

Literatur

- 1. M Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken Technische Chemie, Wiley-VCH, Weinheim, 2006
- 2. M.Baerns, H. Hofmann, A. Renken Chemische Reaktionstechnik, Georg Thieme Verlag Stuttgart, 2. Auflage, 1992 3. E. Fitzer, W. Fritz Technische Chemie - Einführung in die Chemische Reaktionstechnik Springer, Berlin, 4. Auflage, 1995
- 4. J. Hagen Chemische Reaktionstechnik VCH, Weinheim, 1992
- O. Levenspiel Chemical Reaction Engineering John Wiley & Sons, New York, 2nd ed., 1972
 O. Levenspiel The Chemical Reactor OSU Book Stores, Corvallis, 1979

Themenschwerpunkte der Vorlesung Chemische Reaktionstechnik

- Literatur, Nomenklatur, Grundlagen
- thermodynamische Grundlagen
- Reaktionskinetische Grundlagen
- Idealisierte Reaktormodelle einfache homogene Reaktionen, komplexe homogen Reaktionen, Temperatureffekte
- Verweilzeitverhalten
- Vermischungsverhalten
- Heterogene Reaktionen Gas - Feststoff, Gas - Flüssigkeit, heterogene Katalyse, Katalysatordesaktivierung
- Reaktorbauarten
- Kopplung von Reaktion und Trennung

1. Aufgaben der chemischen Reaktionstechnik

2. Analyse und Modellierung chemischer Reaktionen

- 2.1. Reaktionsanalyse
- 2.1.1. Grundbegriffe

	Noncatalytic	Catalytic
	Most gas-phase reactions	Most liquid-phase reactions
Homogenous		
	Fast reaction such as	Reactions in colloidal systems
	burning of a name	enzymes and microbial reactions
Heterogenous	Burning of coal	Ammonia synthesis
	Attack of solids by acids	Cracking of crude oil

Bestimmung des Reaktionsmechanismus

Die irreversible Reaktion 2 A + B — A₂B wurde kinetisch untersucht. Die Produktbildungsgeschwindigkeit korreliert mit folgender Beziehung:

$$r_{A_{B}B} = \frac{0.72 c_{A}^{2} c_{B}}{1+2 c_{A}} = \frac{0.72 [A]^{2} [B]}{1+2 [A]}$$

Welcher Reaktionsmechanismus kann vorgeschlagen werden, wenn weiterhin bekannt ist, dass (1) das Intermediat ein Assoziat der Reaktanden ist und (2) keine Kettenreaktion stattfindet.

	c	Influence of the on the Selectivity of	Catalyst a Reaction	
			catalyst	emperature
		сн₃сно	Cu	250300
		C ₂ H ₄ + H ₂ O	Al ₂ O ₃	300450
		$C_4H_6 + H_2O + H_2$	Al ₂ O ₃ /ZnO	420450
CH ₃ CH ₂ OH ——		CH ₃ COCH ₃ + H ₂ O + H ₂	Cu/Cr ₂ O ₃	300
		CH ₃ COOC ₂ H ₅ + H ₂	Cu-Ce	300
		$CH_4 + H_2 + CO$	Ni	400
		C ₄ H ₉ OH + H ₂ O	Na	350

Elementarschritt	Aufspaltung von Bi	Knüpfun ndungen
Adsorption und Desorption a) $z + NH_3(g) \longrightarrow H_3N\cdots \overline{z}$ b) $z + H(g) \longrightarrow H\cdots \overline{z}$	keine keine	Az Az
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	A-A A-B A-A A-B	2(Az) Az, Bz 2(Az) Az, Bz
Dissoziative (und assoziative) Oberflächenreaktion $2z + (C_2H_5) \cdots z \longrightarrow H \cdots z + z \cdots CH_2 - CH_2 \cdots z$	A – B	zAz, Bz
$\begin{array}{l} \text{Reaktive Adsorption (bow. Desorption)} \\ a) & \text{H} - z + C_1H_1(g) & \longrightarrow C_2H_3\cdots z \\ b) & \text{H}_2C - CH_2 + D - D(g) + z & \longrightarrow z \cdots H_3C - CH_3 - D + D \cdots \\ z \\ c) & z \cdots H_3C - CH_3\cdots z + H_3(g) + z & \longrightarrow z \cdots C_3H_3 + z + H \cdots z \end{array}$	Az, B-B z A-A Bz, A-A	A-Bz, Bz A-Bz, Bz, Az A-Bz, Az
Reaktion zwischen Gas und Adsorbat a) $H(g) + H \cdots z \longrightarrow H_3(g) + z$ b) $2H \cdots z + C_2H_4(g) \longrightarrow 2z + C_2H_6(g)$	Az 2(Az), B-B	A-A 2(A-B)
c) $H \cdots z + D_2(g) + z \longrightarrow z + HD(g) + D \cdots z$ d) $D \cdots z + H_2C = CH - CH_3(g) \longrightarrow DH_2C - CH = CH_2(g) + H \cdots z$	Az, B-B Az, B-C, D-E	Bz, A-B Ez, A-B, C-D

	(kinet	ischer Te	rm) (Potenti	alterm)
r =	<u> </u>	(Adsorp	tionsterm)"	
			,	
Kinetische Te	rme für he	erogen katalysiert	e Reaktionen	
Adsorption oder Desorpt	ion geschw	indigkeitsbestimm	end für $A_1 + A_2 \neq$	٨,
Adsorption von A1	k1			
Adsorption von A_2	k2			
Desorption von A_3	k₃K mit	K = Gleichgewich	tskonstante der Rea	ktion
Dissoziative Adsorption von A ₁	$\frac{n_x}{2}k_1$ mit	$n_s = \text{Anzahl der}$	in der Reaktion bete	iligten aktiven Zentrer
Oberflächenreaktion gesc	hwindigkei	tsbestimmend		
Reaktionstyp molekulare	A ₁ ≓ A ₃	$A_1 \neq A_3 + A_4$	$A_1 + A_2 \neq A_3$	$A_1 + A_2 \neq A_3 + A$
Adsorption von A ₁	k, K ₁	$k_n n_k K_1$	$k_1n_2K_1K_2$	$k_n n_k K_1 K_2$
dissoziative Adsorption von A ₁	$k_n n_k K_1$	$k_*n_*K_1$	$k_s n_s (n_s-1) K_1 K_2$	$k_s n_z (n_z-1) K_1 K_2$
A2 nicht adsorbiert A1 molekular adsorbiert	k, K,	$k_s n_s K_1$	k_*K_1	$k_*n_*K_1$
A2 nicht adsorbiert	$k_s n_s K_1$	$k_1 n_2 K_1$	$k_s n_s K_1$	$k_*n_*K_1$

Triebkraft	heterogen kat	alysierter Reaktion	en	
Reaktionstyp geschwindigkeitsbestin mender Schritt	$A_1 \neq A_3$	$A_1 \neq A_3 + A_4$	$A_1 + A_2 \neq A$	$A_1 + A_2 \neq A_3 + A_4$
Adsorption von A_1 Adsorption von A_2 Desorption von A_2	$p_1 - p_1/K$	$p_1 - p_3 p_4 / K$	$p_1 - p_3/Kp_2$ $p_2 - p_3/Kp_1$	$p_1 - p_3 p_4 / K p_2$ $p_2 - p_3 p_4 / K p_1$
Oberflächenreaktion	$p_1 = p_3/K$ $p_1 = p_1/K$	$p_1/p_4 - p_3/K$ $p_1 - p_3 p_4/K$	$p_1 p_2 - p_3/K$ $p_1 p_2 - p_3/K$	$p_1 p_2 / p_4 - p_3 / K$ $p_1 p_2 - p_3 p_4 / K$
Wenn Adsorption von A bestimmend, wird K_1p_1 ersetzt durch	(K ₁ p ₃ /K)	$(K_1 p_3 p_4/K)$	(K ₁ p ₃ /Kp ₂)	(K ₁ p ₃ p ₄ /Kp ₂)
Wenn Adsorption von A_2 bestimmend, wird K_2p_2	(K ₁ p ₃ /K)	(A1P3P4/A)	(K ₁ p ₃ /Kp ₂)	(K ₁ p ₃ p ₄ /Kp ₂)
	-	-	$(K_2 p_3 / K p_1)$	$(\Lambda_2 p_3 p_4 / \Lambda p_1)$
Wenn Desorption von A_3 bestimmend, wird K_3p_3 ersetzt durch	(KK. a.)	(FF = /=)	(FF)	(## /-)
Wenn Desorption von A_3 bestimmend, wird K_3p_3 ersetzt durch Wenn Adsorption von A_1 mit Dissoziation von A_1 bestimmend, wird K_1p_1 ersetzt durch	(KK_3p_1) $(K_1p_3/K)^{1/2}$	(KK_3p_1/p_4) $(K_1p_3p_4/K)^{1/2}$	(KK ₃ p ₁ p ₂) (K ₁ p ₃ /Kp ₂) ^{1/2}	$(KK_3p_1p_2/p_4)$ $(K_1p_3p_4/Kp_3)^{1/2}$

r = <u>(k</u>	(v	er Term) (Po Adsorptionsterm	tentialterm) ı) ⁿ	
Adsorption geschwindigkeit	sbestimmen	d für $A_1 + A_2 \rightleftharpoons A_2$	3	
molekulare Adsorption von	A_1 n	= 1		
dissoziative Adsorption von	A_2 n	= 1		
Oberflächenrecktion esselu		atimmand		
Reaktionstvp	$A_1 \neq A_2$	$A_1 \rightleftharpoons A_2 + A_4$	$A_1 + A_2 \neq A_2$	$A_1 + A_2 \neq A_2 +$
A_1 (und gegebenenfalls A_2) molekular adsorbiert	1	2	2	nı : n ₂ = n ₃ :
A. dissoziativ adsorbiert	1	2	2	2
A_2 molekular adsorbiert	2	2	3	3
A_1 dissoziativ adsorbiert, A_2 nicht adsorbiert	1	2	1	2
A1 molekular adsorbiert,	1	2	1	2

System	<i>Т</i> (K)	D ₁₂ (cm ² s ⁻¹)	System	<i>Т</i> (K)	D ₁₂ (cm ² ·s ⁻¹)
H ₂ /CH ₄	316	0,809	CO /Luft	282	0,196
/O2	316	0,891		355	0,290
/NH ₃	298	0,783	/C2H4	273	0,151
/C ₂ H ₅ OH	340	0,578	/H2	273	0,651
/C2H4	298	0,602	/N2	288	0,192
/CH4	288	0,694	/O2	273	0,185
/C ₃ H ₈	300	0,450	/CO ₂	282	0,152
CH4 /N2	316	0,237	Luft /NH3	273	0,198
/O2	294	0,215	/C ₆ H ₆	298	0,096
	395	0,383	/Cl ₂	273	0,124
	517	0,613	/C ₂ H ₅ OH	298	0,132
	707	0,917	/Hg	614	0,473
	840	1,420	/SO2	273	0,122
/Luft	282	0,196			

2.2.2.3. Stofftransport an Phasengrenzflächen

Nichtkatalysierte Gas-Feststoffreaktionen

unter vernachlässigbarer Größenänderung	unter Größenänderung (Schrumpfun
	$C(s) + O_2(g) \longrightarrow CO_2(g)$
$2 \operatorname{ZnS}(s) + 3 \operatorname{O}_2(g) \longrightarrow 2 \operatorname{ZnO}(s) + 2 \operatorname{SO}_2(g)$	$2 C(s) + O_2(g) \longrightarrow 2 CO(g)$
$4 \operatorname{FeS}_2(s) + 11 \operatorname{O}_2(g) \longrightarrow 8 \operatorname{SO}_2(g) + \operatorname{Fe}_2 \operatorname{O}_3(s)$	$C(s) + 2 S(g) \xrightarrow{750 - 1000 ^{\circ}C} CS_2(g)$
$\operatorname{Fe_3O_4}(s) + 4 \operatorname{H_2}(g) \longrightarrow 3 \operatorname{Fe}(s) + 4 \operatorname{H_2O}(g)$	NaNH2 (I) + C (s) NaCN (I) +
$CaO(s) + SO_2(g) + 0.5 O_2(g) \longrightarrow CaSO_4(s)$	Na ₂ SO ₃ (Lösung) + S (s) → Na ₂
$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$	$UF_4(s) + F_2(g) \longrightarrow UF_6(g)$
$UO_2(s) + 4 HF(g) \longrightarrow UF_4(s) + 2 H_2O(g)$	FeTiO ₃ (s) + 3 Cl ₂ (g) + 3 C (s)
	→ TiCl ₄ (/) + F

er Größenänderung (Schrumpfung)
$O_2(g) \longrightarrow CO_2(g)$
$(s) + O_2(g) \longrightarrow 2 CO(g)$
$(a) + 2 \operatorname{S}(g) \xrightarrow{750 - 1000 ^{\circ} \mathrm{C}} \operatorname{CS}_2(g)$
$H_2(l) + C(s) \xrightarrow{sourc} NaCN(l) + H_2(g)$
$SO_3 (L\"osung) + S (s) \longrightarrow Na_2S_2O_3 (L\"osung)$
$(s) + F_2(g) \longrightarrow UF_6(g)$
iO ₃ (s) + 3 Cl ₂ (g) + 3 C (s)
→ TiCl ₄ (/) + FeCl ₂ (s) + 3 CO (g)

Reaktion	$\phi_{\mathbf{k}}$	β	γ
NH ₃ -Synthese	1,2	0,000061	29,4
Synthese höherer Alkohole aus CO und $\rm H_2$	-	0,00085	28,4
Oxidation von CH ₃ OH zu CH ₂ O	1,1	0,0109	16,0
Synthese von Vinylchlorid aus Acetylen und HCl	0,27	0,25	6,5
Ethylenhydrierung	0,2-2,8	0,066	23-27
Oxidation von H ₂	0,8-2,0	0,10	6,7-7,5
Oxidation von Ethylen zu Ethylenoxid	0,08	0,13	13,4
N ₂ O-Zerfall	1-5	0,64	22,0
Benzolhydrierung	0,05-1,9	0,12	14-16
Oxidation von SO ₂	0,9	0,012	14,8

Ethen zu Acetaldehyd p-Xylol zu Terephthalsäure Propen zum entspr. Epoxid Abwasserreinigung	Blasensäule Blasensäule Blasensäule Schlaufenreaktor (Airlift)
von Paraffinen von Ethen von Benzol und Benzolderivaten	Blasensäule Blasensäule Füllkörperkolonne
von Kohle von Benzol und Ethen	Blasensäule Blasensäule
HNO ₃ -Herstellung	Bodenkolonne
H ₂ SO ₄ -Herstellung Entfernung von CO ₂ und H ₂ S aus	Füllkörperkolonne
Abgasen	Fullkorperkolonne
Metallsalz-Extraktion Essigsäure-Extraktion	gepulste Bodenkolonne Schwingbodenkolonne
Nitrierung von Aromaten Sulfurierung von Alkylbenzolen	Rührkesselkaskaden disk. Rührkessel/ Rührkesselkaskaden
Furfurol aus Xylose-Extrakten	disk. Rührkessel
	Proper zum entspr. Epoxia Abwasserreingung von Paraffinen von Benzol und Benzolderivaten von Kohle von Kohle HNO-Hrestellung H,S-Q-Hørstellung Entlemung von CO ₂ und H ₂ S aus Abgasen Metallsatz-Extraktion Essigsäure-Extraktion Nitrierung von Akrythenzolen Furfurol aus Xylose-Extrakten

	Satzreaktor	Strömungsrohrreaktor
Vorteil	keine Strömungsregelung	 differentielle und integrale Betriebsweise möglich <i>on-line</i> Probennahme
Nachteil	Aufrechterhaltung der Isothermie Homogenisierung der Reak- tionsmischung bei t = 0 t _{Reaktion} = t _{homogen} (Fehlerquelle) hohe Rührgeschwindigkeit	Aufrechterhaltung von turbulenter Strömung bei hohem L>>d _{Rohr} Druckabfall bei großer Strömungs- geschwindigkeit

Reaktor	Umsatz	Arbeits-	Analytik	Temperatur-	Konstr.	Eignung
		weise		verhalten	Aufwand	
Differential- reaktor	X< 5 %	different.	schwierig	etwa isotherm	gering	 einfache Auswertung Katalysatoraktivitäts und selektivitätsbestimmung
Integral- reaktor	X > 50 %	integral	einfach	T-Profil	gering	 praxisnahe Prozeßentwicklung Verfolgung der Katalysatordesaktivierung Maßstabsübertragung nicht für exakte kin. Daten
Differential- kreislauf- reaktor	gering bei einem Durchlauf insgesamt hoch	differentiell gradienten- frei	einfach	etwa isotherm	hoch	für komplexe Reaktionen Aufklärung von Reaktionsmechanismen direkte Messung von RG schnelle Desaktivierung des Katalysators Kontrolle der Duchflußge schwindigkeit

3.1.2. Diskontinuierlicher Rührkessel

Vergleich der Produktivität verschiedener idealer Reaktoren

Die Kondensation von Natrium-2,4-dichlorphenolat (A) mit Natriummonochloracetat (B) zur Herstellung des Herbicids Natrium-2,4-dichlorphenoxyacetat (C)wird bei 100°C in wässriger Lösung durchgeführt. Die Produktion von 2 kt/a betragen.

- Es ist zu entscheiden, ob die Reaktion 1. in drei gleichgroßen Satzreaktoren; 2. in drei in Reihe geschalteten, gleichgroßen Rührkesseln; 3. in einem kontinuierlichen betriebenen Rührkessel, oder 4. in einem Strömungsreaktor betrieben under den Bl
- betrieben werden soll.

Rüstzeit:

Folgende Parameter sind gegeben:

Geschwindigkeitskonstante: Ausgangskonzentration: Umsatz: Ausbeute:

$$\begin{split} & \text{k=20,8*10^{-3} L* mol^{-1}* min^{-1}} \\ & \text{c}_A = \text{c}_B = 2,2 \text{ mol/L} \\ & \text{X}_A = 98 \ \% \\ & \text{A}_C = 85 \ \% \\ & \text{t}_{ROST} = 7 \ h \end{split}$$

3.3 Verweilzeit in idealen Reaktoren Verweilzeitversuch in einem Rührkessel Institut für Technische Chemie, Universität Leipzig

	$\label{eq:F} \begin{array}{l} \mbox{Verweilzeitsummenfunktion} \\ F(t) \end{array}$	Verweilzeitdichtefunktion E(t)	
Definition	Der Wert von F(t) stellt den Anteil der Volumenelemente dar, die den Reaktor bis zum Zeitpunkt t nach ihrer Zugabe zum Zeitpunkt t=0 wieder verlassen haben	Der Wert von $E(t)^*\Delta t$ gibt die Wahrscheinlichkeit an, dass ein Volumenelement eine Verweilzeit im Bereich (tt+ Δt) besitzt	
Zusammenhang	$F(t) = \int_{0}^{t} E(t) dt$	$E(t) = \frac{dF(t)}{dt}$	
Experimentelle Bestimmung	Stufenmarkierung	Stoßmarkierung	
Ideales	$F(t) = 0$ $t < \tau$	$E(t) = 0$ $t \neq \tau$	
Strömungsrohr	$F(t) = 1$ $t \ge \tau$	$E(t) = \infty$ $t = \tau$	
ldealer Rührkessel	$F(t) = 1 - \exp\left(-\frac{t}{\tau}\right)$	$E(t) = \frac{1}{\tau} \exp\left(-\frac{t}{\tau}\right)$	

Randbedingung und Eigenschaften für reale Strömungsreaktoren				
Geschlossenes System (closed-closed)	$\begin{split} E(\Theta) & keine L\bar{o}sung \\ \sigma_{\Theta}^2 = \frac{\sigma_r^2}{\tau^2} = \frac{2}{Bo} - \frac{2}{Bo^2} (1 - \exp(-Bo)) \boxed{\text{Bo iterativ}} \end{split}$			
Halboffenes System (closed-open)	$\begin{split} E(\Theta) & keine Lösung \\ \sigma_{\Theta}^{2} = \frac{\sigma_{r}^{2}}{\frac{1}{l^{2}}} = \frac{2}{Bo} + \frac{3}{Bo^{2}} \\ \hline Bo = \frac{1 + \sqrt{1 + 3\sigma_{\Theta}^{2}}}{\sigma_{\Theta}^{2}} \end{split}$			
Offenes System (open - open)	$E(\Theta) = \frac{1}{2} \sqrt{\frac{Bo}{\pi \Theta}} \exp\left(-\frac{(1-\Theta)^2 Bo}{4\Theta}\right)$ $\sigma^2 = \frac{\sigma_i^2}{2} = \frac{2}{2} + \frac{8}{8} \left[\frac{Bo}{R_0} \frac{1+\sqrt{1+\delta_{\Theta}^2}}{2}\right]$			
	$\sigma_{\Theta} = \frac{1}{t^2} = \frac{1}{Bo} + \frac{1}{Bo^2}$ $Bo = \frac{1}{\sigma_{\Theta}^2}$ $Bo = \frac{1}{\sigma_{\Theta}^2}$			

DAS WAY'S TWY dieses Somester with der TC. Auf ein neues im SS 05/06