

Centre for Catalysis Research

Department of Chemical Engineering University of Cape Town • Rondebosch 7701 South Africa

Fischer-Tropsch synthesis Reaction pathway Reactors

Michael Claeys Eric van Steen

- 1. Mechanistic ideas
- 2. Fischer-Tropsch synthesis a polymerization reaction
- 3. Re-adsorption of reactive product compounds
 - a. reaction kinetic model
 - b. diffusion model
- 4. Reactors and processes

Fischer-Tropsch synthesis

F.Fischer, H. Tropsch, Brennstoff-Chem. 7 (1926), 97

Products of Fischer-Tropsch synthesis

n-Olefins

- mainly $\alpha\text{-olefins}$
- olefins with internal double bonds

n-Paraffins

Oxygenates

- alcohols, aldehydes
- ketones

branched compounds

- olefins/paraffins/oxygenates

Product formation in Fischer-Tropsch synthesis

Most olefins are primarily α -olefins

Primary formation of olefins and paraffins

Mechanistic ideas: "Modern surface carbide theory"

Mechanistic ideas: "Alkylidene mechanism

Mechanistic ideas: "CO-insertion mechanism"

Mechanistic ideas: "Enol mechanism"

UNIVERSITY OF CAPE TOWN

UNIVERSITY OF CAPE TOWN

Constraint due to ASFdistribution

(after M. Dry, 1990)

Desorption of alkyl surface species:

Real product distribution desorption as olefin and paraffin

(Reaction conditions: CoZrRu-SiO₂, T=190°C, p_{H2} =5.1 bar, p_{CO} =2.2 bar, p_{H2O} =1.1 bar)

Deviations from ideal kinetics: <u>"non ASF-distributions"</u>

- Relatively high methane selectivity
- Anomaly in C₂
- Curvature in distribution at low n, chain length dependent p_a
- Chain length dependent olefin content

Secondary olefin reactions

(Schulz et al., 1977 and 1996)

Known reactions

- Hydrogenation
- Incorporation
- Double bond shift
- (Hydroformylation)
- (Hydrogenolysis)

Extent and selectivity of secondary olefin reactions determine product distribution

Impact of secondary olefin reactions on chain growth

Bed residence time effects on carbon number distributions and α -olefin to n-paraffin ratio

(reaction conditions: 1.2% Ru/TiO₂, T=203°C, H_2 /CO_{in}=2.1, p_{tot} =6 bar, 5-60% conversion, Fixed bed reactor)

(Iglesia et al., 1991)

Incorporating secondary olefin reactions in Fischer-Tropsch model

Fischer-Tropsch products are both vapour and liquid products under reaction conditions

- \bullet Desorption as linear $\alpha\text{-olefin}$ OI-(1) and non-reactive end product EP
- Readsorption as species Sp or Sp'; Sp' doesn't participate in chain growth
- All rate constants are assumed carbon number independent (except k_{a,2})
- Thermodynamic equilibrium between gas and liquid phase (carbon number dependent)
- No effects of diffusional limitations or concentration gradients
- Steady state conversion, convective product removal via gas and liquid phase

Distribution over liquid and gas phase

 $(CoZrRu-SiO_2, T=190^{\circ}C, p_{H2}=5.1 \text{ bar}, p_{C0}=2.2 \text{ bar}, p_{H20}=1.0 \text{ bar}$ $V_g=210 \text{ ml}, V_f=270 \text{ ml}, \dot{V}_g=5.38 \text{ ml/min}, \dot{V}_f=6.28 \cdot 10^{-4} \text{ ml/min})$

T=190°C: K₂=1.91; **b=1.53**

Rate of convective removal of products depends on removal of gas and liquid phase and and is therefore carbon number dependent

Comparison of extended model with real product distributions

(**CoZrRu-SiO₂**, T=190°C, p_{H2} =5.8 bar, p_{CO} =2.9 bar, p_{H2O} =varied)

Diffusion enhanced olefin re-adsorption

Assumptions:

(Iglesia et al., 1991)

- Product desorption as paraffin or α -olefin only
- Product transport limitations in liquid filled pores of catalyst
 - \Rightarrow increase in local olefin concentration / residence time inside liquid filled pores
 - \Rightarrow diffusion enhanced olefin readsorption: $D_n \propto e^{-0.3n}$
- All rate constant assumed carbon number independent (except C₂: k_{R,2}=10k_{R,n})
- r_s negligible at CO conversion >5% and p_{total} >5 bar (inhibition by CO and H_2O)

Diffusion enhanced olefin re-adsorption

(Reaction conditions: Cobalt catalysts, T=200°C, p_{total} =20 bar, H_2 /CO=2.1, X_{CO} ~60%) (Iglesia et al., 1991, 1993)

- Complete description of Fischer-Tropsch reaction in fixed bed reactors for Cobalt and Ruthenium catalysts, H₂/CO~2
- Non-ASF distributions and olefin/paraffin ratios caused by different product diffusivities
- C5+ selectivity dependent on catalyst properties (χ)

Reactors for Fischer-Tropsch synthesis

Fischer-Tropsch synthesis is highly exothermic (ca. 160 kJ/mol of CO converted)

Heat removal essential

Objective

Diesel production → maximize wax formation hydrocracking of wax to diesel Cobalt (200-220°C) or iron-based (240-260°C) catalyst Chemicals (olefins)/petrol production Fused iron catalyst (300-350°C)

Reactors for Fischer-Tropsch synthesis

Reactors for Fischer-Tropsch synthesis

Concluding remarks

Main primary products of Fischer-Tropsch synthesis: linear α -olefins paraffins (alcohols)

Mechanism: more than one single mechanism in operation debate on the importance of the various mechanisms still ongoing

Fischer-Tropsch synthesis = polymerization reaction constraints in the product formation maximum liquid productivity by re-adsorption and reincorporation of reactive product compounds

Reactors for Fischer-Tropsch synthesis Heat removal primary concern

