

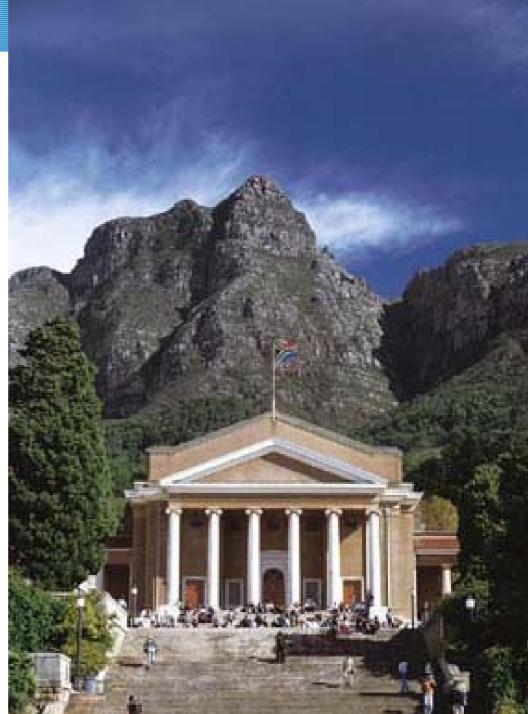
Centre for Catalysis Research

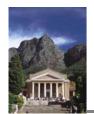
Department of Chemical Engineering University of Cape Town • Rondebosch 7701 South Africa

Residence time distribution in real reactors

Linda H. Callanan Eric van Steen

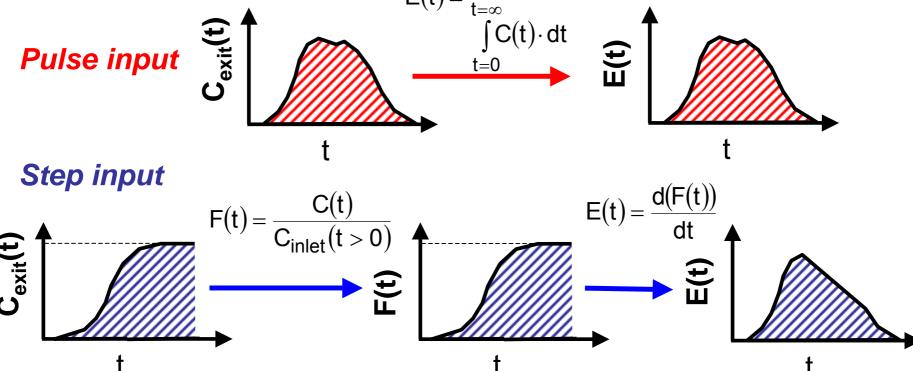
- 1. Recap on RTD and conversion in real reactors
- 2. Dispersion model
- 3. Tank-in-series model
- 4. Compartment model





Residence Time Distribution (RTD)

Determined by introducing a <u>non-reactive</u>, <u>non-adsorbing</u> tracer into the feed and measuring the concentration of the tracer in the exit line. $E(t) = \frac{C(t)}{t=\infty}$



Evaluation of Residence Time Distributions (RTD)

 $t_m = \int_{0}^{t=\infty} t \cdot E \cdot dt$

Consistence check

Pulse input

$$\int\limits_{t=0}^{t=\infty} C \cdot dt = \frac{n_{injected}}{v_{fluid}}$$

Step input

 $C(t = \infty) = C_{inlet}$

Mean Residence time

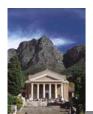
The mean or average residence time:

The mean residence time should be equal to the space time:

Variance

Spread in the residence time distribution is commonly measured by the variance: $\sigma^2 = \int_0^\infty (t - t_m)^2 \cdot E \cdot dt$

UNIVERSITY OF CAPE TOWN



Conversion in real reactors -Segregation Model

The fluid \rightarrow consisting of non-interacting elements

Each exit stream is thought to consist of elements having spent various times in the reactor.

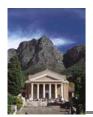
 $\begin{pmatrix} \text{mean} \\ \text{concentration} \\ \text{in exit stream} \end{pmatrix} = \sum_{\substack{\text{All} \\ \text{exit} \\ \text{elements}}} \begin{pmatrix} \text{conc. of reac tan t} \\ \text{left in element} \\ \text{of age between} \\ \text{t and } t + \text{dt} \end{pmatrix} \cdot \begin{pmatrix} \text{fraction of exit} \\ \text{stream of age} \\ \text{between} \\ \text{t and } t + \text{dt} \end{pmatrix}$

The exit concentration of the reactant is given by:

$$\overline{C}_{A} = \int_{t=0}^{t=\infty} C_{A,element} \cdot E \cdot dt$$

Assumptions:

Valid for linear processes: Each fluid element does not react with any other Mixing occurs as late as possible (at the reactor exit) [H. Scott Fogler, "Elements of Chemical reaction Engineering" 4th Ed., Prentice Hall, 2006]



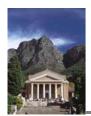
Determination of conversion from E-curve

The residence time distribution in a reactor has been determined and the E(t) data have been determined as shown below:

Time t, min	0	5	10	15	20	25	30	35
E, min ⁻¹	0	0.03	0.05	0.05	0.04	0.02	0.01	0

The reactor is to be used for a liquid phase decomposition. The rate of reaction is 1^{st} order with respect to the reactant (k = 0.1 min⁻¹). Determine:

- 1. The mean residence time
- 2. The conversion, which would have been obtained if the reactor is an ideal PFR/CSTR
- 3. The conversion obtained in this reactor according the segregation model



Determination of mean residence time from E-curve

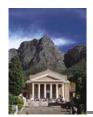
Mean residence time:

$$t_{m} = \int_{t=0}^{t=\infty} t \cdot E \cdot dt$$

t, min	0	5	10	15	20	25	30	35
E, min ⁻¹	0	0.03	0.05	0.05	0.04	0.02	0.01	0
t·Ε	0	0.15	0.50	0.75	0.80	0.50	0.30	0
Integral		0.375	1.625	3.125	3.875	3.25	2.00	0.75

$$\frac{1}{2} \cdot \left(\left(\mathsf{E} \cdot \mathsf{t} \right)_2 + \left(\mathsf{E} \cdot \mathsf{t} \right)_1 \right) \cdot \left(\mathsf{t}_2 - \mathsf{t}_1 \right)$$

Mean residence time: 15 min



Determination of conversion in ideal reactors

PFR:

чV

× /

1 st

$$\frac{dX}{dV} = \frac{-r_A}{F_{A,0}} = \frac{-r_A}{v \cdot C_{A,0}} \qquad \qquad \frac{dX}{d\tau} = \frac{-r_A}{C_{A,0}}$$
order reaction:
$$\frac{dX}{d\tau} = \frac{-r_A}{C_{A,0}} = \frac{k \cdot C_A}{C_{A,0}} = k \cdot (1-X)$$

$$-\ln(1-X) = k \cdot \tau \qquad \qquad X = 1 - e^{-k \cdot \tau}$$

-- -

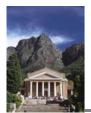
Conversion in ideal PFR: 77.8 %

CSTR

$$\frac{X}{V} = \frac{-r_A}{F_{A,0}} = \frac{-r_A}{v \cdot C_{A,0}} \qquad \qquad \frac{X}{\tau} = \frac{-r_A}{C_{A,0}}$$
1st order reaction:
$$\frac{X}{\tau} = \frac{-r_A}{C_{A,0}} = \frac{k \cdot C_A}{C_{A,0}} = k \cdot (1-X) \qquad \qquad X = \frac{k \cdot \tau}{1+k \cdot \tau}$$

Conversion in ideal CSTR: 60 %

UNIVERSITY OF CAPE TOWN



Conversion using segregation model

Segregation model

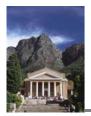
$$\overline{C}_{A} = \int_{t=0}^{t=\infty} C_{A,element} \cdot E \cdot dt$$

The concentration of the reactant in each element depends on the time it spent in the reactor. Each element can be seen as a batch-type reactor.

$$C_{A,element} = C_{A,0} \cdot e^{-k \cdot t}$$

The average concentration of the reactant in the exit stream is given by: $\overline{}$

$$\overline{C}_{A} = C_{A,0} \cdot \int_{t=0}^{t=\infty} e^{-k \cdot t} \cdot E \cdot dt$$
$$X = 1 - \frac{\overline{C}_{A}}{C_{A,0}} = 1 - \int_{t=0}^{t=\infty} e^{-k \cdot t} \cdot E \cdot dt$$



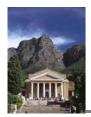
Conversion using segregation model

t, min	0	5	10	15	20	25	30	35
E, min ⁻¹	0	0.03	0.05	0.05	0.04	0.02	0.01	0
e ^{-k·t.} E	0	0.018	0.018	0.011	0.005	0.002	0.000	0
Integral		0.045	0.091	0.074	0.041	0.018	0.005	0.001

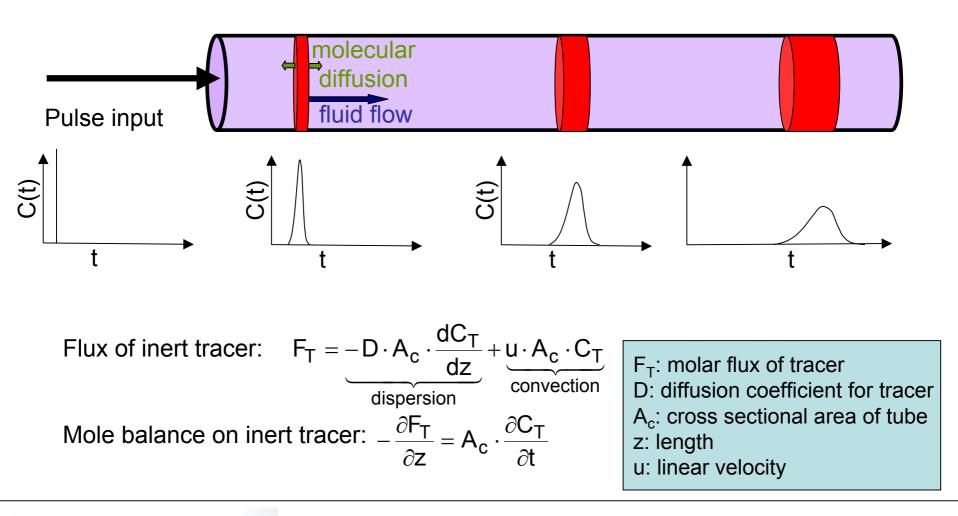
$$\frac{1}{2} \cdot \left(\left(e^{-k \cdot t_2} \cdot E \right)_2 + \left(e^{-k \cdot t_1} \cdot E \right)_1 \right) \cdot \left(t_2 - t_1 \right)$$

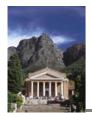
Comparison of conversions:PFR77.8%CSTR60.0%Segregation model72.4%

 $X = 1 - \Sigma_{integral}$



Dispersion model





Development of dispersion model

Mole balance on inert tracer:

$$\mathsf{D} \cdot \frac{\partial^2 \mathsf{C}_{\mathsf{T}}}{\partial z^2} - \mathsf{u} \cdot \frac{\partial \mathsf{C}_{\mathsf{T}}}{\partial z} = \frac{\partial \mathsf{C}_{\mathsf{T}}}{\partial t}$$

Introducing a dimensionless time:

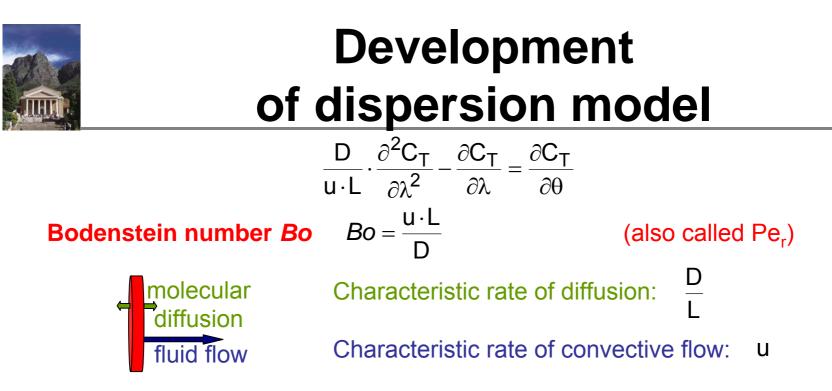
a dimensionless length:

$$\theta = \frac{t}{\tau} = \frac{t \cdot u}{L} \qquad dt = \frac{L}{u} \cdot d\theta$$
$$\lambda = \frac{z}{L} \qquad dz = L \cdot d\lambda$$

$$dz^2 = 2 \cdot z \cdot dz = 2 \cdot L^2 \cdot \lambda \cdot d\lambda = L^2 \cdot d\lambda^2$$

Substituting dimensionless numbers in mole balance on inert tracer:

$$\frac{\mathsf{D}}{\mathsf{u}\cdot\mathsf{L}}\cdot\frac{\partial^2\mathsf{C}_{\mathsf{T}}}{\partial\lambda^2}-\frac{\partial\mathsf{C}_{\mathsf{T}}}{\partial\lambda}=\frac{\partial\mathsf{C}_{\mathsf{T}}}{\partial\theta}$$



Ratio of rate of convective transport relative to rate of transport by diffusion

Convective transport large $(Bo \rightarrow \infty)$ PFR-behaviourTransport by diffusion $((Bo \rightarrow 0))$ mixing by diffusion \rightarrow CSTR-behaviour

For constant conditions (temperature/pressure, etc.), Bo increases with increasing L (length of reactor)

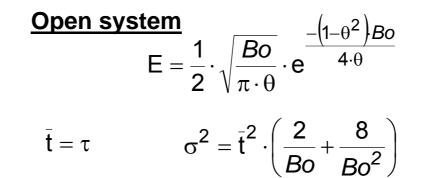
Long reactors, $B0 \rightarrow \infty$ approaching plug flow behaviour!

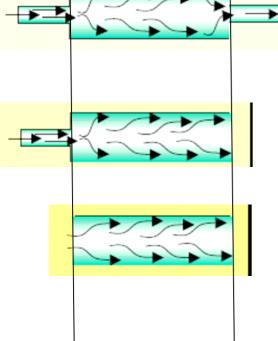
Development of dispersion model $\frac{1}{Bo} \cdot \frac{\partial^2 C_T}{\partial \lambda^2} - \frac{\partial C_T}{\partial \lambda} = \frac{\partial C_T}{\partial \theta}$

 $\frac{\textbf{Closed system}}{\bar{t} = \tau} \quad (\text{discontinuity in } Bo \text{ at } \lambda = 0 \text{ and } \lambda = 1)$ $\sigma^2 = \bar{t}^2 \cdot \left(\frac{2}{Bo} - \frac{2}{Bo^2} \cdot \left(1 - e^{-Bo}\right)\right)$

<u>Closed-open system</u> (discontinuity in *Bo* at λ =0)

$$\bar{t} = \tau \cdot (1 + Bo)$$
 $\sigma^2 = \bar{t}^2 \cdot \left(\frac{2}{Bo} + \frac{3}{Bo^3}\right)$

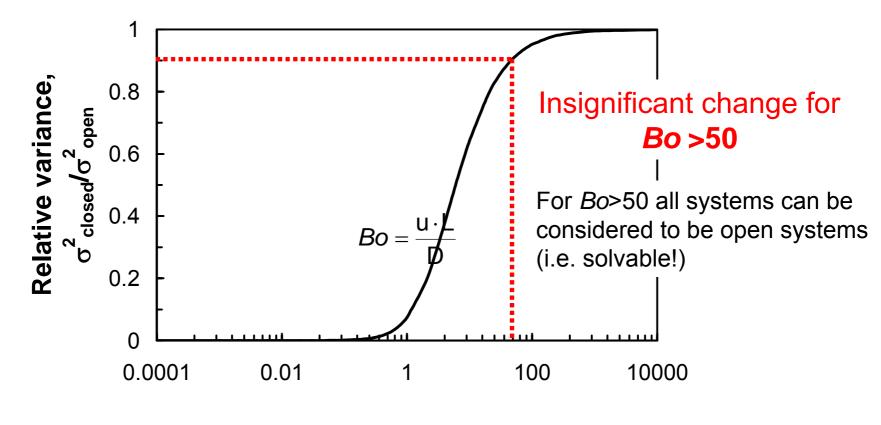




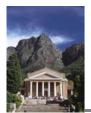
λ=1

λ=0

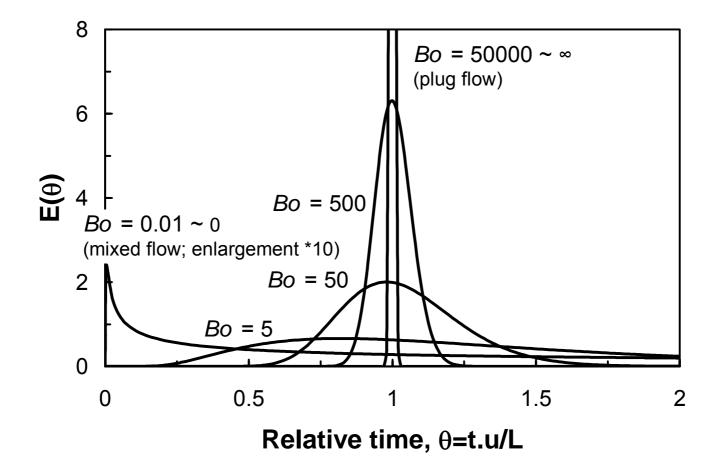
Dispersion model comparison open and closed systems



Bodenstein number



Dispersion model open systems



Determination of Bo from E-curve

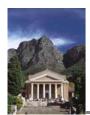
The residence time distribution in a reactor has been determined and the E(t) data have been determined as shown below:

Time t, min	0	5	10	15	20	25	30	35
E, min ⁻¹	0	0.03	0.05	0.05	0.04	0.02	0.01	0

Average residence time: 15 min

Variance:
$$\sigma^2 = \int_0^\infty (t - t_m)^2 \cdot E \cdot dt = 47.5 \cdot min^2$$

Assuming an open system:
$$\sigma^2 = \bar{t}^2 \cdot \left(\frac{2}{Bo} + \frac{8}{Bo^2}\right)$$
 $Bo = 12.5$
Assuming a closed system: $\sigma^2 = \bar{t}^2 \cdot \left(\frac{2}{Bo} - \frac{2}{Bo^2} \cdot \left(1 - e^{-Bo}\right)\right)$ $Bo = 8.3$



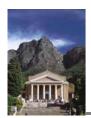
Conversion and dispersion model (1st order rxn – Closed system)

Damköhler number: $Da = k \cdot C_{A0}^{n-1} \cdot \tau$

1st order reactions: $Da = k \cdot \tau$

Solving the mole balance of species A in the reactor (closed system) (second order differential equation) :

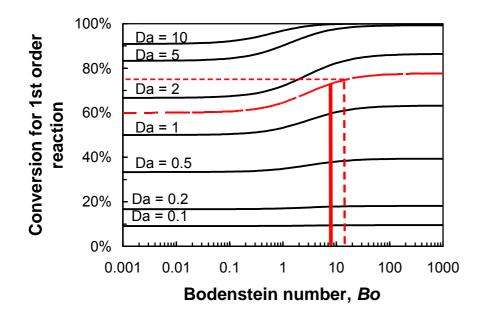
$$1-X = \frac{C_{A,L}}{C_{A0}} = \frac{4 \cdot q \cdot e^{\frac{B0}{2}}}{(1+q)^2 \cdot e^{\frac{B0 \cdot q}{2}} - (1-q)^2 \cdot e^{\frac{-B0 \cdot q}{2}}}$$
$$q = \sqrt{1 + \frac{4 \cdot Da}{B0}}$$



Conversion and dispersion model (1st order rxn – Closed system)

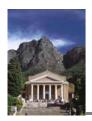
The reactor (average residence time: 15 min) is to be used for a liquid phase decomposition. The rate of reaction is 1^{st} order with respect to the reactant (k = 0.1 min⁻¹).

 $Da = 1.5 (Bo_{closed system} = 8.3)$

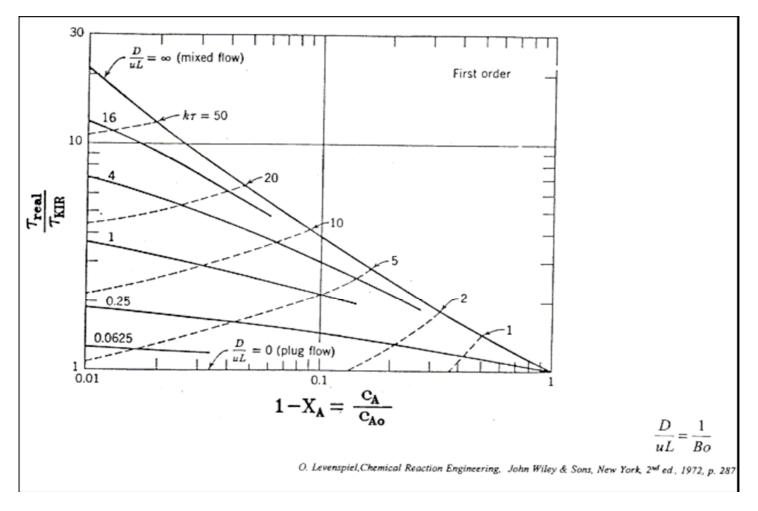


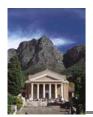
Comparison of conversions:

PFR	77.8%
CSTR	60.0%
Segregation model	72.4%
Dispersion model	73.2%

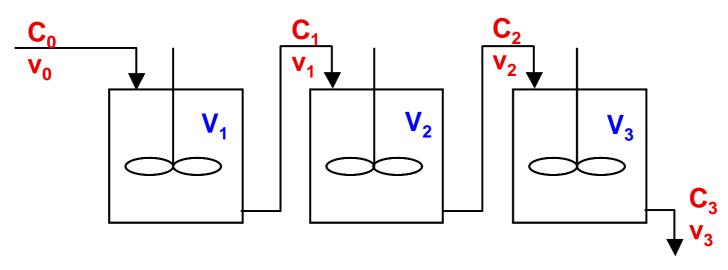


Conversion and Dispersion model (1st order rxn)



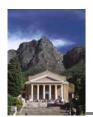


Tank-in-series model



Reactor is assumed to contain n equally sized CSTRs in series (PFR can be viewed as an infinite number of CSTRs in series)

$$E(t) = \frac{t^{n-1}}{(n-1)! \tau^{n_{i}}} \cdot e^{-t/\tau_{i}} \qquad \sigma^{2} = \frac{\tau^{2}}{n}$$



Determination of number of CSTRs in series from E-curve

The residence time distribution in a reactor has been determined and the E(t) data have been determined as shown below:

Time t, min	0	5	10	15	20	25	30	35
E, min ⁻¹	0	0.03	0.05	0.05	0.04	0.02	0.01	0

Average residence time: 15 min

Variance:
$$\sigma^2 = \int_0^\infty (t - t_m)^2 \cdot E \cdot dt = 47.5 \cdot min^2$$

Assuming tank in series model:
$$\sigma^2 = \frac{\tau^2}{n}$$

n = 4.7

Conversion from tank-in-series model

Performance equation CSTR: $\tau_i = \frac{C_0 \cdot (X_i - X_{i-1})}{-r_i}$

For 1st order reaction: $\tau_i = \frac{C_{i-1} - C_i}{k \cdot C_i}$

$$\frac{C_i}{C_{i-1}} = \frac{1}{1+k\cdot\tau_i}$$

$$1 - X = \frac{C_{i}}{C_{0}} = \frac{1}{(1 + k \cdot \tau_{i})^{n}} = \frac{1}{(1 + k \cdot \frac{\tau}{n})^{n}}$$

Assuming tank in series model (n = 4.7; τ_i = 15/4.7 = 3.16 min; k· τ_i = 0.3) \rightarrow X= 72.8%

Comparison	of	conversions:
PFR		77 89

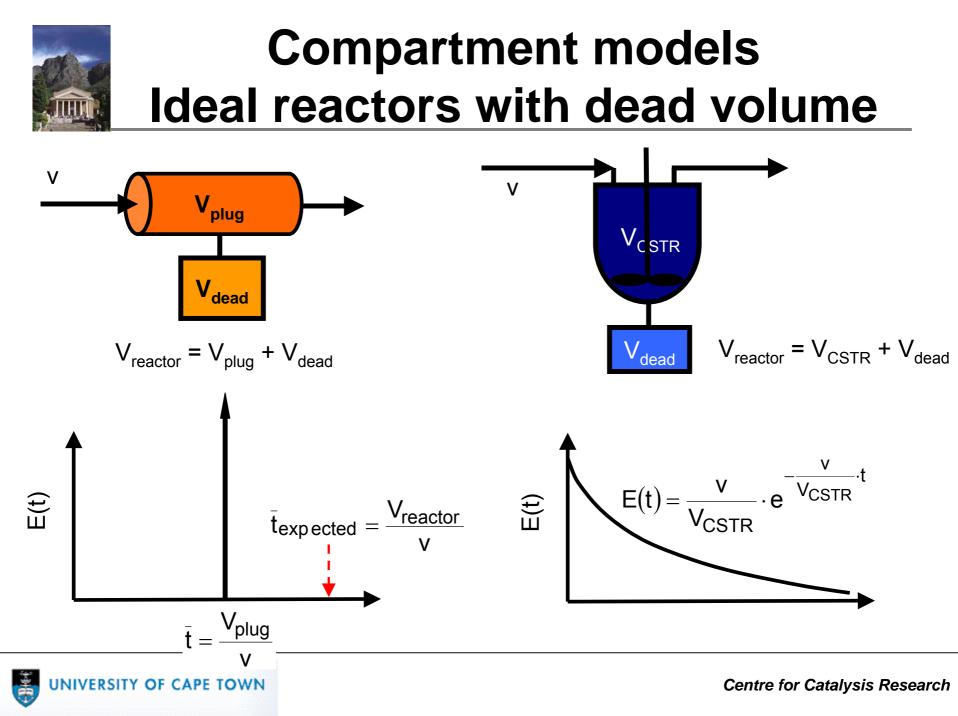
Tank-in-series model	72.8%
Dispersion model	73.2%
Segregation model	72.4%
CSTR	60.0%
PFR	77.8%

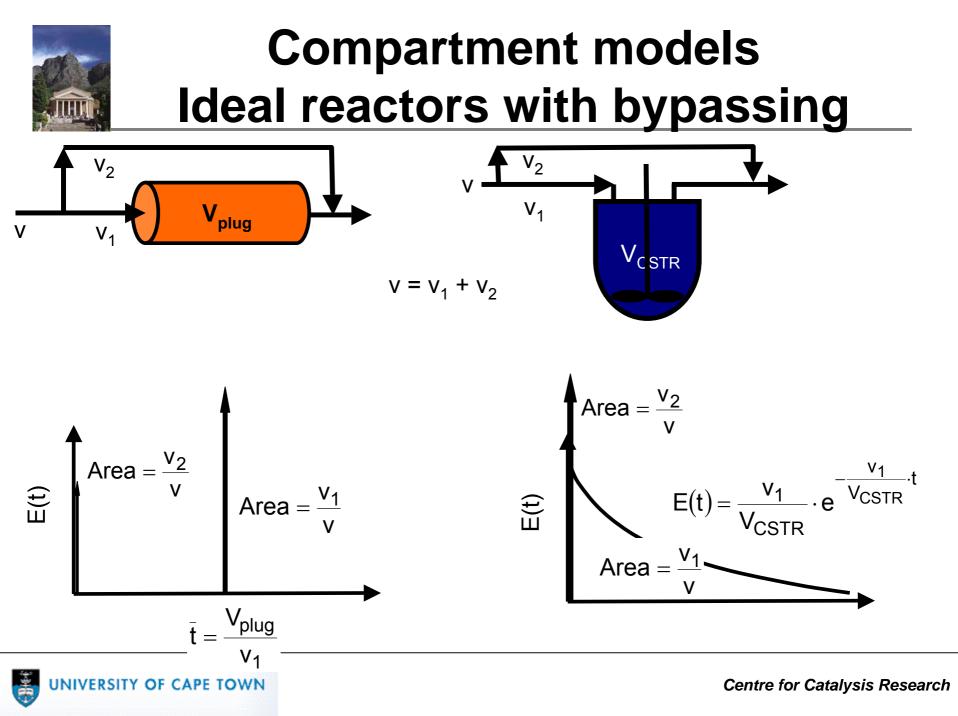


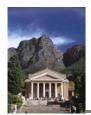
Compartment models

Considering the actual reactor as a set of ideal set-ups:

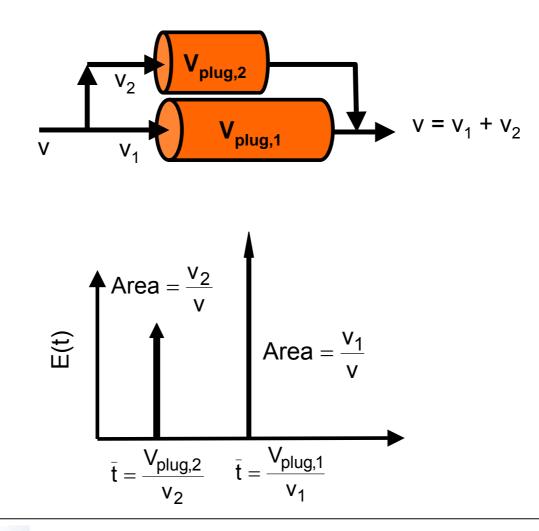
- 1. Ideal reactor(s) with dead volume
- 2. Ideal reactor(s) with by-pass
- 3. Ideal reactor(s) in parallel
- 4. Ideal reactors in series (tank-in-series model)
- 5. Combinations of dead volume, bypassing, ideal reactors in series/parallel

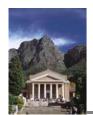




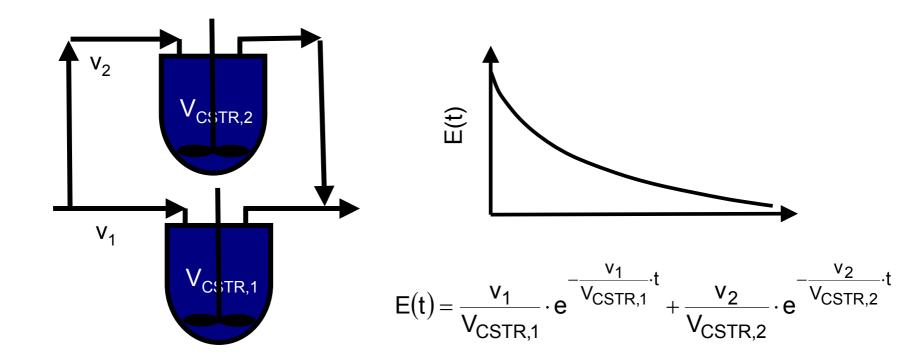


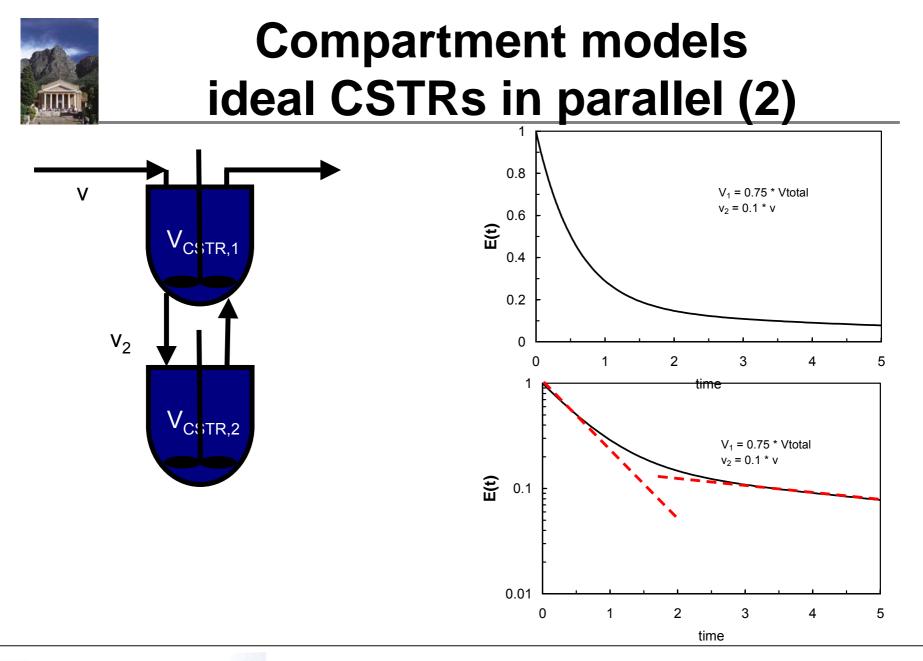
Compartment models ideal PFRs in parallel



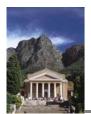


Compartment models ideal CSTRs in parallel (1)

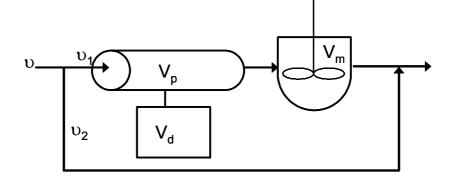


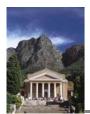


UNIVERSITY OF CAPE TOWN



Compartment models combination of models





What is the "best" model

Dispersion model:

Gives insight in the design phase to anticipate non-ideal behaviour and the consequences

Compartment model

"Visualizes" the origin of possible non-ideal behaviour: by-passing dead volume mixing zones

