buten-2-one (9f) 108
5.2.4 Synthesis of Michael Product 79a 109
5.2.4.1 Procedure 1 for the Iron Catalyzed Michael reaction 109
5.2.4.2 2,3,7,8,12,13-Hexamethoxy-10,15-dihydro-5H-tribenzo[a,d,g]cyclo- 111 nonane ${ }^{[128]}$ (99)
5.2.4.3 Procedure 2 for the Base Catalyzed Michael Product (79a) 112
5.2.5 Attempted Synthesis of Spirolactone 75 112
5.2.5.1 7-Hydroxy-6-methyl-2-oxaspiro[4.5]-6-decene-1,8-dione (100) 112
5.2.5.2 Procedure for an Attempt of Aldol Cyclization with Lewis Acid 114
5.2.5.3 7-(3,4-Dimethoxybenzyloxy)-6-methyl-2-oxaspiro[4.5]-6-de- 114 cene-1,8-dione (104)
5.2.5.4 7-(3,4-Dimethoxybenzyloxy)-6-hydroxy-6-methyl-2-oxa- 115 spiro[4.5]decane-1,8-dione (103)
5.2.5.5 rac-Acetyl-3-(3-oxo-4-trityloxybutyl)-4,5-dihydro-2-furanone (79b) 117
5.2.5.6 Procedure for an Aldol Cyclization Under Acidic $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ Conditions 118
5.2.6 Synthesis of Spirolactone 77a 118
5.2.6.1 rac-(Z)-3-[1-(1-Phenylethylamino)ethylidene]-4,5-dihydro-2-fura- 118 none ${ }^{[129]}$ (78)
5.2.6.2 rac-8-Methyl-6-(1-phenylethylimino)-2-oxaspiro[4.5]-7-decen-1-one 120 (109a) ${ }^{[129]}$
5.2.6.3 rac-8-Methyl-2-oxaspiro[4.5]-7-decene-1,6-dione ${ }^{[42]}$ (77a) 120
5.2.7 Synthesis of Spirolactone 77b 122
5.2.7.1 rac-8-(3,4-Dimethoxybenzyloxymethyl)-6-(1-phenylethylimino)-2- 122 oxaspiro[4.5]-7-decen-1-one (109b)
5.2.7.2 rac-8-(3,4-Dimethoxybenzyloxymethyl)-2-oxaspiro[4.5]-7-de- 123 cene-1,6-dione (77b)
5.2.8 Synthesis of Sprolactone 77c 124
5.2.8.1 rac-6-(1-Phenylethylimino)-8-trityloxymethyl-2-oxa- 124 spiro[4.5]-7-decen-1-one (109c)
5.2.9 Synthesis of Spirolactone 77d 125
5.2.9.1 rac-8-(4-Methoxybenzyloxymethyl)-6-(1-phenylethylimino)-2- 125 oxaspiro[4.5]-7-decen-1-one (109d)
5.2.9.2 rac-8-(4-Methoxybenzyloxymethyl)-2-oxaspiro[4.5]-7-decene-1,6-di- 125 one (77d)
5.2.10 Synthesis of Canangone 19 127
5.2.10.1 rac-8-(Hydroxymethyl)-2-oxaspiro[4.5]-7-decene-1,6-dione (75) 127
5.2.10.2 rac-(1,6-Dioxo-2-oxaspiro[4.5]-7-decen-8-yl)methyl-4- bromobenzene 129 sulfonate (112)
5.2.10.3 rac-8-(3,4-Dimethoxybenzyloxymethyl)-6-hydroxy-2-oxaspiro[4.5]-7- 130decen-1-one (76)
5.2.10.4 rac-6-Hydroxy-8-(hydroxymethyl)-2-oxaspiro[4.5]-7-decen-1-one (74) 133
5.2.10.5 $\left(R^{*}, S^{*}\right)$-6-Hydroxy-1-oxo-2-oxaspiro[4.5]-7-decene-8-carbaldehyde (19) 136
5.2.10.6 $\left(R^{*}, R^{*}\right)$-6-Hydroxy-1-oxo-2-oxaspiro[4.5]-7-decene-8-carbaldehyde (19) 137
5.3 Experimental Procedures for Attempted Synthesis of Chamigrene 18 139
5.3.1 Synthesis of Dibromide 83 139
5.3.1.1 Ethyl 2,4-Dimethyl-6-oxo-6H-pyran-3-carboxylate ${ }^{[142]}$ (113) 139
5.3.1.2 2,4-Dimethyl-6-oxo-6H-pyran-3-carboxylic acid ${ }^{[142]}$ (114) 140
5.3.1.3 (E)- and (Z)-3-Methyl-2-pentenedioic acid ${ }^{[142]}$ (87) 141
5.3.1.4 Glutaconic Anhydride ${ }^{[144]}$ (86) 142
5.3.1.5 (Z)-3-Methyl-2-pentene-1,5-diol ${ }^{[143]}$ (85) 143
5.3.1.6 3-Methylpentane-1,5-diol (116) 144
5.3.1.7 (Z)-1,5-Dibromo-3-methyl-2-pentene ${ }^{[151]}$ (83) 145
5.3.2 Synthesis of β-Ketomethylester 12i 146
5.3.2.1 Methyl 7-methyl-3-oxo-6-octenoate ${ }^{[140]}$ (12j) 146
5.3.2.2 Methyl 6,6-Dimethyl-2-oxocyclohexanecarboxylate ${ }^{[141]}$ (12i) 148
5.3.3 Synthesis of 2-Allyl Cyclohexanone 120 149
5.3.3.1 Methyl 2-Allyloxy-6,6-dimethyl-1-cyclohexenecarboxylate ${ }^{[147]}$ (118) 149
5.3.3.2 Methyl 1-Allyl-6,6-dimethyl-2-oxocyclohexanecarboxylate ${ }^{[147]}$ (119) 150
5.3.3.3 2-Allyl-3,3-dimethylcyclohexanone ${ }^{[147]}$ (120) 151
5.3.4 Synthesis of Cyclohexene Derivative 139 152
5.3.4.1 4-Acetyl-1-methylcyclohexene ${ }^{[149]} \mathbf{(1 3 0)}$ 152
5.3.4.2 1-Iodo-3-methyl-2-butene ${ }^{[150]}$ (136) 154
5.3.4.3 5-Methyl-1-(4-methyl-3-cyclohexenyl)-4-hexen-1-one (129) 155
5.3.4.4 5-Methyl-2-(3-methyl-2-butenyl)-1-(4-methyl-3-cyclohexenyl)-4-hex- 156 en-1-one (131)
5.3.4.5 5-Hydroxy-5-methyl-1-(4-methyl-3-cyclohexenyl)hexan-1-one (137) 157
5.3.4.6 2,2-Dimethyl-6-(4-methyl-3-cyclohexenyl)-3,4-dihydro-2H-pyran 159 (140)
6 Data for Crystal Strucure Analysis 160
6.1 Crystal Structure Data for $\left(5 R^{*}, 6 S^{*}\right)-74$ 160
6.2 Crystal Structure Data for (R) - $\mathbf{- 1 1 2}$ 161
$7 \quad$ Abbreviations 163
8 Bibliography 165
9 List of Synthesized Compounds 173
10 List of Publications 177

I Kurzzusammenfassung

Das Ziel dieser Arbeit war die Synthese zweier Verbindungen mit quartären Stereozentren, (+)-Canangon 19 und β-Chamigren 18 (Abbildung I). Canangon kann aus den Blättern der Pflanze ylang-ylang (Cananga odorata) aus der Familie der annonaceae gewonnen werden. Caloprisco et al. bestimmte dessen relative Konfiguration $\mathrm{zu}\left(R^{*}, R^{*}\right)$, wobei jedoch weiterhin die absolute Konfiguration unklar blieb. Daher diente die erste Totalsynthese von Canangon zusätzlich auch zur Klärung der absoluten Stereochemie der Verbindung. Das Terpen β-Chamigren ist ebenfalls ein Pflanzeninhaltsstoff, welcher aus den Blättern einiger Zypressenarten oder den Früchten der Schizandra chinensis-Liane isoliert werden kann.

19

18

Abbildung I. (+)-Canangon 19 and β-Chamigren 18.

Ausgehend von den beiden kommerziell günstig erhältlichen Verbindungen 3,4-Dimethoxybenzylalkohol 89a und Bromessigsäure 90 wurde der Michaelakzeptor 9d in drei Stufen via Williamsonsche Ethersynthese, Aminolyse und Grignardaddition dargestellt. Spirolacton 77b wurde durch eine Robinson-Anellierung des Enaminlactons 78 mit Michaelakzeptor 9d in einer Ausbeute von 40\% über beide Stufen synthetisiert. Nach dem Entschützen mit TFA wurde Enon 75 zu den beiden diastereoisomeren Alkoholen $\left(R^{*}, R^{*}\right)$-74 und $\left(5 R^{*}, 6 S^{*}\right)$-74 reduziert. Schließlich wurden diese selektiv mit $\mathrm{O}_{2} \mathrm{zu}\left(R^{*}, R^{*}\right)$-Canangon 19 und ($5 R^{*}, 6 S^{*}$)-epi-Canangon 19 oxidiert (Schema I). Die beiden optischen Antipoden (+)- und
(-)-Canangon 19, sowie deren Epimere wurden nach der gleichen Synthesestrategie erhalten.

Schema I. Synthese von Canangon 19, sowohl racemisch als auch in optisch aktiver Form.

Um die biologische Aktivität zu evaluieren, wurden Versuchsreihen mit Salinenkrebslarven durchgeführt. Allerdings zeigten die untersuchten Verbindungen selbst bei hohen Konzentrationen keine signifikante Toxizität.
Um nun das zweite Syntheseziel, β-Chamigren 18, zu erhalten, wurden zwei unterschiedliche Ansätze verfolgt. Zuerst sollte eine konvergente Synthese vom cyclischen β-Ketoester 12i und von Dibromid 83 über die spirocyclische Vorstufe 47a verlaufen (Schema II). Nach einigen erfolglosen Versuchen Verbindung 47a darzustellen, wurde diese Strategie aufgegeben und eine Alternativroute beschritten.

Schema II. Erster Syntheseversuch von β-Chamigren 18.

Nach dieser sollte β-Chamigren 18 in nur vier Stufen zugänglich sein. Eine Lewis-Säure-katalysierte Diels-Alder-Reaktion von Methylvinylketon 9a mit Isopren 45 ergab Cyclohexen 130. Die Umsetzung mit Prenyliodid 136 führte daraufhin glatt zur monoalkylierten Verbindung 129, welche sich allerdings nicht mehr weiter zur spirocyclischen Vorstufe 47a cyclisieren ließ (Schema III).

Schema III. Zweiter Syntheseversuch von β-Chamigren 18.

II English Summary

The objective of this work was to synthesize the quaternary stereocenter containing spirocycles, (+)-Canangone 19 and β-Chamigrene 18 (Figure II). Canangone was extracted from the leaves and branches of ylang-ylang (Cananga odorata), which belongs to the family of annonaceae. The relative configuration was elucidated to be $\left(R^{*}, R^{*}\right)$ by Caloprisco and coworkers but the absolute configuration was so far unknown. The first synthesis of Canangone 19 and also its absolute stereochemistry was accomplished for the first time in this work.

19

18

Figure II. (+)-Canangone 19 and β-Chamigrene 18.

The synthesis was started with cheap and commercially available 3,4-dimethoxy benzyl alcohol 89a and bromoacetic acid 90. Michael acceptor 9d was prepared in three steps over 64% yield using Williamson ether synthesis, aminolysis and Grignard reaction conditions. The Robinson annulation of enamino lactone 78 and Michael acceptor 9d followed by hydrolysis provided the spirolactone 77b in 40\% yield over two steps. Subsequent deprotection of 3,4-dimethoxy benzyl group using TFA and Luche reduction of enone 75 furnished the diastereomeric alcohols $\left(R^{*}, R^{*}\right)-74$ and $\left(5 R^{*}, 6 S^{*}\right)-74$. The latter was further transformed to $\left(R^{*}, R^{*}\right)$-Canangone 19 and ($5 R^{*}, 6 S^{*}$)-epi-Canangone 19 under selective oxidation conditions (Scheme IV). Following the same strategy, optically active (+)-Canangone and (-)-Canangone, and their epimers were synthesized.

Scheme IV. Synthesis of Canangone 19, both in racemic as well as in optically active series.

After synthesizing the racemic as well as the optically active Canangone 19, preliminary biological tests were carried out using brine shrimps in order to check the toxicity of the compounds. But unfortunately, the biological tests showed no significant toxicity even at higher concentrations. Nevertheless, the compounds isolated from ylang-ylang species can be useful in perfumery and aromatherapy. As a second target, the synthesis of β-Chamigrene 18 was attempted using a convergent synthesis from cyclic β-ketoester 12 i and dibromide 83 in order to obtain its potential precursor 47a (Scheme V). But unfortunately, attempts to synthesize the β-Chamigrene precursor 47a completely failed.

Scheme V. First synthetic approach for the synthesis of β-Chamigrene 18.

An alternative route was proposed, in which β-Chamigrene 18 could be synthesized in only four steps. The Lewis acid catalysed Diels-Alder reaction of methyl vinyl ketone 9a and isoprene 45 using $\mathrm{Sc}(\mathrm{OTf})_{3}$ gave acetyl cyclohexene 130. The alkylation of the Diels-Alder product 130 using prenyl iodide 136 provided successfully the mono alkylated product 129, but unfortunately, attempts to cyclize this product failed completely to give the desired spirocyclic compound 47a (Scheme VI).

Scheme VI. Second synthetic approach for the synthesis of β-Chamigrene 18.

1 Introduction

At the dawn of the twenty-first century, the state of the art and science of synthesis is as healthy and vigorous as ever. The birth of this exhilarating, multifaceted, and boundless science is marked by the Wöhlers' synthesis of urea in 1828. Organic synthesis is considered, to be a key technology which is essential for life science (e.g. drug discovery and drug production), high-tech materials, polymers, fertilizers, cosmetics, clothing, as well as for the development of nano devices. ${ }^{[1]}$ The chemical synthesis of natural molecules without the aid of enzymes often presents formidable challenges to human ingenuity and skill. While chemical processes for the synthesis of oligonucleotides and peptides are now well developed and quite routine, nature's secondary metabolites, commonly known as natural products, are not always easy to construct in the laboratory.[2] The syntheses of the nineteenth century were relatively simple and, with a few exceptions, were directed towards benzenoid compounds. The starting materials for these target molecules were benzenoid compounds, chosen for their resemblance to the targeted substance and the ease by which the synthetic chemist could connect them by simple functionalization chemistry. The twentieth century was destined to bring dramatic advances in the field of synthesis. The era began with impressive strides and with increasing molecular complexity and sophistication in strategy design. Some of the most notable examples of synthesis of this era were Robinson's one-step synthesis of tropinone ${ }^{[3]}$ (1917) from succindialdehyde, methylamine, and acetone dicarboxylic ester and H. Fischer's synthesis of haemin ${ }^{[4]}$ (1929). Both of them went on to win a Nobel Prize for Chemistry (Fischer, 1929; Robinson, 1947).

1.1 Stereoselective Synthesis

Stereoselective synthesis, also called enantioselective synthesis or diastereoselective synthesis, is the organic synthesis which introduces one or more new and desired elements of chirality. The demand for chiral compounds, often as single enantiomers, has escalated sharply in recent years, driven particularly by the demands of the pharmaceutical industry and also by other applications, including agrochemicals, flavors, fragrances and materials. Although the most obvious applications are bio-related, materials science also relies on the properties imparted by chirality, notably in chiral polymers and liquid crystals. This widespread demand for optically active compounds has stimulated intensive research to develop improved methods for synthesizing single enantiomers. This is particularly important in the field of pharmaceuticals, because the different enantiomers or diastereomers of a compound often have different biological activity. One such example is the chiral drug Thalidomide 1 (Figure 1), which was prescribed as an antiemetic to combat morning sickness and an aid to help the sleep for pregnant women.

(S)-Thalidomide (S)-1 sedative

(R)-Thalidomide (R)-1 tetratogen

Figure 1. The two enantiomers (S)-1 and (R)-1 of Thalidomide having different biological effects.

However, it turned out that whereas the S-enantiomer had indeed this desired property, the other enantiomer was tetratogenic and caused deformities in the
children born from the women treated with the drug. ${ }^{[5,6]}$ When one considers that the phrase "asymmetric synthesis" was just of mechanistic curiosity in 1965 with no one really believing that this could become an important part of molecular synthesis, the rate of progress has been remarkable. In just over 30 years the organic chemist has transformed this virtually unknown aspect of synthesis into a serious route to virtually every class of chiral organic compounds in greater than 90\% enantiomeric purity.

Since the pioneering times of the mid-1970s, when the first practical and generally applicable methods in asymmetric synthesis ${ }^{[7]}$ were developed, such as the sultam 2 method by Oppolzer ${ }^{[8]}$ and the SAMP/RAMP 3 hydrazone method by Enders ${ }^{[9]}$ (Figure 2), there has been a tremendous growth in this research field. One major driving force for this rapid development is of course the different biological activities of enantiomers and thus the need for enantiopure compounds.

SAMP (S)-3

RAMP (R)-3

Figure 2. Chiral auxiliaries for asymmetric synthesis.

During the past few decades there has been intensive research into developing methods for synthesizing one of the enantiomers rather than the other. Among the significant achievements in this area are (i) asymmetric hydrogenation of dehydroamino acids, a ground-breaking work by William S. Knowles et al.[10] (ii) the Sharpless epoxidation by K. B. Sharpless et al.[11] and (iii) the second generation asymmetric hydrogenation process developed by R. Noyori et al. ${ }^{[12]}$ deserve particular attention because of the tremendous impact that these processes have made in synthetic organic chemistry. In 2001, Nobel Prize in Chemistry has been awar-
ded to William S. Knowles, Ryoji Noyori and K. Barry Sharpless for developing chiral catalysts for hydrogenations and oxidations. The achievements of these three chemists are of great importance for academic research, for the development of new drugs and materials, and are being used in many industrial syntheses of pharmaceutical products and other biologically active substances.

The successful industrial example in the field of catalytic asymmetric synthesis is the Monsanto process for the commercial synthesis of L-DOPA 6 (Scheme 1), a rare amino acid which is effective in the treatment of Parkinson's disease. ${ }^{[13]}$ Monsanto process, the first commercialized catalytic asymmetric synthesis employing a chiral transition metal complex, was introduced by W. S. Knowles and co-workers and has been in operation since 1974. This large scale process for the synthesis of L-DOPA $\mathbf{6}$ is based on a catalytic asymmetric hydrogenation. In the key step of this synthesis by Monsanto, enamide 4 is hydrogenated in the presence of a catalytic amount of $[\mathrm{Rh}(R, R)$-dipamp $) \mathrm{cod}]^{+} \mathrm{BF}_{4}-7$ affording protected amino acid 5 in quantitative yield and in 95% ee. A simple acid-catalyzed hydrolysis step completes the synthesis of L-DOPA 6.

4

(R, R)-DiPAMP $=$

7

5 (100\%, 95\% ee)

L-DOPA 6

Scheme 1. The Monsanto synthesis of L-DOPA 6 using catalytic asymmetric hydrogenation.

1.2 Quaternary Stereocenters

Synthetic chemists nowadays can create almost every tertiary stereocenter with excellent levels of enantiocontrol and chemical yields. Various methodologies or series of tailor made ligands have been developed and are used commonly in organic synthesis. In contrast to tertiary stereocenters, the construction of quarternary stereocenters remains the milestone of every enantioselective procedure. However, catalytic enantioselective C-C bond formation of all-carbon quaternary stereocenters, i.e. carbon stereocenters bearing four different carbon substituents, still represents a tremendous challenge for synthetic organic chemists.[14-22] Moreover, when a carbon stereocenter is situated near a vicinal tertiary or quaternary stereocenters, the construction of these features become even more problematic. The difficulty for the construction of these motives arises often from steric hindrance and a limited amount of reliable reactions.

The development of efficient asymmetric methods for constructing $\mathrm{C}-\mathrm{C}$ bonds have enjoyed considerable attention from the organic community in the past 30 years. The need to generate such C-C bonds has provoked the disclosure of several asymmetric methods. ${ }^{[14-22]}$ In the beginning, most of the reported methods involved the use of chiral auxiliaries to induce enantioselectivity in the newly formed C-C bonds. Despite the stoichiometric use of chiral auxiliaries, this approach still boasts practical aspects. However, efficient enantioselective catalytic methods provide an access to optically active materials in large amounts using small quantities of chiral catalysts without the necessity of removing the chiral unit. As a result, research devoted towards the development of enantioselective catalytic methods is gaining in importance and major breakthroughs have recently been achieved.[23,24]

Frequently used quaternary $\mathrm{C}-\mathrm{C}$ bond formation reactions are: cycloadditions like Diels-Alder reactions,[25] Pd-allylation reactions,,[26,27] and Michael additions, also known as conjugate additions. ${ }^{[14]}$ Asymmetric Michael reaction is the most
frequently used method for the construction of quaternary stereocenters with high selectivity, which have been developed by several groups. ${ }^{[14]}$

1.3 Michael and Conjugate Addition Reactions

Conjugate additions of carbon nucleophiles to acceptor activated carbon-carbon multiple bonds (the Michael addition) are very useful and versatile reactions for the synthesis of quaternary carbon centers. However, very limited success has been achieved in the development of highly enantioselective catalytic versions until recently. ${ }^{[15,28-30]}$ An important breakthrough in the studies of transition metal catalyzed Michael additions came into light by the work of Ito and coworkers, who have developed an optically active diphosphanebiferrocene ligand 11 called PhTRAP with both planar and central chirality, which is a rare case of a diphosphane ligand that chelates to $\mathrm{Pt}(\mathrm{II}), \mathrm{Pd}(\mathrm{II})$ and $\mathrm{Rh}(\mathrm{I})$ center metals in a trans manner. ${ }^{[31-34]}$ First studies on asymmetric Michael addition of a-cyanopropionate 8 to olefins 9 with a Rh catalyst generated in situ from $\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ and $(S, S)-(R, R)$-PhTRAP 11 gave product 10 with a quaternary stereocenter in excellent yields and 85-94\% ee selectivity.[31] (Scheme 2).

Scheme 2. Rh-catalyzed asymmetric Michael reaction using optically active PhTRAP ligand 11.

In 1999, Christoffers' group carried out an intensive screening program with several primary chiral amines and transition metal salts catalysts, which led to the development of a highly reliable process for the formation of stereocenters by Michael reaction. ${ }^{[35]}$ Transition metal catalysis of the Michael reaction of 1,3-dicarbonyl compounds with acceptor-activated alkenes is herein a valuable alternative to the classic base catalysis of this reaction. Owing the mild, neutral reaction conditions, the chemoselectivity of these processes is often superior to that offered by the base catalysis, since the latter suffers from various unwanted side- and subsequent reactions, such as aldol cyclizations and ester solvolysis. The most efficient transition-metal catalysts do not require inert or anhydrous conditions. L-Valine diethylamide 13 as chiral auxiliary combined with catalytic quantities of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ turned out to be extraordinarily efficient for this purpose. Representative results are depicted in Scheme 3.[36-42]

15b (50\%, 98\% ee)

15e (74\%, 96\% ee)

15c (76\%, 94\% ee)

$15 \mathbf{f}(79 \%, 95 \%$ ee $)$

15d (74\%, 97\% ee)

15g (46\%, 87\% ee)

Scheme 3. $\mathrm{Cu}(\mathrm{II})$-catalyzed asymmetric Michael reaction with L-Valine diethylamide 13 as chiral auxiliary.

The developed procedure is of practical interest: conversion of enamines such as 14 with $9 \mathbf{a}$ in the presence of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1-5 \mathrm{~mol} \%)$ proceeds at ambient temperature. Anhydrous or inert conditions are not required, and the solvent is simply acetone. After acidic workup, all the products were isolated in generally
good yield, with selectivities up to $95-99 \%$ ee. The auxiliary could be separated from the reaction mixture by extraction and recovered almost quantitatively. The selectivities obtained for these products have, to date, not been exceeded by other methods. A special feature of the copper-catalyzed reaction is the compatibility with donor functions such as the carbamate moiety in product 15d. ${ }^{[38]}$ Substrates of this type do not convert in reactions using Shibasaki's heterobimetallic catalysts.

1.4 Spirocycles

The name "spirocyclane" was first introduced by Baeyer in 1900[43,44] for those bicyclic hydrocarbons "welche ein beiden Ringen gemeinschaftliches quartärers Kohlenstoffatom enthalten: Spirocyclane, von 'spira' die Brezel". Thus the origin of spiro is from the Latin meaning spiral, which Baeyer construed to be like a pretzel. Spirocyclic compounds have attracted considerable attention recently from the standpoints of synthesis and reactivity. Spirocyclic structures are found in a wide range of natural products such as α-Vetispirene $16,[45] ~ \beta$-Vetivone $17,{ }^{[46]}$ β-Chamigrene 18, ${ }^{[47]}$ Canangone 19, ${ }^{[48]}$ isolated from various sources (Figure 3).

16

17

18

19

Figure 3. The structures of a-Vetispirene 16, β-Vetivone 17, β-Chamigrene 18, and Canangone 19.
(+)-Canangone 19 was isolated from the leaves and branches of ylang-ylang (Cananga odorata), ${ }^{[48]}$ which belongs to the family of annonaceae, a known source for biologically active natural products like acetogenins. ${ }^{[49-51]}$ Although this species has long been cultivated on a large scale for the production of essential oils from the flowers, it is chemically one of the least known of the tropical plant families. The construction of the spirocyclics can be roughly categorized into alkylation, rearrangement, cycloaddition and cleavage of bridged systems.

1.4.1 Alkylation

The intramolecular alkylation on a tertiary carbon to give a quaternary carbon is one of the most common methods in constructing spirocenters. Stork and coworkers ${ }^{[52]}$ used the intramolecular alkylation as the key step for the racemic synthesis of the fragrant sesquiterpene, β-Vetivone 17 (Scheme 4). The spiroketone 24 was formed from enone 20 and homoallylic dichloride 21 in presence of LDA via an inter 22 and intra 23 molecular alkylation. Addition of methyl lithium to 24 gave $(\pm)-\beta$-Vetivone 17. Eilerman and Willis ${ }^{[53]}$ developed a spiroannulation technique that employs a similar dihalide for double alkylation but in a manner that use a mild base (LiCl). This method was used in the synthesis of $(\pm)-\beta$-Vetivone 17 and $(\pm)-\beta$-Vetispirene 16.

Scheme 4. Synthesis of (\pm)- β-Vetivone 17 using an intramolecular alkylation as the key step.

1.4.2 Rearrangement Reactions

Rearrangement reactions have also found wide application in the synthesis of spirocycles. For example, Kita et al. ${ }^{[54]}$ developed a stereospecific method to make spiro[4.4]nonanes by Lewis acid catalyzed rearrangement of cis-a, β-epoxy alcohol derivatives (Scheme 5). cis-Epoxy alcohol 26 was easily obtained by CBS reduction of ketone 25 followed by Sharpless epoxidation ($99 \% \mathrm{de}$). The derived benzoate 28 obtained from epoxide 26 using benzoic anhydride 27 underwent Lewis acid promoted ring opening to give 29 and then rearrangement to the spiro compound 30 in 95\% yield.

31

Scheme 5. Synthesis of spiro compounds using rearrangement reactions.

1.4.3 Cycloaddition Reactions

A variety of cycloadditions, such as $[4+2],{ }^{[55]}[2+2],{ }^{[56-59]}[2+1],[60][3+2],[61-63]$ as well as ene reactions, ${ }^{[64-66]}$ have been used for the synthesis of spirocyclic moieties of natural products.

For example, Knölker et al.[67] used titanium tetrachloride promoted [3+2] cycloaddition of allyl silanes, such as 33 , with 2-methylenecycloheptan-1-one 32 to synthesize silylspirocyclopentane 34 as a single diastereoisomer in excellent yield (Scheme 6). Koft and Smith ${ }^{[68]}$ developed a route to a spiroketone that involves intramolecular [2+2] photoaddition for the synthesis of perhydrohistrionicotoxin.

Scheme 6. [3+2] cycloadditions for the synthesis of silyl spirocyclopentane 34 .

1.4.4 Conversion of Bridged Systems into Spirocycles

Spiro compounds can also be prepared when one of the bridges is cleaved from the appropriately constructed bridged systems. For instance, 36 can be prepared from the bridged compound 35 by ozonolysis followed by the reductive workup (Scheme 7). ${ }^{[69]}$

Scheme 7. Construction of spirocyclic ring from the bridged system.

1.5 Michael Reaction/Robinson Annulation

Among all the known $\mathrm{C}-\mathrm{C}$ bond forming reactions, one of the most important and mildest method is the Michael reaction. This reaction was first observed and reported by Komnenos and Claisen, ${ }^{[70,71]}$ and was later named after Arthur Michael in order to honor his early systematic investigations. ${ }^{[72-76]}$ The Michael reaction is the addition of an enolate of a carbonyl derivatives to an α, β-unsa-
turated compound at the β-carbon (Scheme 8), which is usually catalysed by bases.

Scheme 8. Michael reaction of donor 12 with MVK 9a.

However basic conditions often reduce chemoselectivity because of the undesired side or subsequent reactions such as aldol or retro Claisen reactions. In order to minimize these drawbacks, several lanthanide ${ }^{[77-79]}$ and transition metal ${ }^{[80-82]}$ catalyzed Michael reactions have been established in the past decades. With regard to economical and ecological considerations, the $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ catalyzed Michael reaction developed by Christoffers' ${ }^{[83-96]}$ seems to be optimal. The reaction conditions are very mild, can be carried out without solvent and moreover no inert conditions are required. Additionally, if a suitable chiral ligand or auxiliary is applied, these reactions may be enantioselectively performed. The Michael reaction may be used to construct a wide variety of complex molecules from relatively simple starting materials.

The Robinson annulation reaction is a Michael addition followed by an intramolecular aldol condensation (Scheme 9). This reaction was discovered in the 1930's by Sir Robert Robinson (Nobel prize winner in 1947), which allows the one pot synthesis of bicyclic ring-compounds. ${ }^{[97-100]}$ The Robinson annulation reaction involves the acid- or base-induced reaction between a cyclic ketone containing an $\alpha-\mathrm{CH}_{2}$ group and an α, β-unsaturated ketone such as methyl vinyl ketone (MVK) 9a with an alkyl substituent having two a-hydrogens adjacent to the carbonyl carbon.

Scheme 9. Mechanism of Robinson annulation.

The Robinson annulation reaction is particularly important in the synthesis of natural products and pharmacologically active compounds such as steroids. The Wieland-Miescher Ketone ${ }^{[101,102]}$ is a bicyclic diketone, a versatile building block, which has so far been employed in the total synthesis of more than fifty natural products, predominantly sequiterpenoids, diterpenes and steroids possessing exceptionally promising biological properties including anticancer, antimicrobial, antiviral, antineurodegenerative and immunomodulatory activities.

An enantioselective synthesis of Wieland-Miescher Ketone 43b was accomplished by using L-proline 44 as a chiral auxiliary in catalytic amounts. This is known as Hajos-Parrish-Eder-Sauer-Wiechert reaction.[103-107] Achiral Michael product 15i undergoes L-Proline 44 catalyzed Robinson annulation giving the ketone 43 b as
shown in Scheme 10. It contains the AB-ring structure of steroids and for this reason it became an attractive starting material towards the steroid skeleton, an approach which was used in one of the successful total synthesis of adrenosterone.[108]

Scheme 10. The Hajos-Parrish-Eder-Sauer-Wiechert reaction.

1.6 Chamigrenes

1.6.1 Isolation of Chamigrenes

Chamigrenes, which contain a spiro[5.5]undecane carbon framework incorporating two vicinal quaternary carbon atoms, are interesting sesquiterpene natural products isolated from plants and liverworts as well as marine sources. Chamigrenes appear to be metabolites from algae of the genus Laurencia. The isolation of β-Chamigrene 18 was first reported by Ito et al. ${ }^{[47]}$ in 1967 from the leaf oil of Chamaecyparis taiwanensis. Subsequently, a variety of chlorine and bromine containing chamigrenes were isolated from marine sources. Over 120 chamigrenes
were isolated from Laurencia species and from sea hares grazing on them. Several halogenated chamigrenes were shown to exhibit cytostatic activity and remarkable antimicrobial activity on both Gram-positive and Gram-negative bacteria.[109]

1.6.2 Total Syntheses of $\boldsymbol{\beta}$-Chamigrene

Synthesis of Chamigrenes is challenging owing to the presence of a quaternary carbon adjacent to the spirocenter. So far Tanaka et al., ${ }^{[110]}$ Ireland et al.,[111] Martin et al., ${ }^{[109]}$ Adams et al.,[112] and Srikrishna et al.[113] have published the synthesis of β-Chamigrene. An overview of all the total syntheses is summarized briefly.

1.6.2.1 Total Synthesis of (\pm)- β-Chamigrene by Tanaka et al.

The first total synthesis of β-Chamigrene was published by Tanaka et al. in 1967.[110] Diels-Alder reaction of an α, β-unsaturated ketone 46a and isoprene 45 furnished a precursor 47a of β-Chamigrene in 20% yield. Wittig olefination of compound 47a provided racemic β-Chamigrene 18 in 70% yield as depicted in Scheme 11.

Scheme 11. Synthesis of (\pm)- β-Chamigrene 18 by Tanaka et al.

1.6.2.2 Total Synthesis of (\pm)- $\boldsymbol{\beta}$-Chamigrene by Ireland et al.

In 1984, Ireland et al.[111] synthesized (\pm)- β-Chamigrene using a Diels-Alder strategy as a key step to construct the spirocyle 47 b by following the protocol of Tanaka et al. The synthetic route started with photosensitized oxygenation of endocyclic olefin 48, followed by Diels-Alder reaction between α, β-unsaturated ketone 46 b with isoprene 45 to provide compound 47 b . Diazoketone 50 was obtained in two steps from compound $\mathbf{4 7 b}$ as shown in Scheme 12. Photolysis of the derived diazo ketone 50 provided the ester 51 followed by further transformations furnished β-Chamigrene 18 in 31% yield.

Scheme 12. Synthesis of (\pm)- β-Chamigrene by Ireland et al.

1.6.2.3 Total Synthesis of $(\pm)-\beta$-Chamigrene by Martin et al.

The synthesis of β-Chamigrene as well as the other sesquiterpenes was achieved by Martin et al. ${ }^{[109]}$ in 1986. The E-exocyclic tetra substituted olefin 53 was the key building block for the synthesis of these sesquiterpenes, which was synthesized in eight steps from readily available ${ }^{[114]}(\pm)-\beta$-hydroxy acid 52. Cyclization of $(\pm)-53$ gave compound 56 in 17% yield. Treatment of 56 with Zn dust in acetic acid afforded in 35% yield of 2-bromo- β-chamigrene 57 and 61% yield of $(\pm)-\beta$-Chamigrene 18 as shown in Scheme 13.

Scheme 13. Total synthesis of $(\pm)-\beta$-Chamigrene 18 by Martin et al.

1.6.2.4 Total Synthesis of (\pm)- β-Chamigrene by Adams et al.

In addition to Tanaka, Ireland and Martin et al., another racemic synthesis of β-Chamigrene was published by Adams et al. ${ }^{[112]}$ in 1991. Highly substituted dihydropyran derivative 59 was prepared from α, β-unsaturated ketone 46a and methyl methacrylate 58 by employing an Hetero-Diels-Alder strategy. ${ }^{[111]}$ Saponification of the ester, followed by conversion to an acid chloride under neutral conditions with oxalyl chloride and treatment with excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$ afforded diazoketone 60 in 62% yield. The cyclopropanation reaction using $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ catalysis generated cyclopropane derivative 61 in quantitative yield as shown in Scheme 14. Regiospecific cleavage of the cyclopropane ring through an acidcatalyzed solvolysis of $\mathbf{6 1}$ using camphorsulfonic acid in MeOH gave a mixture of acetals 62 which were later reduced to isomeric mixture of diols 63 in 95\% yield. Further transformations led to (\pm)- β-Chamigrene 18 in 27% yield.

Scheme 14. Total synthesis of $(\pm)-\beta$-Chamigrene by Adams et al.

1.6.2.5 Total Synthesis of (\pm)- β-Chamigrene by Srikrishna et al.

Srikrishna et al. ${ }^{[113]}$ have accomplished a total synthesis of (\pm)- β-Chamigrene 18 in ten steps starting from readily available ${ }^{[115]}$ Diels-Alder adduct 64. The esterification of acid 64 with prenyl alcohol 65 provided prenyl ester 68 in 95% yield as shown in Scheme 15. Ireland-Claisen rearrangement followed by hydrolysis of the reaction mixture and esterification resulted methyl ester derivative, which in turn was converted to aldehyde 69. Allylic addition followed by ring closing metathesis afforded alcohol 70. Further transformations led to (\pm)- β-Chamigrene 18.

Scheme 15. The synthesis of $(\pm)-\beta$-Chamigrene by Srikrishna et al.

1.6.2.6 Attempted Synthesis of $\boldsymbol{\beta}$-Chamigrene From Our Group

Two synthetic routes were designed for the synthesis of β-Chamigrene 18 in Sven Unger's dissertation. ${ }^{[116]}$ The first route was planned using a Michael reaction as the key step. The acetylation of ketone 71 using ethyl acetate provided 1,3-dicarbonyl derivative 12c in 68% yield. Subsequent cyclization in presence of SnCl_{4} gave a-acetyl dimethyl cyclohexanone 12d in 66% yield. Unfortunately the synthesis of Michael product $\mathbf{1 5} \mathbf{j}$ could not be carried out neither in metal catalysis nor in basic conditions to proceed further in the synthesis of β-Chamigrene 18 (Scheme 16).

Scheme 16. First approach to the synthesis of β-Chamigrene 18.

An alternative route was developed, which allowed the synthesis of potential precursor 73 for the target molecule in only four steps. The sequence started with the synthesis of a-acetylated cyclohexanone 12f, prepared from simple and commercially available compounds, methyl vinyl ketone 9a and acetyl acetone 12e in a base catalyzed solvent free Michael reaction followed by aldol condensation in 53% yield. The Robinson annulated product $\mathbf{1 2 f}$ was deprotonated and treated
with excess prenyl bromide $\mathbf{7 2}$ to afford the alkylated cyclohexanone $\mathbf{1 2 g}$ in 53% yield. The Lewis acidic induced spirocyclization in the presence of SnCl_{4} followed by a Wittig olefination using $\mathrm{MePPh}_{3} \mathrm{Br}$, finally led to the potential precursor 73 of the natural product β-Chamigrene. Unfortunately all the strategies to deoxygenate the α, β-unsaturated carbonyl group of a potential precursor 73 were unsuccessful (Scheme 17).

Scheme 17. The second approach for the synthesis of β-Chamigrene 18.

2 Goal of this Work

This dissertation includes two projects, both on stereoselective synthesis of spirocyclic compounds. The first project deals with the first enantioselective synthesis of (+)-Canangone 19 and second should be the first enantioselective synthesis of (-)- β-Chamigrene 18.

2.1 Retrosynthetic Analysis for Canangone 19

Our interest in the synthesis of Canangone 19 stems from the presence of a quaternary stereocenter,[14-22] which is a challenging task for formation of spirolactones. To date, there have been no reports on the synthesis of Canangone 19. So far, only its relative configuration is known, but the absolute configuration is still unknown. ${ }^{[48]}$ Therefore, a synthetic strategy was planned to synthesize (+)-Canangone 19 and determine its absolute configuration as well as checking the biological activities of racemic as well as the optically active Canangones.

The target molecule, Canangone 19 can be obtained by selective oxidation of primary allylic alcohol 74 as shown in Scheme 18. The primary allylic alcohol 74 can be synthesized either by stereoselective reduction of enone 75 or by deprotection of the primary alcoholic protecting group in 76. Both enone 75 and allylic alcohol 76 can be prepared either by deprotection or selective reduction of spirolactone 77 respectively.

Scheme 18. Retrosynthetic scheme for Canangone 19 from spirolactone 77.

Spirolactone 77 could be possibly made either by Robinson annulation of enaminolactone 78 and vinyl ketone derivative 9 or by cyclization of Michael product 79. The Michael product 79 can be prepared from α-acetyl butyro lactone 12h and vinyl ketone derivative 9 (Scheme 19). Grignard reaction of Weinreb amide 81 and vinyl magnesium bromide 80 would provide vinyl ketone 9. Weinreb amide derivative 81 can be synthesized from protected glycolic acid 82 by using Weinreb amide conditions.

77

79

$$
\mathrm{PG}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-\text { or } 3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \text { or } \mathrm{Ph}_{3} \mathrm{C}
$$

Scheme 19. Retrosynthetic pathway for the synthesis of spirolactone 77.

2.2 Retrosynthetic Pathway for $\boldsymbol{\beta}$-Chamigrene 18

The second synthetic target is the total synthesis of β-Chamigrene 18, isolated from the leaf oil of Chamaecyparis taiwanensis. ${ }^{[47]}$ Although several total syntheses on β-Chamigrene 18 have been published,[109-113] most of them were too lengthy and moreover they were synthesized in a racemic form. Therefore a synthesis was planned for β-Chamigrene 18 in a very short, stereoselective and reliable pathway.

In the retrosynthetic plan as shown in Scheme $20, \beta$-Chamigrene 18 can be synthesized from spirocyclic ketone 47a by Wittig olefination, which in turn can be obtained by alkylation of dibromo olefin 83 and β-ketoester 12i followed by cyclization.

18

47a

12i

83

Scheme 20. Retrosynthetic scheme for the synthesis of β-Chamigrene 18.

The cyclic β-keto ester $\mathbf{1 2 i}$ can be synthesized from β-keto methyl ester $\mathbf{1 2 j}$ by using Lewis acid mediated cyclization. β-Keto ester 12j can be obtained by carbomethoxylation of the anion of 6-methylhept-5-en-2-one 71 with dimethyl carbonate 84 (Scheme 21).

Scheme 21. Retrosynthetic pathway for cyclic β-ketoester 12j.

The dibromide 83 can be prepared by bromination of diol 85 , which in turn can be obtained by the reduction of cyclic anhydride 86 . The anhydride formation of diacid 87 would provide cyclic anhydride 86 . Condensation of ethylacetoacetate 88 with $\mathrm{H}_{2} \mathrm{SO}_{4}$ followed by hydrolysis might provide diacid 87 (Scheme 22).

Scheme 22. Retrosynthetic pathway for dibromide 83.

3 Results and Discussion

3.1 Canangone

3.1.1 Synthesis of Michael Acceptors

3.1.1.1 Synthesis of Protected Hydroxy Acetic Acid 82

The synthesis of Canangone (19) was planned with relatively cheap and commercially available starting materials. Three protecting groups were used in this synthesis, namely dimethoxy benzyl (DMB), paramethoxy benzyl (PMB), and trityl (Tr). The synthesis began with the Williamson ether synthesis with bromoacetic acid 90 (1.0 eq) and 3,4-dimethoxy benzyl alcohol (DMB-OH) 89a (1.0 eq) using $\mathrm{NaH}(1.0 \mathrm{eq})$ in THF ${ }^{[117]}$ to give protected hydroxy acetic acid 82a in 67\% after acidic work up (Scheme 23).

Scheme 23. Synthesis of protected hydroxy acetic acid 82a and 82b.

As the yield of above reaction was moderate and not satisfying, the optimization of the reaction conditions were attempted in order to obtain a maximum yield of
protected hydroxy acid 82a (Table 1). After few attempts DMB protected hydroxy acid 82a was obtained in quantitative yields with 1.5 eq. of bromoacetic acid 90 and 3.5 eq. of NaH . By following the same reaction conditions, PMB protected hydroxy acid 82b was synthesized in 98% yield from 4-methoxy benzyl alcohol (PMB-OH) 89b.

Table 1. Optimization to increase the yield of protected glycolic acid 82a.

$\mathbf{8 9 a}$	NaH	t	Yield
1.0 eq.	2.0 eq.	1 d	67%
1.5 eq.	2.0 eq.	2 d	78%
1.5 eq.	3.5 eq.	2 d	97%

The trityl protected glycolic acid 82c was prepared using trityl chloride 91 and hydroxy acetic acid 92 in presence of pyridine ${ }^{[118]}$ as a base. But the yield of this reaction was only 12% after the acidic work up at $0^{\circ} \mathrm{C}$ and the remaining amount got converted to trityl alcohol 93. The reason might be the clevage of trityl group during the acidic work up. In order to improve the yield, the work up conditions were optimized by using different acids. Finally the yield of the protected hydroxy acid 82c was increased to 73% using $\mathrm{Et}_{3} \mathrm{~N}[119]$ as a base (Scheme 24) and 1 molar aqueous KHSO_{4} for acidic workup.

Scheme 24. Synthesis of trityl protected hydroxy acid 82c.

The acidic workup plays a very crucial role in this reaction. KHSO_{4} was the reagent of choice for acidifying the organic layer and care should be taken that the pH of the organic layer should not drop below 3. If the pH of the organic layer drops below 3, the trityl alcohol was obtained as the major product (Table 2).

Table 2. Acidic workup conditions for obtaining glycolic acid derivative 82c.

base	work up conditions	pH of the organic layer	82c	93
pyridine	$1 \mathrm{~mol} / 1 \mathrm{HCl}$	1	12%	80%
pyridine	$1 \mathrm{~mol} / 1 \mathrm{HCl}$	3	20%	73%
pyridine	$1 \mathrm{~mol} / 1 \mathrm{KHSO}_{4}$	3	42%	38%
pyridine	$1 \mathrm{~mol} / 1 \mathrm{KHSO}_{4}$	1	21%	56%
$\mathrm{Et}_{3} \mathrm{~N}$	$1 \mathrm{~mol} / 1 \mathrm{KHSO}_{4}$	3	73%	6%
$\mathrm{Et}_{3} \mathrm{~N}$	$1 \mathrm{~mol} / 1 \mathrm{KHSO}_{4}$	1	46%	30%

3.1.1.2 Synthesis of Weinreb Amide 81

The synthesis of Weinreb amide 81a from protected hydroxy acetic acid 82a was first attempted using thionyl chloride, SOCl_{2} (for in situ formation of acyl chloride 94) and then treating it with N-methoxy methyl hydroxyl amine hydrochloride and triethyl amine. ${ }^{[120]}$ But the yield of this reaction under these conditions was only 12\% (Scheme 25).

Scheme 25. Synthesis of Weinreb amide 81a by in situ formation of acyl chloride 94.

But by following a method developed by Raghuram et al., ${ }^{[121]}$ the protected hydroxy acetic acid 82a was first activated to form mixed anhydride 95 using pivaloyl chloride and $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$. After the in situ formation of mixed anhydride 95 (1.5 h , monitored by TLC), the reaction mixture was then treated with more $\mathrm{Et}_{3} \mathrm{~N}$ (2.0 eq.) and $\mathrm{MeO}(\mathrm{Me}) \mathrm{NH}_{2} \mathrm{Cl}\left(1.0 \mathrm{eq} . ; 5^{\circ} \mathrm{C}, 1.5 \mathrm{~h}\right)$ in order to obtain Weinreb amide 81a in 98% after aqueous acidic workup and chromatographic purification. ${ }^{[122-124]}$ In analogy, PMB Weinreb amide 81b and trityl Weinreb amide 81c were prepared in 88% and 86% yield from PMB protected glycolic acid $\mathbf{8 2 b}$ and trityl protected glycolic acid 82c, respectively (Scheme 26).

82

PG = DMB, 81a (98\%)
PMB, 81b (88\%)
$\mathrm{Ph}_{3} \mathrm{C}, 81 \mathrm{c}$ (86\%)

Scheme 26. Synthesis of Weinreb amide 81 from mixed anhydride 95.

3.1.1.3 Synthesis of Vinyl Ketone 9

Grignard reaction of Weinreb amide 81a with vinyl magnesium bromide 80 initially provided vinyl ketone 9d in very low yields (5-10\%) when the reaction mixture was quenched by dropwise addition of 1 molar hydrochloric acid. The major product obtained was the conjugate addition product 96 (Scheme 26).

81a

workup

96 (36\%)

9d (10\%)

97 (25\%)

Scheme 26. Conjugate addition of Weinreb amine to vinyl ketone 9d.

The probable reason for the formation of conjugate addition product 96 in major amounts might be that the liberated N,O-dimethyl hydroxylamine tends to attack the vinyl ketone 9d by conjugate addition.[125] In order to trap the expelled N,O-dimethyl hydroxylamine, the reaction mixture was quenched with acetic anhydride ${ }^{[126]}$ but again 96 was observed in major amounts. The optimal conditions for this reaction were achieved by attempting several work up conditions as well as the amount of vinyl magnesium bromide 80 as shown in Table 3.

Table 3. Attempts to optimize the work up conditions and amount of vinyl magnesium bromide 80.

$\mathbf{8 0}$	\mathbf{t}	Work up conditions	$\mathbf{9 d}$	$\mathbf{9 6}$	97
10.0 eq.	1 h	$1 \mathrm{~mol} / 1 \mathrm{HCl}$	10%	36%	25%
5.0 eq.	1 h	$1 \mathrm{~mol} / 1 \mathrm{HCl}$	15%	40%	15%
3.0 eq.	2 h	$1 \mathrm{~mol} / 1 \mathrm{HCl}$	25%	35%	15%
1.2 eq.	4 h	$1 \mathrm{~mol} / 1 \mathrm{HCl}$	0%	84%	9%
1.2 eq.	4 h	$\mathrm{Ac}_{2} \mathrm{O}$	10%	60%	8%
1.2 eq.	4 h	AcOH	8%	65%	9%
1.2 eq.	4 h	sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$	0%	74%	7%
1.2 eq.	4 h	$1 \mathrm{~mol} / 1 \mathrm{KHSO} 4$	5%	70%	8%
1.2 eq.	4 h	$\mathrm{Add} \mathrm{rxn}. \mathrm{mix} to$.	76%	0%	9%
		$1 \mathrm{~mol} / 1 \mathrm{HCl}$			

After several optimization conditions, vinyl ketone 9d was obtained in 76\% yield by inverse workup, i.e. dropwise transfer of the reaction mixture into an equal volume of 1 molar hydrochloric acid at $0^{\circ} \mathrm{C}$ (Scheme 27). As vinyl ketone 9d decomposes within few hours, it is highly recommended to store it by using only
$2 \mathrm{~mol} \%$ hydroquinone as a stabilizer. The success of this reaction was mainly dependent on two important factors: First, the amount of addition of vinyl magnesium bromide in order to subside considerable amounts of divinyl alcohol as a by-product 97 and, secondly, the work up conditions for quenching the reaction mixture to avoid the formation of conjugate addition product 96. In analogy, PMB vinyl ketone $9 \mathbf{e}$ and trityl vinyl ketone 9 f were obtained in 74% and 86% yield from PMB Weinreb amide 81b and trityl Weinreb amide 81c respectively.

Scheme 27. Synthesis of vinyl ketone derivatives 9 .

3.1.2 Synthesis of Racemic Canangone 19

3.1.2.1 Synthesis of Michael Product 79a Using Lewis Acidic Conditions

After synthesizing the Michael acceptors 9, the Michael products 79 were prepared for spiroannulation reactions. The Michael reaction was first attempted using commercially available Michael donor 12h and Michael acceptor 9d in presence of catalytic amounts of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(7 \mathrm{~mol} \%)$. ${ }^{[127]}$ But under these conditions, the yield of the desired Michael product 79a was very low (10\%). Mainly, hexamethoxytribenzocyclononane (trimerized product) ${ }^{[128]} 99$ was obtained as a by-product in 32% yield (Scheme 28), presumably due to the trimerization of liberated stable benzyl carbenium ion 98 in the presence of Lewis acid.

99 (32\%)

Scheme 28. Synthesis of Michael product 79a using $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ as a Lewis acid.

3.1.2.2 Under Basic Conditions

Since the yield of the Michael product 79a was very low using $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, the same reaction was carried out under basic conditions. The Michael reaction of vinyl ketone 9 d and a-acetyl butyro lactone $\mathbf{1 2 h}$ in presence of $\mathrm{NaOtBu}{ }^{[127]}$ (5 $\mathrm{mol} \%$) at $0^{\circ} \mathrm{C}$ to $23^{\circ} \mathrm{C}$ provided the Michael product 79a in 86% yield (Scheme 29). In analogy, trityl protected Michael product 79b was obtained in 82% yield from vinyl ketone 9 f .

Scheme 29. Synthesis of Michael product 79 under basic conditions.

3.1.2.3 Regioselective Spiroannulations Using Acidic Conditions

Following the protocol developed by our group, the cyclization of the Michael product 79a was tried under acidic conditions (conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$) ${ }^{[127]}$ in order to obtain the desired spirolactone 75 . But unfortunately, spirolactone 100 was obtained in 46% yield along with the trimerized product 99[128] (Scheme 30).

Scheme 30. Attempted synthesis of spirolactone 75.

The formation of spirolactone 100 instead of 75 can be explained based on the enolization at the protected hydroxy acetyl group in compound 101 rather than at the acetyl group, which undergoes the aldol reaction followed by E1 ${ }_{\mathrm{cb}}$ elimination of newly obtained alcohol 102 to afford spirolactone 100 (Scheme 31).

Scheme 31. Mechanism for the formation of spirolactone 100.

The spirocyclization was also tried with trityl protected Michael product 79b assuming that the bulky phenyl groups might avoid the enolization at the protected hydroxy acetyl group due to steric hindrance and allowing the enolization at acetyl group. But even in this case only the undesired spirolactone 100 was obtained as a major product in 62% yield along with trityl alcohol 93 in 26% yield (Scheme 32).

Scheme 32. Spiroannulation using trityl protected Michael product 79b.

3.1.2.4 Using Buffered Conditions

The spirolactone formation with DMB protected Michael product 79a was also tried in buffered conditions (pyrrolidine/ AcOH) ${ }^{[127]}$ in order to check the feasibility of desired cyclization. Even under these conditions enolization was occuring at protected hydroxy acetyl group rather than at the acetyl group, which provided the mixture of spirolactones 103 and 104 in 37% and 44% yield respectively (Scheme 33). The same spirocyclization with trityl protected Michael product 79b was also tried under buffered conditions (pyrrolidine/ AcOH) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene at $23^{\circ} \mathrm{C}$, but only the starting material was observed on GC-MS even after 24 h . At higher temperatures only decomposed materials were detected.

Scheme 33. Attempted synthesis of spirolactone 77 b in buffered conditions.

3.1.2.5 Using Lewis Acidic or LDA Conditions

Assuming that both Lewis acidic as well as the strong and hindered basic conditions generate the enolate at the acetyl group rather than at the protected hydroxy acetyl group, the spirocyclizations were also carried out under $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$
and LDA conditions (Scheme 34). But none of them provided the desired product 77b. With DMB protected Michael product 79a, trimerized product 99 was obtained exclusively in 41% yield in presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and complex mixtures were obtained with no detection of desired product mass by GC-MS analysis under basic (LDA) conditions.

79a

Scheme 34. Probable pathway for the synthesis of spirolactone $\mathbf{7 7 b}$.

Since all the attempted conditions for the synthesis of desired spiroannulated products 75 or 77 yielded either the regiomers of them or decomposition products, an enamine strategy was planned by following the Pfaus' procedure ${ }^{[129]}$ who applied a method developed by Angelo et al. ${ }^{[130-135]}$

3.1.2.6 Spiroannulations Using Enaminolactone 78

Before applying this method directly to our synthetic strategy, a model study was planned to check the feasibility of the spiroannulation process. The synthesis of model compound 77a was started with commercially available a-acetylbutyrolactone 12h and rac-phenylethylamine 107. Both the compounds 12 h and 107 were mixed and stirred together at $23^{\circ} \mathrm{C}$ for 4 h to afford pure secondary enamine lactone 78 in 89% yield. GC, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of enaminolactone 78 showed the presence of a single isomer. A low field chemical shift at 8.61 ppm in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum showed the presence of a hydrogen bonded N-H group, which determines the enamine lactone 78 to be the Z -isomer (Scheme 35).

Scheme 35. Synthesis of enamino lactone 78.

The Michael reaction was performed in THF at $65^{\circ} \mathrm{C}$ for 18 h using methyl vinyl ketone 9a (1.0 eq.) as a Michael acceptor and enaminolactone (1.0 eq.) 78 as a Michael donor. This Michael reaction did not stop at the stage of conjugate addition product 108a, but proceeded further to give a spirocyclic imine 109a by virtue of an imine-enamine tautomerism allowing an intramolecular aldol reaction directly followed by an $E 1_{\text {cb }}$ process to provide spirolactone 77a (Scheme 36).

78

9a

$\xrightarrow[2 . \mathrm{E} 1_{\mathrm{cb}}]{\text { 1. Aldol reaction }}$

Scheme 36. Synthesis of spirolactone 77a.

Based on the ${ }^{1} \mathrm{H}-\mathrm{NMR}$, the diastereomeric ratio of the spirocyclic imine 109a was found to be $80: 20$ by integration of the two separate $\mathrm{sp}^{2}-\mathrm{CH}$ resonances. An important point to be noticed in this reaction is the diastereomeric ratio of the imine 109a. Pfau et al. ${ }^{[129]}$ reported the same reaction with $93: 7$ diastereomeric ratio, but in our case only $80: 20 d r$ was observed even after repeating the reaction for several times.

Attempt to purify spirocyclic imine 109a by column chromatography on silica or on $\mathrm{Al}_{2} \mathrm{O}_{3}$ yielded only decomposed materials. Therefore, without further purification, the imine 109a was subjected for hydrolysis using 10% aq. acetic acid (2 eq.) in THF at $23^{\circ} \mathrm{C}$ for 24 h . After work up and chromatographic purification, pure spirolactone 77a was obtained in 56% yield.

3.1.2.7 Synthesis of rac-Spirolactone 77b Using Enaminolactone 78

With the optimized conditions for model study, synthesis of the spirolactone $\mathbf{7 7 b}$ was performed in a similar manner. The whole synthesis was carried out using rac-phenylethylamine 107 in order to synthesize (\pm)-Canangone. The Michael reaction was performed using enaminolactone 78 (1.1 eq.) and methyl vinyl ketone derivative 9d (1.0 eq.) in THF at $65^{\circ} \mathrm{C}$. The Michael reaction did not stop at the stage of conjugate addition product 108b but proceeded further to give a spirocyclic imine 109b (Scheme 37). Since it was very difficult to monitor the reaction on TLC (due to the formation of many spots), aliquots from the reaction mixture were taken and submitted to ${ }^{1} \mathrm{H}-\mathrm{NMR}$ for every 4 h in order to check the complete consumption of vinyl ketone 9d.

78

108b
1.

9d

10\% aq. AcOH
THF, 23 C

2. $\mathrm{E} 1_{\mathrm{cb}}$

109b (dr 83 : 17)

Scheme 37. Synthesis of spirolactone 77 b .

After completion of the reaction (18 h), the solvent was removed under reduced pressure and attempts to purify the residual imine 109 b by column chromatography using silica or $\mathrm{Al}_{2} \mathrm{O}_{3}$ completely failed. Only the decomposed products were detected on TLC. Therefore the diastereomeric ratio of this reaction was determined from the crude product itself, which showed $83: 17$ by integration of the two separate $\mathrm{sp}^{2}-\mathrm{CH}$ resonances in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The imine 109 b was subjected for hydrolysis without any further purification in order to obtain spirolactone $\mathbf{7 7 b}$ in 40% yield. The reason for the low yield of an overall reaction is the cleavage of 3,4-dimethoxy benzyl group during the reaction and the 3,4-dimethoxy benzyl alcohol was isolated in 18% yield after chromatographic purification of the hydrolysis step. But, unfortunately the isolation of deprotected spirolactone 75 became impossible.

3.1.2.8 Attempted Synthesis of Spirolactone 77c from Enaminolactone 78

Since the yield was not satisfying with 3,4-dimethoxy benzyl as the protecting group (due to its cleavage under the reaction conditions), spirocyclization was tried with the stable trityl protected methyl vinyl ketone derivative $\mathbf{9 f}$.

The Robinson annulation was performed using enaminolactone 78 (1.1 eq.) and methyl vinyl ketone derivative 9 f (1.0 eq.) in THF at $65^{\circ} \mathrm{C}$. Although the diastereomeric ratio of this reaction was high [(91:09), Scheme 38], the hydrolysis of imine 109c using 10% aq. AcOH failed completely. To our surprise, no sp²-CH peak was observed in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum after the hydrolysis. Attempts to cleave the imine 109c in different hydrolysis conditions $\left(10 \% \mathrm{HCl}, 10 \% \mathrm{HCO}_{2} \mathrm{H}\right.$, $10 \% \mathrm{TFA}, 10 \% \mathrm{TosOH}, 10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$) led to complex mixtures.

Scheme 38. Synthesis of spirocyclic imine 109c.

3.1.2.9 Synthesis of Spirolactone 77d from Enaminolactone 78

As several problems were faced in cleaving the imine in spirocyclic compound 109c, the spiroannulation was also tried with relatively stable PMB protecting group inorder to improve the yield of spirocyclic ketone 77 d . The synthesis of spirolactone 77d was achieved using enaminolactone 78 (1.1 eq.) and methyl vinyl ketone derivative $9 \mathbf{e}$ (1.0 eq.) in THF at $65^{\circ} \mathrm{C}$. The diastereomeric ratio of spirocyclic imine $\mathbf{1 0 9 d}$ was found to be $83: 17$, same as that of imine $\mathbf{1 0 9 b}$, but the yield of the hydrolysis product 77d was very low (15\% yield) with 41% being the cleaved 4-methoxy benzyl alcohol (Scheme 39). Even though the yield of the spirolactone 77 b was relatively low, the synthesis of Canangone was forced to be continued using spirolactone $\mathbf{7 7 b}$, since the other protecting groups showed either problematic in the hydrolysis step or provided the desired spirolactone in very low yield (15\%).

78

1.

109d (dr 83 : 17)

77d (15\%)

Scheme 39. Synthesis of spirolactone 77d.

3.1.2.10 Luche Reduction of Spirolactone 62a

The Luche reduction was first attempted on spirolactone $77 \mathbf{b}$ using $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (1.05 eq.) and NaBH_{4} (1.05 eq.) in MeOH at $0^{\circ} \mathrm{C}$ to obtain alcohol 76 in 44% yield with almost 1:1 diastereomeric ratio. As both diastereomers did not resolve on TLC, a long bed of silica (ca. 20 cm) was used in order to purify the nonpolar isomer $\left(5 R^{*}, 6 S^{*}\right)-76$ and polar isomer $\left(R^{*}, R^{*}\right)-76$. The yields of these two diastereoisomers were obtained in 23% and 21% respectively (Scheme 40).

Scheme 40. Luche reduction of protected spirolactone 77b.

The reaction was also carried out at different temperatures in order to improve the diastereoselectivity of the reaction. When the reaction was carried out at $-78^{\circ} \mathrm{C}$, the reaction mixture got solidified and further stirring at the same temperature or at elevated temperatures (up to $-40^{\circ} \mathrm{C}$) became difficult. At $23^{\circ} \mathrm{C}$, the diastereoselectivity remained almost same as that of $0^{\circ} \mathrm{C}$. But at higher temperature $\left(40^{\circ} \mathrm{C}\right)$ the reaction mixture got decomposed. Attempts were also made to improve the yield of the Luche reduction by changing the stoichiometric ratios of the reagents, but none of them were successful in giving the better yields (Table 4). As the yield of this reaction was not satisfying, the deprotection of 3,4-dimethoxy benzyl (DMB) group of alcohol 76 was not attempted, rather another pathway was opted, i.e first, the deprotection of DMB group and later, the Luche reduction.

Table 4. Attempted stoichiometric ratios of the reagents for Luche reduction.

$\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	NaBH_{4}	T	Yield
1.05 eq.	1.05 eq.	$0^{\circ} \mathrm{C}$	44%
		$23^{\circ} \mathrm{C}$	42%
3.0 eq.	3.0 eq.	$0^{\circ} \mathrm{C}$	39%
		$23^{\circ} \mathrm{C}$	40%
3.2 eq.	1.5 eq.	$0^{\circ} \mathrm{C}$	42%
		$23^{\circ} \mathrm{C}$	40%
6.0 eq.	1.5 eq.	$0^{\circ} \mathrm{C}$	38%
		$23^{\circ} \mathrm{C}$	39%

3.1.2.11 Deprotection of the 3,4-Dimethoxy Benzyl Group of Spirolactone 62a

The deprotection of the 3,4-dimethoxy benzyl group of spirolactone $77 \mathbf{b}$ was first tried using conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, as these conditions already proved to be successful in deprotecting the 3,4-dimethoxy benzyl group during the acidic cyclization to provide regioisomer 100. But unfortunately in this reaction, only trace amount (4%) of the desired product 75 was isolated, the major being the trimerized product 99 in 40% yield. The deprotection of the DMB group was also attempted with trifluoroacetic acid (1 eq.), but in this case too the yield of the spirolactone 75 was low (18\%). Finally, the deprotection under diluted conditions of TFA (10\% TFA in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 1.5 \mathrm{~h}\right]{ }^{[136]}$ gave deprotected spirolactone 75 in 70% yield with minor amounts (7\%) of trimerized product 99[128] (Scheme 41) after chromatographic purification.

Scheme 41. Synthesis of deprotected spirolactone 75.

3.1.2.12 Selective Reduction of Enone 75 Using Luche Reduction

After synthesizing enone 75, Luche reduction was performed using $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (1.05 eq.) and NaBH_{4} (1.05 eq.) in MeOH at $0^{\circ} \mathrm{C}$. The reaction was complete within 1.5 h to give diol 74 in 67% yield with no diasteroselectivity (Scheme 42). In order to improve the diastereoselectivity of 74 , the reaction was carried out at $-78^{\circ} \mathrm{C}$. But at this temperature the dissolution problem occurred. At higher temperatures (above $23^{\circ} \mathrm{C}$) only decomposed materials were detected on TLC. Therefore the reaction at $0^{\circ} \mathrm{C}$ was opted, eventhough there was no diastereoselectivity.

Scheme 42. Synthesis of diol $\left(5 R^{*}, 6 S^{*}\right)-74$ and $\left(R^{*}, R^{*}\right)-74$.

The two diastereoisomers however could be easily separated by column chromatography to give the non polar isomer $\left(5 R^{*}, 6 S^{*}\right)$ - 74 as a colorless solid in 35% yield and the polar isomer $\left(R^{*}, R^{*}\right)$ - 74 as a colorless oil in 32% yield. As the non polar isomer $\left(5 R^{*}, 6 S^{*}\right)-74$ was obtained in solid form, single crystals could be grown from EA-pentane at $23^{\circ} \mathrm{C}$ for X-ray crystal structure analysis to prove the relative configuration. The relative configuration was confirmed to be $\left(5 R^{*}, 6 S^{*}\right)$ as shown in Figure 4.

Figure 4. ORTEP view of racemic diol $\left(5 R^{*}, 6 S^{*}\right)-74$.

3.1.2.13 Selective Oxidation of Diol ($\left.5 R^{*}, 6 S^{*}\right)-74$ and $\left(R^{*}, R^{*}\right)-74$

The selective oxidation was performed on individual diols, $\left(5 R^{*}, 6 S^{*}\right)-74$ and $\left(R^{*}, R^{*}\right)-74$, using cat. TEMPO 110 and CuCl (both 0.3 eq., 1 atm $\mathrm{O}_{2}, \mathrm{DMF}, 23^{\circ} \mathrm{C}, 75$ $\min)^{[137]}$ which afforded the oxidation products $\left(5 R^{*}, 6 S^{*}\right)-\mathbf{1 9}$ and $\left(R^{*}, R^{*}\right)-\mathbf{1 9}$ in 75% and 77% yield respectively (Scheme 43).

TEMPO =

110

$\left(R^{*}, R^{*}\right)-74$

75 min

($\left.R^{*}, R^{\star}\right)-19$ (77\%)

Scheme 43. Selective oxidation of $\left(5 R^{*}, 6 S^{*}\right)$-74 and $\left(R^{*}, R^{*}\right)-74$.

After the successful synthesis of the final products $\left(5 R^{*}, 6 S^{*}\right)-19$ and $\left(R^{*}, R^{*}\right)-19$, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ values were compared with that of the naturally occurring Canangone 19.[48] The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data of natural Canangone 19 and synthetic Canangones i.e. $\left(5 R^{*}, 6 S^{*}\right)-19$ and $\left(R^{*}, R^{*}\right)-19$ are shown in Table 5. Based on the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ values, the data of $\left(R^{*}, R^{*}\right)-19$ was matching with that of the isolated $(+)$-Canangone 19 and the other isomer $\left(5 R^{*}, 6 S^{*}\right)-\mathbf{1 9}$ being the epimer of it.

Table 5. Comparison of ${ }^{13} \mathrm{C}-\mathrm{NMR}$ values of $\left(5 R^{*}, 6 S^{*}\right)-19$ and $\left(R^{*}, R^{*}\right)-19$ with the natural (+)-Canangone 19.

C	Natural Canangone-19 $\delta{ }^{13} \mathrm{C}(\mathrm{ppm})$	$\left(5 R^{*}, 6 S^{*}\right)-\mathbf{1 9 a}$ $\delta^{13} \mathrm{C}(\mathrm{ppm})$	$\left(R^{*}, R^{*}\right)-\mathbf{1 9}$ $\delta{ }^{33} \mathrm{C}(\mathrm{ppm})$
1	178.28	181.10	178.31
3	65.45	66.77	65.40
4	32.25	27.49	32.21
5	46.65	48.22	46.61
6	69.38	70.27	69.35
7	142.12	140.81	142.07
8	145.83	149.65	145.81
9	18.69	18.48	18.66
10	25.63	26.05	25.99
11	193.24	192.92	193.20

3.1.3 Synthesis of Optically Active Canangone 19

According to the structure proposed by Caloprisco et al., the quaternary center of spirolactone is assumed to be R-configurated. The important criterion for synthesizing the optically active Canangone 19 is the chiral auxiliary, which creates the enantiomerically pure quaternary stereocenter of spirolactone $\mathbf{7 7 b}$. According to Pfau and Angelo et al. ${ }^{[129-135]}$ the (S)-phenyl ethyl amine was supposed to be chosen in order to create (R)-configuration at the quaternary stereocenter of the spirocycle.

An aza-ene type mechanism was proposed for this type of reaction. In the case of the (S)-configured auxiliary, the phenyl group shields the front face and the acceptor attacks from the back giving the quaternary stereocenter as (R)-configu-
ration as shown in Scheme 44. In a similar way, the (R)-configured auxiliary affords the opposite product configuration.

acceptor attacks from the back side

Scheme 44. Proposed model for the stereochemistry at the quaternary carbon using phenyl ethyl amine.

3.1.3.1 Synthesis of Optically Active Spirolactone 77b

The synthesis of optically active spirolactone 77 b was started with γ-butyro lactone $\mathbf{1 2 h}$ and (S)-phenyl ethyl amine (S)-107 to obtain enaminolactone (S)-78 in 92% yield. The Michael addition of enamine lactone (S)-63 and methyl vinyl ketone derivative 9d gave in situ a Michael adduct (R)-108b, which was then spontaneously converted to spirocyclic imine $(R)-\mathbf{1 0 9 b}$ with a diastereomeric ratio
of $86: 14$. The hydrolysis of the spirocyclic imine $(R) \mathbf{- 1 0 9 b}$ using 10% aq. AcOH provided the spirolactone $(R)-77 b$ in 41% yield (Scheme 45).

Scheme 45. Synthesis of spirolactone (R)-77b.

3.1.3.2 Synthesis of Optically Active Spirolactone 75

The deprotection of 3,4-dimethoxy benzyl group of spirolactone (R) - $77 \mathbf{b}$ was carried out in the presence of $10 \% \mathrm{TFA}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $23^{\circ} \mathrm{C}$ to obtain allylic alcohol $(R)-75$ in 72% yield (Scheme 46). Since the allylic alcohol $(R)-67$ gave sufficient baseline resolution at this stage on GLC at a chiral phase, the stereoselectivity of
the Michael reaction was determined to be 60% ee being sensitive to the reaction conditions.

Scheme 46. Synthesis of allylic alcohol 75.

3.1.3.3 Brosylation of Spirolactone 75

In order to check the absolute configuration at the quaternary stereocenter, attempts were made to convert spirolactone (R) - $\mathbf{7 5}$ to brosylate (R) - $\mathbf{1 1 2}$ using different conditions as shown in the Table 6.

Table 6. Reaction conditions for brosylation of spirolactone (R)-75.

111	base	T	t	yield
1.5 eq.	pyridine (10 eq.)	$0^{\circ} \mathrm{C}$	4 h	-
1.2 eq.	pyridine (5 eq.)	$23^{\circ} \mathrm{C}$	16 h	-
1.2 eq.	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5 eq.)	$23^{\circ} \mathrm{C}$	16 h	11%
1.2 eq.	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5 eq.)	$0^{\circ} \mathrm{C}$	4 h	25%
1.1 eq.	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5 eq.)	$-5^{\circ} \mathrm{C}$	1 h	48%
1.1 eq.	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5 eq.)	$-5^{\circ} \mathrm{C}$	12 min	76%

Finally the spirolactone $(R)-75$ was successfully converted to brosylate $(R)-\mathbf{1 1 2}$ using brosyl chloride 111 (1.1 eq.) and $\mathrm{Et}_{3} \mathrm{~N}$ (1.5 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-5^{\circ} \mathrm{C}$ for 12 min ${ }^{[138]}$ in 76% yield (Scheme 47).

Scheme 47. Synthesis of brosyl derivative (R)-112 for determination of the absolute configuration.

The solid obtained from the brosylate $(R) \mathbf{- 1 1 2}$ was then crystallized using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ pentane as a solvent mixture for the crystal structure analysis. The X-ray crystal structure (Figure 5) proved the configuration at quaternary center to be (R) as predicted by Pfau and Angelo et al.[129-135] The bromine and sulfur atom in this compound allowed for anomalous dispersion giving the (R)-configuration with an absolute structure parameter ${ }^{[139]}$ of $-0.009(5)$. The racemate of $\mathbf{1 1 2}$ was obtained as an oil.

Figure 5. ORTEP view of optically active bromosulfonate 112. The depicted enantiomer has (R)-configuration.

Although the stereochemistry of the quarternary stereocenter of brosylate $\mathbf{1 1 2}$ in the crystal structure anaylsis matched with the literature precedence, another experiment was carried out inorder to make sure that the right crystal was chosen for X-ray structure analysis (as the enantiomeric excess of the spirolactone was only 60%). Since the brosylate 112 was not compatible to GC-analysis, its crystalline material was taken and subjected for deprotection in batches ($4 \times 9 \mathrm{mg}$) by using KOH in methoxy ethanol. The obtained spirolactone 75 was then sumitted for GC analysis, which proved the right stereochemistry (R) in all the batches (almost 90\% ee).

3.1.3.4 Synthesis of Optically Active Diol 74

Luche reduction was performed on allylic alcohol $(R)-75$ using $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(1.05$ eq) and $\mathrm{NaBH}_{4}(1.05 \mathrm{eq})$ in MeOH to obtain two diastereomeric diols $(5 R, 6 \mathrm{~S})-74$ and $(R, R)-74$ in 36% and 33% yield respectively (Scheme 48).

Scheme 48. Luche reduction to give products $(5 R, 6 S)-74$ and $(R, R)-74$.

3.1.3.5 TEMPO Oxidation of $(5 R, 6 S)-74$ and $(R, R)-74$

After synthesizing the reduction products $(5 R, 6 S)-74$ and $(R, R)-74$, selective oxidation was performed individually on these two diols, using cat. TEMPO (110) and CuCl (each 0.3 eq.), 1 atm . oxygen in DMF at $23^{\circ} \mathrm{C}$ to provide aldehydes (5R,6S)-19 and (R,R)-19 in 76\% and 78\% yield respectively (Scheme 49).

Scheme 49. Synthesis of aldehyde (5R,6S)-19 and $(R, R)-19$.

After completing the synthesis of aldehydes $(5 R, 6 \mathrm{~S})-\mathbf{1 9}$ and $(R, R) \mathbf{- 1 9}$, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ values were compared with the isolated Canangone 19. Like in racemic Canangone 19, only aldehyde $(R, R)-19$ data was matching to that of isolated Canangone. But after measuring the optical rotation, it proved that $(R, R)-19$ $\left([a]_{D^{25}}=-67.0^{\circ}\right)$ is the enantiomer of the originally isolated natural product $\left([a] D^{25}=+58.8^{\circ}\right) .[48]$

3.1.4 Optically Active Synthesis of (S,S)-Canangone

The synthetic steps were repeated using (R)-phenyl ethyl amine 107 as the chiral auxiliary to achieve (S, S)-Canangone. (R)-enaminolactone 78 was prepared from a-acetylbutyro lactone $\mathbf{1 2 h}$ and (R)-phenyl ethyl amine 107 in 94% yield. Subsequent Michael reaction with methyl vinyl ketone derivative 9d gave spirolactone (S)-77b in 43% yield (Scheme 50). The cleavage of the protective group in spirolactone (S)-77b (10% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$) gave primary alcohol (S)-75 in 71\% yield. Since allylic alcohol (R)-75 gave sufficient baseline resolution at this stage on GLC at a chiral phase, the stereoselectivity of the

Michael reaction was determined to be 69% ee being sensitive to the reaction conditions.

Scheme 50. Synthesis of (S)-75 from enaminolactone (R)-78.

Luche reduction was performed on primary alcohol (S)-75 to yield two diastereoisomers of allylic alcohols (5S,6R)-75 and (S,S)-74 in 32% and 37% yield respectively, which were easily separated by column chromatography. The primary alcoholic functional groups of both diastereoisomers of 74 were selectively oxidized using cat. TEMPO (110) and CuCl (both 0.3 eq., 1 atm O_{2}, DMF, $\left.23^{\circ} \mathrm{C}, 75 \mathrm{~min}\right)$ to furnish both $(5 S, 6 R)-19$ and $(S, S)-19$ in 78% and 76% yield respectively (Scheme 51).

(S,S)-19 (76\%)

(5S,6R)-19 (78\%)

Scheme 51. Synthesis of (S,S)-19 and (5S,6R)-19.

Like in the way of racemic Canangone 19 and aldehyde $(R, R)-19$, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of aldehyde $(S, S)-19$ were matching with that of isolated Canangone. ${ }^{[88]}$ The optical rotation of the $(S, S)-19$ was $[a]_{D^{20}}=+107.5^{\circ}(c=1.87$ in $\mathrm{MeOH}, 69 \% e e)$ which corresponds to the original literature value of the isolated material being $[a]_{\mathrm{D}^{25}}=+58.8^{\circ}(\mathrm{c}=0.68$ in MeOH , unknown $e e)$. Deviation of the absolute value might be due to minor differences in experimental conditions. Interestingly, 6 -epiCanangone $(S, R)-19$ showed opposite optical rotation: $[\alpha]_{D^{20}}=-71.4^{\circ}(\mathrm{c}=1.56$ in $\mathrm{MeOH}, 69 \% \mathrm{ee}$). All the $[a]_{\mathrm{D}^{20}}$ values of synthetic and natural Canangone are compared in Table 7.

Table 7. Comparision of $[\alpha]_{D}{ }^{20}$ values of synthetic and natural Canangone 19.

Canangone	$(S, S)-\mathbf{1 9}$	$(S, R)-\mathbf{1 9}$	$(R, S)-\mathbf{1 9}$	$(R, R)-\mathbf{1 9}$	natural-19
$[a]_{\mathrm{D}^{20}}$	$+107.5^{\circ}$	-71.4°	$+58.9^{\circ}$	-67.0°	$+58.8^{\circ}$

After preparing the racemic as well as optically active epimers of Canangone 19, and being able to prepare their enantiomers, the biological activity tests were carried out with the racemic and all four stereoisomers of this natural product.

3.1.5 Brief Introduction of Screening on Biologically Active Compounds

Desiring for a rapid, inexpensive, in-house bioassay for screening of physiologically active plant extracts, a tiny crustacean, brine shrimp, has been used as the general bioassay tool. Popularly known as sea monkeys, brine shrimps are crustaceans that live in saline environments. Their eggs can be inexpensively purchased from pet stores, hatch quickly upon being placed in a brine solution within 48 hours and the larvae (termed a nauplius or plural, nauplii) are sensitive to small doses of biologically-active chemicals. One indicator of the toxicity of a substance is LC_{50}, which refers to the lethal concentration of a substance that kills half of the test organisms. Activities are considered significant if the LC_{50} is less than $30 \mu \mathrm{~g} / \mathrm{ml}$.

3.1.5.1 Hatching the Shrimp and Bioassay

Brine shrimp eggs (Artemia franciscana) were hatched in a shallow rectangular dish ($22 \times 32 \mathrm{~cm}$) filled with artificial sea water which was prepared with a commercial salt mixture and double-distilled water ($30 \mathrm{~g} / 500 \mathrm{ml}$). The eggs (ca. 50 mg) were sprinkled on the artificial sea water and after 48 hours the phototropic nauplii were collected with a pipette. Ten shrimp were transferred to each sample
vial using a disposable pipette. The nauplii can be counted macroscopically in the stem of the pipette against a lighted background. A drop of Liquizell (food for Artemia; 3 mg in 5 ml artificial sea water) was added to each vial. The vials were maintained under illumination. Survivors were counted, with the aid of a microscope after every 12 and 24 hours, and the percent deaths at each dose and control were determined. Generally the 24 hour counts were considered to be more useful for LC_{50} values.

3.1.5.2 Sample Preparation and the Test for Biological Activity

In order to check the biological activity of the synthesized Canangones and its epimers, the dilution series were prepared and $100 \mu \mathrm{l}$ were taken from each solution, diluted with 5 ml sea water and biological tests were carried out. Only at higher conc. i.e. $(1 \mathrm{~g} / \mathrm{l}), 3$ brine shrimps were died out of 10 which indicate that the synthesized Canangones are not active to the brine shrimp bioassay.

3.2 Attempted Synthesis of Chamigrene

The second synthetic target in this work is the total synthesis of (-)- β-Chamigrene 18, isolated from the leaf oil of Chamaecyparis taizanensis.

3.2.1 Synthesis of Cyclic β-Ketoester 12i

The β-ketoester 12j ${ }^{[140]}$ was obtained from 6-methylhept-5-en-2-one 71 (1.0 eq.) and dimethyl carbonate 84 (2.0 eq.) using 2.2 eq. NaH in THF (refluxing for 2 h and allowing to stand the reaction mixture for 12 h at $23^{\circ} \mathrm{C}$). With this method the yield was only 54% after distillation. But when the reaction was carried out using same amount of NaH and 10.0 eq. of dimethyl carbonate 84 under solvent free conditions, the yield was increased to 92% after aqueous acidic workup and distillation. The cyclization of β-ketoester 12j was carried out using SnCl_{4} (1.0 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature to give cyclic β-ketoester $\mathbf{1 2 i}{ }^{[141]}$ in 76% yield after chromatographic purification (Scheme 52).

Scheme 52. Synthesis of cyclic β-ketoester 12i.

3.2.2 Synthesis of Dibromide 83

3.2.2.1 Synthesis of $\boldsymbol{\beta}$-Methyl Glutaconic Acid 87

The synthesis of β-methyl glutaconic acid $87{ }^{[142]}$ was started with the condensation of ethyl acetoacetate 88 initially in 2.0 eq. conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. After stirring the reaction
mixture for 5 d (care should be taken that the temperature of the reaction mixture does not rise above $30^{\circ} \mathrm{C}$), a small aliquot from the reaction mixture was taken, and submitted for GC after aqueous work up. As the GC result showed the presence of 50% of the reactant, additional amounts of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (2.0 eq.) were added to the reaction mixture and stirred for an additional 5 d . After aqueous workup, a mixture of lactones 113 and 114 were obtained in 33% yield (Scheme 53). In order to increase the yield of the condensation products, the reaction time was increased (12 d), but not much improvement was observed in the yield. In the subsequent step, without further purification, the mixture of ester 113 and acid 114 were subjected for base hydrolysis using 50% aq. KOH , which resulted in a mixture of (Z) - and (E)-acids 87 in 69% yield after acidic workup and recrystallization from acetonitrile. The ratio of the E / Z mixture of acid 87 was found to be $2: 1$ based on ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

Scheme 53. Synthesis of 3-methyl glutaconic acid 87.

3.2.2.2 Synthesis of Glutaconic Anhydride 86

After preparing 3-methylglutaconic acid 87, the next aim was to access 3-methylglutaconic anhydride 86 by cyclization in order to obtain desired cis geometry for further synthetic sequences. Initially the reaction was tried with acetic anhydride ${ }^{[143]}$ (2-10 eq.) by heating the reaction mixture at $70^{\circ} \mathrm{C}$ for 1 h , but in all the cases, only complex mixtures were obtained. But when the same reaction was tried using acetyl chloride ${ }^{[144]}$ (heating the reaction mixture at $70^{\circ} \mathrm{C}$ for 35 min), the glutaconic anhydride 86 was obtained in 72% yield after crystallization from ether (Scheme 54).

87

86 (72\%)

Scheme 54. Synthesis of glutaconic anhydride 86 from acid 87.

3.2.2.3 Synthesis of Diol 64

The desired cis-configurated glutaconic anhydride 86 was then reduced to diol 85 (Scheme 55). The reaction was first tried by adding a solution of anhydride 86 in THF to an ice cooled solution of LiAlH_{4} in THF.[143] In these conditions, always a mixture of unsaturated diol 85 and saturated diol 116 were obtained almost in equal ratio.

Scheme 55. Reduction of glutaconic anhydride 86 to unsaturated diol 85.

Several optimization conditions were carried out in order to obtain exclusively the desired unsaturated diol 85, but none of them were successful (Table 8).

Table 8. Reduction of glutaconic anhydride using LiAlH_{4} under different conditions.

LiAlH_{4}	T	t	$\mathbf{8 5}$	$\mathbf{1 1 6}$
4.0 eq.	reflux	4 h	4%	56%
2.0 eq.	reflux	1 h	10%	48%
1.2 eq.	reflux	30 min	15%	38%
1.2 eq.	$23^{\circ} \mathrm{C}$	1 h	22%	36%
1.2 eq.	$-5^{\circ} \mathrm{C}$	1 h	28%	30%
1.2 eq.	$-5^{\circ} \mathrm{C}$	30 min	34%	30%
1.2 eq.	$-5^{\circ} \mathrm{C}$	10 min	35%	31%
1.2 eq.	$-78^{\circ} \mathrm{C}$	45 min	35%	26%
1.2 eq..	$-15^{\circ} \mathrm{C}$	45 min	63%	8%

a) Inverse addition

Luche reduction ${ }^{[145]}$ (1.5 eq. each $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 23^{\circ} \mathrm{C}, 16 \mathrm{~h}$) was also performed, but only the starting material was recovered. Even at reflux
conditions, only the starting material was recovered. Finally the desired unsaturated diol 85 was obtained in major amount when the reaction was carried out in the inverse addition manner, i.e. addition of an ice-cooled suspension of LiAlH_{4} in THF to a cooled solution of glutaconic anhydride 86 in THF at $-15^{\circ} \mathrm{C}$ and stirring the resulting mixture for 45 min at the same temperature. Under these conditions, the diol 85 was obtained in 63% yield with 8% being the saturated diol 116. The unsaturated diol 85 was then subjected for nucleophilic substitution conditions to synthesize dibromide 83. The reaction was first tried with SOBr_{2} (1.3 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $23^{\circ} \mathrm{C}$ as well as at $0^{\circ} \mathrm{C}$, but in both the cases only decomposed products were detected. The same reaction was tried applying the Appel conditions[146] ($\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$, each 4.0 eq.$\left.\right)$, this time the conversion was fruitful to obtain dibromide 83 in 63% yield (Scheme 56).

Scheme 56. Synthesis of dibromide 83.

3.2.3 Model Study for Alkylation using Allyl Bromide 117

Before continuing further, i.e. performing the alkylation between dibromo compound 83 and cyclic β-ketoester 12i, a model study was planned with commercially available allyl bromide 117 and the synthesized cyclic β-ketoester $\mathbf{1 2 i}$ in order to check the feasibility of the reaction, optimize the reaction conditions and to apply the same conditions for dibromo compound 83.

The synthesis of model compound, substituted cyclohexanone $\mathbf{1 2 0}^{[147]}$ was started with cyclic β-ketoester $\mathbf{1 2 i}$ and allyl bromide 117. Treatment of $\mathbf{1 2 i}$ with NaH (1.1 eq.) followed by an addition of allyl bromide 117 (3.0 eq.) in THF at $60^{\circ} \mathrm{C}$ provided
an inseparable mixture of O - and C-allylated products 118 and 119, in almost $1: 1$ ratio respectively, as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the inseparable mixture, exhibited three distinct singlets with the resonances at $\delta 0.84$, 1.11 and 1.25 , with the intensity of the resonance at $\delta 1.11$ being approximately twice that of the other two resonances. The geminal dimethyl groups in the O allylated product 118 might be enantiotopic because of which the two dimethyl groups are resonating at the same $\operatorname{ppm}(\delta 1.11)$, while the geminal dimethyl groups in the C-allylated product 119 might be diastereotopic as a result of which they are exhibiting two distinct signals. In order to convert the O-allylated product 118 to C-allylated product 119, the mixture of 118 and 119 were subjected to Claisen rearrangement conditions (heating and vigorous stirring at $150^{\circ} \mathrm{C}$ for $3.5 \mathrm{~h})$. As a result of this, the O-allylated product 118 underwent a Claisen rearrangement to produce the C-allylated product 119 quantitatively. Decarboxylation of 119 using wet lithium iodide in collidine 121 under reflux, gave the substituted cyclohexanone 120 in 67% yield (Scheme 57).

Scheme 57. Synthesis of substituted cyclohexanone 120.

During the synthesis of model compound 120, the O-allylation 118 and C -allylation product 119 were obtained in almost $1: 1$ ratio. If the same process continues in the original synthesis, the basic problem will be at the Claisen rearrangement. The product, which might be obtained from the Claisen rearrangement, will be the undesired alkylated product 125, which is not useful for further synthesis (Scheme 58).

Scheme 58. Possible pathway for undesired (125) and desired allylated product 124.

3.2.3.1 Attempted Synthesis for an Exclusive C-Allylated Product 123

Since the O-allylation product 122 could give the undesired product 125 after the Claisen rearrangement, the enamine pathway was planned to prepare exclusively C-allylated product 123 . Before trying the enamine pathway using cyclic β-ketoester 12 i and dibromide 83 as an allylating agent, again a model study was planned using allylbromide 117 as allylating agent in order to check the allylation conditions (Scheme 59). The enamine pathway may occur as follows: The first step would be the formation of an enamine 127 from cyclic β-ketoester $\mathbf{1 2 i}$ and $N, N, N^{\prime}-$ trimethylethylenediamine ${ }^{[148]}$ 126. In the second step, the diamine 127 could attack the allyl bromide $\mathbf{1 1 7}$ to give the ammonium salt 128 and then C-allylation takes place simultaneously. Hydrolysis of in situ generated iminium salt would provide allyl substituted cyclic β-ketoester 119.

12i

127

119

2. hydrolysis

128

Scheme 59. Possible reaction mechanism for the synthesis of allyl substituted cyclic β-ketoester 119.

As proposed in Scheme 59, the synthesis of C-allylated cyclic β-ketoester 119 was tried using cyclic β-ketoester 12i (1.0 eq.), N, N, N^{\prime}-trimethylethylenediamine 126 (1.1 eq.) and allylbromide 117 (3.0 eq.) in DMF at $80^{\circ} \mathrm{C}$. The reaction did not work even after stirring the reaction mixture for 10 days at the same temperature. No fruitful result was observed even by increasing the stoichiometric amounts of the reagents. As the reaction failed in one pot sequence, a two pot procedure was followed i.e. first enamine formation, later the addition of the allylbromide $\mathbf{1 1 7}$ to generate the C-allylated product. For this, first the enamine formation was tried using cyclic β-ketoester 12i (1.0 eq.), N, N, N^{\prime}-trimethylethylenediamine 126 (1.1 eq.) in toluene at $23^{\circ} \mathrm{C}$ in presence of $4 \AA$ molecular sieves and cat. hydrochloric acid (Scheme 60).

Scheme 60. Attempted synthesis of enamine 127.

The reaction was checked after 24 h , but no new spot was observed on TLC. Therefore, the reaction mixture was heated to reflux and stirred for another 24 h first and then left the reaction for an additional 4 days at the same temperature as there was no new spot detected on TLC. As the reaction was not working at the enamine formation itself, it became difficult to obtain C-allylated product 123 exclusively. At this stage the present synthetic route had to be stopped and another synthetic strategy was proposed for the synthesis of β-Chamigrene 18.

3.2.4 Second Retrosynthetic Analysis for β-Chamigrene 18

The second retrosynthetic scheme was planned in a very short (four steps) and reliable pathway for the synthesis of racemic as well as the optically active β-Chamigrene 18 (Scheme 61). In this scheme, the β-Chamigrene 18 could be possibly obtained from 129 by performing acidic cyclization followed by Wittig olefination on 47a. The ketone derivative 129 can be synthesized by alkylation of acetyl cyclohexene 130 using prenyl bromide 72. The Diels-Alder approach of methyl vinyl ketone 9a and isoprene 45 would provide acetyl cyclohexene 130.

Scheme 61. Second retrosynthetic analysis of β-Chamigrene 18.

3.2.4.1 Synthesis of Acetyl Cyclohexene 130

The synthesis of β-Chamigrene 18 in the second approach was started with a Lewis acid catalysed Diels-Alder reaction of methyl vinyl ketone 9a and isoprene 45 using $\mathrm{Sc}(\mathrm{OTf})_{3} \cdot{ }^{[149]}$ The reaction was successful and gave only one regioisomers of acetyl cyclohexene 130 in 83\% yield (Scheme 62).

Scheme 62. Synthesis of the Diels-Alder product 130.

As the Diels-Alder product 130 is volatile, care was taken while evaporating the solvents. The characteristic feature of $\mathrm{Sc}(\mathrm{OTf})_{3}$ as a Lewis acid catalyst is that it can
be easily recovered and reused. After the reaction is complete and the Diels-Alder product is extracted with dichloromethane, the aqueous layer is concentrated to remove the water under reduced pressure. $\mathrm{Sc}(\mathrm{OTf})_{3}$ is almost quantitatively recovered and the recovered catalyst also showed effective in the Diels-Alder reaction of next batches. The yields of Diels-Alder reaction using recovered catalyst in the 2nd and 3rd runs were 78% and 76% yields, respectively.

3.2.4.2 Synthesis of Alkylated Product 129 from Acetyl Cyclohexene 130

The next step was the alkylation of the Diels-Alder product 130 using prenyl bromide 72 as the alkylating agent. The acetyl cyclohexene 130 was treated with LDA (2.0 eq.) in THF and stirred for 1.5 h at $-78^{\circ} \mathrm{C}$ for the formation of kinetic enolate, which was then treated with prenyl bromide 72 (5.0 eq) and stirred the reaction mixture at $23^{\circ} \mathrm{C}$ for 12 h , which provided the mono- 129 and dialkylated products 131 in 6% and 44% yields respectively (Scheme 63).

Scheme 63. Alkylation of acetyl cyclohexene 130 using prenyl bromide 72.

In order to improve the yield of mono alkylated product 129, several reactions conditions were tried by varying stoichiometric ratio of the reagents as shown in Table 9.

Table 9. Conditions and yields of mono-129 and di-alkylated 131 products as well as the recovered starting material 130.

LDA $^{\text {a }}$	72	$\mathrm{~T} / \mathrm{t}$	$\mathbf{1 2 9}$	$\mathbf{1 3 1}$	$\mathbf{1 3 0}$
2.0 eq.	5.0 eq.	$23^{\circ} \mathrm{C} / 20 \mathrm{~h}$	6%	44%	12%
1.5 eq.	5.0 eq.	$23^{\circ} \mathrm{C} / 3 \mathrm{~h}$	8%	35%	15%
1.2 eq.	3.0 eq.	$23^{\circ} \mathrm{C} / 3 \mathrm{~h}$	6%	20%	26%
1.02 eq.	1.1 eq.	$-20^{\circ} \mathrm{C} / 16 \mathrm{~h}$	12%	16%	28%
1.02 eq.	1.1 eq.	$0^{\circ} \mathrm{C} / 16 \mathrm{~h}$	14%	19%	26%
1.02 eq.	1.1 eq.	$23^{\circ} \mathrm{C} / 16 \mathrm{~h}$	17%	26%	21%
1.02 eq.	1.1 eq.	$23^{\circ} \mathrm{C} / 2 \mathrm{~d}$	15%	32%	18%

${ }^{\text {a) }}$ conditions for enolate formation: $-78^{\circ} \mathrm{C} / 1.5 \mathrm{~h}$.

As all the efforts failed to improve the yield of monoalkylated product 129 using prenyl bromide 72 as an alkylating agent, prenyl iodide 136 was used by assuming that iodides are more reactive than bromides in alkylation reactions. Since prenyl iodide 136 is not commercially available, it was planned to prepare from prenyl alcohol 132, by formation of tosylate 134 using p-toluene sulfonyl chloride 133 and then a nucleophilic substitution with iodide using Finkelstein conditions. The tosylation was tried using tosyl chloride 133 and pyridine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ as well as at $23^{\circ} \mathrm{C}$ for 16 h , but none of them could provide tosylate 134. Probably during the reaction conditions, the chloride anion must have been attacking to the tosylate 134 to form prenyl chloride 135 which might be difficult to isolate because of its high volatility (Scheme 73). Finally the prenyl iodide 136
was obtained in 91% yield by stirring the prenyl alcohol $132, \mathrm{ZrCl}_{4}$ (0.5 eq .) and NaI (1.5 eq.) in acetonitrile at $23^{\circ} \mathrm{C}$ for 30 min (Scheme 64). ${ }^{[150]}$

Scheme 64. Synthesis of prenyl iodide 136.

Then, the alkylation was attempted using prenyl iodide 136 in order to obtain the mono alkylated product 129 exclusively. Initially, both mono-129 and dialkylated products 131 were obtained but after few optimizations the mono alkylated product 129 was obtained in 72% yield (Table 10).

Table 10. Alkylation conditions and their yields using prenyl iodide 136.

LDA $^{\text {a }}$	$\mathbf{1 3 6}$	T / t	$\mathbf{1 2 9}$	$\mathbf{1 3 1}$	$\mathbf{1 3 0}$
1.0 eq.	1.5 eq.	$-60^{\circ} \mathrm{C} / 3 \mathrm{~h}$	16%	8%	26%
1.2 eq.	2.5 eq.	$-40^{\circ} \mathrm{C} / 8 \mathrm{~h}$	18%	15%	20%
1.02 eq.	1.2 eq.	$0^{\circ} \mathrm{C} / 8 \mathrm{~h}$	20%	12%	24%
1.1 eq.	4.0 eq.	$-78^{\circ} \mathrm{C} / 2 \mathrm{~h}$ $23^{\circ} \mathrm{C} / 3 \mathrm{~h}$	72%	11%	8%

3.2.4.3 Attempted Synthesis for the Spiroannulated Product 42a

After synthesizing the mono alkylated product 129, it was subjected for cyclization using Brønsted acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. But unfortunately, only complex mixtures were detected by GC-MS analysis. Lewis acidic spiroannulation was attempted in order to obtain desired product 47a. First the reaction was tried in different equivalents of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (0.3 eq., 1.0 eq., 1.5 eq., 2.0 eq.) at $0^{\circ} \mathrm{C}$ as well as at $23^{\circ} \mathrm{C}$. The only product obtained in all the cases was the alcohol 137 in 52 to 65% yield (Scheme 65). The same reaction was also tried at $-78^{\circ} \mathrm{C}$ as well as at reflux conditions. The alcohol 137 was isolated as a sole product at $-78^{\circ} \mathrm{C}$ and decomposed products at higher temperature (reflux).

Scheme 65. Attempted synthesis of spiroannulated product 47a.

The spiroanuulation was also tried with other Lewis acids $\left[\mathrm{SnCl}_{4}, \mathrm{Sc}(\mathrm{OTf})_{3}\right]$ at lower temperatures $\left(-78^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}\right)$ and at $23^{\circ} \mathrm{C}$. Here too, the alcohol 137 was isolated exclusively in 55% to 62% yields. In slightly acidic conditions $\left(\mathrm{SiO}_{2}\right.$, CDCl_{3}) enol ether 140 formation was observed in trace amounts. Probably this
enol ether 140 is formed via hemiacetal 139 from hydroxy product 137 (Scheme 66).

Scheme 66. Formation of enol ether $\mathbf{1 4 0}$ from hydroxy product 137.

The above synthetic scheme had to be stopped at this stage because of the exclusive formation of hydroxy product $\mathbf{1 3 7}$ under Lewis acidic conditions. The enamine cyclization has to be tried in order to obtain β-Chamigrene precursor 47a (Scheme 67).

Scheme 67. Possible strategy for the synthesis of β-Chamigrene precursor 47a.

4 Summary and Conclusion

This dissertation includes two parts, first is total synthesis of Canangone 19 in racemic as well as optically active form, and their preliminary biological studies and the second part is the attempted synthesis of β-Chamigrene 18 (Figure 6).

19

18

Figure 6. (+)-Canangone 19 and β-Chamigrene 18.

The Michael acceptor $\mathbf{9 d}$ for synthesis of Canangone was prepared in three steps. The first step was Williamson's ether synthesis of 3,4-dimethoxy benzyl alcohol 89 and bromoacetic acid 90 followed by transformation of the derived acid 73a to Weinreb amide derivative 71a, which was then converted to vinyl ketone 9d under Grignard conditions. The enamines 78 were prepared from a-acetylbutyrolactone 12h and phenethylamine 107 in 89-94\% yield (Scheme 68). Subsequent Robinson annulation using vinyl ketone 9 d gave spirocyclic ketones 77 b in $40-43 \%$. The cleavage of the protective group with 10% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave primary allylic alcohol 75. As these primary alcohols 75 gave sufficient baseline resolution at GLC on a chiral phase, the stereoselectivity of the Michael reaction was determined to be $60-69 \%$ ee being sensitive to the reaction conditions. The reaction sequence leading to canangone was first developed and optimized in the racemic series and applied the same to the optically active series. Work from Pfau and d'Angelo predicted the (R)-configuration when starting from (S)phenethylamine. This was confirmed by X-ray single crystal structure
determination of the brosylate $(R) \mathbf{- 1 1 2}$, which was prepared using Brosyl chloride 111 and $E t_{3} \mathrm{~N}$.

rac-78 (89\%)
(S)-78 (92\%)
(R)-78 (94\%)

1
1.

2. 10% aq. $\mathrm{AcOH}, 23^{\circ} \mathrm{C}$

rac-77b (40\%)
(R)-77b (41\%)
(S)-77b (43\%)

TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}$

rac-112 (61\%)
(R)-112 (76\%)

$$
\mathrm{BsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-5^{\circ} \mathrm{C}
$$

rac-75(70\%)
(R)-75 (72\%, 60\% ee)
(S)-75 (71\%, 69\% ee)

Scheme 68. Synthesis of brosylate 112 from enamino lactone 78.

After finishing the synthesis of (R, R)-Canangone 19, it was proved from $\left([a]_{D^{20}}=-67.0^{\circ}\right.$, vide infra), that this was the enantiomer of the originally isolated natural product $\left([a]_{D^{25}}=+58.8^{\circ}\right)$. Therefore, the whole synthesis had to be repeated in the (S)-series starting from the (R)-configurated chiral auxiliary.

The synthesis of Canangone 19 was finished in both, the racemic and the (S)-series (69\% ee of 75) as depicted in Scheme 69. Luche reduction of the conjugated enone moiety yielded the allylic alcohols 74 without any stereoselectivity. In the racemic series, single crystals were grown from the more unpolar isomer, which were suitable for X-ray structure analysis. This confirmed the relative $\left(R^{*}, S^{*}\right)$-configuration. The primary alcohol functions of both diastereoisomers of 74 could be selectively oxidized using TEMPO- CuCl (both 0.3 eq., 1 atm $\mathrm{O}_{2}, \mathrm{DMF}, 23^{\circ} \mathrm{C}, 75$
min) to furnish both Canangones 19 and its 6-epimer, in both, the racemic as well as the (5S)-series, with 75-78\% yields.

Scheme 69. Synthesis of Canangone 19.

Comparison of ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data of $\left(R^{*}, R^{*}\right)$-19 and $\left(R^{*}, S^{*}\right)-19$ with the originnal publication confirmed the relative $\left(R^{*}, R^{*}\right)$-configuration of Canangone 19 as proposed by Caloprisco and coworkers. After preparing the optically active epimers of Canangone 19 and their enantiomers, the biological tests were carried out using brine shrimp bioassay. But unfortunately, none of the synthesized Canangones showed significant toxicity even at higher concentrations.

In conclusion, $(+)-(S, S)$-canangone 19 and its 6 -epimer ($5 S, 6 R$)-19 were prepared for the first time. Absolute and relative configurations were established by X-ray crystallography. This confirmed the originally proposed relative configuration.

The so far unknown absolute configuration of this natural product is established for the first time.

The second part of this dissertation dealt with the attempted synthesis of β-Chamigrene 18. A convergent strategy was planned for the synthesis of β-Chamigrene The β-ketoester 12i was prepared in two steps from 6-methylhept-5-en-2one 101 and the dibromide 83 was synthesized in five steps from ethyl acetoacetate 88 (Scheme 70).

Scheme 70. Synthesis of β-ketoester 12 i and dibromide 83 from their corresponding starting materials.

Before continuing further in the synthesis i.e. performing the alkylation between dibromo compound 83 and cyclic β-ketoester 12 i, a model study was planned with commercially available allyl bromide 117 and the synthesized cyclic β-ketoester $\mathbf{1 2 i}$ in order to check the feasibility of the reaction. The synthesis of model compound, i.e. substituted cyclohexanone 120 was started with cyclic β-ketoester 12 i and allyl bromide 117 in presence of NaH . This reaction gave an inseparable mixture of O - and C - allylated products 118 and 119, in almost $1: 1$ ratio, as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. In order to convert the O-allylated product 118 to C -allylated product 119, the mixture was subjected to Claisen rearrangement conditions.

Decarboxylation of 119 using wet lithium iodide in collidine under reflux, gave the substituted cyclohexanone 120 (Scheme 71).

Scheme 71. Synthesis of allyl substituted cyclohexanone 120.

As the O-allylation product 118 and C-allylation product 119 were obtained in almost $1: 1$ ratio, the synthesis was stopped by this method and an enamine strategy was planned using N, N, N^{\prime}-trimethylethylenediamine 126 and allylbromide 117 for getting exclusively the C-allylation product 119. But unfortunately in this case the reaction did not work at all. As the reaction was not working to give exclusively the C-allylated product 119, the present synthetic route had to be stopped at this stage and another synthetic strategy was proposed for the synthesis of β-Chamigrene 18.

The synthesis of β-Chamigrene 18 in the second approach, was started with Lewis acid catalysed Diels-Alder reaction of methyl vinyl ketone 9a and isoprene 45
using $\mathrm{Sc}(\mathrm{OTf})_{3}$ to give acetyl cyclohexene 130 (Scheme 72). In the next step, the Diels-Alder product 130 was alkylated using prenyl iodide 136 in presence of LDA to give the mono alkylated product 129. It was then submitted for cyclization conditions using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{SnCl}_{4}$, and $\mathrm{Sc}(\mathrm{OTf})_{3}$ at $0^{\circ} \mathrm{C}$ as well as at $23^{\circ} \mathrm{C}$. But unfortunately in all the cases, the hydroxy product 137 was obtained exclusively. As an outlook an enamine strategy can be planned in order to access the potential precursor of Chamigrene 18.

Scheme 72. Diels-Alder approach for the synthesis of β-Chamigrene 18.

5 Experimental Section

5.1 General Information

5.1.1 Analytical Methods

NMR-Spectroscopy: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a Bruker AC 250 (250 MHz), Bruker ARX 300 (300 MHz) or Bruker ARX 500 (500 MHz). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Bruker AC 250 (62 MHz), Bruker ARX 300 (75 MHz) or Bruker ARX 500 (125 MHz). Multiplicities were determined with distortionless enhancement by polarization transfer (DEPT) experiments. All measurements performed in CDCl_{3} or acetone- d_{6} as solvent and with tetramethylsilane $(\delta=0.000)$ as internal standard. The chemical shifts δ are denoted in ppm, the couplings constants J as frequency in Hz. The signal multiplicities are abbreviated as follows: s (singlet), d (doublet), t (triplet), q (quartett), quint (quintet), sex (sextet), h (heptet), oct (octet), m (multiplet). Broad signals are characterized as br. (broad).

IR-Spectroscopy: IR spectra were recorded on a Bruker Vector 22 and Bruker Tensor 27 spectrometer affiliated with MKII Golden Gate Signal Reflection Diamond ATRSystem. The positions of absorption bands are denoted in cm^{-1}. The intensity of the bands is abbreviated as br. (broad), vs (very strong), s (strong), m (moderate), w (weak).

Mass-Spectrometry: All mass spectra (Low Resolution and High Resolution) were measured on a Varian MAT 711 (EI) and a Finnigan MAT 95 (EI and CI) with direct-inlet at 70 eV . GC-MS spectra were measured on a GC HP 5890 II of the company Hewlett-Packard with mass detector Finnigan MAT 95, a Varian Star 3400 CX with mass detector Saturn $4 D$ of the company Varian or with a Focus $D S Q$
quadrupol machine by Thermo Fisher corporation. The relative intensities were indicated in percent of the respective basis peak.

Elemental Analysis: CHN-Analyses were measured on Jena Vario EL and with a Carlo Erba Strumentazione Elemental Analyzer Model 1108, respectively.

Optical rotation: Optical rotations were measured on a Perkin-Elmer Polarimeter 343.

Crystal structure analysis: The measurements were performed using a Molybdenum $K_{\alpha}-$ Source with a IPDS machine from Stoe. For data collection and cell refinement IPDS from Stoe (1999) and for data reduction xred by Stoe (1997) was used. The structure was refined and solved with SHELXS-97 and SHELXL-97 by Sheldrick, 1990. The refinement of F^{2} was done against all reflections. The weighted R -factor wR and the goodness of fits are based on F^{2}, with F set to O for negative F^{2}. The crystals were grown from EA, pentane or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $23^{\circ} \mathrm{C}$.

5.1.2 Chromatography

Gas-Chromatography: GC-analysis was performed with a Focus equipped with Triplus autosampler (Thermo Electron) and FID on a column CP-SIL 19 Varian (30 m $x 0.25 \mathrm{~mm}$) with hydrogen (constant flow of $1.5 \mathrm{ml} \mathrm{min}^{-1}$) as carrier gas.

Enantiomeric analysis: GLC analysis was performed with a Focus equipped with Triplus autosampler (Thermo Electron) and FID on a column Lipodex E ($25 \mathrm{~m} \times 0.25$ mm , chiral phase) with hydrogen (constant flow of $1.5 \mathrm{ml} \mathrm{min}^{-1}$) as carrier gas.

Column-Chromatography: Preparative column chromatography was carried out using Merck $\mathrm{SiO}_{2}\left(0.035-0.070 \mathrm{~mm}\right.$, type 60 A) with PE (b.p. $40-60^{\circ} \mathrm{C}$), n-hexane,
ethyl acetate (EA) or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluents. TLC was performed on Merck $\mathrm{SiO}_{2} \mathrm{~F}_{254}$ plates on aluminium sheets and the spots were visualized with molybdophosphoric acid reagent.

5.1.3 Solvents and Chemicals

Solvents: The solvents were purified according to standard procedures and dried. The solvents for the column chromatography [ethyl acetate (EA), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, petroleum ether ($\mathrm{PE}, \mathrm{bp} .30-75^{\circ} \mathrm{C}$) and n-hexane] were distilled prior to use. The following solvents were available from the Fluka or Acros company in absolute form and used without any further purification: THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{DMF}$, and toluene.

5.1.4 Working techniques

Procedures using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, LDA (c $=2 \mathrm{~mol} \mathrm{dm}^{-3}$ in Heptane/THF/Ethylbenzene), $\mathrm{NaBH}_{4}, \mathrm{NaH}$ (60% dispersion in mineral oil) or vinyl magnesium bromide ($\mathrm{c}=0.7 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in THF) were performed in flame dried glass-ware and with absolute solvent under nitrogen atmosphere.

5.2 Experimental Procedures for Canangone 19 and their Intermediates

5.2.1 Synthesis of DMB Protected Vinyl Ketone 9d

5.2.1.1 (3,4-Dimethoxybenzyloxy)acetic acid (82a)

A solution of 3,4-dimethoxybenzyl alcohol 89a (14.7 $\mathrm{g}, 87.5 \mathrm{mmol})$ in abs. THF (30 ml) was added to a suspension of $\mathrm{NaH}(7.76 \mathrm{~g}, 194 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) in abs. THF (30 ml) under nitrogen at $0^{\circ} \mathrm{C}$. After the mixture was stirred for 1 h , a solution of bromoacetic acid $90(8.00 \mathrm{~g}, 57.6 \mathrm{mmol})$ in abs. THF (30 ml) was added, and the stirring was continued for 2 h at $23^{\circ} \mathrm{C}$. Then more abs. THF (400 ml) was added and the mixture was heated to reflux for 2 d . It was then cooled to $0^{\circ} \mathrm{C}$, diluted with ice cold water (250 ml) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 150 \mathrm{ml})$. The aqueous layer was acidified with conc. hydrochloric acid (15 ml) to pH 1 and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{ml})$. The combined extracts were dried over MgSO_{4}, filtered and concentrated in vacuo to give acid $82 \mathrm{a}(12.7 \mathrm{~g}, 56.1 \mathrm{mmol}$, 97%) as a yellow oil.
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad \mathrm{M}=226.23 \mathrm{~g} \mathrm{~mol}^{-1}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.78$ (s, 3H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 4.49$ (s, 2H), 6.76 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{br} ., J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (s, br., 1H), 10.21 (br., s, 1H) ppm.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=55.51\left(\mathrm{CH}_{3}\right), 55.56\left(\mathrm{CH}_{3}\right)$, $65.92\left(\mathrm{CH}_{2}\right), 72.96$ $\left(\mathrm{CH}_{2}\right), 110.69(\mathrm{CH}), 111.17(\mathrm{CH}), 120.64(\mathrm{CH}), 128.89(\mathrm{C}), 148.69(\mathrm{C}), 148.79(\mathrm{C})$, 174.87 (C) ppm.

IR (ATR): $\lambda^{-1}=3173$ (m, br), 3085 (w), 3022 (w), 2964 (m), 2941 (w), 2870 (w), 2844 (w), 1772 (s), 1746 (s), 1609 (w), 1595 (m), 1515 (s), 1467 (m), 1456 (m), 1424 (s), 1373 (m), 1348 (w), 1322 (w), 1300 (w), 1258 (vs), 1178 (s), 1162 (vs), 1145 (vs), 1026 (vs), 969 (s), 940 (m), 927 (m), 902 (w), 816 (s), 768 (s), 744 (s) cm².

MS (EI, 70 eV$): m / z(\%)=226(67)\left[\mathrm{M}^{+}\right], 167(14), 151$ (100), 139 (11).

Elemental analysis: calcd. C 58.40, H 6.24;
found C 58.10, H 6.41.

5.2.1.2 2-(3,4-Dimethoxybenzyloxy)-N-methoxy-N-methylacetamide (81a)

$\mathrm{Et}_{3} \mathrm{~N}(3.00 \mathrm{~g}, 29.6 \mathrm{mmol})$ was added to a stirred solution of acid $82 \mathrm{a}(6.11 \mathrm{~g}, 27.0 \mathrm{mmol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{ml})$ at -5 to $0^{\circ} \mathrm{C}$. The mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$ before pivaloyl chloride
$(3.26 \mathrm{~g}, 27.0 \mathrm{mmol})$ was added. After 1 h further stirring at $0^{\circ} \mathrm{C}, \mathrm{MeO}(\mathrm{Me}) \mathrm{NH}_{2} \mathrm{Cl}$ $(2.63 \mathrm{~g}, 27.0 \mathrm{mmol})$ was added in one portion, followed by dropwise addition of $\mathrm{Et}_{3} \mathrm{~N}(5.5 \mathrm{~g}, 54 \mathrm{mmol})$. After additional stirring for 1.5 h at $0^{\circ} \mathrm{C}$ (or until the disappearance of the anhydride monitored by TLC, $\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA} 2: 1, \mathrm{R}_{\mathrm{f}}=0.43$) at 0 to $5^{\circ} \mathrm{C}$, the reaction mixture was washed with hydrochloric acid ($20 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol}$ $\left.\mathrm{dm}^{-3}\right)$, sat. aq. NaHCO_{3} soln. $(20 \mathrm{ml})$ and brine $(20 \mathrm{ml})$. The organic layer was dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on SiO_{2} (EA) to give Weinreb amide 81a (6.71 g, 24.9 mmol, 92%) as a light yellow oil.
$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{5} \quad \mathrm{M}=269.29 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{EA}\right)=0.44$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.18(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, $4.25(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=1.7 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
$\left.{ }^{13} \mathbf{C}^{1}{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=32.11\left(\mathrm{CH}_{3}\right), 55.68\left(\mathrm{CH}_{3}\right), 55.73\left(\mathrm{CH}_{3}\right), 61.20$ $\left(\mathrm{CH}_{3}\right), 66.53\left(\mathrm{CH}_{2}\right), 72.95\left(\mathrm{CH}_{2}\right), 110.69(\mathrm{CH}), 111.25(\mathrm{CH}), 120.54(\mathrm{CH}), 129.92(\mathrm{C})$, 148.61 (C), 148.90 (C), 170.88 (C) ppm.

IR (ATR): $\lambda^{-1}=3000$ (w), 2939 (m), 2913 (w), 2838 (w), 1677 (s), 1609 (w), 1594 (m), 1516 (vs), 1464 (m), 1420 (m), 1393 (w), 1330 (m), 1263 (vs), 1237 (vs), 1182 (m), 1159 (vs), 1137 (vs), 1085 (s), 1027 (vs), 993 (s), 952 (m), 923 (w), 857 (m), 812 (m), 767 (m) cm ${ }^{-1}$.

MS (EI, 70 eV$): m / z(\%)=269(8)\left[\mathrm{M}^{+}\right], 167(8), 152(10), 151$ (100), 107 (10), 103 (63), 73 (26).

Elemental analysis: calcd. C 57.98, H 7.11, N 5.20;
found C 58.40, H 7.24, N 5.39.

5.2.1.3 1-(3,4-Dimethoxybenzyloxy)-3-buten-2-one (9d)

A solution of vinyl magnesium bromide 80 (38.2 $\mathrm{ml}, 26.7 \mathrm{mmol}, 0.7 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF) was added dropwise to a cooled $\left(-5^{\circ} \mathrm{C}\right)$ solution of Weinreb amide 81a ($6.00 \mathrm{~g}, 22.3 \mathrm{mmol}$) in abs. THF (180 ml). The resulting mixture was slowly warmed and then stirred for 4 h at $23^{\circ} \mathrm{C}$. Subsequently, it was transferred via a cannula into a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of hydrochloric acid $(140 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol}$ dm^{-3}). The biphasic mixture was extracted with ether ($3 \times 30 \mathrm{ml}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The
residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EA}=1: 1)$ to give a first fraction, divinyl alcohol 97 ($532 \mathrm{mg}, 2.01 \mathrm{mmol}, 9 \%$) as a yellow oil and a second fraction, vinyl ketone $9 \mathrm{~d}(3.80 \mathrm{~g}, 16.1 \mathrm{mmol}, 72 \%)$ as a colorless oil.
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$

$$
\mathrm{M}=236.26 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=1: 1\right)=0.47$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.76(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H})$, 5.71 (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=10.7 \mathrm{~Hz}, J=17.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}$, br., $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, \mathrm{br} ., 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=55.46\left(\mathrm{CH}_{3}\right), 55.51\left(\mathrm{CH}_{3}\right)$, $72.83\left(\mathrm{CH}_{2}\right), 73.07$ $\left(\mathrm{CH}_{2}\right), 110.61(\mathrm{CH}), 110.99(\mathrm{CH}), 120.35(\mathrm{CH}), 128.73\left(\mathrm{CH}_{2}\right), 129.34(\mathrm{C}), 132.17(\mathrm{CH})$, 148.54 (C), 148.75 (C), 196.78 (C) ppm.

IR (ATR): $\lambda^{-1}=3001$ (w), 2938 (m), 2910 (w), 2866 (w), 2836 (m), 1737 (w), 1714 (m), 1697 (s), 1613 (w), 1593 (w), 1517 (vs), 1464 (m), 1419 (m), 1403 (w), 1365 (w), 1265 (s), 1237 (m), 1216 (w), 1159 (m), 1138 (m), 1066 (w), 1027 (m), 991 (w), 891 (w), 859 (w), 809 (w), 764 (w) cm^{-1}.

MS (EI, 70 eV): $m / z(\%)=236$ (5) $\left[\mathrm{M}^{+}\right], 166(54), 151$ (100), 107 (8).

HR-MS (CI, isobutane):
calcd. 237.1127
found 237.1126
for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{4}$,
$\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

5.2.1.4 3-(3,4-Dimethoxybenzyloxymethyl)penta-1,4-dien-3-ol (97)

The divinyl alcohol 97 (532 mg, $2.01 \mathrm{mmol}, 9 \%$) was obtained as a by-product (first fraction, yellow oil) in the synthesis of vinyl ketone 9d from Weinreb amide 81a. For procedure please see the page number 98-99.
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$
$\mathrm{M}=264.32 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=1: 1\right)=0.53$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.27(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H})$, $5.19(\mathrm{dd}, J=1.2 \mathrm{~Hz}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.35(\mathrm{dd}, J=1.2 \mathrm{~Hz}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{dd}$, $J=10.7 \mathrm{~Hz}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.98(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3510$ (br, m), 3083 (w), 3004 (m), 2956 (m), 2936 (m), 2911 (m), 2838 (m), 1717 (w), 1662 (m), 1592 (s), 1513 (vs), 1462 (s), 1453 (s), 1419 (s), 1339 (m), 1262 (vs), 1238 (vs), 1207 (m), 1151 (vs), 1135 (vs), 1093 (s), 1021 (vs), 924 (s), 866 (m), $809(\mathrm{~m}), 782(\mathrm{~m}), 764(\mathrm{~s}), 732(\mathrm{w}), 703(\mathrm{w}), 626(\mathrm{w}) \mathrm{cm}^{-1}$.

MS (EI, 70 eV$): m / z(\%)=264(7)\left[\mathrm{M}^{+}\right], 165(7), 151$ (100).

HR-MS (EI, 70 eV):	calcd. 264.1362	for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$,
	found 264.1362	$\left[\mathrm{M}^{+}\right]$.

5.2.1.5 1-(3,4-Dimethoxybenzyloxy)-4-(methoxymethylamino)-2-butanone (96)

A solution of vinyl magnesium bromide 90 ($13.0 \mathrm{ml}, 8.90 \mathrm{mmol}, 0.7 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF) was added dropwise to a cooled $\left(-5^{\circ} \mathrm{C}\right)$ solution of Weinreb amide 81a ($2.00 \mathrm{~g}, 7.42$ mmol) in abs. THF (60 ml). The resulting mixture was slowly warmed and then stirred for 4 h at $23^{\circ} \mathrm{C}$. Subsequently, it was diluted with ice-cold hydrochloric acid ($40 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} \mathrm{dm}^{-3}$). The biphasic mixture was extracted with ether (3×15 ml). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EA}=1: 1)$ to give compound $96(3.80 \mathrm{~g}, 16.1 \mathrm{mmol}, 72 \%)$ as a colorless oil.

$$
\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{5} \quad \mathrm{M}=297.35 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=1: 1\right)=0.37$.
${ }^{1} \mathbf{H}-N M R\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.47(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, \mathrm{J}=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=$ 8.1 Hz, 1H), $6.79(\mathrm{dd}, J=1.9 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=36.75\left(\mathrm{CH}_{2}\right), 44.65\left(\mathrm{CH}_{3}\right)$, $54.52\left(\mathrm{CH}_{2}\right), 55.54$ $\left(\mathrm{CH}_{3}\right), 55.61\left(\mathrm{CH}_{3}\right), 59.50\left(\mathrm{CH}_{3}\right), 72.91\left(\mathrm{CH}_{2}\right), 74.39\left(\mathrm{CH}_{2}\right), 110.65(\mathrm{CH}), 110.97(\mathrm{CH})$, 120.34 (CH), 129.48 (C), 148.61 (C), 148.84 (C), 207.15 (C) ppm.

IR (ATR): $\lambda^{-1}=2951$ (m), 2937 (m), 2894 (m), 2875 (m), 2852 (m), 2838 (m), 2809 (w), 1719 (s), 1607 (w), 1592 (w), 1515 (s), 1463 (m), 1442 (m), 1418 (m), 1377 (w),

1334 (w), 1262 (vs), 1237 (s), 1195 (w), 1157 (s), 1137 (s), 1105 (m), 1043 (s), 1026 (vs), 914 (m), 855 (m), 809 (m), 765 (m), 729 (s) cm-1.

MS (CI, isobutane): $m / z(\%)=298(73)\left[\mathrm{M}^{+}+\mathrm{H}\right], 151$ (100).

HR-MS (CI, isobutane):	calcd. 298.1654	for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{5}$,
	found 298.1654	$\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

5.2.2 Synthesis of PMB Protected Vinyl Ketone 9e

5.2.2.1 (4-Methoxybenzyloxy)acetic acid ${ }^{[117]}$ (82b)

A solution of 4-methoxybenzyl alcohol 89b (4.54 g, 32.9 mmol) in abs. THF (10 ml) was added to a suspension of $\mathrm{NaH}(2.92 \mathrm{~g}, 73.1 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) in abs. THF (10 ml) under nitrogen at $0^{\circ} \mathrm{C}$. After the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, a solution of bromoacetic acid $90(3.00 \mathrm{~g}, 21.7$ mmol) in abs. THF (10 ml) was added, and the mixture was further stirred for 2 h at $23^{\circ} \mathrm{C}$, after which additional abs. THF (120 ml) was added, and the mixture heated to reflux for 2 d . It was then cooled to $0^{\circ} \mathrm{C}$ before it was diluted with ice cold water $(50 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{ml})$. The aqueous layer was then acidified with conc. hydrochloric acid (5 ml) to pH 1 and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to give acid $\mathbf{8 2 b}(4.18 \mathrm{~g}, 21.3 \mathrm{mmol}, 98 \%)$ as a light yellow oil.
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad \mathrm{M}=196.20 \mathrm{~g} \mathrm{~mol}^{-1}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.81(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 6.89-6.90(\mathrm{~m}$, 2H), 7.28-7.30 (m, 2H), 10.45 (br., s, 1H) ppm.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=55.23\left(\mathrm{CH}_{3}\right), 66.20\left(\mathrm{CH}_{2}\right), 73.08\left(\mathrm{CH}_{2}\right), 113.96$ (2CH), $128.57(\mathrm{C}), 129.83(2 \mathrm{CH}), 159.62(\mathrm{C}), 175.27(\mathrm{C}) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3161$ (m, br), 3002 (w), 2956 (w), 2937 (w), 2909 (w), 2838 (w), 1728 (vs), 1612 (s), 1585 (w), 1463 (w), 1441 (w), 1424 (w), 1302 (w), 1246 (vs), 1212 (m), 1175 (m), 1108 (s), 1032 (m), 948 (w), 924 (w), 848 (w), 890 (m), 761 (w), 668 (w) cm^{-1}.

MS (EI, 70 eV$): m / z(\%)=196$ (19) [$\left.\mathrm{M}^{+}\right], 137$ (78), 121 (100), 77 (8).

HR-MS (EI, 70 eV):	calcd. 196.0736	for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$,
	found 196.0735	$\left[\mathrm{M}^{+}\right]$.

5.2.2.2 N-Methoxy-2-(4-methoxybenzyloxy)-N-methylacetamide (81b)

$\mathrm{Et}_{3} \mathrm{~N}(2.20 \mathrm{~g}, 21.8 \mathrm{mmol})$ was added to a stirred solution of acid $\mathbf{8 2 b}(3.88 \mathrm{~g}, 19.8 \mathrm{mmol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$ at -5 to $0^{\circ} \mathrm{C}$. The mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$ before pivaloyl chloride $(2.38 \mathrm{~g}, 19.8 \mathrm{mmol})$ was added. After 75 min stirring at $0^{\circ} \mathrm{C} \mathrm{MeO}(\mathrm{Me}) \mathrm{NH}_{2} \mathrm{Cl}(1.93$ $\mathrm{g}, 19.8 \mathrm{mmol}$) was added in one portion, followed by dropwise addition of $\mathrm{Et}_{3} \mathrm{~N}$ ($4.00 \mathrm{~g}, 39.6 \mathrm{mmol}$). After additional stirring for 2 h (or until the disappearance of anhydride monitored by TLC, $\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=1: 1, \mathrm{R}_{\mathrm{f}}=0.75$) at 0 to $5^{\circ} \mathrm{C}$, the reaction mixture was washed with hydrochloric acid ($10 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} \mathrm{dm}^{-3}$), sat. NaHCO_{3} soln. (10 ml) and brine $(10 \mathrm{ml})$, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EA}=1: 1)$ to give Weinreb amide $\mathbf{8 1 b}(4.08 \mathrm{~g}, 17.1 \mathrm{mmol}, 86 \%)$ as a light yellow oil.
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4} \quad \mathrm{M}=239.27 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=1: 1\right)=0.28$.
${ }^{1} \mathbf{H}-N M R\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.19(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H})$, $4.60(\mathrm{~s}, 2 \mathrm{H}), 6.87-6.89(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.33(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=32.17\left(\mathrm{CH}_{3}\right), 55.20\left(\mathrm{CH}_{3}\right), 61.30\left(\mathrm{CH}_{3}\right), 66.62$ $\left(\mathrm{CH}_{2}\right), 72.74\left(\mathrm{CH}_{2}\right), 113.70(2 \mathrm{CH}), 129.51(\mathrm{C}), 129.64(2 \mathrm{CH}), 159.28(\mathrm{C}), 171.04(\mathrm{C})$ ppm.

IR (ATR): $\lambda^{-1}=2998$ (w), 2938 (w), 2907 (w), 2872 (w), 2837 (w), 1676 (vs), 1612 (m), 1585 (w), 1512 (s), 1462 (m), 1441 (m), 1391 (w), 1327 (m), 1302 (m), 1246 (vs), 1174 (m), 1134 (m), 1112 (m), 1084 (s), 1031 (s), 992 (s), 954 (w), 930 (w), 820 (m), 759 (w) cm^{-1}.

MS (EI, 70 eV$): m / z(\%)=239(17)\left[\mathrm{M}^{+}\right], 121$ (100), 103 (57), 73 (14).

HR-MS (EI, 70 eV):	calcd. 239.1158	for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4}$,
	found 239.1159	$\left[\mathrm{M}^{+}\right]$.

5.2.2.3 1-(4-Methoxybenzyloxy)-3-buten-2-one (9e)

A solution of vinyl magnesium bromide 80 (6.60 $\mathrm{ml}, 4.63 \mathrm{mmol}, 0.7 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF) was added dropwise to a cooled $\left(-5^{\circ} \mathrm{C}\right)$ solution of Weinreb amide 81 b ($0.930 \mathrm{~g}, 3.86 \mathrm{mmol}$) in abs. THF (30 ml). The resulting mixture was slowly warmed and then stirred for 4.5 h at $23^{\circ} \mathrm{C}$. Subsequently, it was transferred via a cannula into a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of hydrochloric acid $(20 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol}$
dm^{-3}). The biphasic mixture was extracted with ether ($3 \times 10 \mathrm{ml}$), dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EA}=1: 1)$ to give vinyl ketone $9 \mathrm{e}(0.590 \mathrm{~g}, 2.86$ mmol, 74%) as a colorless oil.

$$
\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad \mathrm{M}=206.24 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=1: 1\right)=0.60$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.81(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 5.81(\mathrm{~d}, \mathrm{~J}=$ $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=10.8 \mathrm{~Hz}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-$ $6.90(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=55.24\left(\mathrm{CH}_{3}\right), 72.96\left(\mathrm{CH}_{2}\right), 73.50\left(\mathrm{CH}_{2}\right), 113.88$ $(2 \mathrm{CH}), 129.12\left(\mathrm{CH}_{2}\right), 129.15(\mathrm{C}), 129.65(2 \mathrm{CH}), 132.46(\mathrm{CH}), 159.48(\mathrm{C}), 197.30(\mathrm{C})$ ppm.

IR (ATR): $\lambda^{-1}=3057$ (w), 3036 (w), 2989 (w), 2951 (w), 2932 (w), 2904 (w), 2843 (w), 2825 (w), 1722 (s), 1700 (s), 1607 (w), 1590 (w), 1521 (m), 1510 (s), 1480 (w), 1461 (m), 1442 (m), 1394 (w), 1343 (w), 1259 (vs), 1220 (s), 1194 (m), 1146 (m), 1088 (s), 1040 (w), 1026 (w), 995 (m), 940 (w), 925 (w), 881 (w), 849 (m), 739 (m) cm¹.

5.2.3 Synthesis of Trityl Protected Vinyl Ketone 9f

5.2.3.1 Trityloxyacetic acid[119] (82c)

A solution of trityl chloride $91(2.80 \mathrm{~g}, 10.0 \mathrm{mmol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ was added dropwise to a stirred solution of glycolic acid 92 ($0.806 \mathrm{~g}, 10.6 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ $(3.80 \mathrm{~g}, 38.0 \mathrm{mmol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ at -5 to $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at the same temperature for 1 h and then warmed to $23^{\circ} \mathrm{C}$ and further stirred for 16 h . The reaction mixture was acidified $(\mathrm{pH}=3)$ with aqueous KHSO_{4} $\left(20 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$. The layers were separated and the organic layer was washed with brine ($2 \times 10 \mathrm{ml}$), dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: $\mathrm{MeOH}=4: 1)$ to give acid $82 \mathrm{c}(2.32 \mathrm{~g}, 7.29 \mathrm{mmol}, 73 \%)$ as a colorless oil.

$$
\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3} \quad \mathrm{M}=318.37 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=4: 1\right)=0.40$.
${ }^{1} \mathbf{H}-N M R\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.87(\mathrm{~s}, 2 \mathrm{H}), 7.23-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.33(\mathrm{~m}, 6 \mathrm{H})$, 7.45-7.47 (m, 6H), 9.95 (br., s, 1H) ppm.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=62.03\left(\mathrm{CH}_{2}\right), 87.83(\mathrm{C}), 127.43(3 \mathrm{CH}), 128.49$ (6CH), $128.58(6 \mathrm{CH}), 142.86(3 \mathrm{C}), 174.87(\mathrm{C}) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3427$ (br, m), 3087 (m), 3060 (m), 3027 (m), 2922 (m), 2861 (m), 2768 (m), 2670 (m), 2570 (m), 1728 (vs), 1599 (m), 1492 (s), 1448 (vs), 1325 (m), 1220 (s), 1185 (m), 1156 (s), 1112 (vs), 1034 (m), 1013 (s), 1002 (s), 989 (s), 903 (s), 851 (w), 764 (vs), 748 (vs), 734 (vs), 698 (vs), 635 (vs) cm².

MS (EI, 70 eV$): m / z(\%)=318(35)\left[\mathrm{M}^{+}\right], 259(52), 243$ (100), 183 (22), 165 (46), 105 (48), 77 (17).

HR-MS (EI, 70 eV):	calcd. 318.1256	for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3}$,
	found 318.1254	$\left[\mathrm{M}^{+}\right]$.

5.2.3.2 N-Methoxy-N-methyl-2-trityloxyacetamide (81c)

$\mathrm{Et}_{3} \mathrm{~N}(0.770 \mathrm{~g}, 7.60 \mathrm{mmol})$ was added to a stirred solution of acid 82c ($2.20 \mathrm{~g}, 6.91 \mathrm{mmol}$) in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{ml})$ at -5 to $0^{\circ} \mathrm{C}$. The mixture was stirred for 15 \min at $0^{\circ} \mathrm{C}$ before pivaloyl chloride $(0.833 \mathrm{~g}, 6.91$ mmol) was added. After 2.5 h stirring at $0^{\circ} \mathrm{C}$ $\mathrm{MeO}(\mathrm{Me}) \mathrm{NH}_{2} \mathrm{Cl}(0.674 \mathrm{~g}, 6.91 \mathrm{mmol})$ was added in one portion, followed by dropwise addition of $\mathrm{Et}_{3} \mathrm{~N}(1.40 \mathrm{~g}, 13.8 \mathrm{mmol})$. After additional stirring for 2 h (or until the disappearance of the anhydride monitored by TLC, SiO_{2}, PE : EA $1: 1, \mathrm{R}_{\mathrm{f}}=0.78$) at 0 to $5^{\circ} \mathrm{C}$, the reaction mixture was washed with hydrochloric acid (10 ml , $\mathrm{c}=1 \mathrm{~mol} \mathrm{dm}^{-3}$), sat. NaHCO_{3} soln. (10 ml) and brine (10 ml), dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EA}=1: 1)$ to give Weinreb amide $81 \mathrm{c}(2.20 \mathrm{~g}, 6.08 \mathrm{mmol}, 88 \%)$ as a colorless oil.
$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{3} \quad \mathrm{M}=361.43 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=1: 1\right)=0.56$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.12(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 7.21-7.25(\mathrm{~m}$, 3H), 7.29-7.32 (m, 6H), 7.51-7.53 (m, 6H) ppm.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=32.29\left(\mathrm{CH}_{3}\right), 61.19\left(\mathrm{CH}_{3}\right), 62.08\left(\mathrm{CH}_{2}\right), 87.20$ $(\mathrm{C}), 127.07(3 \mathrm{CH}), 127.86(6 \mathrm{CH}), 128.65(3 \mathrm{CH}), 128.72(3 \mathrm{CH}), 143.51(3 \mathrm{C}), 170.49(\mathrm{C})$ ppm.

IR (ATR): $\lambda^{-1}=3085(\mathrm{w}), 3055(\mathrm{w}), 3031(\mathrm{w}), 3023(\mathrm{w}), 3001(\mathrm{w}), 2969(\mathrm{w}), 2936(\mathrm{w})$, 2906 (w), 1681 (vs), 1596 (w), 1490 (m), 1461 (m), 1447 (s), 1425 (m), 1390 (m), 1329 (m), 1219 (m), 1178 (m), 1154 (m), 1126 (m), 1079 (s), 1032 (w), 989 (m), 901 (m), 762 (m), 747 (m), 731 (m), 705 (vs) cm².

MS (EI, 70 eV$): m / z(\%)=361(49)\left[\mathrm{M}^{+}\right], 243$ (100), 164 (19).

HR-MS (EI, 70 eV):	calcd. 361.1678	for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{3}$,
	found 361.1679	$\left[\mathrm{M}^{+}\right]$.

5.2.3.3 1-Trityloxy-3-buten-2-one (9f)

A solution of vinyl magnesium bromide $\mathbf{8 0}(8.5 \mathrm{ml}, 5.97$ mmol, $0.7 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF) was added dropwise to a cooled $\left(-5^{\circ} \mathrm{C}\right)$ solution of Weinreb amide 81c (1.80 g, 4.98 mmol) in abs. THF (50 ml). The resulting mixture was slowly warmed and then stirred for 1.5 h at $23^{\circ} \mathrm{C}$. Subsequently, it was transferred via a cannula into a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of hydrochloric acid ($40 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} \mathrm{dm}^{-3}$). The biphasic mixture was extracted with ether ($3 \times 10 \mathrm{ml}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EA}=4: 1)$ to give vinyl ketone $9 \mathrm{f}(1.40 \mathrm{~g}$, $4.26 \mathrm{mmol}, 86 \%)$ as a colorless oil.

$$
\mathrm{M}=328.40 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=4: 1\right)=0.53$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.92(\mathrm{~s}, 2 \mathrm{H}), 5.73(\mathrm{dd}, J=1.4 \mathrm{~Hz}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.25 (dd, $J=1.4 \mathrm{~Hz}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=10.7 \mathrm{~Hz}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.23-7.26 (m, 3H), 7.29-7.32 (m, 6H), 7.45-7.47 (m, 6H) ppm.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=69.06\left(\mathrm{CH}_{2}\right), 87.43(\mathrm{C}), 127.27(3 \mathrm{CH}), 127.99$ $(6 \mathrm{CH}), 128.57(6 \mathrm{CH}), 128.92\left(\mathrm{CH}_{2}\right), 132.32(\mathrm{CH}), 143.22(3 \mathrm{C}), 196.90(\mathrm{C}) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3086$ (w), 3058 (w), 3032 (w), 3023 (w), 2891 (w), 2841 (w), 1715 (s), 1697 (vs), 1613 (m), 1596 (w), 1511 (w), 1490 (s), 1447 (s), 1400 (s), 1319 (w), 1288 (w), 1217 (s), 1177 (m), 1155 (m), 1065 (s), 1032 (m), 984 (m), 948 (w), 927 (w), 900 (m), 851 (w), 828 (w), 763 (s), 746 (s), 698 (vs) cm^{-1}.

MS (EI, 70 eV$): m / z(\%)=328$ (12) $\left[\mathrm{M}^{+}\right], 243$ (100), 165 (22), 105 (5).

HR-MS (EI, 70 eV): calcd. 328.1463 for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2}$, found $328.1463 \quad\left[\mathrm{M}^{+}\right]$.

5.2.4 Synthesis of Michael Product 79a

5.2.4.1 Procedure 1 for the Iron Catalyzed Michael Reaction

 3-Acetyl-3-[4-(3,4-dimethoxybenzyloxy)-3-oxobutyl]-4,5-dihydro-2furanone (79a)
$\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(20 \mathrm{mg}, 74 \mu \mathrm{~mol})$ was added to a so-
 lution of vinyl ketone 9d ($250 \mathrm{mg}, 1.06 \mathrm{mmol}$) and 2-acetylbutyrolactone 12h (189 mg, 1.48 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$. The resulting mixture was stirred for 16 h at $23^{\circ} \mathrm{C}$. Then the reaction mixture was concentrated in vacuo and the residue
was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EA}=1: 1)$ to give in a first fraction hexamethoxytribenzocyclononane 99 ($138 \mathrm{mg}, 0.306 \mathrm{mmol}, 32 \%$) as a colorless solid, mp. $225-226^{\circ} \mathrm{C}$. A second fraction was Michael product 79a (35 mg , $94 \mu \mathrm{~mol}, 10 \%)$, a colorless oil.

$$
\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{7} \quad \mathrm{M}=364.39 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=1: 1\right)=0.31$.
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.98(\mathrm{td}, J=8.5 \mathrm{~Hz}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{ddd}, J=$ $5.9 \mathrm{~Hz}, J=9.4 \mathrm{~Hz}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.50(\mathrm{~m}$, 2H), 2.78 (ddd, $J=3.7 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.00$ $(\mathrm{s}, 2 \mathrm{H}), 4.14(\mathrm{dt}, J=7.4 \mathrm{~Hz}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dt}, J=3.7 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ $(\mathrm{s}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=1.7 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.68\left(\mathrm{CH}_{3}\right), 27.11\left(\mathrm{CH}_{2}\right)$, $29.80\left(\mathrm{CH}_{2}\right), 34.06$ $\left(\mathrm{CH}_{2}\right), 55.83\left(\mathrm{CH}_{3}\right), 55.87\left(\mathrm{CH}_{3}\right), 60.19(\mathrm{C}), 65.99\left(\mathrm{CH}_{2}\right), 73.42\left(\mathrm{CH}_{2}\right), 74.54\left(\mathrm{CH}_{2}\right)$, $110.89(\mathrm{CH}), 111.26(\mathrm{CH}), 120.71(\mathrm{CH}), 129.32(\mathrm{C}), 148.97(\mathrm{C}), 149.11(\mathrm{C}), 175.22(\mathrm{C})$, 202.38 (C), 206.90 (C) ppm.

IR (ATR): $\lambda^{-1}=2999$ (w), 2936 (m), 2918 (m), 2868 (w), 2838 (w), 1762 (s), 1712 (vs), 1607 (w), 1593 (m), 1516 (s), 1464 (m), 1455 (m), 1419 (m), 1371 (m), 1363 (m), 1337 (w), 1264 (s), 1238 (s), 1159 (vs), 1139 (s), 1107 (m), 1090 (m), 1026 (vs), 949 (w), 856 (w), 812 (m), 765 (m), 747 (w) cm².

MS (EI, 70 eV$): m / z(\%)=364(17)\left[\mathrm{M}^{+}\right], 166$ (42), 151 (100), 87 (12).

HR-MS (EI, 70 eV):	calcd. 364.1522	for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{7}$,
	found 364.1521	$\left[\mathrm{M}^{+}\right]$.

5.2.4.2 2,3,7,8,12,13-Hexamethoxy-10,15-dihydro-5H-tribenzo[a,d,g]cyclononane ${ }^{[128]}$ (99)

The hexamethoxytribenzocyclononane 99 (138 $\mathrm{mg}, 0.306 \mathrm{mmol}, 32 \%$) was obtained as the by-product (first fraction, colorless solid) in the synthesis of Michael product 79a from vinyl ketone 9d. For procedure please see the page numbers 109-110.
$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{6} \quad \mathrm{M}=450.52 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=1: 1\right)=0.34$.

Melting point: $225-226^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}-N M R\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.54(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 18 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=$ 13.7 Hz, 3H), $6.83(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=36.43\left(3 \mathrm{CH}_{2}\right), 55.99\left(6 \mathrm{CH}_{3}\right)$, $113.11(6 \mathrm{CH})$, 131.75 (6C), 147.68 (6C) ppm.

IR (ATR): nu(tilde) = 3059 (w), 3001 (w), 2936 (m), 2912 (m), 2958 (w), 2836 (m), 1714 (s), 1697 (s), 1610 (m), 1593 (m), 1514 (vs), 1463 (s), 1418 (s), 1403 (m), 1366 (w), 1333 (w), 1261 (vs), 1236 (vs), 1194 (m), 1157 (vs), 1137 (vs), 1109 (s), 1065 (s), 1025 (vs), 989 (s), 855 (m), 809 (s), 764 (s), 732 (s), 700 (m) cm¹.

MS (EI, 70 eV$): m / z(\%)=450(100)\left[\mathrm{M}^{+}\right], 419(78), 299(68), 281(22), 268(18), 151$ (22), 69 (15).

HR-MS (EI, 70 eV):	calcd. 450.2042	for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{6}$,
	found 450.2041	$\left[\mathrm{M}^{+}\right]$.

5.2.4.3 Procedure 2 for the Base Catalyzed Michael Product 79a

$\mathrm{NaOtBu}(12 \mathrm{mg}, 0.125 \mathrm{mmol})$ was added to a cooled $\left(-5^{\circ} \mathrm{C}\right)$ solution of vinyl ketone $9 \mathrm{~d}(600 \mathrm{mg}, 2.54 \mathrm{mmol})$ and 2-acetylbutyrolactone $\mathbf{1 2 h}(357 \mathrm{mg}, 2.79 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$. The resulting mixture was slowly warmed to $23^{\circ} \mathrm{C}$ and then stirred for 18 h . Then the reaction mixture was concentrated in vacuo and the residue was purified by column chromatography on SiO_{2} (PE: EA $=1: 1, \mathrm{R}_{\mathrm{f}}=0.31$) to give Michael product 79a (796 mg, $\left.2.18 \mathrm{mmol}, 86 \%\right)$ as a colorless oil.

For analytical data please see the page numbers 110-111.

5.2.5 Attempted Synthesis of Spirolactone 75

5.2.5.1 7-Hydroxy-6-methyl-2-oxaspiro[4.5]-6-decene-1,8-dione (100)

Ice-cold conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(354 \mathrm{mg}, 3.61 \mathrm{mmol})$ was added to a solution of a Michael product 79a ($88 \mathrm{mg}, 0.241 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ at $-5^{\circ} \mathrm{C}$. The resulting mixture was stirred at the same temperature for 1 h . It was then diluted with sat. aq. NaHCO_{3} soln. $(40 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 15 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EA}=1: 1)$ to obtain a first
fraction, hexamethoxytribenzocyclononane 99 ($22 \mathrm{mg}, 0.048 \mathrm{mmol}, 20 \%, \mathrm{R}_{\mathrm{f}}=0.34$) as a colorless solid (For the analytical data please see the page number 111-112). As a second fraction, cyclized product $100\left(22 \mathrm{mg}, 0.111 \mathrm{mmol}, 46 \%, \mathrm{R}_{\mathrm{f}}=0.28\right)$ was obtained as a colorless solid.

$$
\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad \mathrm{M}=196.20 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=1: 1\right)=0.28$.

Melting point: $122-123^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}-N M R\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.88(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{ddd}, J=5.0 \mathrm{~Hz}, J=6.1 \mathrm{~Hz}, J=$ $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{ddd}, J=4.9 \mathrm{~Hz}, J=6.1 \mathrm{~Hz}$, $J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dt}, J=7.3 \mathrm{~Hz}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dt}, J=3.1 \mathrm{~Hz}, J=9.2 \mathrm{~Hz}$, 1H), 6.30 (s, 1H, OH) ppm.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.83\left(\mathrm{CH}_{3}\right), 29.51\left(\mathrm{CH}_{2}\right), 31.47\left(\mathrm{CH}_{2}\right), 31.56$ $\left(\mathrm{CH}_{2}\right), 48.25(\mathrm{C}), 65.60\left(\mathrm{CH}_{2}\right), 126.96(\mathrm{C}), 145.61(\mathrm{C}), 177.76(\mathrm{C}), 191.99(\mathrm{C}) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3351$ (br., m), 2989 (m), 2962 (m), 2939 (m), 2920 (m), 2878 (w), 2855 (w), 1745 (vs), 1672 (vs), 1650 (vs), 1479 (w), 1449 (m), 1420 (m), 1378 (vs), 1362 (s), 1343 (m), 1322 (m), 1284 (m), 1266 (m), 1218 (s), 1203 (s), 1191 (s), 1175 (vs), 1148 (vs), 1128 (m), 1074 (w), 1059 (m), 1019 (vs), 987 (s), 975 (m), 960 (w), 942 (w), 911 (w), 869 (m), 822 (w), 797 (w), 736 (m), $687(\mathrm{~m}) \mathrm{cm}^{-1}$.

MS (EI, 70 eV$): m / z(\%)=196(100)\left[\mathrm{M}^{+}\right], 152(42), 137(14), 124$ (44), 109 (48), 95 (27), 67 (15).

HR-MS (EI, 70 eV):
calcd. 196.0736
found. 196.0735
$\left[\mathrm{M}^{+}\right]$.

5.2.5.2 Procedure for an Attempt of Aldol Cyclization with Lewis Acid:

$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(24 \mathrm{mg}, 0.169 \mathrm{mmol})$ was added to a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of Michael product 79a ($55 \mathrm{mg}, 0.151 \mathrm{mmol}$) and the mixture stirred for 6 h at the same temperature. It was then diluted with sat. aq. NaHCO_{3} soln. $(2 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on SiO_{2} ($\mathrm{PE}: \mathrm{EA}=1: 1, \mathrm{R}_{\mathrm{f}}=0.34$), to give hexamethoxytribenzocyclononane 99 ($21 \mathrm{mg}, 0.061 \mathrm{mmol}, 41 \%$) as a colorless solid.

For the analytical data please see the page numbers 111-112.

5.2.5.3 7-(3,4-Dimethoxybenzyloxy)-6-methyl-2-oxaspiro[4.5]-6-decene-1,8-dione (104)

Pyrrolidine ($15 \mathrm{mg}, 0.211 \mathrm{mmol}$) and acetic acid (13 mg , 0.216 mmol) were subsequently added to a solution of Michael product 79a ($76 \mathrm{mg}, 0.208 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5$ $\mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was warmed to $23^{\circ} \mathrm{C}$ and stirred for 18 h and then the volatile materials were removed in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EA}=4: 1)$ to give as a first fraction, enolether $104\left(32 \mathrm{mg}, 0.092 \mathrm{mmol}, 44 \%, \mathrm{R}_{\mathrm{f}}=0.25\right)$, and as a second fraction, alcohol $103\left(28 \mathrm{mg}, 0.08 \mathrm{mmol}, 37 \%, \mathrm{R}_{\mathrm{f}}=0.20\right)$, both as a colorless oils.
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6} \quad \mathrm{M}=346.37 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=4: 1\right)=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.80(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{td}, J=5.1 \mathrm{~Hz}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.31-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{ddd}, J=4.8 \mathrm{~Hz}, J=12.1 \mathrm{~Hz}, J=17.0 \mathrm{~Hz}$,

1H), $2.72(\mathrm{td}, J=5.0 \mathrm{~Hz}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.33(\mathrm{dt}, J=7.5$ $\mathrm{Hz}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dt}, J=3.4 \mathrm{~Hz}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.95(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=1.8 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.85\left(\mathrm{CH}_{3}\right), 29.54\left(\mathrm{CH}_{2}\right), 31.47\left(\mathrm{CH}_{2}\right), 34.36$ $\left(\mathrm{CH}_{2}\right), 49.04(\mathrm{C}), 55.88\left(\mathrm{CH}_{3}\right), 56.09\left(\mathrm{CH}_{3}\right), 65.56\left(\mathrm{CH}_{2}\right), 73.97\left(\mathrm{CH}_{2}\right), 110.81(\mathrm{CH})$, 111.98 (CH), 121.33 (CH), 129.61 (C), 142.84 (C), 148.89 (C), 149.04 (C), 149.47 (C), 177.47 (C), 192.34 (C) ppm.

IR (ATR): $\lambda^{-1}=2996$ (m), 2938 (m), 2875 (m), 2837 (m), 1762 (vs), 1680 (vs), 1620 (w), 1608 (w), 1528 (m), 1515 (vs), 1463 (s), 1453 (s), 1419 (m), 1378 (s), 1349 (w), 1335 (w), 1307 (m), 1265 (vs), 1239 (s), 1212 (m), 1193 (s), 1169 (vs), 1159 (vs), 1077 (w), 1025 (vs), 989 (s), 918 (w), 858 (w), 813 (w), 732 (m) cm¹.

MS (EI, 70 eV): $m / z(\%)=346$ (80) [$\left.\mathrm{M}^{+}\right], 151$ (100).

HR-MS (EI, 70 eV): calcd. 346.1416 for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6}$,
found $346.1415 \quad\left[\mathrm{M}^{+}\right]$.
5.2.5.4 7-(3,4-Dimethoxybenzyloxy)-6-hydroxy-6-methyl-2-oxaspiro[4.5]decane-1,8-dione (103)

The alcohol 103 ($28 \mathrm{mg}, 0.08 \mathrm{mmol}, 37 \%$) was obtained as a second fraction (colorless oil) in the spiroannulation reaction of Michael product 79a using pyrrolidine and acetic acid. For procedure please see the page number 114.

$$
\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{7} \quad \mathrm{M}=346.39 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=4: 1\right)=0.20$.
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.18(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{ddd}, J=5.4 \mathrm{~Hz}, J=11.8 \mathrm{~Hz}, J=$ $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{ddd}, J=4.4 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{ddd}, J=4.2$ $\mathrm{Hz}, J=6.4 \mathrm{~Hz}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{ddd}, J=4.5 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.77(\mathrm{td}, J=8.4 \mathrm{~Hz}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{ddd}, J=6.5 \mathrm{~Hz}, J=12.0 \mathrm{~Hz}, J$ $=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{dt}, J=7.9 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}$, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dt}, J=4.4 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ $(\mathrm{s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=1.5 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.47\left(\mathrm{CH}_{3}\right), 29.30\left(\mathrm{CH}_{2}\right), 31.12\left(\mathrm{CH}_{2}\right), 35.71$ $\left(\mathrm{CH}_{2}\right), 50.33(\mathrm{C}), 55.90\left(2 \mathrm{CH}_{3}\right), 65.79\left(\mathrm{CH}_{2}\right), 73.41\left(\mathrm{CH}_{2}\right), 77.42(\mathrm{C}), 85.04(\mathrm{CH})$, $110.97(\mathrm{CH}), 111.62(\mathrm{CH}), 120.90(\mathrm{CH}), 130.01(\mathrm{C}), 148.94(\mathrm{C}), 149.01(\mathrm{C}), 179.01(\mathrm{C})$, 206.73 (C) ppm.

IR (ATR): $\lambda^{-1}=3493$ (br. m), 2982 (w), 2938 (m), 2918 (m), 2875 (w), 2837 (w), 1753 (vs), 1725 (vs), 1608 (w), 1592 (w), 1515 (vs), 1464 (m), 1454 (m), 1421 (m), 1379 (m), 1320 (w), 1264 (s), 1238 (s), 1158 (s), 1137 (vs), 1119 (s), 1070 (m), 1028 (vs), 964 (w), 915 (w), 890 (w), 861 (w), $810(\mathrm{w}), 731$ (m) cm-1.

MS (EI, 70 eV$): m / z(\%)=364(10)\left[\mathrm{M}^{+}\right], 166(37), 151$ (100).

HR-MS (EI, 70 eV):	calcd. 364.1522	for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{7}$,
	found 364.1521	$\left[\mathrm{M}^{+}\right]$.

5.2.5.5 rac-Acetyl-3-(3-oxo-4-trityloxybutyl)-4,5-dihydro-2-furanone (79b)

$\mathrm{NaO} t \mathrm{Bu}(5 \mathrm{mg}, 0.052 \mathrm{mmol})$ was added to a cooled $\left(-5^{\circ} \mathrm{C}\right)$ solution of vinyl ketone $9 \mathrm{f}(320 \mathrm{mg}, 0.974$ mmol) and 2-acetylbutyrolactone $\mathbf{1 2 h}(137 \mathrm{mg}, 1.07$ $\mathrm{mmol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$. The resulting mixture was slowly warmed and then stirred for 18 h at $23^{\circ} \mathrm{C}$. The reaction mixture was then concentrated in vacuo and the residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EA}=1: 1)$ to give Michael product 79b ($365 \mathrm{mg}, 7.99 \mathrm{mmol}$, $82 \%)$ as a colorless oil.
$\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}_{5} \quad \mathrm{M}=456.53 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=1: 1\right)=0.37$.
${ }^{1} \mathbf{H}-N M R\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.95(\mathrm{td}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-2.12(\mathrm{~m}$, 1H), 2.26 (td, $J=7.2 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.80$ (ddd, J $=3.6 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{dt}, J=7.4 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.28(\mathrm{dt}, J=3.7 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.40-$ 7.42 (m, 6H) ppm.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.75\left(\mathrm{CH}_{3}\right), 27.17\left(\mathrm{CH}_{2}\right)$, $29.67\left(\mathrm{CH}_{2}\right), 34.42$ $\left(\mathrm{CH}_{2}\right), 60.28(\mathrm{C}), 66.03\left(\mathrm{CH}_{2}\right), 69.80\left(\mathrm{CH}_{2}\right), 87.63(\mathrm{C}), 127.40(3 \mathrm{CH}), 128.06(6 \mathrm{CH})$, $128.47(3 \mathrm{CH}), 128.53(3 \mathrm{CH}), 143.01(3 \mathrm{C}), 175.22(\mathrm{C}), 202.38(\mathrm{C}), 206.78(\mathrm{C}) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3086$ (w), 3058 (w), 3031 (w), 2917 (w), 2899 (w), 2840 (w), 1764 (s), 1711 (vs), 1596 (w), 1490 (m), 1448 (m), 1371 (m), 1448 (m), 1371 (m), 1360 (m), 1319 (w), 1283 (w), 1218 (m), 1153 (s), 1083 (m), 1030 (s), 1001 (w), 982 (w), 891 (w), 947 (w), 908 (s), 765 (s), 746 (vs), 705 (vs) cm¹.

MS (EI, 70 eV$): m / z(\%)=456(8)\left[\mathrm{M}^{+}\right], 243(100), 165(17)$.

HR-MS (EI, 70 eV):	calcd. 456.1937	for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}_{5}$,
	found 456.1936	$\left[\mathrm{M}^{+}\right]$.

5.2.5.6 Procedure for an Aldol Cyclization Under Acidic ($\mathbf{H}_{2} \mathrm{SO}_{4}$) Conditions

Ice-cold conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(393 \mathrm{mg}, 4.01 \mathrm{mmol})$ was added to a solution of a Michael product 79b (122 mg, 0.267 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ at $-5^{\circ} \mathrm{C}$. The resulting mixture was stirred at the same temperature for 1 h , it was then diluted with sat. aq. NaHCO_{3} soln. $(50 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EA}=1: 1)$ to give cyclized product 100 ($33 \mathrm{mg}, 0.17 \mathrm{mmol}, 62 \%$) as a colorless solid.

For analytical data please see the page number 113.

5.2.6 Synthesis of Spirolactone 77a

5.2.6.1 rac-(Z)-3-[1-(1-Phenylethylamino)ethylidene]-4,5-dihydro-2-furanone ${ }^{[129]}$ (78)

A mixture of 2-Acetylbutyrolactone $\mathbf{1 2 h}(1.00 \mathrm{~g}, 7.80 \mathrm{mmol})$ and rac-phenyl ethylamine 107 ($945 \mathrm{mg}, 7.80 \mathrm{mmol}$) was stirred at $23^{\circ} \mathrm{C}$ for 4 h . It was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}$: $\mathrm{EA}=1: 1)$ to give enamino lactone $78(1.60 \mathrm{~g}, 6.91 \mathrm{mmol}, 89 \%)$ as a colorless oil.
$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2} \quad \mathrm{M}=231.29 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=1: 1\right)=0.45$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.51(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.84(\mathrm{~m}$, 2H), 4.23-4.30 (m, 2H), 4.63 (pent, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 3 \mathrm{H}) 7.32-7.34(\mathrm{~m}$, $2 \mathrm{H}), 8.61$ (d, br., $J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.78\left(\mathrm{CH}_{3}\right), 24.87\left(\mathrm{CH}_{3}\right)$, $26.36\left(\mathrm{CH}_{2}\right), 52.95$ $(\mathrm{CH}), 65.10\left(\mathrm{CH}_{2}\right), 86.10(\mathrm{C}), 125.42(2 \mathrm{CH}), 127.10(\mathrm{CH}), 128.79(2 \mathrm{CH}), 145.02(\mathrm{C})$, 156.41 (C), 174.04 (C) ppm.

IR (ATR): $\lambda^{-1}=3285$ (w), 3223 (w), 3083 (w), 3061 (w), 3028 (w), 2971 (w), 2922 (w), 2907 (w), 2865 (w), 1769 (w), 1686 (s), 1618 (vs), 1476 (w), 1453 (m), 1408 (w), 1371 (m), 1279 (w), 1225 (vs), 1156 (w), 1099 (m), 1026 (m), 999 (w), 966 (m), 894 (w), 767 (m), $702(\mathrm{~m}) \mathrm{cm}^{-1}$.

MS (EI, 70 eV$): m / z(\%)=231(82)\left[\mathrm{M}^{+}\right], 216(55)\left[\mathrm{M}^{+}-\mathrm{Me}\right], 145(10), 127(24), 105$ (100).

HR-MS (CI, isobutane):

$$
\begin{array}{ll}
\text { calcd. 232.1337 } & \text { for } \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2,}, \\
\text { found 232.1338 } & {\left[\mathrm{M}^{+}+\mathrm{H}\right] .}
\end{array}
$$

In analogy, (R)-phenyl ethylamine $(R)-107(2.36 \mathrm{~g}, 19.5 \mathrm{mmol})$ was converted to $(R)-78(4.26 \mathrm{~g}, 18.4 \mathrm{mmol}, 94 \%)$ as a colorless solid, mp. $72-73^{\circ} \mathrm{C} .[\mathrm{a}] \mathrm{D}^{20}=-512.4^{\circ}$ $(\mathrm{c}=1.15$ in MeOH$)$.

In analogy, (S)-phenyl ethylamine (S)-107 (1.89 g, 15.6 mmol) was converted to (S)-78 (3.31 g, $14.3 \mathrm{mmol}, 92 \%$) as a colorless solid, $\mathrm{mp} .71-72^{\circ} \mathrm{C} .[\mathrm{a}] \mathrm{D}^{20}=+474.9^{\circ}$ $(\mathrm{c}=0.86$ in MeOH$)$.

5.2.6.2 rac-8-Methyl-6-(1-phenylethylimino)-2-oxaspiro[4.5]-7-decen-1-one ${ }^{[129]}$

 (109a)

A solution of methyl vinyl ketone 9a ($170 \mathrm{mg}, 2.42 \mathrm{mmol}$) was added to a solution of enamino lactone $78(350 \mathrm{mg}, 1.51$ $\mathrm{mmol})$ in abs. THF (5 ml). The mixture was stirred at $65^{\circ} \mathrm{C}$ for 18 h . The solvent was then removed under reduced pressure to give an orange colored residue 109a (412 mg, $1.45 \mathrm{mmol}, 96 \%)$. A ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum shows two separate sp^{2} - CH resonances at $\delta=6.24$ and 6.21 ppm , which integrate to $d r=80: 20$.
$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \quad \mathrm{M}=283.36 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathrm{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=1: 1\right)=0.50$.

5.2.6.3 rac-8-Methyl-2-oxaspiro[4.5]-7-decene-1,6-dione ${ }^{[42]}$ (77a)

The imine 109a ($524 \mathrm{mg}, 1.85 \mathrm{mmol}$) was dissolved in a mixture of THF (5 ml) and 10% aqueous acetic acid $(1.8 \mathrm{ml})$. The mixture was stirred at room te ${ }^{[42]}$ mperature for 24 h . Subsequently, the solvent was removed in vacuo, the residue diluted with hydrochloric acid ($2 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} \mathrm{dm}^{-3}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4$ x 5 ml). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EA}=1: 1)$ to give ketone $77 \mathrm{a}(152 \mathrm{mg}, 0.843 \mathrm{mmol}, 56 \%)$ as a light yellow solid.
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad \mathrm{M}=180.20 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=1: 1\right)=0.37$.

Melting point: $63-64^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.98(\mathrm{ddd}, J=5.2 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.98(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.10(\mathrm{td}, J=8.6 \mathrm{~Hz}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{td}, J=5.9 \mathrm{~Hz}, J=$ $18.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, J=5.2 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (ddd, $J=4.0$ $\mathrm{Hz}, J=6.9 \mathrm{~Hz}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{td}, J=6.0 \mathrm{~Hz}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dt}, J=4.0$ $\mathrm{Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dt}, J=7.0 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (sextet, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.31\left(\mathrm{CH}_{3}\right), 27.83\left(\mathrm{CH}_{2}\right), 30.56\left(\mathrm{CH}_{2}\right), 32.49$ $\left(\mathrm{CH}_{2}\right), 52.67(\mathrm{C}), 65.81\left(\mathrm{CH}_{2}\right), 124.10(\mathrm{CH}), 164.13(\mathrm{C}), 175.72(\mathrm{C}), 194.31(\mathrm{C}) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3058$ (w), 2979 (w), 2928 (m), 2872 (w), 2832 (w), 1767 (vs), 1657 (vs), 1631 (s), 1478 (w), 1428 (m), 1378 (s), 1346 (m), 1324 (w), 1305 (w), 1283 (m), 1217 (s), 1186 (s), 1163 (m), 1140 (s), 1101 (w), 1061 (m), 1026 (s), 986 (m), 960 (m), 931 (m), 890 (w), 865 (m), 837 (w), 783 (w), 746 (w), 705 (w) cm¹.

MS (EI, 70 eV$): m / z(\%)=180(19)\left[\mathrm{M}^{+}\right], 152(36), 134$ (32), 121 (13), 82 (100).

HR-MS (EI, 70 eV):	calcd. 180.0786	for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$,
	found 180.0789	$\left[\mathrm{M}^{+}\right]$.

5.2.7 Synthesis of Spirolactone 77b

5.2.7.1 rac-8-(3,4-Dimethoxybenzyloxymethyl)-6-(1-phenylethylimino)-2-oxaspiro[4.5]-7-decen-1-one (109b)

A solution of vinyl ketone $9 \mathrm{~d}(1.30 \mathrm{~g}, 5.50 \mathrm{mmol})$ in abs. THF (10 ml) was added to a solution of enamino lactone $78(1.40 \mathrm{~g}, 6.05 \mathrm{mmol})$ in abs. THF (10 ml). The mixture was stirred at $65^{\circ} \mathrm{C}$ for 18 h . The solvent was then removed under reduced pressure, to give an orange colored residue 109b ($2.22 \mathrm{~g}, 4.94 \mathrm{mmol}, 90 \%$). A ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum shows two separate $\mathrm{sp}^{2}-\mathrm{CH}$ resonances at $\delta=6.54$ and 6.51 ppm , which integrate to $d r=83: 17$.
$\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{5} \quad \mathrm{M}=449.54 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=1: 1\right)=0.45$.

In analogy, (S)-enamino lactone (S)-78 (2.10 g, 9.10 mmol$)$ was converted to (R)-109b ($3.82 \mathrm{~g}, 8.50 \mathrm{mmol}, 93 \%$) with product $d r=86: 14$ from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ by integration of two separate $\mathrm{sp}^{2}-\mathrm{CH}$ resonances.

In analogy, (R)-enamino lactone $(R)-78(3.33 \mathrm{~g}, 14.4 \mathrm{mmol})$ was converted to (S)-109b ($6.24 \mathrm{~g}, 13.9 \mathrm{mmol}, 96 \%$) with product $d r=87: 13$ from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ by integration of two separate $\mathrm{sp}^{2}-\mathrm{CH}$ resonances.

5.2.7.2 rac-8-(3,4-Dimethoxybenzyloxymethyl)-2-oxaspiro[4.5]-7-decene-1,6dione (77b)

The cyclized imine rac-109b ($3.36 \mathrm{~g}, 7.47 \mathrm{mmol}$) was
 dissolved in a mixture of THF (15 ml) and 10% aqueous acetic acid (5.5 ml). The mixture was stirred at room temperature for 24 h , and then the solvent was removed in vacuo, the residue diluted with hydrochloric acid ($5 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} \mathrm{dm}^{-3}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EA}=4: 1\right)$ to give ketone $77 \mathrm{~b}(760 \mathrm{mg}, 2.19$ $\mathrm{mmol}, 40 \%)$ as a colorless oil.
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6} \quad \mathrm{M}=346.37 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathrm{R}_{\mathrm{f}}\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EA}=4: 1\right)=0.52$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.01-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{dt}, J=13.1 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}$, 1H), $2.29(\mathrm{dt}, J=18.5 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{ddd}, J=5.2 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, J=13.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.71-2.78(\mathrm{~m}, 2 \mathrm{H}), 3.88\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 4.11(\mathrm{~s}, 2 \mathrm{H} ; 8$ $\left.\mathrm{CH}_{2}\right), 4.36(\mathrm{dt}, J=3.9 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3), 4.42(\mathrm{dt}, J=7.1 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$; H-3), 4.50 (s, 2H; ArCH_{2}), 6.20 (pent, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7$), 6.86-6.89 (m, 3H; ArH) ppm.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=23.27\left(\mathrm{CH}_{2}\right), 30.39\left(\mathrm{CH}_{2}\right)$, $32.41\left(\mathrm{CH}_{2}\right), 53.36$ $(\mathrm{C}), 55.76\left(\mathrm{CH}_{3}\right), 55.80\left(\mathrm{CH}_{3}\right), 65.80\left(\mathrm{CH}_{2}\right), 71.12\left(\mathrm{CH}_{2}\right), 72.70\left(\mathrm{CH}_{2}\right), 110.88(\mathrm{CH})$, $111.01(\mathrm{CH}), 120.36(\mathrm{CH}), 122.19(\mathrm{CH}), 129.75(\mathrm{C}), 148.73(\mathrm{C}), 148.97(\mathrm{C}), 162.79(\mathrm{C})$, 175.38 (C), 194.24 (C) ppm.

IR (ATR): $\lambda^{-1}=3058(w), 2997(w), 2935(m), 2920(w), 2866(w), 2837(w), 1770$ (vs), 1715 (w), 1663 (vs), 1607 (w), 1593 (w), 1516 (s), 1464 (m), 1452 (m), 1420 (m), 1375 (m), 1341 (w), 1264 (s), 1238 (m), 1217 (m), 1187 (m), 1158 (s), 1139 (s), 1101 (w), 1083 (w), 1059 (w), 1027 (s), 961 (w), 914 (w), 869 (w), 811 (w), 765 (w), 731 (m) cm^{-1}.

MS (EI, 70 eV): $m / z(\%)=346$ (40) [M+$], 167$ (29), 151 (100).

HR-MS (EI, 70 eV):	calcd. 346.1416	for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6}$,
	found 346.1415	$\left[\mathrm{M}^{+}\right]$.

In analogy, cyclized imine $(R) \mathbf{- 1 0 9 b}(2.10 \mathrm{~g}, 9.10 \mathrm{mmol})$ was converted to $(R)-\mathbf{7 7 b}$ $(1.17 \mathrm{~g}, 3.37 \mathrm{mmol}, 41 \%) .[\mathrm{a}] \mathrm{D}^{20}=-36.6^{\circ}(\mathrm{c}=1.63 \mathrm{in} \mathrm{MeOH})$.

In analogy, cyclized imine $(S) \mathbf{- 1 0 9 b}(3.33 \mathrm{~g}, 14.4 \mathrm{mmol})$ was converted to $(S)-\mathbf{7 7 b}$ $(1.94 \mathrm{~g}, 5.60 \mathrm{mmol}, 43 \%) .[\alpha] \mathrm{D}^{20}=+47.2^{\circ}(\mathrm{c}=3.14 \mathrm{in} \mathrm{MeOH})$.

5.2.8 Synthesis of Sprolactone 77c

5.2.8.1 rac-6-(1-Phenylethylimino)-8-trityloxymethyl-2-oxaspiro[4.5]-7-decen-1one (109c)

A solution of vinyl ketone $9 \mathrm{f}(1.13 \mathrm{~g}, 3.45 \mathrm{mmol})$ in abs. THF (10 ml) was added to a solution of enamino lactone 78 ($878 \mathrm{mg}, 3.80 \mathrm{mmol}$) in abs. THF (5 ml). The mixture was stirred at $65^{\circ} \mathrm{C}$ for 18 h . The solvent was then removed under reduced pressure to give an orange colored residue 109c ($1.56 \mathrm{~g}, 2.87 \mathrm{mmol}, 84 \%$). A ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum shows two separate $\mathrm{sp}^{2}-\mathrm{CH}$ resonances at $\delta=6.71$ and 6.66 ppm , which integrate to $d r=91: 9$.

```
C}\mp@subsup{\textrm{C}}{37}{}\mp@subsup{\textrm{H}}{35}{}\mp@subsup{\textrm{NO}}{3}{}\quad\textrm{M}=541.68\mp@subsup{\textrm{g mol}}{}{-1
R
```


5.2.9 Synthesis of Spirolactone 77d

5.2.9.1 rac-8-(4-Methoxybenzyloxymethyl)-6-(1-phenylethylimino)-2-

 oxaspiro[4.5]-7-decen-1-one (109d)

A solution of vinyl ketone $\mathbf{9 e}(420 \mathrm{mg}, 2.04 \mathrm{mmol})$ in abs. THF (4 ml) was added to a solution of enamino lactone 78 ($517 \mathrm{mg}, 2.24 \mathrm{mmol}$) in abs. THF (4 ml). The mixture was stirred at $65^{\circ} \mathrm{C}$ for 18 h . The solvent was then removed under reduced pressure to give an orange colored residue $109 \mathrm{~d}(0.796 \mathrm{~g}, 1.90 \mathrm{mmol}, 93 \%)$. A ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum shows two separate $\mathrm{sp}^{2}-\mathrm{CH}$ resonances at $\delta=6.46$ and 6.42 ppm , which integrate to $d r=83: 17$.
$\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{4} \quad \mathrm{M}=419.51 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=1: 1\right)=0.45$.
5.2.9.2 rac-8-(4-Methoxybenzyloxymethyl)-2-oxaspiro[4.5]-7-decene- 1,6dione (77d)

The cyclized imine $109 \mathrm{~d}(1.01 \mathrm{~g}, 2.40 \mathrm{mmol})$ was dissolved in a mixture of THF (8 ml) and 10% aqueous acetic acid (2.8 ml). The mixture was stirred at room temperature for 24 h , and then the solvent was removed in vacuo, the residue diluted with hydrochloric acid ($3 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} \mathrm{dm}^{-3}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 5 \mathrm{ml})$. The combined organic layers were dried over
MgSO_{4}, filtered and concentrated in vасио. The residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EA}=4: 1\right)$ to give ketone $77 \mathrm{~d}(98 \mathrm{mg}, 0.309$ mmol, 15%) as a light yellow oil.
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \quad \mathrm{M}=316.35 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EA}=4: 1\right)=0.54$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.04(\mathrm{ddd}, J=5.2 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.11(\mathrm{td}, J=8.6 \mathrm{~Hz}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{td}, J=6.0 \mathrm{~Hz}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{ddd}$, $J=5.2 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.73(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H})$, $4.36(\mathrm{dt}, J=3.8 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dt}, J=7.3 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H})$, 6.18 (pent, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.90(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.27(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
$\left.{ }^{13} \mathbf{C} \mathbf{\{} \mathbf{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=22.37\left(\mathrm{CH}_{2}\right), 30.55\left(\mathrm{CH}_{2}\right), 32.57\left(\mathrm{CH}_{2}\right), 53.43$ $(\mathrm{C}), 55.30\left(\mathrm{CH}_{3}\right), 65.91\left(\mathrm{CH}_{2}\right), 71.22\left(\mathrm{CH}_{2}\right), 72.57\left(\mathrm{CH}_{2}\right), 113.88(2 \mathrm{CH}), 122.36(\mathrm{CH})$, $129.37(2 \mathrm{CH}), 129.41$ (C),159.42 (C), 162.87 (C), 175.43 (C), 194.31 (C) ppm.

IR (ATR): $\lambda^{-1}=2997$ (w), 2935 (w), 2916 (w), 2865 (w), 2840 (w), 1770 (s), 1724 (w), 1662 (vs), 1613 (m), 1587 (w), 1514 (s), 1455 (m), 1447 (m), 1426 (w), 1377 (m), 1346 (w), 1322 (w), 1301 (m), 1248 (s), 1217 (s), 1184 (s), 1177 (s), 1162 (m), 1144 (m), 1083 (m), 1060 (m), 1030 (vs), 998 (m), 963 (m), 911 (m), 872 (w), 821 (m), 731 (m) cm-1.

MS (EI, 70 eV$): m / z(\%)=316(4)\left[\mathrm{M}^{+}\right], 180(15), 137(50), 121$ (100), 82 (8).

HR-MS (EI, 70 eV):	calcd. 316.1311	for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$,
	found 316.1311	$\left[\mathrm{M}^{+}\right]$.

5.2.10 Synthesis of Canangone 19

5.2.10.1 rac-8-(Hydroxymethyl)-2-oxaspiro[4.5]-7-decene-1,6-dione (75)

TFA (34 ml of a 10% solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added to a solution of compound 77 b ($213 \mathrm{mg}, 0.614 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{ml})$ at $23^{\circ} \mathrm{C}$. After stirring for 1.5 h at the same temperature, the reaction mixture was filtered through a pad of silica $(5 \mathrm{~cm})$ and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$. The volatile materials were removed in vасио and the residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EA}=1: 1\right)$ to give as first fraction hexamethoxytribenzocyclononane $99\left(10 \mathrm{mg}, 0.022 \mathrm{mmol}, 4 \%, \mathrm{R}_{\mathrm{f}}=0.75\right)$ as a light yellow solid. (For analytical data please see the page numbers 111-112). A second fraction was allylic alcohol 75 (84 $\mathrm{mg}, 0.428 \mathrm{mmol}, 70 \%, \mathrm{R}_{\mathrm{f}}=0.13$), a light yellow oil.
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad \mathrm{M}=196.20 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EA}=1: 1\right)=0.13$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.89(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OH}), 2.03-2.11(\mathrm{~m}, 1 \mathrm{H})$, $2.11(\mathrm{dt}, J=13.0 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dt}, J=18.5 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{ddd}$, $J=5.4 \mathrm{~Hz}, J=6.2 \mathrm{~Hz}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.80(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~B}$ part of an ABXsystem, $\left.J_{\mathrm{BX}}=6.3 \mathrm{~Hz}, J_{\mathrm{AB}}=16.7 \mathrm{~Hz}, 1 \mathrm{H} ; 8-\mathrm{CHH}\right), 4.27$ (A part of an ABX -system, $J_{A X}$ $\left.=5.6 \mathrm{~Hz}, J_{\mathrm{AB}}=16.7 \mathrm{~Hz}, 1 \mathrm{H} ; 8-\mathrm{CHH}\right), 4.36(\mathrm{dt}, J=4.0 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3), 4.43$ $(\mathrm{dt}, J=7.1 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3), 6.20(\mathrm{pent}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=23.03\left(\mathrm{CH}_{2}\right), 30.49\left(\mathrm{CH}_{2}\right), 32.51\left(\mathrm{CH}_{2}\right), 53.65$ (C), $64.49\left(\mathrm{CH}_{2}\right), 66.07\left(\mathrm{CH}_{2}\right), 120.71(\mathrm{CH}), 166.26(\mathrm{C}), 175.94(\mathrm{C}), 194.67(\mathrm{C}) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3447$ (br, m), 2982 (w), 2927 (w), 2873 (w), 2842 (w), 1756 (vs), 1656 (vs), 1513 (w), 1479 (w), 1427 (m), 1377 (m), 1347 (m), 1323 (w), 1295 (m), 1216 (s), 1188 (s), 1159 (m), 1146 (m), 1127 (m), 1098 (w), 1052 (s), 1028 (vs), 997 (m), 960 (m), $930(\mathrm{~m}), 866(\mathrm{w}), 791(\mathrm{w}), 731(\mathrm{w}), 707(\mathrm{w}) \mathrm{cm}^{-1}$.

MS $(C I$, isobutane $): m / z(\%)=197(100)\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

HR-MS (EI, 70 eV):	calcd. 196.0735	for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$,
	found. 196.0735	$\left[\mathrm{M}^{+}\right]$.

GLC on Lipodex E (2 min at $60^{\circ} \mathrm{C}$, then with $0.5 \mathrm{~K} \mathrm{~min}^{-1}$ to $160^{\circ} \mathrm{C}$, then 1 min at $160^{\circ} \mathrm{C}$, then with $0.2 \mathrm{~K} \mathrm{~min}^{-1}$ to $185^{\circ} \mathrm{C}$, finally 150 min at $\left.185^{\circ} \mathrm{C}\right): \mathrm{t}_{\mathrm{R}}(R)=325 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}(S)=454 \mathrm{~min}$.

In analogy, $(R)-77 \mathrm{~b}(1.80 \mathrm{~g}, 5.19 \mathrm{mmol})$ was converted to $(R)-75(740 \mathrm{mg}, 3.77$ $\mathrm{mmol}, 72 \%)$ as a light yellow oil. GLC on Lipodex E (2 min at $60^{\circ} \mathrm{C}$, then with 0.5 $\mathrm{K} \mathrm{min}^{-1}$ to $160^{\circ} \mathrm{C}$, then 1 min at $160^{\circ} \mathrm{C}$, then with $0.2 \mathrm{~K} \mathrm{~min}^{-1}$ to $185^{\circ} \mathrm{C}$, finally 150 \min at $185^{\circ} \mathrm{C}$): $\mathrm{t}_{\mathrm{R}}(R)=325 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}(S)=454 \mathrm{~min}$ (minor), $60 \% \mathrm{ee}$. $[\mathrm{a}]_{\mathrm{D}^{20}}=-60.8^{\circ}(\mathrm{c}=1.54$ in MeOH$)$.

In analogy, (S)-77b (1.50 g, 4.33 mmol$)$ was converted to $(S)-75(600 \mathrm{mg}, 3.05$ $\mathrm{mmol}, 71 \%$) as a light yellow solid, mp. $84-85^{\circ} \mathrm{C}$. GLC on Lipodex E (2 min at $60^{\circ} \mathrm{C}$, then with $0.5 \mathrm{~K} \mathrm{~min}^{-1}$ to $160^{\circ} \mathrm{C}$, then 1 min at $160^{\circ} \mathrm{C}$, then with $0.2 \mathrm{~K} \mathrm{~min}^{-1}$ to $185^{\circ} \mathrm{C}$, finally 150 min at $185^{\circ} \mathrm{C}$): $\mathrm{t}_{\mathrm{R}}(R)=326 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}(S)=446 \mathrm{~min}$ (major), 69% ee. $[\mathrm{a}]_{D^{20}}=+84.8^{\circ}(\mathrm{c}=1.19$ in MeOH$)$.

5.2.10.2 rac-(1,6-Dioxo-2-oxaspiro[4.5]-7-decen-8-yl)methyl-4- bromobenzene sulfonate (112)

$\mathrm{Et}_{3} \mathrm{~N}(39 \mathrm{mg}, 0.382 \mathrm{mmol})$ and brosyl chloride 111 ($72 \mathrm{mg}, 0.281 \mathrm{mmol}$) were subsequently added to a cooled solution of allylic alcohol rac$75(50 \mathrm{mg}, 0.255 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ at $-5^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 12 min at the same temperature. It was then washed with hydrochloric acid (1 ml , $\mathrm{c}=1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$), sat. NaHCO_{3} soln. (1 ml) and brine (1 ml), dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EA}=1: 1)$ to give rac-112 ($\left.65 \mathrm{mg}, 0.156 \mathrm{mmol}, 61 \%\right)$ as a light yellow oil.
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{6} \mathrm{~S} \quad \mathrm{M}=415.26 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=2: 1\right)=0.29$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.02(\mathrm{ddd}, J=5.2 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.08(\mathrm{dt}, J=12.9 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dt}, J=18.7 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{ddd}$, $J=5.3 \mathrm{~Hz}, J=6.2 \mathrm{~Hz}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.71(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.39(\mathrm{~m}, 2 \mathrm{H}), 4.65$ (A-part of an AB -system, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.67 (B-part of an AB-system, $J=15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.03$ (pent, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.70-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.77(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=22.94\left(\mathrm{CH}_{2}\right), 30.16\left(\mathrm{CH}_{2}\right), 32.26\left(\mathrm{CH}_{2}\right), 53.13$ $(\mathrm{C}), 65.93\left(\mathrm{CH}_{2}\right), 70.07\left(\mathrm{CH}_{2}\right), 123.91(\mathrm{CH}), 129.33(2 \mathrm{CH}), 129.63(\mathrm{C}), 132.82(2 \mathrm{CH})$, 134.36 (C), 156.30 (C), 174.79 (C), 193.51 (C) ppm.

IR (ATR): $\lambda^{-1}=3102(w), 3082(w), 3063(w), 3017(w), 2983(w), 2950(w), 2915(w)$, 2890 (w), 2872 (w), 2825 (w), 1759 (s), 1662 (s), 1632 (m), 1575 (m), 1471 (m), 1454 (w), 1443 (w), 1421 (w), 1393 (m), 1385 (m), 1363 (s), 1347 (m), 1284 (m), 1260 (m), 1217 (m), 1178 (vs), 1135 (m), 1091 (m), 1070 (m), 1057 (m), 1032 (s), 997 (m), 957 (vs), 931 (m), 889 (m), 872 (m), 792 (vs), 774 (vs), 731 (m), 721 (m), $655(\mathrm{~m}) \mathrm{cm}^{-1}$.

MS (CI, isobutane): $m / z(\%)=415(100)\left[\mathrm{M}^{+}+\mathrm{H}\right], 259(14), 179(19)$.

HR-MS (CI, isobutane):	calcd. 414.9851	for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrO}_{6} \mathrm{~S}$,
	found 414.9850	$\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

In analogy, $(R)-75(200 \mathrm{mg}, 1.02 \mathrm{mmol})$ was converted to $(R)-112(325 \mathrm{mg}, 0.782$ $\mathrm{mmol}, 76 \%)$ as a light yellow solid, mp. $126^{\circ} \mathrm{C},[\mathrm{a}]_{\mathrm{D}}{ }^{20}=-44.8^{\circ}(\mathrm{c}=0.59 \mathrm{in} \mathrm{MeOH})$. Singe crystals were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-pentane at $23^{\circ} \mathrm{C}$.

5.2.10.3 rac-8-(3,4-Dimethoxybenzyloxymethyl)-6-hydroxy-2-oxaspiro[4.5]-7-decen-1-one (76)

$\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(248 \mathrm{mg}, 0.666 \mathrm{mmol})$ was added to a cooled solution of ketone 77 b ($220 \mathrm{mg}, 0.635 \mathrm{mmol}$) in $\mathrm{MeOH}(4 \mathrm{ml})$ at $-5^{\circ} \mathrm{C}$. After stirring the reaction mixture for 30 min at -5 to $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(25 \mathrm{mg}, 0.67$ mmol) was added portionwise and the resulting mixture was stirred for 2 h at the same temperature. Then the reaction mixture was diluted with water (2 ml) and the solvent was removed in vacuo. The residue was extracted with EtOAc (4 x 2 $\mathrm{ml})$. The combined organic layers were dried over MgSO_{4}, filtered and evaporated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: EA $=1: 1)$ to obtain two fractions, first, $\left(R^{*}, S^{*}\right)$-diastereomer $76(50 \mathrm{mg}, 0.143$
$\left.\mathrm{mmol}, 23 \%, \mathrm{R}_{\mathrm{f}}=0.50\right)$ and secondly, $\left(R^{*}, R^{*}\right)$-diastereomer $76(47 \mathrm{mg}, 0.13 \mathrm{mmol}$, $\left.21 \%, \mathrm{R}_{\mathrm{f}}=0.46\right)$, both as a colorless oils.

(R^{*}, S^{*})-Diastereomer (76)

$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{6} \quad \mathrm{M}=348.39 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EA}=1: 1\right)=0.50$.
${ }^{1} \mathbf{H}-N M R\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.77$ (ddd, $\left.J=1.9 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $1.90-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{ddd}, J=6.5 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-2.10(\mathrm{~m}$, 1H), 2.17 (dd, $J=5.7 \mathrm{~Hz}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.53(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.88$ (s, $3 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{dt}, J=6.0 \mathrm{~Hz}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dt}, J=6.4 \mathrm{~Hz}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=1.8$ $\mathrm{Hz}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=22.75\left(\mathrm{CH}_{2}\right), 26.55\left(\mathrm{CH}_{2}\right), 28.13\left(\mathrm{CH}_{2}\right), 47.82$ $(\mathrm{C}), 55.85\left(\mathrm{CH}_{3}\right), 55.90\left(\mathrm{CH}_{3}\right), 66.54\left(\mathrm{CH}_{2}\right), 70.09(\mathrm{CH}), 72.01\left(\mathrm{CH}_{2}\right), 72.75\left(\mathrm{CH}_{2}\right)$, 110.92 (CH), 111.11 (CH), 120.34 (CH), 126.58 (CH), 130.53 (C), 136.73 (C), 148.66 (C), 149.01 (C), 181.58 (C) ppm.

IR (ATR): $\lambda^{-1}=3497$ (br m), 2993 (m), 2933 (m), 2862 (m), 2839 (m), 1757 (vs), 1669 (w), 1607 (w), 1593 (w), 1515 (vs), 1463 (s), 1452 (s), 1419 (m), 1379 (m), 1340 (w), 1262 (vs), 1236 (vs), 1189 (vs), 1156 (vs), 1138 (vs), 1084 (s), 1052 (s), 1026 (vs), 951 (w), 913 (m), 855 (m), $810(\mathrm{~m}), 765(\mathrm{~m}), 728(\mathrm{~s}) \mathrm{cm}^{-1}$.

MS (EI, 70 eV): $m / z(\%)=348(27)\left[\mathrm{M}^{+}\right], 166$ (93), 151 (100).

HR-MS (EI, 70 eV$):$	calcd. 348.1573	for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{6}$,
	found. 348.1572	$\left[\mathrm{M}^{+}\right]$.

(R^{*}, R^{*})-Diastereomer (76)

The (R^{*}, R^{*})-diastereomer 76 ($47 \mathrm{mg}, 0.13 \mathrm{mmol}, 21 \%$)
 was obtained as a second fraction (colorless oil) in the Luche reduction of ketone 77 b using $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ and NaBH_{4}.
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EA}=1: 1\right)=0.46$.
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.71(\mathrm{td}, J=5.9 \mathrm{~Hz}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-2.11(\mathrm{~m}$, 2H), 2.17-2.23 (m, 1H), 2.25-2.31 (m, 2H), 2.98 (d, J = 5.5 Hz, 1H), 3.86 (s, 3H), 3.87 $(\mathrm{s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dt}, J=7.7 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$ $(\mathrm{dt}, J=4.5 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.80 (pent. $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=2.0 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=22.90\left(\mathrm{CH}_{2}\right), 24.94\left(\mathrm{CH}_{2}\right), 32.03\left(\mathrm{CH}_{2}\right), 45.77$ $(\mathrm{C}), 55.82\left(\mathrm{CH}_{3}\right), 55.86\left(\mathrm{CH}_{3}\right), 65.22\left(\mathrm{CH}_{2}\right), 68.62(\mathrm{CH}), 71.95\left(\mathrm{CH}_{2}\right), 72.94\left(\mathrm{CH}_{2}\right)$, $110.88(\mathrm{CH}), 111.14(\mathrm{CH}), 120.35(\mathrm{CH}), 123.24(\mathrm{CH}), 130.59(\mathrm{C}), 138.95(\mathrm{C}), 148.59$ (C), 148.95 (C), 179.49 (C) ppm.

IR (ATR): $\lambda^{-1}=3486$ (br m), 3000 (m), 2934 (m), 2917 (m), 2857 (m), 2840 (m), 1759 (vs), 1609 (w), 1594 (m), 1516 (vs), 1465 (s), 1454 (s), 1421 (m), 1377 (s), 1332 (w),

```
1263 (vs), 1237 (vs), }1220\mathrm{ (m), 1158 (vs), }1140\mathrm{ (vs), 1066 (s), 1026 (vs), 964 (w), 944
(w),914 (s), 858 (m), 812 (m),767 (m),729 (vs), 647 (m)
cm-1.
```

MS (EI, 70 eV$): m / z(\%)=348$ (72) [M+$], 166$ (50), 151 (100), 87 (18).
HR-MS (EI, 70 eV): calcd. 348.1573 for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{6}$,
found. $348.1572 \quad\left[\mathrm{M}^{+}\right]$.

5.2.10.4 rac-6-Hydroxy-8-(hydroxymethyl)-2-oxaspiro[4.5]-7-decen-1-one (74)

$\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(874 \mathrm{mg}, 2.36 \mathrm{mmol})$ was added to a cooled solution of allylic alcohol 75 ($443 \mathrm{mg}, 2.26 \mathrm{mmol}$) in MeOH $(8 \mathrm{ml})$ at $-5^{\circ} \mathrm{C}$. After stirring the reaction mixture for 30 min at -5 to $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(89 \mathrm{mg}, 2.4 \mathrm{mmol})$ was added portionwise and the resulting mixture was stirred for 1.5 h at the same temperature. It was then diluted with water (5 ml) and ca. 80% of the solvent was removed in vacuo. The residue was extracted with EtOAc ($4 \times 5 \mathrm{ml}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on SiO_{2} (EA) to obtain two fractions, first, $\left(R^{*}, S^{*}\right)$-diastereomer $74\left(155 \mathrm{mg}, 0.782 \mathrm{mmol}, 35 \%, \mathrm{R}_{\mathrm{f}}=0.28\right)$ as a colorless solid (single crystals were grown from EA-pentane at $23^{\circ} \mathrm{C}$) and secondly, $\left(R^{*}, R^{*}\right)$-diastereomer $74\left(142 \mathrm{mg}, 0.716 \mathrm{mmol}, 32 \%, \mathrm{R}_{\mathrm{f}}=0.20\right)$ as a colorless oil.

(R^{*}, S^{*})-Diastereomer 74

$$
\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4} \quad \mathrm{M}=198.22 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{EA}\right)=0.28$.

Melting point: $99-101^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}-N M R\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.59$ (s, br., $\left.1 \mathrm{H} ; \mathrm{OH}\right), 1.79$ (ddd, $J=2.8 \mathrm{~Hz}, J=5.2$ $\mathrm{Hz}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.51$ (ddd, $J=6.2 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06\left(\mathrm{~s}, 2 \mathrm{H} ; 8-\mathrm{CH}_{2}\right), 4.30(\mathrm{dt}, J=6.1$ $\mathrm{Hz}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; 3-\mathrm{H}), 4.38(\mathrm{dt}, J=6.3 \mathrm{~Hz}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H} ; 3-\mathrm{H}), 4.62$ (s, br., 1H; 6-H), 5.63 (sex, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H} ; 7-\mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=22.36\left(\mathrm{CH}_{2}\right), 26.65\left(\mathrm{CH}_{2}\right), 28.22\left(\mathrm{CH}_{2}\right), 47.90$ $(\mathrm{C}), 65.42\left(\mathrm{CH}_{2}\right), 66.75\left(\mathrm{CH}_{2}\right), 70.11(\mathrm{CH}), 123.99(\mathrm{CH}), 139.30(\mathrm{C}), 181.99(\mathrm{C}) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3395$ (br, s), 2987 (w), 2925 (m), 2867 (w), 1745 (vs), 1450 (w), 1434 (w), 1382 (m), 1344 (w), 1271 (w), 1220 (s), 1193 (s), 1060 (m), 1028 (s), 893 (w), 830 (w), 745 (w), 704 (w) cm-1.

MS (EI, 70 eV$): m / z(\%)=198$ (8) $\left[\mathrm{M}^{+}\right], 180(22), 134$ (18), 99 (43), 84 (100), 82 (50), 49 (65).

HR-MS (CI, isobutane):	calcd. 199.0970	for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4}$,
	found 199.0970	$\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

(R^{*}, R^{*})-Diastereomer (74)

The (R^{*}, R^{*})-diastereomer $74(142 \mathrm{mg}, 0.716 \mathrm{mmol}, 32 \%)$ was
 obtained as a second fraction (colorless oil) in the Luche reduction of allylic alcohol 75 using $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ and NaBH_{4}.

$$
\mathrm{M}=198.22 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{EA}\right)=0.20$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.56$ (s, br., $1 \mathrm{H} ; \mathrm{OH}$), 1.69-1.78 (m, 1H), 2.00-2.13 $(\mathrm{m}, 1 \mathrm{H}), 2.10(\mathrm{ddd}, J=4.5 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{ddd}, J=5.0 \mathrm{~Hz}, J=$ $8.7 \mathrm{~Hz}, J=19.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.30(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; 6-\mathrm{OH}), 4.06-4.09$ (m, 2H; 8-CH2), $4.15(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H} ; 6-\mathrm{H}), 4.31(\mathrm{dt}, J=7.5 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H} ; 3-$ H), $4.37(\mathrm{dt}, J=4.5 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H} ; 3-\mathrm{H}), 5.80-5.84(\mathrm{~m}, 1 \mathrm{H} ; 7-\mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=22.55\left(\mathrm{CH}_{2}\right), 25.20\left(\mathrm{CH}_{2}\right), 32.24\left(\mathrm{CH}_{2}\right), 45.95$ (C), $65.40\left(\mathrm{CH}_{2}\right), 65.77\left(\mathrm{CH}_{2}\right), 68.75(\mathrm{CH}), 121.01(\mathrm{CH}), 141.51(\mathrm{C}), 179.73(\mathrm{C}) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3387$ (br s), 2922 (m), 2863 (w), 1749 (vs), 1486 (w), 1450 (w), 1431 (w), 1377 (m), 1259 (w), 1215 (s), 1188 (s), 1167 (s), 1056 (s), 1028 (vs), 962 (w) cm-1.

MS (CI, isobutane): $m / z(\%)=199(2)\left[\mathrm{M}^{+}+\mathrm{H}\right], 181$ (100), 163 (27), 87 (5).
$\begin{array}{lll}\text { HR-MS (CI, isobutane): } & \text { calcd. } 199.0970 & \text { for } \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4}, \\ & \text { found } 199.0969 & {\left[\mathrm{M}^{+}+\mathrm{H}\right] .}\end{array}$

In analogy, $(R)-75(450 \mathrm{mg}, 2.29 \mathrm{mmol})$ was converted to $(5 R, 6 S)-74(165 \mathrm{mg}, 0.832$ $\mathrm{mmol}, 36 \%$) as a colorless oil (slowly solidifying at $5^{\circ} \mathrm{C}$), $[\mathrm{a}]_{\mathrm{D}^{20}}=+30.6^{\circ}(\mathrm{c}=0.47 \mathrm{in}$ $\mathrm{MeOH})$, and $(R, R)-74(150 \mathrm{mg}, 0.756 \mathrm{mmol}, 33 \%)$ as a colorless solid, $\mathrm{mp} .105^{\circ} \mathrm{C}$, $[\mathrm{a}]_{\mathrm{D}^{20}}=-53.2^{\circ}(\mathrm{c}=0.88$ in MeOH$)$.

In analogy, (S)-75 (300 mg, 1.51 mmol$)$ was converted to $(5 S, 6 R)-74(96 \mathrm{mg}, 0.48$ $\mathrm{mmol}, 32 \%$) as a colorless solid, mp. $78-79^{\circ} \mathrm{C},[\mathrm{a}]_{\mathrm{D}}{ }^{20}=-32.8^{\circ}(\mathrm{c}=0.71$ in MeOH$)$, and (S,S)-74 (110 mg, $0.554 \mathrm{mmol}, 37 \%$) as a colorless oil (slowly solidifying at $\left.5^{\circ} \mathrm{C}\right),[\mathrm{a}]_{\mathrm{D}}{ }^{20}=+66.4^{\circ}(\mathrm{c}=1.02$ in MeOH$)$.

5.2.10.5 (R^{*}, S^{*})-6-Hydroxy-1-oxo-2-oxaspiro[4.5]-7-decene-8-carbaldehyde (19)

TEMPO $110(3 \mathrm{mg}, 18 \mu \mathrm{~mol})$ and $\mathrm{CuCl}(2 \mathrm{mg}, 18 \mu \mathrm{~mol})$ were added to a stirred solution of $\left(R^{*}, S^{*}\right)$-diol $74(12 \mathrm{mg}, 61 \mu \mathrm{~mol})$ in abs. DMF $(1 \mathrm{ml})$ at $23^{\circ} \mathrm{C}$ under nitrogen atmosphere. The reaction mixture flask was then cooled with $\mathrm{N}_{2}(\mathrm{l})$, evacuated, filled with O_{2} (1 atm, balloon), and the mixture was stirred at $23^{\circ} \mathrm{C}$ for 75 min . Subsequently, it was diluted with sat. aq. CuSO_{4} soln. (1 $\mathrm{ml})$ and extracted with EtOAc ($4 \times 1 \mathrm{ml}$). The combined organic layers were washed with water $(2 \mathrm{ml})$ and brine $(2 \mathrm{ml})$, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on SiO_{2} (EA) to obtain $\left(R^{*}, S^{*}\right)$-6-epi-Canangone $19(9 \mathrm{mg}, 0.046 \mathrm{mmol}, 75 \%)$ as a colorless oil.
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad \mathrm{M}=196.20 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{EA}\right)=0.60$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.80-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{ddd}, J=6.1 \mathrm{~Hz}, J=8.4$ $\mathrm{Hz}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{ddd}, J=6.4 \mathrm{~Hz}, J=$ $8.6 \mathrm{~Hz}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H} ; 6-\mathrm{OH}), 4.34(\mathrm{dt}, J=6.3 \mathrm{~Hz}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H} ; 3-\mathrm{H}), 4.42(\mathrm{dt}, J=6.1 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H} ; 3-\mathrm{H}), 4.83-4.87(\mathrm{~m}, 1 \mathrm{H} ; 6-\mathrm{H})$, 6.64-6.66 (m, 1H), $9.51(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.48\left(\mathrm{CH}_{2}\right), 26.05\left(\mathrm{CH}_{2}\right), 27.49\left(\mathrm{CH}_{2}\right), 48.22$ $(\mathrm{C}), 66.77\left(\mathrm{CH}_{2}\right), 70.27(\mathrm{CH}), 140.81(\mathrm{C}), 149.65(\mathrm{CH}), 181.10(\mathrm{C}), 192.92(\mathrm{C}) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3437$ (br, m), 2986 (w), 2930 (m), 2870 (w), 2849 (w), 1759 (vs), 1683 (vs), 1485 (w), 1451 (w), 1433 (w), 1381 (m), 1342 (w), 1221 (m), 1193 (s), 1167 (m),

1059 (m), 1030 (s), 1005 (m), 954 (w), 899 (w), 871 (w), 821 (w), 784 (w), 748 (w), 707 (w) cm^{-1}.

MS (EI, 70 eV): $m / z(\%)=196(14)\left[\mathrm{M}^{+}\right], 178(14), 167(9), 150(12), 134$ (23), 121 (40), 105 (55), 99 (100), 91 (44), 77 (73), 62 (36), 51 (27), 41 (35).

HR-MS (CI, isobutane):

calcd. 197.0814	for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4}$,
found. 197.0814	$\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

In analogy, $(5 R, 6 S)-74(40 \mathrm{mg}, 0.202 \mathrm{mmol})$ was converted to $(5 R, 6 S)-19(30 \mathrm{mg}$, $0.153 \mathrm{mmol}, 76 \%$) as a colorless oil (slowly solidifying at $5^{\circ} \mathrm{C}$), $[\mathrm{a}]_{\mathrm{D}} \mathrm{D}^{20}=+58.9^{\circ}(\mathrm{c}=$ 0.43 in MeOH$)$.

In analogy, (5S,6R)-74 (44 mg, 0.222 mmol$)$ was converted to $(5 S, 6 R)-19(34 \mathrm{mg}$, $0.173 \mathrm{mmol}, 78 \%$) as a colorless oil (slowly solidifying at $5^{\circ} \mathrm{C}$), $[\alpha] \mathrm{D}^{20}=-71.4^{\circ}$ $(\mathrm{c}=1.56$ in MeOH$)$.
5.2.10.6 (R^{*}, R^{*})-6-Hydroxy-1-oxo-2-oxaspiro[4.5]-7-decene-8-carbaldehyde (19)

TEMPO $110(4 \mathrm{mg}, 26 \mu \mathrm{~mol})$ and $\mathrm{CuCl}(3 \mathrm{mg}, 26 \mu \mathrm{~mol})$ were
 added to a stirred solution of $\left(R^{*}, R^{*}\right)$-diol $74(17 \mathrm{mg}, 86 \mu \mathrm{~mol})$ in abs. DMF $(1 \mathrm{ml})$ at $23^{\circ} \mathrm{C}$ under nitrogen atmosphere. The reaction mixture flask was then cooled with $\mathrm{N}_{2}(\mathrm{l})$, evacuated, filled with O_{2} (1 atm , balloon), and the mixture was stirred at $23^{\circ} \mathrm{C}$ for 75 min . Subsequently, it was diluted with sat. aq. CuSO_{4} soln. (1 ml) and extracted with EtOAc ($4 \times 1 \mathrm{ml}$). The combined organic layers were washed with water $(2 \mathrm{ml})$ and brine $(2 \mathrm{ml})$, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on SiO_{2} (EA) to obtain $\left(R^{*}, R^{*}\right)$-Canangone $19(13 \mathrm{mg}, 0.07 \mathrm{mmol}, 77 \%)$ as a colorless oil.
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad \mathrm{M}=196.20 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{EA}\right)=0.40$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.76$ (ddd, $J=6.0 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}$; $10-\mathrm{H}), 2.07(\mathrm{ddd}, J=3.6 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H} ; 4-\mathrm{H}), 2.21(\mathrm{dt}, J=14.0 \mathrm{~Hz}, J$ $=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; 10-\mathrm{H}), 2.29(\mathrm{dtt}, J=18.7 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H} ; 9-\mathrm{H}), 2.39$ (dddt, $J=18.7 \mathrm{~Hz}, J=7.9 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H} ; 9-\mathrm{H}), 2.47(\mathrm{dt}, J=12.8 \mathrm{~Hz}, J$ $=8.9 \mathrm{~Hz}, 1 \mathrm{H} ; 4-\mathrm{H}), 3.11(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H} ; 6-\mathrm{OH}), 4.33(\mathrm{dt}, J=7.1 \mathrm{~Hz}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H} ; 3-\mathrm{H}), 4.39(\mathrm{dt}, J=3.6 \mathrm{~Hz}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H} ; 3-\mathrm{H}), 4.36-4.40(\mathrm{~m}, 1 \mathrm{H} ; 6-\mathrm{H}), 6.68(\mathrm{dt}$, $J=3.4 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H} ; 7-\mathrm{H}), 9.51(\mathrm{~s}, 1 \mathrm{H} ; 8-\mathrm{CHO}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.66\left(\mathrm{CH}_{2}\right), 25.59\left(\mathrm{CH}_{2}\right), 32.21\left(\mathrm{CH}_{2}\right), 46.61$ $(\mathrm{C}), 65.40\left(\mathrm{CH}_{2}\right), 69.35(\mathrm{CH}), 142.07(\mathrm{C}), 145.81(\mathrm{CH}), 178.31(\mathrm{C}), 193.20(\mathrm{C}) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3432$ (br, m), 2924 (m), 2854 (w), 2726 (w), 1750 (s), 1674 (vs), 1485 (w), 1451 (w), 1429 (w), 1378 (m), 1256 (w), 1215 (m), 1176 (s), 1124 (s), 1091 (w), 1061 (m), 1024 (vs), 998 (m), 962 (m), 902 (m), 869 (w), 826 (w), 783 (w), 769 (w), 711 (m), 658 (w) cm-1.

MS (EI, 70 eV): $m / z(\%)=196$ (3) [M+], 167 (4), 149 (12), 134 (100), 121 (19), 105 (100), 99 (88), 91 (58), 77 (65), 65 (19), 53 (28), 41 (32). HRMS (CI, isobutane): calcd. 197.0814 (for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4}$), found: $197.0814\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

HR-MS (CI, isobutane):
calcd. 197.0814 for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4}$,
found. 197.0814 $\quad\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

In analogy, $(R, R)-74(40 \mathrm{mg}, 0.202 \mathrm{mmol})$ was converted to $(R, R)-19(31 \mathrm{mg}, 0.158$ $\mathrm{mmol}, 78 \%)$ as a colorless solid, $\mathrm{mp} .92-93^{\circ} \mathrm{C},[\mathrm{a}]_{\mathrm{D}}{ }^{20}=-67.0^{\circ}(\mathrm{c}=1.25 \mathrm{in} \mathrm{MeOH})$.

In analogy, $(S, S)-74(48 \mathrm{mg}, 0.242 \mathrm{mmol})$ was converted to $(S, S)-19(36 \mathrm{mg}, 0.183$ $\mathrm{mmol}, 76 \%)$ as a colorless solid, $\mathrm{mp} .98-99^{\circ} \mathrm{C},[\mathrm{a}]_{\mathrm{D}} 20=+107.5^{\circ}(\mathrm{c}=1.87 \mathrm{in} \mathrm{MeOH})$.

5.3 Experimental Procedures for Attempted Synthesis of Chamigrene 18

5.3.1 Synthesis of Dibromide 83

5.3.1.1 Ethyl 2,4-Dimethyl-6-oxo-6H-pyran-3-carboxylate ${ }^{[142]}$ (113)

Ethyl acetoacetate 88 ($133 \mathrm{~g}, 1.02 \mathrm{~mol}$) was added dropwise to cooled $\left(-5^{\circ} \mathrm{C}\right)$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(184 \mathrm{~g}, 1.88 \mathrm{~mol})$ over a period of 1 h (Caution: the temperature of the reaction mixture should be kept below $30^{\circ} \mathrm{C}$). The resulting mixture was then stirred for 6 d at $23^{\circ} \mathrm{C}$. It was then poured onto ice $(500 \mathrm{~g})$ and extracted with ether ($3 \times 500 \mathrm{ml}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$ and dried over MgSO_{4}, filtered and concentrated in vacuo to give a mixture of $\mathbf{1 1 3}$ and $\mathbf{1 1 4}$ [61.8 g, ratio 113/114 = $2: 1$ by ${ }^{1} \mathrm{H}-\mathrm{NMR}$; i.e. 113 (41.2 g , $0.210 \mathrm{mmol}, 21 \%), 114(20.6 \mathrm{~g}, 0.123 \mathrm{mmol}, 12 \%)$], as a light yellow oil.

$$
\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad \mathrm{M}=196.20 \mathrm{~g} \mathrm{~mol}^{-1}
$$

${ }^{1} \mathbf{H}-N M R\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.23(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}), 4.35(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.03$ (br. s, 1H) ppm.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.16\left(\mathrm{CH}_{3}\right), 19.58\left(\mathrm{CH}_{3}\right), 21.27\left(\mathrm{CH}_{3}\right), 61.78$ $\left(\mathrm{CH}_{2}\right), 110.39(\mathrm{C}), 112.07(\mathrm{CH}), 155.28(\mathrm{C}), 160.81(\mathrm{C}), 165.46(\mathrm{C}), 167.12(\mathrm{C}) \mathrm{ppm}$.

IR for 113 and 114 (ATR): $\lambda^{-1}=3466$ (br, m), 3052 (m), 2982 (br, m), 2933 (m), 2906 (m), 2873 (m), 2762 (m), 2600 (m), 2485 (m), 2339 (w), 1719 (vs), 1676 (vs), 1661 (vs), 1620 (s), 1542 (s), 1443 (m), 1400 (s), 1375 (s), 1369 (s), 1301 (m), 1292 (m), 1243 (vs),

1218 (s), 1163 (m), 1081 (vs), 1048 (m), 1033 (s), 962 (m), 911 (m), 884 (s), 877 (s), 858 (s), 844 (vs), 779 (m), 753 (s), 735 (s), 703 (w), 666 (w), $634(\mathrm{~s}) \mathrm{cm}^{-1}$.

GC-MS (EI, 70 eV$): m / z(\%)=196(100)\left[\mathrm{M}^{+}\right], 168(84), 151$ (91), 140 (65), 125 (17), 122 (39), 109 (22), 98 (13), 43 (41).

HR-MS was performed with a mixture of compounds (ratio 113/114 = $2: 1$ by ${ }^{1} \mathrm{H}-$ NMR).

HR-MS (CI, isobutane):	calcd. 197.0814	for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4}$,
	found 197.0815	$\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

5.3.1.2 2,4-Dimethyl-6-oxo-6H-pyran-3-carboxylic acid ${ }^{[142]}$ (114)

The carboxylic acid 114 ($20.6 \mathrm{~g}, 0.123 \mathrm{mmol}, 12 \%$) was obtained as a light yellow oil along with the ester 113 in the condensation reaction of ethylacetoacetate 88 in presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$. (For procedure please see page number 139).
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}$

$$
\mathrm{M}=168.15 \mathrm{~g} \mathrm{~mol}^{-1}
$$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.33(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.53$ (s, 3 H), 6.05 (br. s, 1H), 11.87 (br. s, 1H) ppm.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=20.34\left(\mathrm{CH}_{3}\right), 21.92\left(\mathrm{CH}_{3}\right), 106.90(\mathrm{C}), 111.88$ (CH), 154.83 (C), 161.19 (C), 164.64 (C), 169.19 (C) ppm.

GC-MS (EI, 70 eV$): m / z(\%)=168(73)\left[\mathrm{M}^{+}\right], 140(100), 125(16), 122(31), 94(14), 43$ (39).

HR-MS was performed with a mixture of compounds (ratio 113/114 =2:1 by ${ }^{1} \mathrm{H}-$ NMR).

HR-MS (CI, isobutane):	calcd. 169.0501	for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{4}$,
	found 169.0501	$\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

5.3.1.3 (E)- and (Z)-3-Methyl-2-pentenedioic acid[142] (87)

A solution of $\mathrm{KOH}(24.7 \mathrm{~g}, 0.440 \mathrm{~mol})$ in $24.7 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ was dropwise added over a period of 30 min to a cooled $\left(-5^{\circ} \mathrm{C}\right)$ solution of 113 and 114 ($10.0 \mathrm{~g}, 550 \mathrm{mmol}$) in
$\mathrm{MeOH}(14 \mathrm{ml})$ (Caution: the temperature of the reaction mixture should be kept below $15^{\circ} \mathrm{C}$). The resulting mixture was stirred for 1 h at $23^{\circ} \mathrm{C}$. Then it was diluted with $\mathrm{H}_{2} \mathrm{O}(140 \mathrm{ml})$, acidified to $\mathrm{pH}=1$ using conc. hydrochloric acid $(35 \mathrm{ml})$ and extracted with EtOAc ($4 \times 150 \mathrm{ml}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by recrystallization from $\mathrm{CH}_{3} \mathrm{CN}(18 \mathrm{ml})$ to give diacid 87 ($5.43 \mathrm{~g}, 0.038 \mathrm{~mol}, 69 \%$) as a colorless solid. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ shows two diastereoisomers in ($\mathrm{A} / \mathrm{B}=1.5: 1$) ratio. The absolute configuration (E / Z) could not be assigned.
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}$

$$
\mathrm{M}=144.13 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Melting point: $118-119^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}\right.$, acetone- d_{6}),
isomer A: $\delta=2.21(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.20(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.82-5.83(\mathrm{~m}, 1 \mathrm{H})$, 10.69 (s, 2H) ppm;
isomer B: $\delta=1.97(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 5.83-5.86(\mathrm{~m}, 1 \mathrm{H}), 10.69(\mathrm{~s}, 2 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR (125 MHz , acetone- d_{6}),
isomer A: $\delta=25.56\left(\mathrm{CH}_{3}\right), 38.36\left(\mathrm{CH}_{2}\right), 119.25(\mathrm{CH}), 153.10(\mathrm{C}), 167.67(\mathrm{C}), 171.34$
(C) ppm.
isomer B: $\delta=18.80\left(\mathrm{CH}_{3}\right), 45.62\left(\mathrm{CH}_{2}\right), 119.74(\mathrm{CH}), 153.02(\mathrm{C}), 167.43(\mathrm{C}), 171.46$
(C) ppm.

IR (ATR): $\lambda^{-1}=3452$ (br, m), 3021 (m), 2988 (br, m), 2951 (m), 2934 (m), 2758 (w), 2695 (w), 2643 (w), 2611 (w), 2576 (w), 2510 (w), 1702 (vs), 1681 (vs), 1640 (vs), 1561 (w), 1408 (s), 1380 (w), 1346 (w), 1314 (w), 1302 (w), 1278 (w), 1221 (vs), 1179 (vs), 1168 (vs), 1153 (s), 1086 (w), 1046 (w), 1026 (w), 919 (s), 903 (s), 872 (s), 851 (s), 839 (s), 750 (w), 718 (m) cm-1.

MS (CI, isobutane): $m / z(\%)=145(20)\left[\mathrm{M}^{+}+\mathrm{H}\right], 127$ (100), 126 (28), 98 (18), 41 (10).

Elemental analysis: calcd. C 50.00, H 5.60;
found C 50.07, H 5.59.

5.3.1.4 Glutaconic Anhydride ${ }^{[144]}$ (86)

Acetyl chloride ($34.6 \mathrm{~g}, 441 \mathrm{mmol}$) was added dropwise to diacid $87(6.36 \mathrm{~g}, 44.1 \mathrm{mmol})$ and the resulting mixture stirred for 30 min at $70^{\circ} \mathrm{C}$. The excess acetyl chloride and other volatile materials were then removed in vacuo and the residue was crystallized from $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ to give glutaconic anhydride $86(4.12 \mathrm{~g}, 33.0 \mathrm{mmol}, 72 \%)$ as a colorless solid.
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{3} \quad \mathrm{M}=126.11 \mathrm{~g} \mathrm{~mol}^{-1}$

Melting point: $84-85^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}-N M R\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.07(\mathrm{td}, J=1.0 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.43(\mathrm{dq}, J=$ $1.8 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.08(\mathrm{tq}, J=1.7 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=22.20\left(\mathrm{CH}_{3}\right), 36.32\left(\mathrm{CH}_{2}\right), 114.78(\mathrm{CH}), 155.39$ (C), 159.73 (C), 164.72 (C) ppm.

IR (ATR): $\lambda^{-1}=3077$ (m), 2991 (m), 2932 (m), 2912 (m), 2882 (m), 2611 (w), 1795 (s), 1705 (vs), 1684 (vs), 1669 (vs), 1640 (vs), 1446 (m), 1435 (m), 1413 (s), 1392 (s), 1372 (w), 1317 (s), 1278 (vs), 1219 (vs), 1161 (s), 1125 (s), 1050 (w), 1042 (w), 1011 (s), 954 (vs), 930 (vs), 910 (vs), 876 (vs), 858 (vs), 742 (w), 718 (vs) cm¹.

MS (EI, 70 eV$): m / z(\%)=126(71)\left[\mathrm{M}^{+}\right], 100(14), 98(100), 82(20), 53(23), 45(18)$.

HR-MS (EI, 70 eV):	calcd. 126.0317	for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{3}$,
	found 126.0317	$\left[\mathrm{M}^{+}\right]$.

5.3.1.5 (Z)-3-Methyl-2-pentene-1,5-diol ${ }^{[143]}$ (85)

An ice-cooled suspension of $\mathrm{LiAlH}_{4}(240 \mathrm{mg}, 6.34 \mathrm{mmol})$ in THF (5 ml) was added dropwise to a cooled solution of glutaconic anhydride $86(800 \mathrm{mg}, 6.34 \mathrm{mmol})$ in THF (5 ml) at $-15^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 45 min at this temperature. The reaction mixture was then diluted with ice cold water (8 ml) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 8 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vaccuo. The residue was purified by column chromatography on SiO_{2} (EA) to give as a first fraction $85(465 \mathrm{mg}, 4.00 \mathrm{mmol}$, $63 \%, \mathrm{R}_{\mathrm{f}}=0.27$) and as a second fraction $116\left(61 \mathrm{mg}, 0.51 \mathrm{mmol}, 8 \%, \mathrm{R}_{\mathrm{f}}=0.22\right)$, both as colorless oils.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2} \quad \mathrm{M}=116.16 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{EA}\right)=0.27$.
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.76(\mathrm{dt}, J=0.7 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.34(\mathrm{t}, J=5.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.26 (br. s, 2H), $3.67(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.70(\mathrm{t}, J=$ 7.5 Hz, 1H) ppm.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=23.20\left(\mathrm{CH}_{3}\right), 34.68\left(\mathrm{CH}_{2}\right), 57.61\left(\mathrm{CH}_{2}\right), 58.97$ $\left(\mathrm{CH}_{2}\right), 126.45(\mathrm{CH}), 138.15(\mathrm{C})$ ppm.

IR (ATR): $\lambda^{-1}=3299$ (br, s), 3066 (m), 2961 (s), 2932 (s), 2916 (s), 2877 (s), 1738 (w), 1727 (w), 1666 (m), 1443 (s), 1378 (s), 1232 (m), 1216 (m), 1161 (w), 1100 (w), 1042 (vs), 1000 (vs), 916 (w), 864 (m) cm¹.

GC-MS (EI, 70 eV): m/z (\%) = $98(48)\left[\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right], 83$ (100), 71 (64), 67 (60), 55 (27).

5.3.1.6 3-Methylpentane-1,5-diol (116)

The saturated diol 116 ($61 \mathrm{mg}, 0.51 \mathrm{mmol}, 8 \%$,) was obtained as a by-product (second fraction, colorless oil) in the synthesis of unsaturated diol 85 from Glutaconic anhydride 86. (For procedure please see the page number 143).
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{2}$

$$
\mathrm{M}=118.17 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{EA}\right)=0.22$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.93(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\operatorname{tdd}, \mathrm{~J}=6.2 \mathrm{~Hz}, \mathrm{~J}=$ $7.7 \mathrm{~Hz}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.56-1.62 (m, 2H), 1.77 (octet, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.49 (br. s, $2 \mathrm{H}), 3.66(\mathrm{ddd}, J=6.2 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{td}, J=6.3 \mathrm{~Hz}, J=10.7$ $\mathrm{Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.87\left(\mathrm{CH}_{3}\right), 25.94(\mathrm{CH}), 39.43\left(2 \mathrm{CH}_{2}\right), 60.55$ $\left(2 \mathrm{CH}_{2}\right) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3315$ (br, s), 2955 (s), 2929 (s), 2875 (s), 1459 (m), 1432 (m), 1380 (m), 1219 (w), 1190 (w), 1142 (w), 1108 (w), 1054 (vs), 1011 (s), 968 (m), 914 (w), 850 (w), 766 (w) cm^{-1}.

GC-MS (EI, 70 eV$): m / z(\%)=100(10)\left[\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right], 82(22), 70(61), 67(100)$.

5.3.1.7 (Z)-1,5-Dibromo-3-methyl-2-pentene ${ }^{[151]}$ (83)

$\mathrm{CBr}_{4}(570 \mathrm{mg}, 1.72 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(451 \mathrm{mg}, 1.72 \mathrm{mmol})$ were subsequently added to a cooled solution of diol 85 ($50 \mathrm{mg}, 0.43$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-5^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 1.5 h at $23^{\circ} \mathrm{C}$. It was then diluted with sat. aq. NaHCO_{3} soln. $(2 \mathrm{ml})$ and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EA}=9: 1)$ to give $83(104 \mathrm{mg}$, $0.27 \mathrm{mmol}, 63 \%$) as a light yellow oil. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ shows two diastereoisomers in $(A / B=4: 1)$ ratio. The absolute configuration (Z / E) could not be assigned.
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{2} \quad \mathrm{M}=241.95 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=9: 1\right)=0.70$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$,
isomer B: $\delta=1.75(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.61(\mathrm{dt}, J=0.8 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-4.01(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{qt}, J=1.3 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;$
isomer A: $\delta=1.81(\mathrm{td}, J=0.8 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.71(\mathrm{dt}, J=0.9 \mathrm{~Hz}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{qd}, J=0.8 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{tqt}, J=0.8$ $\mathrm{Hz}, J=1.5 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$),
isomer $\mathbf{B}: \delta=15.52\left(\mathrm{CH}_{3}\right)$, $28.39\left(\mathrm{CH}_{2}\right), 30.27\left(\mathrm{CH}_{2}\right), 31.19\left(\mathrm{CH}_{2}\right), 123.42(\mathrm{CH})$, 139.55 (C) ppm;
isomer A: $\delta=22.94\left(\mathrm{CH}_{3}\right)$, $28.19\left(\mathrm{CH}_{2}\right)$, $29.62\left(\mathrm{CH}_{2}\right), 34.86\left(\mathrm{CH}_{2}\right), 124.27(\mathrm{CH})$, 139.16 (C) ppm.

IR (ATR): $\lambda^{-1}=3012$ (w), 2970 (m), 2936 (m), 2913 (m), 2876 (w), 2867 (w), 1738 (m), 1657 (m), 1441 (s), 1378 (s), 1366 (m), 1355 (m), 1306 (w), 1273 (m), 1226 (s), 1201 (vs), 1114 (w), 1016 (w), 997 (w), 912 (w), 898 (w), 856 (m), 669 (s) cm¹.

GC-MS (EI, 70 eV$): m / z(\%)=240(25)\left[\mathrm{M}^{+}\right], 161(51), 119(10), 81(100), 67(19), 55$ (13).

5.3.2 Synthesis of $\boldsymbol{\beta}$-Ketomethylester 12i

5.3.2.1 Methyl 7-methyl-3-oxo-6-octenoate ${ }^{[140]}$ (12j)

6-Methyl-5-heptene-2-one 71 ($6.31 \mathrm{~g}, 50.0 \mathrm{mmol}$) was dropwise added with a syringe pump over a period of 3 h to a suspension of dimethyl carbonate 84 (45.1 g, 500 mmol) and $\mathrm{NaH}(4.41 \mathrm{~g}, 110 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) under nitrogen at $0^{\circ} \mathrm{C}$. The resulted mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 2 h . It was then allowed to stand for 12 h at $23^{\circ} \mathrm{C}$. The reaction mixture was then cooled
to $0^{\circ} \mathrm{C}$, diluted with ice cold water $(20 \mathrm{ml})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vасио. The residue was purified by distillation to give $12 \mathrm{i}(8.49 \mathrm{~g}, 46.0 \mathrm{mmol}, 92 \%)$ as a mixture of keto and enol tautomer (ratio, keto/enol $4: 1$), as a colorless oil.

$$
\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} \quad \mathrm{M}=184.23 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Boiling point: $65-70^{\circ} \mathrm{C}$ at 1.5 Torr.

Keto isomer:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.61(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H})$, $2.28(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 5.06$ (thept, $J=7.2 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=17.56\left(\mathrm{CH}_{3}\right)$, $22.15\left(\mathrm{CH}_{2}\right)$, $25.57\left(\mathrm{CH}_{3}\right), 42.97$ $\left(\mathrm{CH}_{2}\right), 49.01\left(\mathrm{CH}_{2}\right), 52.53\left(\mathrm{CH}_{3}\right), 122.13(\mathrm{CH}), 133.06(\mathrm{C}), 167.56(\mathrm{C}), 202.38(\mathrm{C}) \mathrm{ppm}$.

Enol isomer:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.63(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H})$, $2.28(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.43-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 5.02$ (thept, $J=7.3 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 12.01(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=17.65\left(\mathrm{CH}_{3}\right), 25.65\left(\mathrm{CH}_{3}\right), 26.95\left(\mathrm{CH}_{2}\right), 35.11$ $\left(\mathrm{CH}_{2}\right), 50.97\left(\mathrm{CH}_{3}\right), 88.78(\mathrm{CH}), 122.38(\mathrm{CH}), 132.91(\mathrm{C}), 169.97(\mathrm{C}), 178.44(\mathrm{C}) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3090(\mathrm{~m}), 2968(\mathrm{~m}), 2957$ (m), 2918 (m), 2861 (s), 1747 (vs), 1717 (vs), 1653 (w), 1631 (w), 1438 (s), 1409 (m), 1378 (w), 1319 (s), 1241 (s), 1200 (m), 1174 (m), 1155 (m), 1111 (m), 1080 (m), 1040 (w), 1002 (w), 835 (w), 677 (m), 658 (m), 630 (s) cm^{-1}.

MS (EI, 70 eV$): m / z(\%)=184(12)\left[\mathrm{M}^{+}\right], 116(27), 86(56), 84(92), 69(94), 55(19), 49$ (100), 41 (61).

HR-MS (EI, 70 eV):	calcd. 184.1099	for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$,
	found 184.1100	$\left[\mathrm{M}^{+}\right]$.

5.3.2.2 Methyl 6,6-Dimethyl-2-oxocyclohexanecarboxylate ${ }^{[141]}$ (12i)

$\mathrm{SnCl}_{4}(0.562 \mathrm{~g}, 2.16 \mathrm{mmol})$ was dropwise added to a solution of $\mathbf{1 2 j}(2.00 \mathrm{~g}, 10.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 54 h at $23^{\circ} \mathrm{C}$, it was poured onto ice $(10 \mathrm{~g})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ ml). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EA}=9: 1)$ to give $\mathbf{1 2 i}(1.51 \mathrm{~g}, 8.20 \mathrm{mmol}, 76 \%)$ as a mixture of keto and enol tautomer (ratio, keto/enol = $5: 1$), as a colorless oil.

$$
\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} \quad \mathrm{M}=184.23 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=9: 1\right)=0.42$.

Keto isomer:

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.99(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.80-$ $1.96(\mathrm{~m}, 3 \mathrm{H}), 2.23-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.65(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ;$ Keto isomer $\delta=21.84\left(\mathrm{CH}_{2}\right)$, $24.72\left(\mathrm{CH}_{3}\right), 28.13$ $\left(\mathrm{CH}_{3}\right), 36.45\left(\mathrm{CH}_{2}\right), 38.81(\mathrm{C}), 39.35\left(\mathrm{CH}_{2}\right), 51.62\left(\mathrm{CH}_{3}\right), 67.28(\mathrm{CH}), 169.17(\mathrm{C})$, 206.66 (C) ppm.

Enol isomer:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.16(\mathrm{~s}, 6 \mathrm{H}), 1.60-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.96(\mathrm{~m}, 3 \mathrm{H})$, 2.23-2.30 (m, 1H), 2.60-2.65 (m, 1H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 12.83(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=17.57\left(\mathrm{CH}_{2}\right), 24.72\left(\mathrm{CH}_{3}\right)$, $28.73\left(\mathrm{CH}_{3}\right), 30.54$ $\left(\mathrm{CH}_{2}\right), 31.82(\mathrm{C}), 41.00\left(\mathrm{CH}_{2}\right), 50.91\left(\mathrm{CH}_{3}\right), 105.95(\mathrm{C}), 173.43(\mathrm{C}), 174.10(\mathrm{C}) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3010$ (w), 2953 (m), 2920 (m), 2874 (m), 1750 (s), 1731 (s), 1708 (vs), 1636 (m), 1600 (m), 1460 (m), 1453 (s$), 1388$ (w), 1369 (m), 1347 (s), 1333 (m), 1311 (s), 1290 (w), 1272 (m), 1239 (s), 1222 (s), 1193 (s), 1159 (vs), 1133 (s), 1079 (m), 1040 (m), 1015 (w), 968 (w), 942 (w), 907 (w), 852 (w), 805 (w), 738 (w), 676 (m), 628 (s) cm^{-1}.

MS (EI, 70 eV): $m / z(\%)=184(37)\left[\mathrm{M}^{+}\right], 169(16), 153(32), 137(53), 100(51), 84$ (87), 69 (25), 49 (100), 41 (29).

$$
\begin{array}{lll}
\text { HR-MS (EI, 70 eV): } & \text { calcd. } 184.1099 & \text { for } \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}, \\
& \text { found 184.1099 } & {\left[\mathrm{M}^{+}\right] .}
\end{array}
$$

5.3.3 Synthesis of 2-Allyl Cyclohexanone 120

5.3.3.1 Methyl 2-Allyloxy-6,6-dimethyl-1-cyclohexenecarboxylate ${ }^{[147]}$ (118)

A solution of $\mathbf{1 2 i}(1.20 \mathrm{~g}, 6.51 \mathrm{mmol})$ in abs. THF (8 ml) was added to a suspension of $\mathrm{NaH}(0.285 \mathrm{~g}, 7.16 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) in abs. THF (5 ml) under N_{2} at $0^{\circ} \mathrm{C}$. After the mixture was stirred for 1 h at $23^{\circ} \mathrm{C}$, allyl bromide 117 $(1.97 \mathrm{~g}, 16.3 \mathrm{mmol})$ was dropwise added and the mixture was then heated to $60^{\circ} \mathrm{C}$ and stirred for 22 h at the same temperature. It was then cooled to $0^{\circ} \mathrm{C}$, diluted with ice cold water $(20 \mathrm{ml})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EA}=9: 1)$ to give inseparable mixtures of enol ether 118 and ketone 119 [(ratio, $1: 1$), $1.18 \mathrm{~g}, 5.26$ mmol, 81%)], as colorless oil.
$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \quad \mathrm{M}=224.30 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{EA}=9: 1\right)=0.27$.

Enol ether 125:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.11(\mathrm{~s}, 6 \mathrm{H}), 1.42-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.78(\mathrm{~m}, 2 \mathrm{H})$, $2.17(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 4.26(\mathrm{dt}, J=5.1 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{dq}, J=$ $10.1 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dq}, J=17.3 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{ddt}, J=17.1 \mathrm{~Hz}$, $J=10.7 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.70\left(\mathrm{CH}_{2}\right), 24.93\left(\mathrm{CH}_{2}\right), 28.50\left(2 \mathrm{CH}_{3}\right), 33.16$ $(\mathrm{C}), 38.11\left(\mathrm{CH}_{2}\right), 51.26\left(\mathrm{CH}_{3}\right), 68.62\left(\mathrm{CH}_{2}\right), 116.53\left(\mathrm{CH}_{2}\right), 120.95(\mathrm{C}), 134.03(\mathrm{CH})$, 152.65 (C), 169.84 (C) ppm.

5.3.3.2 Methyl 1-Allyl-6,6-dimethyl-2-oxocyclohexanecarboxylate ${ }^{[147]}$ (119)

Both the inseparable mixtures of enol ether 118 and ketone 119 $(1.1 \mathrm{~g}, 4.90 \mathrm{mmol})$ were stirred vigorously at $150^{\circ} \mathrm{C}$ for 3.5 h under nitrogen atmosphere to convert completely to ketone 119 ($1.08 \mathrm{~g}, 4.82 \mathrm{mmol}, 98 \%$).
$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \quad \mathrm{M}=224.30 \mathrm{~g} \mathrm{~mol}^{-1}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.84(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.77-$ $1.87(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{dd}, J=8.6 \mathrm{~Hz}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{ddt}, J=$ $13.6 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.89(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{br} ., J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, \mathrm{br} ., J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dddd}, J=5.6 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, J=$ $10.1 \mathrm{~Hz}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.48\left(\mathrm{CH}_{2}\right), 23.53\left(\mathrm{CH}_{3}\right), 26.54\left(\mathrm{CH}_{3}\right), 33.90$ $\left(\mathrm{CH}_{2}\right), 37.17\left(\mathrm{CH}_{2}\right), 39.92\left(\mathrm{CH}_{2}\right), 41.01(\mathrm{C}), 51.33\left(\mathrm{CH}_{3}\right), 68.42(\mathrm{C}), 117.16\left(\mathrm{CH}_{2}\right)$, $135.33(\mathrm{CH}), 171.53(\mathrm{C}), 208.35(\mathrm{C}) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3078$ (w), 2971 (m), 2951 (m), 2880 (w), 1746 (s), 1712 (vs), 1639 (w), 1457 (m), 1433 (m), 1395 (w), 1374 (w), 1351 (w), 1314 (m), 1289 (m), 1217 (s), 1197 (s), 1181 (m), 1154 (m), 1129 (w), 1103 (w), 1077 (w), 1043 (m), 1002 (m), 915 (s), 854 (w), 798 (w), 669 (s), 632 (vs) cm¹.

MS (EI, 70 eV$): m / z(\%)=224$ (100) [M+], 209 (15), 195 (30), 192 (53), 168 (35), 149 (38), 136 (94), 123 (83), 109 (29), 95 (49), 69 (56), 55 (55), 41 (42).

Elemental analysis: calcd. C 69.61, H 8.99;
found C 69.53, H 9.19.

5.3.3.3 2-Allyl-3,3-dimethylcyclohexanone ${ }^{[147]}$ (120)

A solution of ketoester 119 ($110 \mathrm{mg}, 0.490 \mathrm{mmol}$) in 2,4,6collidine (1 ml) was added dropwise to a mixture of $\mathrm{LiI} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($112 \mathrm{mg}, 0.666 \mathrm{mmol}$) and 2,4,6-collidine (1 ml) and the mixture was heated to reflux for 19 h . It was then cooled to $23^{\circ} \mathrm{C}$ and poured into a mixture of hydrochloric acid ($2 \mathrm{ml}, \mathrm{c}=6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$), ice-cold water (1 $\mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{ml})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{ml})$ and the combined organic layers were washed with hydrochloric acid ($2 \times 2 \mathrm{ml}, \mathrm{c}=6 \mathrm{~mol}$ dm^{-3}), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ soln. ($2 \times 2 \mathrm{ml}, \mathrm{c}=2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) and brine (2 ml). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to give 120 ($54 \mathrm{mg}, 0.324 \mathrm{mmol}, 67 \%$) as a colorless oil.
$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O} \quad \mathrm{M}=166.26 \mathrm{~g} \mathrm{~mol}^{-1}$
${ }^{1} \mathbf{H}-N M R\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.79(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.77-$ $1.94(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.42-2.49(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{dq}, J=$
$10.1 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dq}, J=17.0 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{ddt}, J=17.0 \mathrm{~Hz}$, $J=10.1 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=22.07\left(\mathrm{CH}_{3}\right), 23.11\left(\mathrm{CH}_{2}\right), 28.62\left(\mathrm{CH}_{2}\right), 29.46$ $\left(\mathrm{CH}_{3}\right), 39.19\left(\mathrm{CH}_{2}\right), 39.70(\mathrm{C}), 41.26\left(\mathrm{CH}_{2}\right), 60.98(\mathrm{CH}), 115.19\left(\mathrm{CH}_{2}\right), 137.88(\mathrm{CH})$, 212.65 (C) ppm.

IR (ATR): $\lambda^{-1}=3074(\mathrm{w}), 2960(\mathrm{~m}), 2928(\mathrm{~m}), 2898(\mathrm{~m}), 2871(\mathrm{~m}), 2850(\mathrm{~m}), 1705$ (vs), 1457 (m), 1430 (w), 1388 (w), 1368 (m), 1259 (s), 1123 (vs), 1077 (vs), 1026 (vs), 843 (w), 803 (m), 737 (w), 718 (w), 699 (m) cm².

MS (EI, 70 eV$): m / z(\%)=166(100)\left[\mathrm{M}^{+}\right], 151(40), 123(26), 109(50), 96(64), 81(26)$, 69 (50), 55 (28), 41 (35).

HR-MS (CI, isobutane):	calcd. 167.1436	for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}$,
	found 167.1436	$\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

5.3.4 Synthesis of Cyclohexene Derivative 139

5.3.4.1 4-Acetyl-1-methylcyclohexene ${ }^{[149]}$ (130)

A mixture of methyl vinyl ketone 9a ($2.96 \mathrm{~g}, 42.3 \mathrm{mmol}$) and isoprene $45(0.960 \mathrm{~g}, 14.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{ml})$ was added to a cooled solution of $\mathrm{Sc}(\mathrm{OTf})_{3}(2.08 \mathrm{~g}, 4.23 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 18 h , then diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 5 ml). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=1: 1\right)$ to give $130(1.62 \mathrm{~g}, 11.7 \mathrm{mmol}, 83 \%)$ as a colorless oil. The
$\mathrm{Sc}(\mathrm{OTf})_{3}$ can be recovered quantitatively by concentrating the aqueous layer and drying the residue at high vacuum (0.7 mbar).
$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O} \quad \mathrm{M}=138.21 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=2: 1\right)=0.42$.
${ }^{1} \mathbf{H}-N M R\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.53-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.92-1.94(\mathrm{~m}$, 1H), 1.95-2.02 (m, 2H), 2.10-2.14 (m, 2H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{dddd}, J=2.8 \mathrm{~Hz}, J=$ $5.9 \mathrm{~Hz}, J=9.1 \mathrm{~Hz}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.38(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=23.33\left(\mathrm{CH}_{3}\right), 24.86\left(\mathrm{CH}_{2}\right), 27.00\left(\mathrm{CH}_{2}\right), 27.90$ $\left(\mathrm{CH}_{3}\right), 29.44\left(\mathrm{CH}_{2}\right), 47.18(\mathrm{CH}), 119.21(\mathrm{CH}), 133.76(\mathrm{C}), 211.76(\mathrm{C}) \mathrm{ppm}$.

IR (ATR): $\lambda^{-1}=3011$ (w), 2965 (m), 2917 (m), 2859 (m), 2837 (m), 1708 (vs), 1440 (m), 1377 (m), 1354 (s), 1301 (w), 1283 (w), 1252 (w), 1240 (w), 1225 (m), 1167 (s), 1157 (m), 1117 (w), 1055 (w), 1024 (w), 949 (m), 914 (m), 801 (m), 758 (w), 682 (m), 644 (m), $630(\mathrm{~s}) \mathrm{cm}^{-1}$.

MS (EI, 70 eV$): m / z(\%)=138$ (94) [M+], 123 (50), 95 (100), 84 (28), 79 (23), 67 (39), 55 (20), 49 (33), 43 (74).

HR-MS (EI, 70 eV):

calcd. 138.1045	for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}$,
found. 138.1046	$\left[\mathrm{M}^{+}\right]$.

5.3.4.2 1-Iodo-3-methyl-2-butene ${ }^{[150]}$ (136)

$\mathrm{ZrCl}_{4}(2.03 \mathrm{~g}, 8.71 \mathrm{mmol})$ was added portionwise to a solution of prenyl alcohol 132 ($1.50 \mathrm{~g}, 17.4 \mathrm{mmol}$) and $\mathrm{NaI}(3.91 \mathrm{~g}, 26.1$ mmol) in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{ml})$ at $23^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 30 min at the same temperature. It was then diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$. The organic layer was washed with a 10% aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ dried over MgSO_{4}, filtered and concentrated in vасиo. The residue was purified by column chromatography on SiO_{2} (pentane : $\mathrm{Et}_{2} \mathrm{O}=9: 1$) to give 136 ($\left.3.12 \mathrm{~g}, 15.9 \mathrm{mmol}, 91 \%\right)$ as a dark brown oil.
$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{I} \quad \mathrm{M}=196.03 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}\right.$, Pentane : $\left.\mathrm{Et}_{2} \mathrm{O}=9: 1\right)=0.56$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.64(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H})$, $3.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.51$ (thept, $J=8.8 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.00\left(\mathrm{CH}_{2}\right), 17.36\left(\mathrm{CH}_{3}\right)$, $25.85\left(\mathrm{CH}_{3}\right), 122.01$ (CH), 138.75 (C) ppm.

IR (ATR): $\lambda^{-1}=3033$ (w), 3026 (w), 3016 (w), 2970 (m), 2928 (s), 2910 (m), 2879 (w), 2853 (w), 1655 (s), 1446 (s), 1376 (s), 1340 (w), 1223 (w), 1143 (vs), 1096 (w), 1004 (w), 977 (w), 856 (m), 837 (s), 752 (m), 663 (m), 628 (s) cm-1.

GC-MS (EI, 70 eV$): m / z(\%)=196(13)\left[\mathrm{M}^{+}\right], 127(10), 69(100)$.

HR-MS (EI, 70 eV):
calcd. 195.9749
found 195.9749
for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{I}$
$\left[\mathrm{M}^{+}\right]$.

5.3.4.3 5-Methyl-1-(4-methyl-3-cyclohexenyl)-4-hexen-1-one (129)

A solution of LDA ($2.10 \mathrm{ml}, 4.15 \mathrm{mmol}, 2.0 \mathrm{~mol}$ dm^{-3} in THF/pentane/ethylbenzene) was added to a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of ketone $130(0.522 \mathrm{~g}$, $3.77 \mathrm{mmol})$ in abs. THF (10 ml). After stirring the reaction mixture for 1 h at $-78^{\circ} \mathrm{C}$, prenyl iodide $136(2.96 \mathrm{~g}, 15.1 \mathrm{mmol})$ was added dropwise. The resulting mixture was stirred for 2 h at the same temperature and then at $23^{\circ} \mathrm{C}$ for 3 h . It was then diluted with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. (5 ml) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=9: 1\right)$ to give as a first fraction compd. 131 ($0.112 \mathrm{~g}, 0.410 \mathrm{mmol}, 11 \%, \mathrm{R}_{\mathrm{f}}=0.83$) and as a second fraction compd. $129(0.562 \mathrm{~g}$, $2.72 \mathrm{mmol}, 72 \%, \mathrm{R}_{\mathrm{f}}=0.78$), both as light yellow oils.
$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O} \quad \mathrm{M}=206.32 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=9: 1\right)=0.78$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.56$ (dddd, $J=6.0 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, J=11.5 \mathrm{~Hz}, J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.88-1.93(\mathrm{~m}$, 1H), 1.95-2.05 (m, 2H), 2.09-2.12 (m, 2H), 2.19-2.25 (m, 2H), 2.41-2.52 (m, 1H), 2.47 $(\mathrm{dt}, J=6.0 \mathrm{~Hz}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.04$ (thept, $J=7.2 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35-5.38(\mathrm{~m}$, 1H) ppm.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=17.57\left(\mathrm{CH}_{3}\right), 22.40\left(\mathrm{CH}_{2}\right), 23.34\left(\mathrm{CH}_{3}\right), 24.93$ $\left(\mathrm{CH}_{2}\right), 25.59\left(\mathrm{CH}_{3}\right), 27.09\left(\mathrm{CH}_{2}\right), 29.54\left(\mathrm{CH}_{2}\right), 40.69\left(\mathrm{CH}_{2}\right), 46.53(\mathrm{CH}), 119.36(\mathrm{CH})$, 122.97 (CH), 132.43 (C), 133.67 (C), 213.51 (C) ppm.

IR (ATR): $\lambda^{-1}=3010$ (w), 2964 (m), 2913 (s), 2856 (m), 2835 (m), 1707 (vs), 1675 (w), 1439 (s), 1407 (w), 1376 (s), 1342 (w), 1299 (w), 1280 (w), 1250 (w), 1217 (w), 1154 (w), 1108 (w), 1088 (m), 1065 (w), 1049 (w), 1007 (w), 984 (w), 954 (w), 915 (w), 830 (m), $798(\mathrm{~m}), 760(\mathrm{w}), 675(\mathrm{~m}), 628(\mathrm{~s}) \mathrm{cm}^{-1}$.

MS (EI, 70 eV$): m / z(\%)=206(49)\left[\mathrm{M}^{+}\right], 189(9), 123(21), 95(100), 81(20), 69(44)$, 55 (23), 41 (26).

HR-MS (EI, 70 eV):	calcd. 206.1671	$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}$,
	found. 206.1670	$\left[\mathrm{M}^{+}\right]$.

5.3.4.4 5-Methyl-2-(3-methyl-2-butenyl)-1-(4-methyl-3-cyclohexenyl)-4-hexen-1one (131)

The dialkylated cyclohexenone 131 (0.112 g, 0.410 mmol, 11\%) was obtained as a by-product (first fraction, light yellow oil) in the synthesis of the monoalkylated cyclohexene 129 from acetyl cyclohexene 130. (For procedure please see the page number 155).
$\mathrm{M}=274.44 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=9: 1\right)=0.83$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.49$ (dddd, $J=6.3 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, J=11.6 \mathrm{~Hz}, J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 6 \mathrm{H}), 1.82-$ $1.86(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.20-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.54$ (dddd, J $=2.8 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{tt}, J=6.0 \mathrm{~Hz}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 5.00-5.04 (m, 2H), 5.37-5.40 (m, 1H) ppm.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=17.71\left(2 \mathrm{CH}_{3}\right), 23.42\left(\mathrm{CH}_{3}\right), 24.64\left(\mathrm{CH}_{2}\right), 25.74$ $\left(\mathrm{CH}_{3}\right), 25.76\left(\mathrm{CH}_{3}\right), 26.91\left(\mathrm{CH}_{2}\right), 29.74\left(\mathrm{CH}_{2}\right), 30.18\left(\mathrm{CH}_{2}\right), 30.36\left(\mathrm{CH}_{2}\right), 46.90(\mathrm{CH})$, $51.04(\mathrm{CH}), 119.63(\mathrm{CH}), 121.70(\mathrm{CH}), 121.85(\mathrm{CH}), 133.27(\mathrm{C}), 133.33(\mathrm{C}), 133.57$ (C), 217.13 (C) ppm.

IR (ATR): $\lambda^{-1}=3009$ (w), 2964 (m), 2913 (s), 2855 (m), 2727 (w), 1706 (vs), 1674 (w), 1449 (s), 1439 (s), 1377 (s), 1347 (w), 1300 (w), 1275 (w), 1247 (w), 1232 (w), 1215 (w), 1180 (w), 1155 (w), 1120 (m), 1108 (m), 1090 (m), 1049 (w), 1037 (w), 1009 (w), 984 (w), 953 (w), 915 (w), 841 (m), 825 (m), 798 (m), 758 (m), $699(\mathrm{~m}) \mathrm{cm}^{-1}$.

MS (EI, 70 eV$): m / z(\%)=274(68)\left[\mathrm{M}^{+}\right], 205(100), 123(15), 109(27), 95(49), 69(42)$, 41 (27).

HR-MS (EI, 70 eV): calcd. 274.2297 for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}$,
found. $274.2296 \quad\left[\mathrm{M}^{+}\right]$.

5.3.4.5 5-Hydroxy-5-methyl-1-(4-methyl-3-cyclohexenyl)hexan-1-one (137)

$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(302 \mathrm{mg}, 2.13 \mathrm{mmol})$ was added to a cooled solution of alkylated ketone 129 (200 mg , $0.97 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at $-5^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 52 h . It was then diluted with sat. aq. NaHCO_{3} soln. $(5 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ 5 ml). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}$: $\mathrm{Et}_{2} \mathrm{O}=1: 3$) to give $137(104 \mathrm{mg}, 0.270 \mathrm{mmol}, 63 \%)$ as a light yellow oil.
$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}$

$$
\mathrm{M}=224.34 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=1: 3\right)=0.27$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.27(\mathrm{~s}, 6 \mathrm{H}), 1.42-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.68(\mathrm{~m}, 4 \mathrm{H})$, 1.64-1.65 (m, 3H), 1.89-1.94 (m, 1H), 1.96-2.06 (m, 2H), 2.09-2.13 (m, 2H), 2.44$2.55(\mathrm{~m}, 3 \mathrm{H}), 5.37-5.40(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=18.46\left(\mathrm{CH}_{2}\right)$, $23.39\left(\mathrm{CH}_{3}\right)$, $25.02\left(\mathrm{CH}_{2}\right), 27.19$ $\left(\mathrm{CH}_{2}\right), 29.18\left(2 \mathrm{CH}_{3}\right), 29.56\left(\mathrm{CH}_{2}\right), 40.89\left(\mathrm{CH}_{2}\right), 43.20\left(\mathrm{CH}_{2}\right), 46.55(\mathrm{CH}), 70.84(\mathrm{C})$, 119.32 (CH), 133.76 (C), 213.90 (C) ppm.

IR (ATR): $\lambda^{-1}=3439$ (br. m), 2965 (s), 2926 (s), 1704 (vs), 1671 (w), 1453 (m), 1440 (m), 1405 (w), 1377 (s), 1366 (s), 1301 (w), 1279 (w), 1216 (m), 1206 (m), 1154 (m), 1146 (m), 1119 (w), 1092 (w), 1065 (w), 1051 (w), 1009 (w), 943 (w), 913 (m), 863 (w), 798 (m), 760 (w), 740 (w), 726 (w) cm².

MS (EI, 70 eV): $m / z(\%)=206(22)\left[\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right], 123(18), 95(29), 84$ (87), 69 (17), 49 (100), 41 (13).

HR-MS (EI, 70 eV):	calcd. 206.1671	for $\left(\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}\right)$,
	found. 206.1671	$\left[\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right]$.

5.3.4.6 2,2-Dimethyl-6-(4-methyl-3-cyclohexenyl)-3,4-dihydro-2H-pyran (140)

The enol ether 140 was slowly formed from the hydroxy product 137 in an attempt of the synthesis of β-Chamigrene precursor 47a.
$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}$

$$
\mathrm{M}=206.32 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$\mathbf{R}_{\mathrm{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=1: 3\right)=0.43$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.18(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{ddt}, J$ $=1.0 \mathrm{~Hz}, J=3.7 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.00-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.11(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{t}, J=$ $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.35-5.38(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.42\left(\mathrm{CH}_{2}\right), 23.55\left(\mathrm{CH}_{3}\right), 26.28\left(\mathrm{CH}_{3}\right), 26.45$ $\left(\mathrm{CH}_{3}\right), 27.01\left(\mathrm{CH}_{2}\right), 29.72\left(\mathrm{CH}_{2}\right), 30.31\left(\mathrm{CH}_{2}\right), 32.92\left(\mathrm{CH}_{2}\right), 38.34(\mathrm{CH}), 72.72(\mathrm{C})$, $91.21(\mathrm{CH}), 120.56(\mathrm{CH}), 133.55(\mathrm{C}), 156.36(\mathrm{C}) \mathrm{ppm}$.

6 Data for Crystal Strucure Analysis

6.1 Crystal Structure Data for $\left(5 R^{*}, 6 S^{*}\right)-74$

Table 11. Crystal structure data for $\left(5 R^{*}, 6 S^{*}\right)$-74.

Empirical formula	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$
Formula weight	$198.21 \mathrm{~g} \mathrm{~mol}-1$
Temperature	$153(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system	Monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=8.3347(10) \AA, \mathrm{a}=90^{\circ}$
	$\mathrm{b}=11.5682(11) \AA, \beta=104.266(12)^{\circ}$
	$\mathrm{c}=10.2659(9) \AA, \mathrm{Y}=90^{\circ}$
Volume,	$959.29(17) \AA^{3}$
Z	4
Density (calculated)	$1.372 \mathrm{mg} \mathrm{m}^{-3}$
Absorption coefficient	$0.106 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	424
Crystal size	$0.60 \times 0.36 \times 0.28 \mathrm{~mm}{ }^{3}$
θ-range for data collection	$2.52 \mathrm{to} 26.24^{\circ}$
Index ranges	$-10 \leq \mathrm{h} \leq 10,-14 \leq \mathrm{k} \leq 14,-12 \leq 1 \leq 12$
Reflections collected	10169
Independent reflections	$1808[\mathrm{R}(\mathrm{int})=0.0558]$
Observed reflections	$1241[\mathrm{I}>2$ sigma $(\mathrm{I})]$
Completeness to $\theta=25.00^{\circ}$	95.0%

Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

None
0.9710 and 0.9392

Full-matrix least-squares on F^{2}
1808 / 0 / 135
0.879
$\mathrm{R} 1=0.0320, \mathrm{wR} 2=0.0727$
$\mathrm{R} 1=0.0517, \mathrm{wR} 2=0.0795$
0.238 and -0.196 e/ \AA^{3}

CCDC-647100 for $\left(R^{*}, S^{*}\right)-74$ contain the supplementary crystallographic data. It can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

6.2 Crystal Structure Data for $(R)-112$

Table 12. Crystal structure data for $(R)-\mathbf{1 1 2}$.

Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Br} \mathrm{O}_{6} \mathrm{~S}$
Formula weight	$415.25 \mathrm{~g} \mathrm{~mol}^{-1}$
Temperature	153(2) K
Wavelength	0.71073 £
Crystal system	Monoclinic
Space group	P21
Unit cell dimensions	$\mathrm{a}=6.0232(3) \AA, \mathrm{a}=90^{\circ}$.
	$\mathrm{b}=14.8372(10) \AA, \beta=104.959(7)^{\circ}$
	$\mathrm{c}=9.3893(7) \AA, \beta=90^{\circ}$
Volume	$810.66(9) \AA^{3}$
Z	2
Density (calculated)	$1.701 \mathrm{mg} \mathrm{m}^{-3}$
Absorption coefficient	$2.694 \mathrm{~mm}^{-1}$
F(000)	420
Crystal size	$0.30 \times 0.24 \times 0.20 \mathrm{~mm}^{3}$
θ-range for data collection	2.75 to 26.11°
Index ranges	$-7 \leq h \leq 7,-18 \leq \mathrm{k} \leq 18,-11 \leq 1 \leq 11$
Reflections collected	9753
Independent reflections	3045 [$\mathrm{R}(\mathrm{int}$) $=0.0368]$
Observed reflections	2790 [I>2sigma(I)]
Completeness to $\theta=25.00^{\circ}$	94.7\%
Absorption correction	Numerical
Max. and min. transmission	0.6148 and 0.4987
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3045 / 1 / 217
Goodness-of-fit on F^{2}	0.954
Final R indices [$\mathrm{I}>2$ sigma(I] $]$	$\mathrm{R} 1=0.0212, \mathrm{wR} 2=0.0444$
R indices (all data)	$\mathrm{R} 1=0.0243, \mathrm{wR} 2=0.0450$
Absolute structure parameter	-0.009(5)
Largest diff. peak and hole	0.315 and -0.296 e/ \AA^{3}

CCDC-647101 for $(R) \mathbf{- 1 1 2}$ contain the supplementary crystallographic data. It can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

7 Abbreviations

A	Ångström
Ac	acetyl
acac	acetylacetonato
ATR	attenuated total reflection
aq.	aqueous
Bs	4-bromophenylsulfonyl
calc.	calculated
CSA	camphor sulfonic acid
cat.	catalytic
CI	chemical ionization
δ	chemical shift
cod	1,5-cyclooctadiene
c	concentration
conc.	concentrated
CBS	Corey Bakshi Shibata
de	diastereomeric excess
DCC	dicyclohexylcarbodiimide
DOPA	dihydroxyphenylalanine
DMB	dimethoxybenzyl
DMAP	dimethylaminopyridine
DMF	dimethylformamide
DEPT	distortionless enhancement by polarisation transfer
d	doublet
$e e$	enantiomeric excess
EI	electron impact
eV	electron volt
EA	ethyl acetate
eq.	equivalent
GC	gas chromatography
GC-MS	gas chromatography-mass spectrometry coupling
h	heptet
HR-MS	high resolution mass spectrometry
IR	infra red
J	coupling constant
LDA	lithiumdiisopropylamide
m / z	mass/charge
MS	mass spectrometry

MVK	methyl vinyl ketone
m	medium (IR), multiplet (NMR)
NMR	nuclear magnetic resonance
oct	octet
PMB	paramethoxybenzyl
ppm	parts per million
PE	petroleum ether
q	quartett
quin	quintet
RAMP	(R)-1-amino-2-methoxymethylpyrrolidine
rac	racemic
R_{f}	ratio offronts
RCM	ring closing metathesis
SAMP	(S)-1-amino-2-methoxymethylpyrrolidine
sat.	saturated
soln.	solution
sex	sextet
s	singulet (NMR), strong (IR)
T	temperature
THF	tetrahydrofuran
t	time, triplet (NMR)
TLC	thin layer chromatography
TFA	trifluoroacetic acid
TMS	tetramethylsilane
Tos	p-toluenesulfonyl
UV	ultraviolet
vs	very strong
w	weak
λ	wavelength

8 Bibliography

[1] K. C. Nicolaou, E. J. Sorensen, Classics in Total Synthesis, Wiley-VCH, Weinheim, 1996.
[2] K. C. Nicolaou, D. Vourloumis, N. Winssinger, P. S. Baran, Angew. Chem. 2000, 112, 46-126; Angew. Chem. Int. Ed. 2000, 39, 44-122.
[3] R. Robinson, J. Chem. Soc. 1917, 111, 762-768.
[4] H. Fischer, K. Zeile, Liebigs. Ann. Chem. 1929, 468, 98-116.
[5] W. Lenz, R. A. Pfeiffer, W. Kosenow, D. J. Hayman, The Lancet 1962, 279, 4546.
[6] W. G. Mcbride, The Lancet 1961, 278, 1358.
[7] D. Enders, R. W. Hoffmann, Chemie in Unserer Zeit 1985, 19, 177-190.
[8] W. Oppolzer, J. Blagg, I. Rodriguez, E. Walther, J. Am. Chem. Soc. 1990, 112, 2767-2772.
[9] A. Job, C. F. Janeck, W. Bettray, R. Peters, D. Enders, Tetrahedron 2002, 58, 2253-2329.
[10] W. S. Knowles, Angew. Chem. 2002, 114, 2096-2107; Angew. Chem. Int. Ed. 2002, 41, 1998-2007.
[11] K. B. Sharpless, Angew. Chem. 2002, 114, 2126-2135; Angew. Chem. Int. Ed. 2002, 41, 2024-2032.
[12] R. Noyori, Angew. Chem. 2002, 114, 2108-2123; Angew. Chem. Int. Ed. 2002, 41, 2008-2022.
[13] I. Ojima, Catalytic Asymmetric Synthesis, Wiley-VCH, Weinheim, 2000.
[14] J. Christoffers, A. Baro, Eds., Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis, Wiley-VCH, Weinheim, 2005.
[15] J. Christoffers, A. Baro, Angew. Chem. 2003, 115, 1726-1728; Angew. Chem. Int. Ed. 2003, 42, 1688-1690.
[16] J. Christoffers, A. Baro, Adv. Synth. Catal. 2005, 347, 1473-1482.
[17] J. Christoffers, A. Mann, Angew. Chem. 2001, 113, 4725-4732; Angew. Chem. Int. Ed. 2001, 40, 4591-4597.
[18] E. J. Corey, A. Guzman-Perez, Angew. Chem. 1998, 110, 402-415; Angew. Chem. Int. Ed. 1998, 37, 389-401.
[19] K. Fuji, Chem. Rev. 1993, 93, 2037-2066.
[20] S. F. Martin, Tetrahedron 1980, 36, 419-460.
[21] E. A. Peterson, L. E. Overman, Proc. Natl. Acad. Sci. USA, 2004, 101, 1194311948.
[22] B. M. Trost, C. Jiang, Synthesis 2006, 369-396.
[23] R. Noyori, Asymmetric Catalysis in Organic Synthesis; Wiley: New York 1994.
[24] B. M. Trost, Angew. Chem. 1995, 107, 285-307; Angew. Chem. Int. Ed. 1995, 34, 259-281.
[25] E. J. Corey, Angew. Chem. 2002, 41, 1724-1741; Angew. Chem. Int. Ed. 2002, 41, 1650-1667.
[26] B. M. Trost, Chem. Pharm. Bull. 2002, 50, 1-14.
[27] B. M. Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395-422.
[28] J. Christoffers, in Encyclopedia of Catalysis, Vol. 5, ed. I. Horvath, J. Wiley E Sons, New York, 2003, pp. 99-118.
[29] J. Christoffers, G. Koripelly, A. Rosiak, M. Rössle, Synthesis 2007, 1279-1300.
[30] N. Krause, A. Hoffmann-Röder, Synthesis 2001, 171-196.
[31] M. Sawamura, H. Hamashima, Y. Ito, J. Am. Chem. Soc. 1992, 114, 8295-8296.
[32] M. Sawamura, H. Hamashima, Y. Ito, Tetrahedron 1994, 50, 4439-4454.
[33] M. Sawamura, H. Hamashima, H. Shinoto, Y. Ito, Tetrahedron Lett. 1995, 36, 6479-6482.
[34] M. Sawamura, H. Hamashima, Y. Ito, Tetrahedron: Asymmetry 1991, 2, 593596.
[35] J. Christoffers, Chem. Eur. J. 2003, 9, 4862-4867.
[36] J. Christoffers, A. Mann, Angew. Chem. 2000, 112, 2871-2874; Angew. Chem. Int. Ed. 2000, 39, 2752-2754.
[37] J. Christoffers, A. Mann, Chem. Eur. J. 2001, 7, 1014-1027.
[38] J. Christoffers, H. Scharl, Eur. J. Org. Chem. 2002, 1505-1508.
[39] J. Christoffers, H. Scharl, W. Frey, A. Baro, Eur. J. Org. Chem. 2004, 27012706.
[40] J. Christoffers, H. Scharl, W. Frey, A. Baro, Org. Lett. 2004, 6, 1171-1173.
[41] J. Christoffers, K. Schuster, Chirality 2003, 15, 777-782.
[42] J. Christoffers, B. Kreidler, H. Oertling, S. Unger, W. Frey, Synlett 2003, 493496.
[43] A. P. Krapcho, Synthesis 1976, 425-444.
[44] A. P. Krapcho, Synthesis 1974, 383-419.
[45] N. H. Andersen, M. S. Falcone, D. D. Syrdal, Tetrahedron Lett. 1970, 17591762.
[46] J. A. Marshall, P. C. Johnson, J. Org. Chem. 1970, 35, 192-196.
[47] S. Ito, K. Endo, T. Yoshida, M. Yatagai, M. Kodama, J. Chem. Soc., Chem. Соттии. 1967, 186-188.
[48] E. Caloprisco, J.-D. Fourneron, R. Faure, F.-E. Demarne, J. Agric. Food Chem. 2002, 50, 78-80.
[49] F. Q. Alali, X.-X. Liu, J. L. McLaughlin, J. Nat. Prod. 1999, 62, 504-540.
[50] M. S. Tempesta, G. R. Kriek, R. B. Bates, J. Org. Chem. 1982, 47, 3151-3153.
[51] L. Zeng, Q. Ye, N. H. Oberlies, G. Shi, Z. M. Gu, K. He, J. L. McLaughlin, Nat. Prod. Rep. 1996, 13, 275-306.
[52] G. Stork, R. L. Danheiser, B. Ganem, J. Am. Chem. Soc. 1973, 95, 3414-3415.
[53] R. G. Eilerman, B. J. Willis, J. Chem. Soc., Chem. Commun. 1981, 30-32.
[54] H. Fujioka, S. Kitagaki, R. Imai, M. Kondo, S. Okamoto, Y. Yoshida, S. Akai, Y. Kita, Tetrahedron Lett. 1995, 36, 3219-3222.
[55] J. N. Marx, L. R. Norman, J. Org. Chem. 1975, 40, 1602-1606.
[56] W. Oppolzer, F. Zutterman, K. Bättig, Helv. Chim. Acta 1983, 66, 522-533.
[57] M. Duc Do Khac, J. Ecoto, M. Fetizon, H. Colin, J. C. Diez-Masa, J. Chem. Soc., Chem. Commun. 1981, 953-955.
[58] W. Oppolzer, L. Gorrichon, T. G. Bird, Helv. Chim. Acta 1981, 64, 186-187.
[59] T. R. Hoye, S. J. Martin, D. R. Peck, J. Org. Chem. 1982, 47, 331-337.
[60] J. F. Ruppert, M. A. Avery, J. D. White, J. Chem. Soc., Chem. Commun. 1976, 978.
[61] Y. Tokunaga, M. Yagihashi, M. Ihara, K. Fukumoto, J. Chem. Soc., Chem. Commun. 1995, 955-956.
[62] K. Takai, Y. Hotta, K. Oshima, H. Nozaki, Bull. Chem. Soc. Jpn. 1980, 53, 1698-1702.
[63] L. Lombardo, Org. Synth. 1987, 65, 81-89.
[64] J. Cossy, A. Bouzide, Tetrahedron Lett. 1992, 33, 2505-2508.
[65] J. Cossy, A. Bouzide, M. Pfau, Tetrahedron Lett. 1992, 33, 4883-4884.
[66] J. Cossy, A. Bouzide, M. Pfau, J. Org. Chem. 1997, 62, 7106-7113.
[67] H. J. Knölker, P. G. Jones, R. Graf, Synlett 1996, 1155-1158.
[68] E. R. Koft, A. B. Smith, III, J. Org. Chem. 1984, 49, 832-836.
[69] J. E. Nystrom, T. D. McCanna, P. Helquist, R. S. Iyer, Tetrahedron Lett. 1985, 26, 5393-5396.
[70] T. Komnenos, Liebigs Ann. Chem. 1883, 218, 145-149.
[71] L. Claisen, J. Prakt. Chem. 1887, 35, 413-415.
[72] A. Michael, J. Prakt. Chem. 1887, 36, 113-114.
[73] A. Michael, J. Prakt. Chem. 1887, 35, 349-356.
[74] A. Michael, Chem. Ber. 1894, 27, 2126-2130.
[75] A. Michael, Chem. Ber. 1900, 33, 3731-3769.
[76] A. Michael, O. Schulthess, J. Prakt. Chem. 1892, 45, 55-63.
[77] F. Bonadies, A. Lattanzi, L. R. Orelli, S. Pesci, A. Scettri, Tetrahedron Lett. 1993, 34, 7649-7650.
[78] E. Keller, B. L. Feringa, Tetrahedron Lett. 1996, 37, 1879-1882.
[79] A. Soriente, A. Spinella, M. De Rosa, M. Giordano, A. Scettri, Tetrahedron Lett. 1997, 38, 289-290.
[80] C. P. Fei, T. H. Chan, Synthesis 1982, 467-468..
[81] H. Brunner, B. Hammer, Angew. Chem. 1984, 96, 305-306; Angew. Chem. Int. Ed. 1984, 23, 312-313.
[82] P. Koĉovský, D. Dvořák, Tetrahedron Lett. 1986, 27, 5015-5018.
[83] J. Christoffers, J. Chem. Soc., Perkin Trans. 1 1997, 3141-3150.
[84] J. Christoffers, Chem. Commun. 1997, 943-944.
[85] J. Christoffers, Tetrahedron Lett. 1998, 39, 7083-7084.
[86] J. Christoffers, Eur. J. Org. Chem. 1998, 1259-1266.
[87] J. Christoffers, J. Org. Chem. 1998, 63, 4539-4540.
[88] J. Christoffers, Eur. J. Org. Chem. 1998, 759-761.
[89] J. Christoffers, Synlett 2001, 723-732.
[90] J. Christoffers, H. Oertling, N. Önal, J. Prakt. Chem. 2000, 342, 546-553.
[91] J. Christoffers, A. Mann, Eur. J. Org. Chem. 2000, 1977-1982.
[92] J. Christoffers, H. Oertling, M. Leitner, Synlett 2000, 349-350.
[93] J. Christoffers, H. Oertling, Tetrahedron 2000, 56, 1339-1344.
[94] S. Pelzer, T. Kauf, C. van Wüllen, J. Christoffers, J. Organomet. Chem. 2003, 684, 308-314.
[95] M. Bauer, T. Kauf, J. Christoffers, H. Bertagnolli, Phys. Chem. Chem. Phys. 2005, 7, 2664-2670.
[96] J. Christoffers, Y. Zhang, W. Frey, P. Fischer, Synlett 2006, 624-626.
[97] W. S. Rapson, R. Robinson, J. Chem. Soc. 1935, 1285-1288.
[98] J. W. Cornforth, R. Robinson, J. Chem. Soc. 1949, 1855-1865.
[99] M. E. Jung, Tetrahedron 1976, 32, 3-31.
[100] R. E. Gawley, Synthesis 1976, 777-794.
[101] P. Wieland, K. Miescher, Helv. Chim. Acta 1950, 33, 2215-2228.
[102] N. Cohen, Acc. Chem. Res. 1976, 9, 412-417.
[103] U. Eder, G. Sauer, R. Wiechert, Angew. Chem. 1971, 83, 492-493; Angew. Chem. Int. Ed. 1971, 10, 496-497.
[104] Z. G. Hajos, D. R. Parrish, J. Org. Chem. 1974, 39, 1615-1621.
[105] J. Gutzwiller, P. Buchschacher, A. Fürst, Synthesis 1977, 167-168.
[106] C. Agami, F. Meynier, C. Puchot, J. Guilhem, C. Pascard, Tetrahedron 1984, 40, 1031-1038.
[107] S. Terashima, S. Sato, K. Koga, Tetrahedron Lett. 1979, 3469-3472.
[108] C. D. Dzierba, K. S. Zandi, T. Moellers, K. J. Shea, J. Am. Chem. Soc. 1996, 118, 4711-4712.
[109] J. D. Martin, C. Perez, J. L. Ravelo, J. Am. Chem. Soc. 1986, 108, 7801-7811.
[110] A. Tanaka, H. Uda, A. Yoshikoshi, J. Chem. Soc., Chem. Commun. 1967, 188189.
[111] R. E. Ireland, W. C. Dow, J. D. Godfrey, S. Thaisrivongs, J. Org. Chem. 1984, 49, 1001-1013.
[112] J. Adams, C. Lepine-Frenette, D. M. Spero, J. Org. Chem. 1991, 56, 4494-4498.
[113] A. Srikrishna, B. V. Lakshmi, M. Mathews, Tetrahedron Lett. 2006, 47, 21032106.
[114] L. E. Wolinsky, D. J. Faulkner, J. Finer, J. Clardy, J. Org. Chem. 1976, 41, 697699.
[115] A. P. Krapcho, E. G. E. Jahngen, jr., J. Org. Chem. 1974, 39, 1322-1324.
[116] S. Unger, "Aufbau quartärer Stereozentren in spirocyclischen Verbindungen", Dissertation, Universität Stuttgart, 2005.
[117] M. Ollivault-Shiflett, D. B. Kimball, L. A. P. Silks, J. Org. Chem. 2004, 69, 5150-5152.
[118] M. Antopolsky, E. Azhayeva, U. Tengvall, A. Azhayev, Tetrahedron Lett. 2002, 43, 527-530.
[119] D. T. S. Rijkers, J. W. M. Höppener, G. Posthuma, C. J. M. Lips, R. M. J. Liskamp, Chem. Eur. J. 2002, 8, 4285-4291.
[120] E. R. Ottosen, M. D. Sørensen, F. Björkling, T. Skak-Nielsen, M. S. Fjording, H. Aaes, L. Binderup, J. Med. Chem. 2003, 46, 5651-5662.
[121] T. Raghuram, S. Vijaysaradhi, I. Singh, J. Singh, Synth. Commun. 1999, 29, 3215-3219.
[122] M. Mentzel, H. M. R. Hoffmann, J. Prakt. Chem. 1997, 339, 517-524.
[123] S. Nahm, S. M. Weinreb, Tetrahedron Lett. 1981, 22, 3815-3818.
[124] J. Singh, N. Satyamurthi, I. S. Aidhen, J. Prakt. Chem. 2000, 342, 340-347.
[125] A. Gomtsyan, Org. Lett. 2000, 2, 11-13.
[126] N. Papaioannou, J. T. Blank, S. J. Miller, J. Org. Chem. 2003, 68, 2728-2734.
[127] J. Christoffers, H. Oertling, W. Frey, Eur. J. Org. Chem. 2003, 1665-1671.
[128] T. Brotin, V. Roy, J.-P. Dutasta, J. Org. Chem. 2005, 70, 6187-6195.
[129] A. Felk, G. Revial, B. Viossat, P. Lemoine, M. Pfau, Tetrahedron: Asymmetry 1994, 5, 1459-1462.
[130] D. Desmaële, S. Delarue-Cochin, C. Cavé, J. d'Angelo, G. Morgant, Org. Lett. 2004, 6, 2421-2424.
[131] D. Desmaële, K. Mekouar, J. d'Angelo, J. Org. Chem. 1997, 62, 3890-3901.
[132] M. Pfau, G. Revial, A. Guingant, J. d'Angelo, J. Am. Chem. Soc. 1985, 107, 273-274.
[133] M. Pizzonero, F. Dumas, J. d'Angelo, Heterocycles 2005, 66, 31-37.
[134] M. Pizzonero, F. Hendra, S. Delarue-Cochin, M.-E. Tran Huu-Dau, F. Dumas, C. Cavé, M. Nour, J. d'Angelo, Tetrahedron: Asymmetry 2005, 16, 3853-3857.
[135] J. d'Angelo, D. Desmaële, F. Dumas, A. Guingant, Tetrahedron: Asymmetry 1992, 3, 459-505.
[136] L. Yan, D. Kahne, Synlett 1995, 523-524.
[137] G. Mehta, S. C. Pan, Org. Lett. 2004, 6, 3985-3988.
[138] K. Kraehenbuehl, S. Picasso, P. Vogel, Helv. Chim. Acta 1998, 81, 1439-1479.
[139] G. Bernardinelli, H. D. Flack, Acta Crystallogr., Sect. A 1985, 41, 500-511.
[140] J. D. White, R. W. Skeean, G. L. Trammell, J. Org. Chem. 1985, 50, 1939-1948.
[141] M. T. Reetz, I. Chatziiosifidis, K. Schwellnus, Angew. Chem., 1981, 93, 716717; Angew. Chem. Int. Ed. 1981, 20, 687-689.
[142] K. I. Kuchkova, A. B. Morari, P. F. Vlad, Synthesis 1993, 1221-1222.
[143] A. Nangia, B. M. Rao, G. Prasuna, Synth. Commun. 1992, 22, 593-602.
[144] R. Adams, B. L. Van Duuren, J. Am. Chem. Soc. 1953, 75, 2377-2379.
[145] A. L. Gemal, J. L. Luche, J. Am. Chem. Soc. 1981, 103, 5454-5459.
[146] T. W. Baughman, J. C. Sworen, K. B. Wagener, Tetrahedron 2004, 60, 1094310948.
[147] C. V. Magatti, J. J. Kaminski, I. Rothberg, J. Org. Chem. 1991, 56, 3102-3108.
[148] H. Nakamura, H. Yamamoto, Chem. Commun. 2002, 1648-1649.
[149] S. Kobayashi, I. Hachiya, M. Araki, H. Ishitani, Tetrahedron Lett. 1993, 34, 3755-3758.
[150] H. Firouzabadi, N. Iranpoor, M. Jafarpour, Tetrahedron Lett. 2004, 45, 74517454.
[151] J. W. Cornforth, R. H. Cornforth, K. K. Mathew, J. Chem. Soc. 1959, 112-127.

9 List of Synthesized Compounds

9d, $\mathrm{PG}=\mathrm{DMB}$
$\mathbf{9 e}, \mathrm{PG}=\mathrm{PMB}$
9f, $\mathrm{PG}=\mathrm{Ph}_{3} \mathrm{C}$

19

76

77a

77b

78

79a, $\mathrm{PG}=\mathrm{DMB}$
79b, $\mathrm{PG}=\mathrm{Ph}_{3} \mathrm{C}$

81a, $\mathrm{PG}=\mathrm{DMB}$
81b, $\mathrm{PG}=\mathrm{PMB}$
81c, $P G=\mathrm{Ph}_{3} \mathrm{C}$

85

98

102

114

105

115

106

116

118

120

131

139

122

Me

121

142

10 List of Publications

G. Koripelly, W. Saak, J. Christoffers, "Synthesis of Optically Active (+)-Canangone, Its 6-Epimer and Determination of Absolute Configuration" Eur. J. Org. Chem. 2007, 5840-5846.
J. Christoffers, G. Koripelly, A. Rosiak, M. Rössle, "Recent Advances in MetalCatalyzed Asymmetric Conjugate Additions" Synthesis 2007, 1279-1300.

Curriculum Vitae

Girish Kumar Koripelly

Personal Data

Date of Birth	10/10/1976
Marital Status	Single
Nationality	Indian

Education

1982-1994	School education
1995-1998	B. Sc. (Botany, Zoology, Chemistry) Osmania University, Hyderabad, India
1998-1999	B. Ed. (Chemistry \& Biology) Osmania University, Hyderabad, India 2000-2002
M. Sc. (Chemistry) University of Hyderabad, India	

Research Experience

09/2002-08/2003 Research Student, Institute of Organic Chemistry, University of Fribourg, Switzerland, Research Advisor: Prof. Titus A. Jenny Title: Synthesis of self assembled organic molecules e.g. HBC with different substituents for understanding the liquid crystalline properties.
05/2004-09/2004 Research Student, Institut für Organische Chemie, Universität Kiel, Germany, Research Advisor: Dr. Anke Krüger
Title: Synthesis of cage structures with sulphur containing functional groups for the production of self organised monolayers on gold substrates.

10/2004-02/2006 Ph. D. Student, Institut für Organische Chemie, Universität Stuttgart, Germany, Research Advisor: Prof. Dr. Jens Christoffers Title: Synthetic Studies on Canangone and β-Chamigrene.
from 03/2006 Movement with Prof. Dr. Jens Christoffers to the Institute für Reine und Angewandte Chemie, Universität Oldenburg

Oldenburg, 04. Februar 2008

