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Residence Time
• How does long each molecule stay in the reactor (the residence 

time)?

We need to know enough about the fluid to design the reactor. In most 
cases it is sufficient to know the average residence time

• Residence time distribution function (E-function) tells us 
quantitatively how long each fluid element spends in the reactor.
– E(t) probability of residence time τ=t in unit
– E.dt the fraction of fluid with an age between t and t + dt 

in the exit stream.
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Residence Time (2)
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When to determine RTD? 

• Laboratory reactors:
typically assumed to be ideal
sometimes deviations determined experimentally

• Pilot-scale reactors
Take into account non-ideality of real reactors in scale-up

• Demonstration units
Take into account non-ideality of real reactors in scale-up

• Production units
Test to investigate observed non-design behaviour of unit(s)
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When to determine RTD?

• Basic reactor design 
Assume ideal flow behaviour 
(complete back mixing CSTR
no back mixing PFR)

• Deviation from the ideal can be 
considerable.

• Causes of non-ideal flow:
– Channelling 
– Recycling
– Bypassing
– Stagnant zones

O. Levenspiel, “Chemical Reaction Engineering,” 2nd Ed., 
John Wiley & Sons, 1972, pp 254
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How to determine RTD?

• The RTD is determined by injecting a tracer into the feed stream of a 
reactor and measuring its concentration in the outlet stream.

• The tracer can take various forms, but must have certain properties:
– Inert (Not allowed to react with other components in the reactor feed)
– Easily measurable

• Examples of tracers include
– Chemical molecules or atoms
– Radioactive molecules
– Energy (temperature)
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Measuring the RTD

•The are two methods for determining the residence time 
distribution :

•Pulse input
A finite amount of an inert tracer is injected at t=0 into a feed stream 
in a short period of time. The outlet concentration is measured as a 
function of time. 

•Step input
The concentration of the tracer is increased at t=0. The change in 
the concentration in the outlet is measured as a function of time
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Measuring the RTD – Pulse input

Injection of n moles
of tracer
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Measuring the RTD - step input

A constant amount of tracer is added to the feed stream.

–The F curve represents the fraction of 
fluid exiting the reactor that is younger 
than age t1:
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Measuring the RTD

• Pulse input:
– All of the tracer injected must be accounted for

• Step Input:  
– The concentration finally reached must equal the inlet 

concentration

( ) ( )tCtC 0=∞

( ) aliquotaliquot,tracer0 vCdttC ⋅=∫
∞

With either method care must be taken that the mass balance 
closes around the unit
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RTD from experimental data
Pulse input

The following data represent a continuous response to a pulse 
input into a closed vessel that will be used as a chemical 
reactor. Plot the exit age distribution E.

Time t, min 0 5 10 15 20 25 30 35

Tracer Output concentration, g/l 0 3 5 5 4 2 1 0
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Use trapezoidal rule to improve accuracy

Time t, 
min

Ctracer g/l Cavg ∆t Cavg * ∆t E Eavg Eavg * ∆t

0 0 1.5 5 7.5 0 0.015 0.075
5 3 4 5 20 0.03 0.04 0.2

10 5 5 5 25 0.05 0.05 0.25
15 5 4.5 5 22.5 0.05 0.045 0.225
20 4 3 5 15 0.04 0.03 0.15
25 2 1.5 5 7.5 0.02 0.015 0.075
30 1 0.5 5 2.5 0.01 0.005 0.025
35 0 0

Q: 100 Sum: 1

RTD from experimental data
Pulse input

Check results by integrating E*dt
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RTD from experimental data
Pulse input
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RTD from experimental data
step input

Berty reactor
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RTD from experimental data
step input
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Evaluation of RTD

∫
∫
∫ ∞
∞

∞

⋅⋅=
⋅

⋅⋅
= 0

0

0
m dtEt

dtC

dtCt
t

( )∫
∞

⋅⋅−=σ 0
2

m
2 dtEtt

Mean Residence time
The mean or average residence time:
It can be derived that the mean residence time is simply equal to 
the space time:

Variance
It is often more interesting to know how much of a spread in the
residence time distribution there is. This is commonly measured 
by the variance:

Skewness
This is not often used but measures the extent to which the 
distribution is skewed to one side or another.
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RTD in Ideal Reactors
Plug flow reactors (PFR)

For perfect plug flow, all 
molecules spend exactly the 
same amount of time in the 
reactor (simplest type of reactor to 
consider).

The residence time distribution 
follows a Dirac delta function:

( ) ( )

( )
⎩
⎨
⎧

=∞
≠

=δ

τ−δ=

0xwhen
0xwhen0

x

ttE

O. Levenspiel, “Chemical Reaction Engineering,” 2nd Ed., 
John Wiley & Sons, 1972
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RTD in Ideal Reactors
Continued stirred tank reactor (CSTR)

In ideal CSTR, concentration at all points in the reactor identical

The unsteady state mass balance over the reactor, after an injection at 
t=0 is then:

in – out = accumulation

–C is both the reactor and outlet concentration.
•Integrating with C = C0 at t=0 gives the concentration time profile:
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RTD in Ideal Reactors
Continued stirred tank reactor (CSTR)

Characteristics of E-curve:
Area 1
Intercept: 1/τ

O. Levenspiel, “Chemical Reaction Engineering,” 2nd Ed., 
John Wiley & Sons, 1972, 
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RTD in Ideal Reactors
Tank in series model

C0
v0

C1
v1

C2
v2

C3
v3

V1 V2 V3

A reactor can often be considered as a series of perfectly mixed
zones (tanks) with the fluid moving from one zone to the next.

Typically, the zones are assumed to be equally sized

PFR can be viewed as an infinite number of CSTRs in series
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RTD in Ideal Reactors
Tank in series model

Considering outlet from the first tank:

For the second tank:

This can be integrated to give

Similarly for the third tank:
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RTD in Ideal Reactors
Tank in series model – E-curve
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RTD in Ideal Reactors
Recycle reactor
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Parabolic flow profile: 
fluid in the centre spends the shortest time in the reactor.

The velocity profile is given as follows:

Umax is the centre velocity
Uavg is the average velocity through the tube

The time spent in the reactor for the fluid element at radius r is:
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RTD in Ideal Reactors
Laminar flow reactors
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RTD in Ideal Reactors
Laminar flow reactors

The fraction of fluid moving through the shell between r and 
(r + ∆r) is:

E-curve for laminar flow (see  e.g. Fogler 13.4.3)
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Segregation Model 
Conversion from tracer information

Valid for linear processes: Each fluid element does not react 
with any other 

Mixing occurs as late as possible (at the reactor exit)
A number of flow patterns may give the same RTD curve.
This is not a problem with linear processes, as all will give 
the same conversion.
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Types of Reactions

Irreversible first order reaction:

Reversible first order reaction:

Successive first order reactions: A R P

These equations can then be solved if E is known.
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