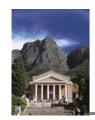

Centre for Catalysis Research


Department of Chemical Engineering
University of Cape Town • Rondebosch 7701
South Africa

Catalysts for Fischer-Tropsch synthesis

Eric van Steen

- 1. Fischer-Tropsch synthesis
- Choice of catalytically active material
- 3. Cobalt-based catalysts
 - a. Intrinsic activity
 - b. Catalyst deactivation
- 4. Iron-based catalysts
 - a. Phases present
 - b. Intrinsic activity
 - c. Promoters/additives

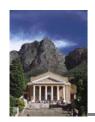
Fischer-Tropsch synthesis

Synthesis gas Mixture of

Hydrogen/

Carbon monoxide

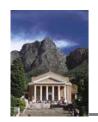
Catalyst:


Fe, Co (Ru, Ni)

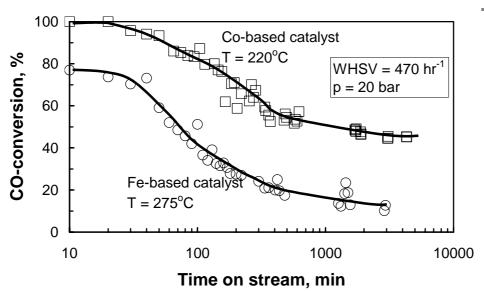
$$CO + 2 H_2 \rightarrow 1/n (CH_2)_n + H_2O$$

$$CO + H_2O \rightarrow CO_2 + H_2$$

F.Fischer, H. Tropsch, Brennstoff-Chem. 7 (1926), 97



Choice of catalytically active metal


Molecular weight Relative price Required activity	Fe M¹: 55.847 Rp²: 1 A³: 1	Co M¹: 58.9332 Rp²: 235 A³: 250	Ni M¹: 58.69 Rp²: 140 A³: 150	Cu M¹: 63.546 Rp²: 32 A³: -
	Ru	Rh	Pd	Ag
	M ¹ : 101.07	M¹: 102.906	M ¹ : 106.42	M¹: 107.868
	Rp ² : 76 000	Rp²: 824 000	Rp ² : 49 000	Rp²: 2 100
	A ³ : 138 000	A³: 1517 000	A ³ : 94 000	A³: -
	Os	Ir	Pt	Au
	M¹: 190.2	M¹: 192.22	M ¹ : 195.08	M¹: 196.967
	Rp²: 408 000	Rp²: 59 000	Rp ² : 203 000	Rp²: 114 000
	A³: 1390 000	A³: 203 000	A ³ : 711 000	A³: -

From an industrial view point: iron/cobalt-based catalysts

Choice of catalytically active metal

yes

Both iron and cobalt deactivate

Activity
Cost
Susceptibility to promoters
Potential for prod. of chemicals
% side products
HTFT possible ?
Sulfur tolerance
Kinetic inhibition by H ₂ O

 Iron
 Cobalt

 1
 :
 2-3

 1
 :
 235

 yes
 (no)

 high
 low


 high
 low

 yes
 no

 < 1 ppm</td>
 <1 ppb</td>

Research

Thus,

Choice of catalytically active metal

From an industrial view point: cobalt/iron-based catalysts

Required activity of cobalt over catalyst life time: 250

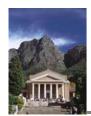
Example catalyst life time **iron**-based catalyst

activity of cobalt/iron

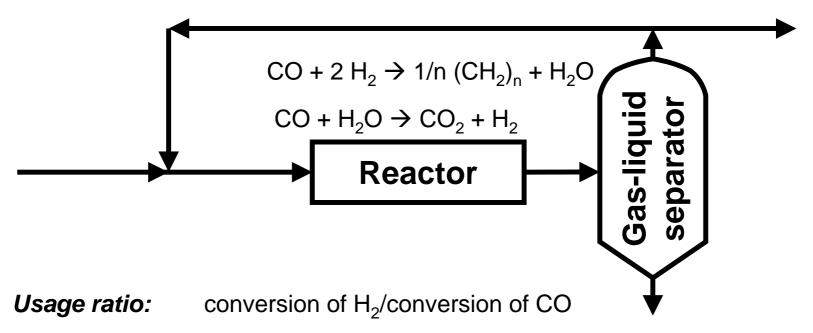
required life time **cobalt**-based catalyst

at least 800 days

2.2 years


ca. 10 days

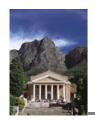
2 - 31


(calculation assumes

identical utilisation, i.e. identical degree of reduction identical selectivity for C_{5+} -products)

¹S. Li, S. Krishnamoorthy, A. Li, G.D. Meitzner, E. Iglesia, J. Catal. 206 (2002), 202-217.

Cobalt or iron as catalytically active metal


Optimal performance: $(H_2/CO)_{feed}$ = usage ratio

<u>Usage ratio</u> cobalt $\sim 2.05^1$ iron $\sim 1.3^2$

¹R.L. Espinoza, A.P. Raje, D. Jack, US 009 2609 (2004).

²N.S. Govender, M. Janse van Vuuren, M. Claeys, E. van Steen, *Ind. Eng. Chem. Res.* **45** (2006), 8629-8633.

Cobalt or iron as catalytically active metal

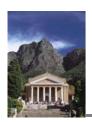
Cobalt-based catalysts:

Natural gas based synthesis gas Any other synthesis gas with WGS-reactor before recycle loop

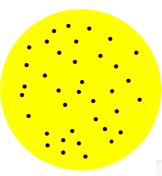
Iron-based catalysts:

Synthesis gas ex sources with reduced H-content (coal/oil residues)

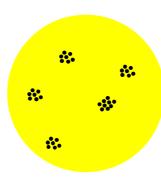
For Fischer-Tropsch synthesis from *biomass* → depends on gasification^{1,2}


Air blown gasification $H_2/CO = 1.0-1.5$ O_2 -gasification $H_2/CO = 1.5-2.0$

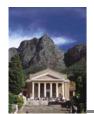
(feed ratio H_2/CO less than usage ratio **cobalt**-based catalysts \rightarrow **iron**-based systems should be explored)


¹ C.N. Hamelinck, A.P.C. Faaij, H. den Uil, H. Boerrigter, *Energy* **29** (2004), 1743-1771.

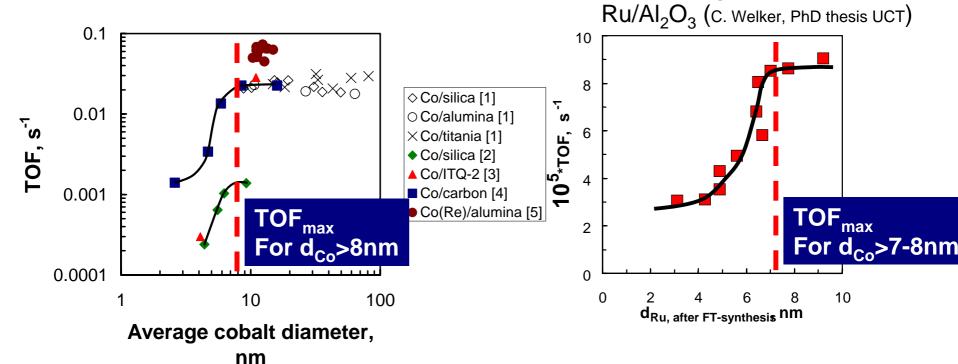
² K.J. Ptasinski, M.J. Prins, A. Pierik, *Energy* **32** (2007), 568-574.


Cobalt-based Fischer-Tropsch catalysts

Supported catalysts


Low pressure drop Mechanical stability Thermal stability

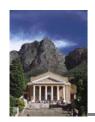
Prepared by impregnation



A. Feller, M. Claeys, E. van Steen, *J. Catal.* 185 (1999), 120-130.A.M. Saib, M. Claeys, E. van Steen, *Catal. Today* 71 (2002), 395-402

Typical cobalt-loading ca. 20 wt. -%

Intrinsic activity of Cobalt-based Fischer-Tropsch catalysts


¹ E. Iglesia, *Appl.Catal. A: General* **161** (1997), 59-78.

² A. Barbier, A. Tuel, I. Arcon, A. Kodre, G.A. Martin, *J. Catal.* **200** (2001), 106–116.

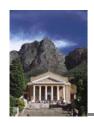
³ A. Martínez, G. Prieto, *J. Catal.* **245** (2007), 470-476.

⁴ G.L. Bezemer, J.H. Bitter, H.P.C.E. Kuijpers, H. Oosterbeek, J.E. Holewijn, Z. Xu, F. Kapteijn, A.J. van Dillen, K.P. de Jong, *J. Am. Chem. Soc.* **128** (2006), 3956-3964.

⁵ Ø. Borg, S. Eri, E.A. Blekkan, S. Storsæter, H. Wigum, E. Rytter, A. Holmen, *J. Catal.* **248** (2007), 89-100

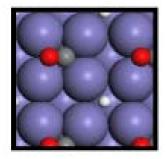
Origin of size dependent intrinsic activity

Bezemer et al.¹ (Co/CNT): <u>domains</u> which catalyse the FT-synthesis (geometric effect)


Ojeda et al. (Rh/Al₂O₃): increase in <u>defect sites</u> with increasing crystallite size

Kellner and Bell (Ru/Al₂O₃): unspecified electronic effect with increasing crystallite size

¹ G.L. Bezemer, J.H. Bitter, H.P.C.E. Kuijpers, H. Oosterbeek, J.E. Holewijn, Z. Xu, F. Kapteijn, A.J. van Dillen, K.P. de Jong, *J. Am. Chem. Soc.* **128** (2006), 3956-3964.


² M. Ojeda, S. Rojas, M. Boutonnet, F.J. Pérez-Alonso, G.J. Garcia-Garcia, J.L.G. Fierro, *Appl.Catal. A: General* **274** (2004), 33-41.

³ C.S. Kellner, A.T. Bell, *J. Catal.* **75** (1982), 251-261.

Origin of size dependent intrinsic activity

Co-adsorption of H and CO on Fe(100)-surfaces (P. van Helden, E. van Steen, *J. Phys. Chem. C* (accepted))

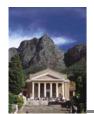
-2.34

Charge on CO: -0.89

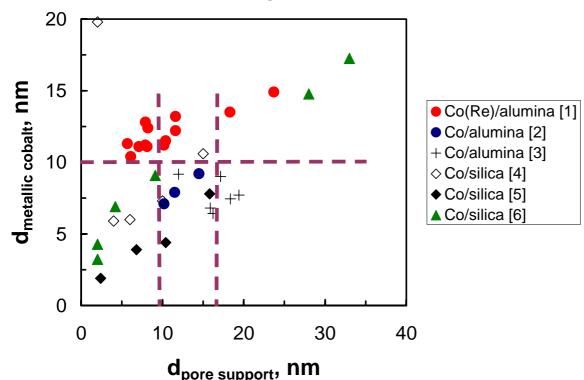
(charge on C -0.43; charge on O: -0.46)

Charge on H: - 0.29

Charge transfer during adsorption leads to negatively charged surface species


Surface species repel each other (coverage dependent heat of adsorption)

Repulsion through long-range Coulombic interaction


Reduced repulsion through limited surface on nano-sized materials \rightarrow enhancement of strength of adsorption

Catalytic activity decreases due to strong adsorption (kinetic dependency)

How to obtain supported cobalt catalyst with maximum TOF?

Incipient wetness impregnation (ex cobalt nitrate) on support material with a pore diameter between 10 and 16 nm results in metallic cobalt crystallites with a size of ca. 10 nm

⁶ A.Y. Khodakov, A. Griboval-Constant, R. Bechara, V.L. Zholobenko, J. Catal. 206 (2002), 230-241.

¹Ø. Borg, S. Eri, E.A. Blekkan, S. Storsæter, H. Wigum, E. Rytter, A. Holmen, J.Catal. 248 (2007), 89-100

² H. Xiong, Y. Zhang, S. Wang, J. Lim, Catal. Comm. 6 (2005), 512-516.

³ J. Zhang, J. Chen, J. Ren, Y. Sun, *Appl. Catal. A: General* **243** (2003), 121-133.

⁴ A.M. Saib, M. Claeys, E. van Steen, *Catal. Today* **71** (2002), 395-402.

⁵ D. Song, J. Li, *J. Mol. Catal. A: Chemical* **247** (2006), 206-212.

Deactivation of cobalt catalyst

Deactivation mechanisms¹:

1. Poisoning

Cobalt catalysts → highly susceptible to poisons

Poisons

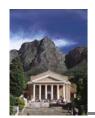
 \rightarrow competitive adsorption (reversible deactivation – H_2S , NH_3)

→ inducing

sintering (chlorine compounds, water, CO)

carbon deposition

Fe-deposition²


phase transformations

- 2. Sintering (seems to level off with time on stream)
- 3. Phase transformation
- 4. Carbon deposition

² K.P. de Jong, M.F.M. Post, A. Knoetser, Stud. Surf. Sci. Catal. **119** (1998), 119-124.

¹ C.H. Bartholomew, Appl. Catal A: General **212** (2001), 17-60.

Deactivation of cobalt catalyst Oxidation of cobalt

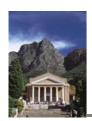
Oxidation of small cobalt crystallites with product water^{1,2,3}

$$Co + H_2O \rightarrow CoO + H_2$$

(for bulk metallic cobalt oxidation at 493K will occur if p_{H2O}/p_{H2}>100

Thus, oxidation of bulk metallic cobalt will not occur under realistic Fischer-Tropsch conditions))

Model developed to predict oxidation of nano-sized cobalt⁴:

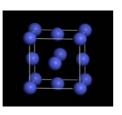

$$\frac{\mu_{CoO(s)}^{0} + \mu_{H_{2}(g)}^{0} - \mu_{Co(s)}^{0} - \mu_{H_{2}O(g)}^{0}}{\rho_{H_{2}O}} + RT \cdot ln \left(\frac{p_{H_{2}}}{p_{H_{2}O}}\right) + \frac{6 \cdot \gamma_{Co}}{\rho_{Co}} \cdot \left(\frac{\gamma_{CoO}}{\gamma_{Co}} \cdot \left(\frac{\rho_{Co}}{\rho_{CoO}}\right)^{2/3} - 1\right) > 0$$

Bulk oxidation of Co with H₂O

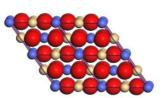
Reaction conditions

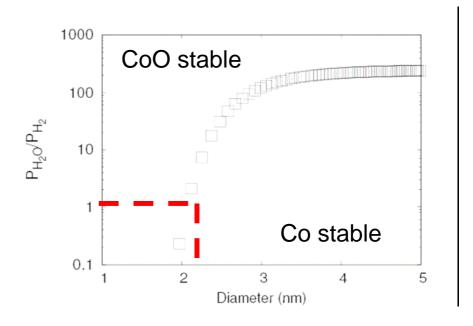
Change in surface energy

- ¹D. Schanke, A.M. Hilmen, E. Bergene, K. Kinnari, E. Rytter, E. Ådnanes, A. Holmen, Catal. Lett. **34** (1995), 269-284.
- ² M. Rothaemel, K.F. Hanssen, E.A. Blekkan, D. Schanke, A. Holmen, Catal. Today 38 (1997), 79-84.
- ³ E. Iglesia, *Appl. Catal A: General* **161** (1997), 59-78.
- ⁴ E van Steen, M Claeys, ME Dry, J van de Loosdrecht, EL Viljoen, JL Visagie, J. Phys. Chem. B 109 (2005), 3575-3577

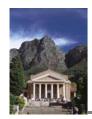

Deactivation of cobalt catalyst Oxidation of cobalt

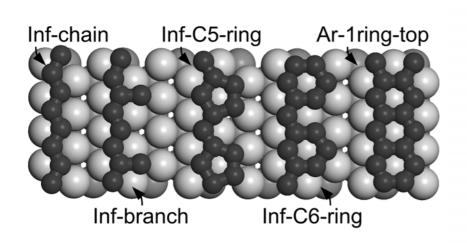
Critical parameter in model:

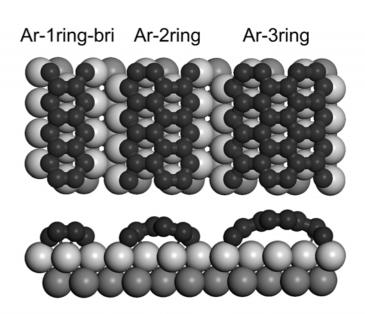

 $\gamma_{\text{Co}}, \gamma_{\text{CoO}}/\gamma_{\text{Co}}$


Further estimation of surface energies using DFT

$$\gamma_{\text{Co(111)}}^{-1} = 2.75 \text{ J/m}^2$$

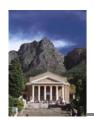

$$\gamma_{\text{CoO(100)}}^2 = 1.55 \text{ J/m}^2$$




¹ J.C.W. Swart, P. van Helden, E. van Steen, *J. Phys. Chem. C* **111** (2007), 4998-5005.

² J.C.W. Swart, E. van Steen, in preparation

Deactivation of cobalt catalyst Carbon formation on cobalt



Carbon overlayers formed through¹

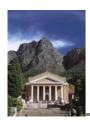
- 1. Combination of C1-units adsorbed
- 2. Yielding linear chains
- 3. Branching may occur on longer chains
- 4. Connecting branched chains result in formation of aromatic structures

¹ J.C.W. Swart, I. Ciobica, R.A. van Santen, E. van Steen, J. Phys. Chem. C (in press)

Iron-based Fischer-Tropsch catalysts

Iron-based Fischer-Tropsch synthesis:

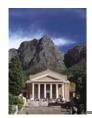
High temperature Fischer-Tropsch synthesis (300-350oC)


→ fused iron catalyst

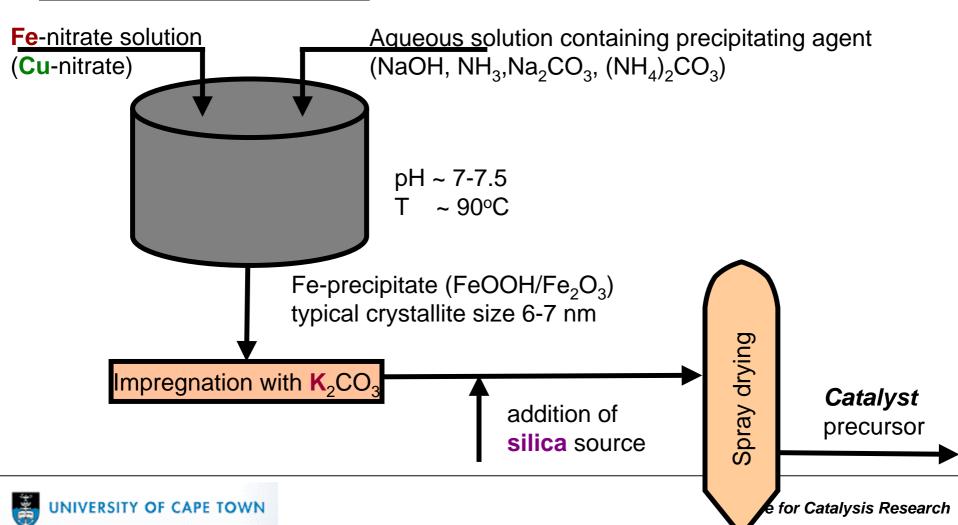
aim: production of petrol/light olefins

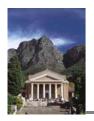
Low temperature Fischer-Tropsch (ca. 250°C)

→ precipitated Fe-catalyst

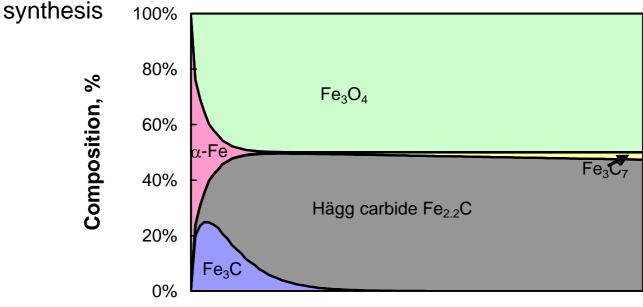

aim: production of wax/liquid products

Iron-based Fischer-Tropsch catalysts

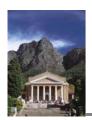

Fused Fe-catalyst

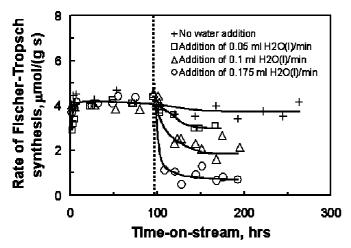


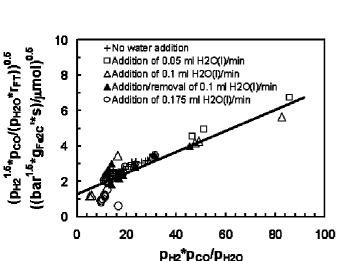
Iron-based Fischer-Tropsch catalysts

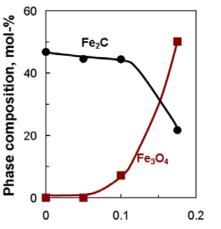

Precipitated Fe-catalyst

Active phase in iron-based Fischer-Tropsch catalysts

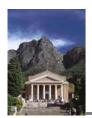

Typical phase compositions of an iron-based catalyst in the Fischer-Tropsch

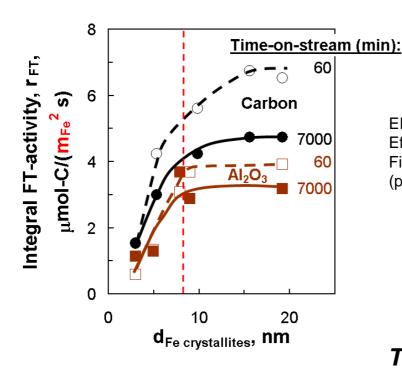

Time on stream


Redrawn from: O. Malan, J. Louw, L. Ferreira, Brennstoff-Chem. 42 (1961), 209


*Iron carbide (Fe_xC) is usually seen as the catalytically active phase*Catalyst however typically contains magnetite as well (inefficient usage of Fe)

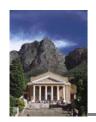
Active phase in iron-based Fischer-Tropsch catalysts



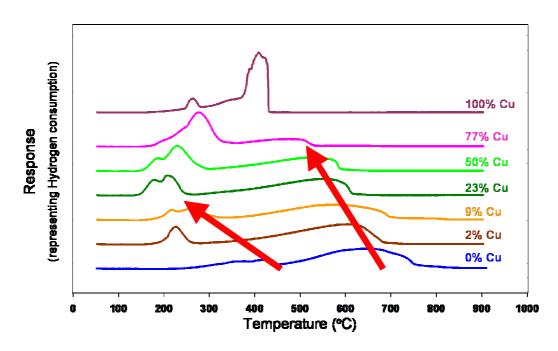

Liquid water added to feed, ml/min

Presence of Fe_3O_4 seems to reduce activity \rightarrow Iron carbide seems to be the catalytically active phase

H. Biel, MSc thesis, University of Cape Town (2004)



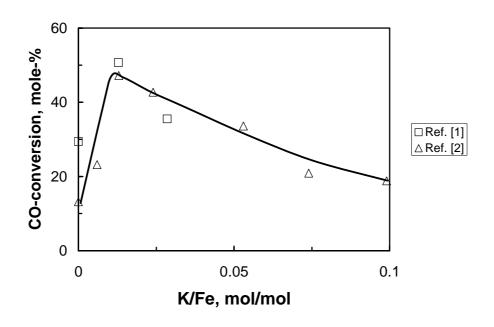
Effect of crystallite size in ironbased Fischer-Tropsch catalysts


El Mabaso, E van Steen, M Claeys Effect of metal crystallite size in supported iron based Fischer-Tropsch catalysts (presented at NACS05; full manuscript in preparation)

TOF difficult to determine Phase transformations may obscure size effect

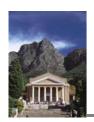
Cu-promotion of iron-based Fischer-Tropsch catalysts

Temperature programmed reduction (TPR) of copper promoted iron-catalysts


Copper enhances reduction (in particular $Fe_2O_3 \rightarrow Fe_3O_4$) Copper may also act as chemical promoter^{1,2}, if activated in CO-containing gas

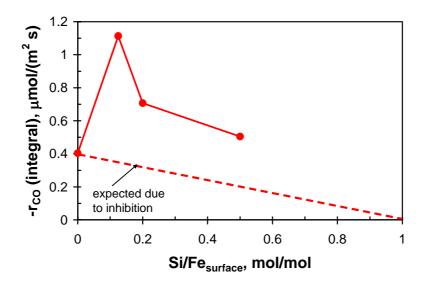
¹S. Li, A. Li, S. Krishnamoorthy, E. Iglesia, *Catal. Lett.* **77** (2001), 197-205. ²R.J. O'Brien, B.H. Davis, *Catal. Lett.* **94** (2004), 1-6

K-promotion of iron-based Fischer-Tropsch catalysts



Optimum K-loading enhances activity with factor 2-3
Inhibition at high K-loadings → surface effect
K is most likely present as surface K-O-surface species or carbonate species,
but metallic potassium

¹ W. Ma, E.L. Kugler, D.B. Dadyburjor, *Energy&Fuels* **21** (2007), 1832-1842.


²A. Blignaut, MSc-thesis University of Cape Town (2007).

Silica addition to iron-based Fischer-Tropsch catalysts

Silica is typically added as a binder and thought to be inert

E.I. Mabaso, R.P. Mogorosi, M.J. Malagas, M. Claeys, E. van Steen, Proc. 2007 Pittsburg Coal Conference

Concluding remarks

Catalytic active metal decided on the basis available synthesis gas life time of the catalyst

Larger crystallites in the range of ca. 10 nm seems to be the preferred size of the catalytically active phase (rather than sizes in the 1-2 nm range)

Catalysts have been developed empirically.

The role of the various additives needs to be re-evaluated.