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Residence Time Distribution 
(RTD)

Determined by introducing a non-reactive, non-adsorbing tracer 
into the feed and measuring the concentration of the tracer in 
the exit line.

Pulse input
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Evaluation of Residence Time 
Distributions (RTD)

Consistence check
Pulse input

Step input

Mean Residence time
The mean or average residence time:
The mean residence time should be equal to the space time:

Variance
Spread in the residence time distribution is commonly measured 
by the variance:
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Conversion in real reactors -
Segregation Model

The fluid consisting of non-interacting elements

Each exit stream is thought to consist of elements 
having spent various times in the reactor.

The exit concentration of the reactant is given by: 

Assumptions:
Valid for linear processes: Each fluid element does not react with any other 
Mixing occurs as late as possible (at the reactor exit)
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[H. Scott Fogler, “Elements of 
Chemical reaction Engineering” 4th

Ed., Prentice Hall, 2006]

∫
∞=

=

⋅⋅=
t

0t
element,AA dtECC



Centre for Catalysis Research

Determination of conversion  
from E-curve

The residence time distribution in a reactor has been determined
and the E(t) data have been determined as shown below:

The reactor is to be used for a liquid phase decomposition. The 
rate of reaction is 1st order with respect to the reactant (k = 0.1 
min-1). Determine:

Time t, min 0 5 10 15 20 25 30 35
E, min-1 0 0.03 0.05 0.05 0.04 0.02 0.01 0

1. The mean residence time
2. The conversion, which would have been obtained if the reactor 

is an ideal PFR/CSTR
3. The conversion obtained in this reactor according the 

segregation model
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Determination of mean residence 
time from E-curve
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t, min 0 5 10 15 20 25 30 35

E, min-1 0 0.03 0.05 0.05 0.04 0.02 0.01 0

t.E 0 0.15 0.50 0.75 0.80 0.50 0.30 0

Integral 0.375 1.625 3.125 3.875 3.25 2.00 0.75
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Mean residence time: 15 min
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Determination of conversion in 
ideal reactors

PFR:

CSTR
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Conversion using 
segregation model

Segregation model

The concentration of the reactant in each element depends on the
time it spent in the reactor. Each element can be seen as a batch-
type reactor.

The average concentration of the reactant in the exit stream is 
given by:
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Conversion using 
segregation model

t, min 0 5 10 15 20 25 30 35

E, min-1 0 0.03 0.05 0.05 0.04 0.02 0.01 0

e-k.t.E 0 0.018 0.018 0.011 0.005 0.002 0.000 0

Integral 0.045 0.091 0.074 0.041 0.018 0.005 0.001

( ) ( )( ) ( )121
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2
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2
1 12 −⋅⋅+⋅⋅ ⋅−⋅−

X = 1-Σintegral

Comparison of conversions:
PFR 77.8%
CSTR 60.0%
Segregation model 72.4%
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Dispersion model

convection
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dispersion
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Flux of inert tracer:

Mole balance on inert tracer:

FT: molar flux of tracer
D: diffusion coefficient for tracer
Ac: cross sectional area of tube
z: length
u: linear velocityt
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Development 
of dispersion model

t
C

z
Cu

z
CD TT
2
T

2

∂
∂

=
∂
∂
⋅−

∂

∂
⋅Mole balance on inert tracer:

θ⋅= d
u
LdtL

utt ⋅=τ=θIntroducing a dimensionless time:

a dimensionless length: L
z=λ λ⋅= dLdz

2222 dLdL2dzz2dz λ⋅=λ⋅λ⋅⋅=⋅⋅=

Substituting dimensionless numbers in mole balance on inert tracer:

θ∂
∂

=
λ∂

∂
−

λ∂

∂
⋅

⋅
TT

2
T

2 CCC
Lu

D



Centre for Catalysis Research

Development 
of dispersion model
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Bodenstein number Bo (also called Per)

Ratio of rate of convective transport relative to rate of transport by diffusion

Convective transport large (Bo ∞) PFR-behaviour
Transport by diffusion ((Bo 0) mixing by diffusion  CSTR-behaviour

For constant conditions (temperature/pressure, etc.), 
Bo increases with increasing L (length of reactor)

Long reactors, B0 ∞ approaching plug flow behaviour!

molecular
diffusion
fluid flow

Characteristic rate of diffusion:

Characteristic rate of convective flow: u
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Development 
of dispersion model
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Dispersion model
comparison open and closed systems
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For Bo>50 all systems can be
considered to be open systems
(i.e. solvable!)
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Dispersion model
open systems
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Determination of Bo from E-curve
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The residence time distribution in a reactor has been determined
and the E(t) data have been determined as shown below:

Time t, min 0 5 10 15 20 25 30 35
E, min-1 0 0.03 0.05 0.05 0.04 0.02 0.01 0

Assuming an open system: Bo = 12.5

Average residence time: 15 min

Variance:

Assuming a closed system: Bo = 8.3( )⎟
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Conversion and dispersion model 
(1st order rxn – Closed system)

Damköhler number:

1st order reactions:

Solving the mole balance of species A in the reactor 
(closed system) (second order differential equation) :

τ⋅⋅= −1n
0ACkDa

( ) ( ) 2
q

22
q

2

2

0A

L,A

eq1eq1

eq4
C
C

X1 ⋅⋅

⋅−−⋅+

⋅⋅
==− Bo-Bo

Bo

Bo
Da41q ⋅

+=

τ⋅= kDa



Centre for Catalysis Research

Conversion and dispersion model 
(1st order rxn – Closed system)
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The reactor (average residence time: 15 min) is to be used for a
liquid phase decomposition. The rate of reaction is 1st order with 
respect to the reactant (k = 0.1 min-1). 
Da = 1.5 (Boclosed system = 8.3)

Comparison of conversions:
PFR 77.8%
CSTR 60.0%
Segregation model 72.4%
Dispersion model 73.2%
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Conversion and 
Dispersion model (1st order rxn)
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Tank-in-series model

C0
v0

C1
v1

C2
v2

C3
v3

V1 V2 V3

Reactor is assumed to contain n equally sized CSTRs in series 
(PFR can be viewed as an infinite number of CSTRs in series)
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Determination of number of 
CSTRs in series from E-curve
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The residence time distribution in a reactor has been determined
and the E(t) data have been determined as shown below:

Time t, min 0 5 10 15 20 25 30 35
E, min-1 0 0.03 0.05 0.05 0.04 0.02 0.01 0

Assuming tank in series model:
n = 4.7

Average residence time: 15 min

Variance:
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Conversion from 
tank-in-series model
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For 1st order reaction:

Assuming tank in series model (n = 4.7; τi = 15/4.7 = 3.16 min; 
k.τi = 0.3) X= 72.8%
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Comparison of conversions:
PFR 77.8%
CSTR 60.0%
Segregation model 72.4%
Dispersion model 73.2%
Tank-in-series model 72.8%



Centre for Catalysis Research

Compartment models

Considering the actual reactor as a set of ideal set-ups:
1. Ideal reactor(s) with dead volume
2. Ideal reactor(s) with by-pass

4. Ideal reactors in series (tank-in-series model) 
5. Combinations of dead volume, bypassing, ideal reactors in 

series/parallel

3. Ideal reactor(s) in parallel
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Compartment models
Ideal reactors with dead volume

Vplug
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Compartment models
Ideal reactors with bypassing
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Compartment models
ideal PFRs in parallel
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Compartment models
ideal CSTRs in parallel (1)
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Compartment models
ideal CSTRs in parallel (2)
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Compartment models
combination of models
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What is the “best” model

Dispersion model:
Gives insight in the design phase to anticipate non-ideal behaviour 
and the consequences

Compartment model
“Visualizes” the origin of possible non-ideal behaviour:

by-passing
dead volume
mixing zones
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