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Abstract. The investigation of complex networks has received a rapidly increasing
amount of attention in recent years, with many applications in social, biological and
technical systems. In particular, most research proceeded in two distinct directions.
On the one hand, attention has been paid to the structure of the networks, revealing
that simple dynamical rules, such as preferential attachment, can be used to generate
complex topologies. Many of these rules are not only a useful tool for the generation of
model graphs, but are also believed to shape real-world networks. On the other hand,
research has focused on large ensembles of dynamical systems, where the interaction
between individual units is described by a complex graph. These studies have shown
that the network topology can have a strong impact on the dynamics of the nodes,
e.g., the absence of epidemic thresholds on scale free networks. This lecture will
review recent progress in the field of complex networks. We will introduce adaptive
networks which combine topological evolution of the network with dynamics in the
network nodes and discuss several applications from biology and epidemiology.
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1 Introduction

Complex networks are ubiquitous in nature and are gaining increasing attention in
the nonlinear sciences. They occur in a large variety of real-world systems ranging
from ecology and epidemiology to neuroscience, socio-economics and computer science
[1, 2, 3]. Important examples include ecological food webs, the network of social
contacts, the internet, the road network and the neuron network in our brain. While
physics has for a long time been concerned with well-mixed systems, lattices and
spatially explicit models, the investigation of complex networks has in the recent
years received a rapidly increasing amount of attention. In particular, the need to
protect or optimize natural networks as well as the quest for creating robust and
efficient technical nets that exploit similar organizing principles prove to be strong
incentives for research.

Beside the identification and characterization of network structure in real natural
systems, most recent studies revolve around two key questions: what are the topo-
logical properties of a network that is evolving in time and, secondly, how does the
functioning of the network depend on these properties? These questions have given
rise to two distinct lines of research. The first of these is concerned with the dynamics
of networks. Here, emphasis is put on the structure of the network, which itself is
regarded as a dynamical system that grows or changes over time according to spe-
cific, often local, rules. Notable examples include the investigation of the small-world
property of social networks [4] and the formation of a scale free topology in growing
networks, like citation networks [5] or the internet [6]. These and a large number
of subsequent works have revealed that simple evolution rules, such as preferential
attachment or selective rewiring, can be used to generate complex network topolo-
gies. Many of these rules are not just useful theoretical algorithms, but mimic natural
processes of network formation.

The second major line of network research has focused on the dynamics on net-
works. Here, the network represents an ensemble of dynamical systems, where each
node is attributed a dynamic state and the interaction between individual units is
described by the adjacency matrix of the network. Thus, the topology of the network
remains static but the states of the nodes change according to local evolution rules.
Important processes that are studied within this framework include synchronization
in ensembles of coupled oscillators [7] or contact processes, such as opinion formation
and epidemic spreading [8, 12, 9, 10, 11]. These studies have made it clear that the
network topology can have a strong impact on the dynamics of the nodes. For in-
stance it was shown that vaccination of a fraction of the nodes can not stop epidemics
on a scale free network [8, 12].

Until recently, the two lines of network research described above were pursued
almost independently in the physics literature. While there was certainly a strong
interaction and cross-fertilization, a given model would either describe the dynamics
of a certain network or the dynamics on a certain network. Nevertheless, it is clear
that in most real world networks the evolution of the topology is invariably linked
to the state of the network and vice versa. Consider for instance a road network.
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The topology of the network, that is the pattern of roads, influences the dynamic
state, i.e. the flow and density of traffic. But, if traffic congestions are common on a
given road, it is likely that new roads will be build in order to decrease the load on
the congested one. In this way a feedback loop is formed in which the topology of
the network affects the dynamics on the network, while the dynamics on the network
has an influence on the time evolution of the topology. This feedback loop can give
rise to a complicated mutual interaction between a time varying network topology
and the nodes’ dynamics. Networks which exhibit such a feedback loop are called
coevolutionary or adaptive networks [13]. More examples of this class of networks are
discussed below.

Based on the successes of the two lines of research mentioned earlier, it is the
next logical step to bring these strands back together and to investigate the dynamics
of adaptive networks which combine the time evolution of the topology with that
of the state of the nodes. Indeed, a number of papers on the dynamics of adaptive
networks have recently appeared. Since adaptive networks occur over a large variety
of scientific disciplines they are currently investigated from many different directions.
While present studies can only be considered as a first step toward a general the-
ory of adaptive networks, they already crystallize certain general insights. Especially
these studies show that the interplay of network state and topology leads to inter-
esting new physical phenomena. Despite the thematic diversification, the reported
results, considered together, show that certain dynamical phenomena repeatedly ap-
pear in adaptive networks: the formation of complex topologies, robust dynamical
self-organization, spontaneous emergence of different classes of nodes from an initially
inhomogeneous population, and complex mutual dynamics in state and topology [13].

In this lecture we review the present state of research in the dynamics of adaptive
networks. The text is strongly guided by a previous comparative study of adaptive
networks across disciplines [13, 14]. We start in Sec. 2 by giving essential definitions
from graph theory. We provide a basic overview of the central properties of adaptive
networks and discuss several examples that illustrate the abundance of adaptive net-
works in the real world and also in certain classes of applied models. In Sec. 3 we
study the spread of diseases on adaptive social networks, which will illustrate the rich
dynamics that can arise in dynamic networks. We conclude in Sec. 4 with a short
summary and outlook.

2 Adaptive networks: a definition

2.1 Basic definitions of graph theory

Any treatment of complex networks resides on the terminology of graph theory. Here
we just present some basic definitions and the most commonly used terminology to
provide some basic knowledge. For a more thorough introduction we refer the reader
to one of the excellent review articles (see e.g., [1, 2, 3, 15]). As usual we define a
network as an ensemble of N nodes (also called wvertices) which are connected by K
(directed or undirected) links (or edges). The nodes form the principal elements of
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the network and may represent the basic units of the system under investigation. The
total number of nodes is called the size of the network and here denoted as N.

The edges of a network usually represent some kind of interaction or relation
between the nodes. Together all edges define the network’s topology, which denotes
a specific pattern of connections between the network nodes. Two nodes are said
to be neighbors or adjacent if they have a common link. The neighborhood of a
node corresponds to the set of all adjacent nodes in the graph. The topology can be
described by the adjacency matriz a;; (i, = 0...N), where each element is taken
from {0,1}. If two nodes ¢ and j are adjacent, one has a;; # 0. Depending on the
network under consideration the links can be directed or undirected. The adjacency
matrix of an undirected matrix is symmetric a;; = aj;. In general, the links may
be of different nature (e.g., inhibiting or activating) and can have different weights
(interaction strength). This is accordingly described by the weight matrix w;;, where
each element is a real number.

The degree, k;, of a node ¢ is the number of nearest neighbors to which it is
connected. In a directed network one has to distinguish between the in-degree, k™,
and the out-degree, k"*, corresponding to the number of edges entering or leaving
the node. The total degree, then, is the sum k; = k" + k%**. The mean degree or

1

connectivity, (k) = 5 >_; ki, is defined as the mean of the individual degrees of all

nodes in the network.

An important quantity to characterize a network’s topology is its degree distri-
bution P(k) which describes the probability that a randomly selected node has a
certain number of links. Important examples are the Poisson degree distribution,
P(k) = e=®kk /!, which is formed by a network in which a fixed number of nodes
are randomly connected (Erddos-Rényi random graph). The Poisson degree distribu-
tion is characterized by a modal hump at the mean degree and exponentially decreas-
ing tails. In contrast, several real-world networks are rather described by power-law
degree distributions of the form P(k) ~ k~*. Such networks are called scale-free and
arise for example in a growing network in which new nodes are preferentially con-
nected to nodes which have already many connections (preferential attachment). In
scale free networks some vertices, the so-called hubs, have a degree that is orders of
magnitude larger than the average.

Another useful measure to describe the structural and dynamical properties of
a network are degree-degree correlations, i.e., correlations between the degrees of
different nodes on the network. A very natural approach would be to consider the
correlations between two adjacent nodes which may be expressed, for example, by the
conditional probability P(k|k’) that an arbitrary neighbor of a node of degree k has
degree k’. Usually, however, it will be more easy to compute the average degree k,, of
the nearest neighbor of a node of degree k, which is described as knn = >, K’ P(k|E').
In the special case that there are no degree correlations, the average degree of the
nearest neighbors of a node is independent of its degree k, and k,, is given by ky, =
(K2) /().

If k,,,, is an increasing function of the degree k then nodes with a large degree tend
to connect to nodes of a large degree. In this case the network is called assortative.
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In the opposite case, if k,, is a decreasing function of the degree k, nodes with a
large degree tend to connect to nodes of a small degree and the network is called
disassortative [11]. In undirected networks the degree correlation can be computed as
the cross correlation reorr = aq_2 Y ab b(€ab — aqp) Where qq = (@ + 1)pat1/ Yy kP,
eqp 18 the probability that a randomly chosen link connects nodes with the degrees
a+1and b+ 1, and o7 is the variance of the distribution g, [11].

Usually, most of the networks of interest are sparse, meaning that only a small
fraction of all possible links are present. As a consequence, two randomly chosen
nodes ¢ and j of a network will in general not be connected by a direct link. However,
it may still be possible that the two non-adjacent nodes are connected through a
sequence of [ intermediate links. Such a set of links is called a walk between nodes 7
and j of length [ [15]. Two nodes are connected if there is at least one walk connecting
them. A path is defined as a walk in which all nodes and links are distinct. Finally, a
loop or cycle is defined as a path starting and terminating in the same node. A path
of length three is called a triple and a loop of length three is called a triangle.

The property of connectedness between two nodes is transitive. If two nodes ¢ and
j are connected and the nodes j and k are connected, too, then i and k will also be
connected. This property can be used to partition a network into non-overlapping
equivalence classes of connected nodes, which define the network components. Another
measure for network transitivity is the clustering, which measures the probability that
if node A is adjacent to node B and node B to node C, then also A is adjacent to C,
or, in the terminology of social networks, wheter the friend of your friend is also your
friend. More formally the clustering coefficient C' is defined as C = 3Na /N3, where
N is the number of triangles and N3 the number of triples in the network.

Based on the notion of a path one can define several measures of distance on a
network. The shortest path between two nodes is the path that traverses the minimal
number of links between the two nodes. The closeness of a node is the length of the
mean shortest path to all other nodes in the network. The diameter of a graph is the
average shortest path length between all nodes in the network. The betweenness of a
node is the number of shortest paths that go through the node. Finally, a network is
said to have the small-world property if it has a large clustering coefficient, but still
most nodes can be reached from the others through a small number of connections,
so that the diameter of the network is relatively small.

The term complex network refers to a graph that has certain non-trivial topological
features that do not occur in simple networks. Such non-trivial features include a
heavy-tail in the degree distribution, a high clustering coefficient, assortativity or
disassortativity among vertices, community or hierarchical structure. In contrast,
simple networks have none of these properties, and are typically represented by graphs
such as a lattice or a random graph, which exhibit a high similarity no matter what
part is examined.

2.2 Dynamic and evolving networks

In most cases of interest the nodes of a network have a dynamic state. This may be
a discrete variable characterizing the node (occupied/non-occupied, infected/suscep-
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tible, spin up/down, active/inactive), a scalar variable (such as a density, concentra-
tion, flow etc.), or a more complicated construct like, e.g., a lookup table describing
a strategy in a game. Collectively, we refer to the state of all nodes as the state of the
network. Note that depending on the context in the literature the state of a network
is used either to describe the state of the network nodes or the state of the whole
network including the states and the topology. Here, we use the term state to refer
exclusively to the collective state of the nodes. Thus, the state is a priori independent
of the network topology.

All models considered in this review are dynamic networks, in the sense that the
state of the nodes changes dynamically in time. These changes can generally be
described by a, possibly stochastic, mathematical function, which depends on the
current state of the nodes, external parameters and the network topology. In other
words, a dynamic network is an ensemble of interacting dynamical systems, where
the network connections define the strength and direction of the interactions.

We distinguish between static networks, in which the connections remain fixed
in time and evolving networks, where the network topology is allowed to change as
a function of time. Again, depending on the context, the terms ‘dynamics’ and
‘evolution’ are used in the literature to refer to a temporal change of either the state
or the topology of a network. In this review we use ‘dynamics’ exclusively to refer to a
temporal change in the state of a node, while the term ‘evolution’ describes temporal
changes in the topology.

Depending on the model under consideration, in evolving networks the change of
the topology can consist of several possibilities. These are listed in increasing order of
complexity (clearly, the later changes give rise to a larger class of topological dynamics
than the former):

e Changes in connection weights or the nature of links.
This is the weakest form of network evolution. The principal network topology
(who connects to whom) remains conserved and only the nature of the links
is modified. Such changes include evolutions in the connection weights, i.e.,
changes from from strong to weak links, but could also involve other changes in
the nature of links, such as switches from activating to inhibiting links or in the
directionality of the connection.

e Rewiring of links.

Here the network topology is changed by rewiring of links. There are two
possibilities in which a certain link may be reconnected. Either the link is
totally removed and replaced by another one, or the link remains attached to
one node, but only the second node is changed. Rewiring keeps the total number
of nodes, N, and of links, K, constant.

A famous example of a network that is evolving via rewiring of connections is
given by the small-world model from Watts-Strogatz [4]. Here, starting from a
regular lattice (the pristine world), a certain fraction ¢ of links are randomly
rewired. Even if the fraction ¢ is very small, which means that only a small
perturbation in the topology has been done and the network locally remains
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unchanged, it was shown that the global properties, such as mean distances
between two nodes, are strongly changed.

e Creation and deletion of links.
Links are created or removed (deleted) from the network. This results in a
temporal evolution of the topology, but is more general than rewiring. While
the (number of) nodes of the network remains unchanged, the number of links
K will change over time.

e Creation and deletion of nodes.

Nodes are created and removed from the network. This is the most drastic form
of network evolution. If a node is deleted, some rule is needed that determines
the fate of the links that used to connect to the node. Frequently, all the in-
and out-going connections of the node are destroyed as well. Or, if a new node
is inserted into the network, for this new node, new connections must be sub-
stituted. Obviously creation of deletion of nodes goes together with a change of
both N and K.

A famous model for an evolving network with increasing number of nodes was
presented by Barabasi and Albert [16]. In their model, starting from a small
initial network, successively new nodes are inserted. Each new node has m
connections, which are attached preferentially to the other nodes j in depen-
dence of their degree k;. This means that nodes with a large degree have a
higher chance to receive additional new links. As was shown in [16], such a
rich-get-richer mechanism leads to scale free networks, which are characterized
by a power-law degree distribution P(k) ~ d~¢.

2.3 Adaptive networks

With these definitions we are able to describe what we understand as an adaptive
network [13]. Adaptive networks are evolving, dynamic networks, in which the topol-
ogy changes in dependence of the dynamic state of the nodes, while the dynamics
of the state depends on the topology (see Fig. 1). Note that this definition excludes
skew-product networks: dynamic networks in which network evolution takes place
independently of the state of the nodes or in which the dynamics of the state are
independent of the topology.

In almost all real world networks there is some feedback loop that connects the
dynamics of the nodes to the network evolution. In this sense almost all real world
networks can be considered to be adaptive. However, this does not imply that the
adaptive nature of these networks necessarily plays a dominant role in the overall
dynamics. This can be understood by considering the involved time scales. For
most networks there is a typical dynamic timescale, characterizing the time in which
the state of the nodes can change, and a typical evolution time scale over which
the network topology changes. If the dynamic timescale is much larger than the
evolution time scale, we have the classic evolving network and the dynamic state
can be neglected. On the other hand, if the evolution time scale is much larger
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Figure 1: In adaptive networks the local dynamics in the state of the nodes
is interwoven with the topological evolution in the network structure. Thus, the
temporal evolution of the topology depends on the dynamics of the nodes, while
the dynamics of the nodes is affected by the topology. In this way a feedback loop
is created in which a dynamical exchange of information is possible.

than the dynamic timescale, then we have practically a fixed network. In contrast
to truly adaptive networks, in which the dynamics of topology and state happen
approximately on the same timescale, we can expect that the dynamical interplay
between state and topology in scale-separated networks is often weak. Therefore, we
can define adaptive networks in a strong sense as networks for which these two time
scales are close, so that the interaction between these different types of dynamics
must be taken into account. However, in the following it will become apparent that
in certain scale-separated adaptive networks a dynamical interplay between network
state and topology takes place nevertheless.

Finally, frequently an adaptive dynamical interplay can only be observed tran-
siently. In such cases the system typically approaches an attractor on which the
network topology stops to evolve in time, while the dynamics of the states can con-
tinue. In other systems the dynamical interplay between topology and state continues
on the attractor of the system. Note that, although this means that the topology and
state never settles down to a static pattern, emergent properties (e.g., mean degree of
nodes, degree correlations, number of nodes in a certain state) can approach a steady
state. It is therefore useful to distinguish between long-term adaptive networks in
which an adaptive interplay persists on the attractor and transient adaptive networks
in which an adaptive interplay is only transiently observed.

2.4 Ubiquity of adaptive networks across disciplines

Adaptive networks arise naturally in many different applications. Although studies
that target the interplay between network state and topology have only recently
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begun to appear, models containing adaptive networks have a long tradition in several
scientific disciplines. In the introduction we have already mentioned the example of
a road network that can be considered as a prototypical adaptive network. Certainly,
the same holds for many other technical distribution networks such as power grids
[17], the mail network, the internet or wireless communication networks [18, 19]. In
all these systems a high load on a given component can cause component failures,
e.g. traffic jams or electrical line failures, with the potential to cut links or to remove
nodes from the network. On a longer timescale, high load will be an incentive for
the installation of additional connections to relieve this load — thereby giving rise to
the above described adaptive interplay, where the state of the network effects the
topology, which in turn affects the state.

Essentially the same mechanisms are known to arise in natural and biological
distribution networks. Take for example, the vascular system. While the topology
in the network of blood vessels directly controls the dynamics of blood flow, the
blood flow also exhibits a dynamic feedback on the topology. One such process is
arteriogenesis, where new arteries are formed to prevent a dangerous restriction in
blood supply (ischemia) in neighboring tissues. This adaptive response in the topology
of blood vessels is triggered by a steep pressure gradient that develops along the
shortest path within the interconnecting network [20].

More examples of adaptive networks are found in information networks like neu-
ral or genetic networks (cf. the contribution by A. Engel in this volume [21]). The
functioning of these networks puts relatively tight constraints on the dynamics and
topology of the network. In the training of an artificial neuronal network for example
it is obvious that the the strength of connections and therefore the topology has to be
modified depending on the state of the nodes. The changed topology then determines
the dynamics of the state in the next trial. Also in biological neural and genetic
networks some evidence suggests that the evolution of the topology depends on the
dynamics of the nodes [22].

In the social sciences networks of relationships between individuals or groups of
individuals have been studied for decades. On the one hand, important processes like
the spreading of rumors, opinions and ideas take place on social networks — and are
influenced by the topological properties. On the other hand, it is obvious that, say,
political opinions or religious beliefs, can in turn have an impact on the topology,
when for instance conflicting views lead to the breakup of social contacts, while new
links are formed preferentially between the likeminded.

In game theory there is a long tradition to study the evolution of cooperation in
simple agent based models. In recent years spatial games that are played on a social
network have become very popular. While most studies in this area so far focused on
static networks, one can easily imagine that the willingness of an agent to cooperate
has an impact on his social contacts or business relations. To our knowledge the huge
potential of games on adaptive networks and the absence of previous investigations
in this area was first pointed out by Skyrms and Pemantle [23].

Games on adaptive network have recently become a hot topic in the engineering
literature where they are called network creation games. These are currently investi-
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gated in the context of evolutionary engineering [24, and references therein].

Further examples of adaptive networks are found in chemistry and biology. One
paradigmatic example is provided by the immune system, in particular the vertebrate
immune system, which constitutes a highly parallel, distributed dynamical system and
involves large, diverse populations of migratory cells (the human immune network
contains about 10 trillion cells). These immune cells are able to communicate in
a networked interaction, with the ability for a rapid adaptive response to external
stimuli. Thus, more appropriately the immune system is described as an immune
network as proposed by N. K. Jerne [25]. The immune network is highly adaptive. It
uses learning, memory, and associative retrieval to solve recognition and classification
tasks. In particular, it learns to recognize relevant patterns and remember patterns
that have been seen previously, for example upon vaccination. Models for the immune
network have been prosposed already for some time [25, 26].

A model of an adaptive chemical network, originally proposed by Jain and Krishna,
is studied in [27, 28]. In the model the nodes of the networks are chemical species
which interact through catalytic reactions. Once the population dynamics has reached
an attractor the species with the lowest concentration is replaced by a new species
with randomly generated interactions. Although the topology of the evolving network
is not studied in great detail, this model shows that the appearance of a topological
feature — an autocatalytic loop—has a strong impact on the dynamics of both state
and topology of the network.

While Jain and Krishna focus on the evolution of chemical species, their work is
clearly inspired by models of biological evolution. In ecological research models in-
volving adaptive networks have a long tradition. A prominent area in which adaptive
networks appear is food web evolution. Food webs describe communities of different
populations that interact by predation. A food web can be represented by a directed
graph in which the nodes correspond to populations while the edges correspond to
predator-prey interactions. In general the state of a node consists at least of the
population size, but — depending on the model — may contain additional information
about evolutionary traits of the species. In almost all models the abundance of a
species, i.e. the dynamic state, depends on the available prey as well as on the pre-
dation pressure, both of which depend in turn on the topology of the network. It is
very reasonable to assume that Nature does not choose randomly from all possible
ecologies, but that instead individual species adapt to their environment so as to en-
hance their own survival. Many models have attempted to include such adaptation
[29, 30, 31, 32]. These models often assume that the population goes extinct if its
abundance drops below a critical threshold. In such a case the node is removed from
the network, and consequently the dynamics of the topology depends on the state of
the network.

The examples discussed above show that adaptive networks appear in a large
variety of different contexts. However, the nature and dynamics of the adaptive
feedback as such has to-date only been investigated in a relatively small number of
studies. In the following sections we focus on papers that specifically investigate the
adaptive interplay of state and topology and illustrate the implications this interplay
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can have.

3 Adaptive networks in epidemic dynamics

3.1 Epidemiological models

A simple framework for investigating epidemics spread is offered by contact processes,
which describe the transmission of some property, such as information, political opin-
ion, religious belief or epidemic infection along the network connections. One of the
simplest models in this class is the epidemiological SIS model. This model describes a
population of N individuals forming a social network with K bidirectional links. Each
individual is either susceptible (S) to the disease under consideration or infected ().
A susceptible individual in contact with an infected individual becomes infected with
a fixed probability p per unit time. Infected individuals recover at a rate r immedi-
ately becoming susceptible again. If considered on a static network the SIS model has
at most one dynamical transition. Below the transition only the disease-free state is
stable, while above the transition the disease can invade the network and approaches
an endemic state.

The spatial SIS model can be turned into an adaptive network if an additional
process is taken into account: susceptible individuals are allowed to protect them-
selves by rewiring their links [33]. This takes into consideration that humans tend
to respond to the emergence of an epidemic by avoiding contacts with infected indi-
viduals. By changing their local contact structure individuals can cause changes in
the topology of the network as a whole. Such structural changes can have a strong
effect on the dynamics of the disease, which in turn influences the rewiring process;
finally resulting in the typical complicated mutual interaction between a time varying
network topology and the dynamics of the nodes.

Such a scenario was studied by Gross et al. [33]. In their model with probability
w a given susceptible breaks the link to an infected neighbor and forms a new link to
another randomly chosen susceptible (Fig. 2). Double- and self-connections are not
allowed to form in this way. As was shown in Gross et al. [33] this simple intuitive
rewiring rule for the network connections has a profound impact on the emerging
network. Even for moderate rewiring probabilities it is able to change the dynamics
of the system qualitatively and generates specific network properties such as a wide
degree distribution, assortative degree correlations and the formation of two loosely
connected sub-compartments. The dynamical consequences are the emergence of
new epidemic thresholds (corresponding to first order transitions), the coexistence of
multiple stable equilibria (leading to hysteresis), and the appearance of an oscillatory
regime, all of which are absent on static SIS networks.

A first measure for the effect of adaptive rewiring is given by the threshold infection
probability p* that is necessary to maintain a stable epidemic. On a random graph
without rewiring (w = 0) the basic reproductive number, which denotes the secondary
infections caused by a single infected node on an otherwise susceptible network is
Ry = p(k)/r, where (k) = 2K /N is the mean degree of the nodes. Demanding that
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Figure 2: Adaptive rewiring in an epidemic network. Nodes can be either sus-
ceptible (open circle) or infected (filled circle). With a certain probability w per
unit time, susceptibles break their link to the infected individuals and form a new
connection to another randomly selected susceptible.

exactly one secondary infection is caused yields p* = r/(k). If rewiring is taken into
account a single infected node will on average loose a constant fraction w of its links.
Therefore the degree of such a node can be written as k(t) = (k) exp (—wt), where ¢
is the time since infection. By averaging over the typical lifetime 1/r of an infected
node, we obtain the effective number of links (k)(1 — exp (—w/r)) r/w and therefore
the threshold infection rate

"= = 1)
PR exp (—w/n)

Note that this corresponds to p* = r/(k) for w = 0, but p* = w/(k) for w > r. In this
sense a high rewiring rate can act as a very efficient protection and can significantly
increase the epidemic threshold and thereby reduce the prevalence of the epidemics
(see also Fig. 3 left). In comparison, the effect of adaptive rewiring on the topology
is more subtle. Even if a component of the network manages to disconnect itself from
all infected, it will generally not stay disease free since rewiring introduces an ongoing
mixing in the network that can re-establish bridges to the disconnected component
(see Fig. 3 right). In this sense in the adaptive social network there are no “safe
havens”.

However there are further topological effects. Consider first the trivial case in
which rewiring is independent of the state of the nodes. In this case the degree
distribution becomes Poissonian and the average degree k,, of the next neighbors of
a given node is independent of the degree k, as one would expect in a static random
graph. Now, assume that the adaptive rewiring rule described above is used, but the
local dynamics is switched off, 7 = p = 0. In this case the density of infected, 7, and
susceptibles, s = 1 — 4, stays constant. However, the number of Sl-links is reduced
systematically over time until the network has split into two disconnected clusters, one
of which is occupied by infected while the other is occupied by susceptibles. Assuming
that we start with a random graph, the per-capita densities of SS-, II- and SI-links are
initially lss = s%(k)/2, Iy = i*(k)/2 and ls; = (k)/2 — lss — l11 = si(k), respectively.
With adaptive rewiring, in the stationary state all SI links have been converted into SS
links so that lss = (1 —4%)(k)/2 and ls; = 0. Consequently, susceptibles and infected
assume different degree distributions pg, in which the mean degree of a susceptible
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Figure 3: Two main effects of adaptive rewiring. Similar to Fig. 2 nodes can
be either susceptible (open circles) or infected (filled circles). Edges that will be
reconnected in the next time step are indicated as dashed lines. Left (isolation): due
to rewiring infected nodes become isolated, which results in an effective reduction
of transmission. Right (mixing): the susceptible to the right is not connected to the
herd of infection and therefore without rewiring would be safe. Rewiring, however,
can connect previously non-connected or isolated compartments of the network,
and so allows for a transmission of the disease into the previously safe component.

node is (kg) = (1 + 4)(k) and the mean degree of an infected node is (k1) = (k).
While both clusters are still individually Poissonian, the susceptible cluster has a
higher connectivity. Since ky, is independent of k£ in each of the two clusters, the
degree correlation within each cluster vanishes. However a considerable net degree
correlation reorr > 0 (see section 2.1) can arise if both clusters are considered together
because k,,, is larger for the susceptible cluster.

Finally, consider the case with both adaptive rewiring and epidemic dynamics
(Fig. 4). Even though rewiring is not fast enough to separate infected and suscep-
tibles completely, it still structures the system into two loosely connected clusters
of susceptibles and infected (e.g., ls; ~ 0.01(k) in the figure). While inter-cluster
connections are continuously removed by rewiring, new ones are formed by recover-
ies in the infected cluster and infections in the susceptible cluster. With increasing
rewiring rate w the degree correlation grows rapidly. Moreover, the mean degree of
the susceptibles increases while the degree of the infected decreases slightly. Even
more pronounced is the increase in the variance of the degree distribution of suscep-
tibles [33]. This indicates the formation of strongly connected hubs and temporarily
isolated nodes, which are rapidly reconnected due to rewiring.

Thus, adaptive rewiring has different antagonistic effects on the spreading of the
disease. Locally, rewiring promotes the isolation of infected individuals, which can
significantly increase the epidemic threshold. However, in doing so rewiring intro-
duces a mixing of connections in the population so that every herd of infection has
the potential to jump into previously unconnected compartments of the network. Fi-
nally, over a longer timescale rewiring leads to a build up of links in the susceptible
population. In this way a highly connected cluster of susceptibles is formed in which
the epidemic rapidly propagates once it manages to invade. Therefore the local effect
of rewiring tends to suppress the epidemic while the topological effect promotes it.
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Figure 4: Spontaneous ’division of labour’ in the model of Gross et al. [33].
Plotted is the degree distribution pi for susceptibles (circles) and infected (dots).
Two topologically distinct populations of nodes emerge and are characterized by
low and high degree k respectively. Parameters are N = 10°, K = 10%, w = 0.3,
r = 0.002, p = 0.008.

The adaptive rewiring of the topology leads to large temporal fluctuations in the
degree k;(t) of a node (see Fig. 5). The picture reveals three characteristic phases:

i: jump upwards
As long as an individual is susceptible, it rapidly obtains new links due to the
rewiring activity of the other susceptibles. This results in a fast increase in the
degree of the node which is approximately linear in time, k(t) = wlgy.

ii: jump downwards
Once a susceptible has become infected, very rapidly all susceptible neighbors
rewire and cut the connection. This results in an even faster reduction in the
degree directly after infection, until the infected has only infected neighbors.

iii: decay
Eventually the infected neighbors of the node under consideration recover and
immediately rewire to new susceptible neighbors. This results in the third phase,
characterized by a slow exponential decay in the degree, k(t) ~ —wk. This phase
continues until the infected node itself recovers and phase (i) is reinitialized.

Note that the fast phases (i) and (ii) give rise to the characteristic spikes in the
temporal dynamics k;(t) of the degree of a single node, while the slow phase (iii)
accounts for the long exponentially decaying segments (see Fig. 5). In this way, by
ongoing changes in the local degree of each node, a complicated dynamical equilibrium
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Figure 5: Dynamics of a single node in the fixed point regime. Plotted is the
local degree k(t) of a single node as a function of time. Obviously, even in the
steady state there are locally strong fluctuations in the topology. The picture
reveals three characteristic phases in the dynamics of the degree of a single node
(see text). The inset shows an enlarged view of the fast temporal spikes when
the node under consideration has recovered and is in the state S. Parameters are
N =10°,L =10% w = 0.4,p = 0.008,r = 0.002.

can form in which the average number of inter- and intra-cluster links as well as the
density of susceptibles and infected stays constant.

In order to capture the dynamics of the adaptive network it is useful to consider
a low dimensional model. From the discussion above both the dynamic state and the
topological structure of the network can be characterized in terms of the density of
infected ¢ and the second network moments: the density of links between susceptibles
lss and the density of links between susceptibles and infected Ig;. To describe the
time evolution of these variables Gross et al. [33] and subsequently also Zanette [34]
apply the moment closure approximation proposed in [35]. In this pair approximation
the density of all triples l,p. in the network with the respective states a,b,c € {S, T}
are approximated by lape = laplpe/b, i.e., as the product of the number of ab-links l4
with the probability l;./b that a given node of type b has a be-link. This yields for
instance for the density of S-S-I chains

2lgg 1
lsst ~ %7 (2)

where s = 1 — i is the density of susceptibles.
Using this approximation, straightforward calculation leads to a system of three
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coupled ordinary differential equations

—dti = plsi—ri (3)
d lst
—1 = l — +1)—-2rl 4
qem pSI(S+> 11 (4)
d 2plsilss
7Z = l —_—
g lss (r+w) lst S (5)

The first term in Eq. (3) describes the infection of susceptible individuals, while the
second term describes recovery. These two processes also effect the dynamics of the
links. The first term in Eq. (4) corresponds to the conversion of SI links into IT links
as a result of new infections while the second term represents the conversion of II
links into ST links as a result of recovery. Equation (5) is analogous except for the
fact that the conversion of SI links into SS links by rewiring has been taken into
account. Note that in Egs. (3 - 5) three dynamical variables are necessary, while the
system-level dynamics of the standard (non-adaptive) SIS model can be captured by
only one variable. This illustrates that in the adaptive model two topological degrees
of freedom communicate with the dynamics of the nodes.

Investigation of the low dimensional model reveals a complex bifurcation structure
(for some background knowledge on Nonlinear Dynamical Systems and bifurcation
theory, see the contribution by U. Feudel in this volume [36]). Without rewiring, there
is only a single, continuous dynamical transition, which occurs at the well known epi-
demic threshold, p*. As the rewiring is switched on, this threshold increases in perfect
agreement with Eq. (1). While the epidemic threshold still marks the critical param-
eter value for the invasion of new diseases another, lower threshold, corresponding
to a saddle-node bifurcation, appears. Above this threshold an already established
epidemic can persist (endemic state). In contrast to the case without rewiring the
two thresholds correspond to discontinuous (1st order) transitions. Between them
a region of bistability is located, in which the healthy and endemic state are both
stable. Thus, a hysteresis loop is formed.

By numerical simulations Gross et al. show that the presence of a hysteresis
loop and first order transitions is a generic feature of the adaptive model and can
be observed at all finite rewiring rates (see Fig. 6). While increasing the rewiring
rate hardly reduces the size of the epidemic in the endemic state, the nature of the
persistence threshold changes at higher rewiring rates. First, a subcritical Hopf bifur-
cation, which gives rise to an unstable limit cycle replaces the saddle-node bifurcation.
At even higher rewiring rates this Hopf bifurcation becomes supercritical. Since the
emerging limit cycle is now stable, the Hopf bifurcation marks a third threshold at
which a continuous transition to oscillatory dynamics occurs.

Thus, at high rewiring rates the adaptive SIS model in [33] can approach an
oscillatory state in which the prevalence of the epidemic changes periodically. The
oscillations are driven by the two antagonistic effects of rewiring mentioned above. On
the one hand, rewiring isolates the infected and thereby reduces the prevalence of the
disease. On the other hand, the rewiring leads to an accumulation of links between
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Figure 6: Two parameter bifurcation of the adaptive epidemiological network
studied by Gross et al., Phys. Rev. Lett. 96, 208701 (2006), Fig. 4 [33]. Bifurca-
tions divide the parameter space into regions of qualitatively different dynamics,
depending on the infection probability p and the rewiring rate w. In the white
and light grey regions there is only a single attractor, which is a healthy state in
the white region and an endemic state in the light grey region. In the medium
grey region both of these states are stable. Another smaller region of bistability is
shown in dark grey. Here, a stable healthy state coexists with a stable epidemic
cycle. The transition lines between these regions correspond to bifurcations. The
dash-dotted line marks a transcritical bifurcation that corresponds to the threshold
at which the epidemic can invade the disease-free system. The region in which an
established epidemic can remain in the system is bounded by a saddle-node bifur-
cation (dashed), a Hopf bifurcation (continuous), and a fold bifurcation of cycles
(dotted). The saddle-node and transcritical bifurcation lines emerge from a cusp
bifurcation at p = 0.0001, w = 0.

17



Adaptive Networks (Blasius)

susceptibles and thereby forms a tightly connected cluster. At first the isolating
effect dominates and the density of infected decreases. However, as the cluster of
susceptibles becomes larger and stronger connected a threshold is crossed at which
the epidemic can spread through the cluster. This leads to a collapse of the susceptible
cluster and an increased prevalence which completes the cycle. While this cycle exists
only in a narrow region (Fig. 6) in the model described above, the parameter region
in which the oscillations occur and the amplitude of the oscillations are enlarged if
one takes into account that the rewiring rate can depend on the awareness of the
population and therefore on the prevalence of the epidemic [37].

For the control of real world diseases the mechanism of adaptive rewiring is ben-
eficial since it increases the invasion threshold and also the persistence threshold for
epidemics. However, the topological changes that are inevitably induced as a nat-
ural response to an emerging disease are a cause for concern. Vaccination policies
depend on a precise knowledge about important network properties. However, as we
have shown, the network structure can rapidly change in response to the onset of an
epidemic. Thus, the topology at the peak of a major epidemic can be very different
from that in the disease-free state. In particular, adaptive rewiring can lead to the
formation of a highly volatile cluster of susceptibles which enables the persistence
of epidemics even below the epidemic threshold. Further, it can rapidly introduce
positive degree correlations with a strong detrimental effect on the effectiveness of
targeted vaccination. As a consequence of the natural reaction of the network topol-
ogy, a disease which seems to be a minor problem while it is rare can be very difficult
to combat once it has reached an endemic state. Vaccination levels that may seem
sufficient in the healthy state may therefore be insufficient to stop epidemics of major
diseases.

4 Summary and Outlook

The four hallmarks of adaptive networks

Adaptive networks arise in a large number of different areas including ecological and
epidemiological systems; genetic, neuronal, and immune networks; distribution and
communication nets, and social models. The functioning of adaptive networks is
currently studied from very different perspectives including nonlinear dynamics, sta-
tistical physics, game theory and computer science. Despite the diverse range of
applications from which adaptive networks emerge, there are a number of hallmarks
of adaptive behaviour that recurrently appear [13, 14]:

e Robust topological self-organization.
The adaptive feedback provides a robust mechanism for global self organization
based on local rules. It enables the agents that form the network to robustly
organize into a state with special topological or dynamical properties.

e Spontaneous emergence of hierarchies and division of labour.
The self-organizing properties of adaptive networks may explain many of the
peculiar topological properties that we observe in the real world. One of these
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properties is the existence of different classes of nodes. In adaptive networks
classes of topologically and functionally distinct nodes can arise from an initially
homogeneous population. In certain models a ‘de-mixing’ of these classes is
observed, so that nodes that are in a given class generally remain in this class.

e Additional local degrees of freedom.
A genuine adaptive network effect which is not related to global topological
organization is the increased number of local degrees of freedom. Agents which
form an adaptive network can affect their local topological environment. Prop-
erties of the local topology can therefore be regarded as additional local degrees
of freedom.

o Complex system-level dynamics.

Since information can be stored and read from the topology, the dynamics
of adaptive networks involves local as well as topological degrees of freedom.
Therefore, the dynamics of adaptive networks can be more complex than that
of similar non-adaptive models. In particular adaptive networks can give rise
to new continuous and discontinuous phase transitions. Furthermore, even very
basic models of adaptive networks that are based on simple local rules can give
rise to complex global topologies.

Adaptive networks: future impacts

Adaptive networks could hold the key for addressing several current questions in many
areas of research, but in particular in biology [13]. Adaptive self-organization could
explain how neural and genetic networks manage to remain in a dynamically critical
state. Spontaneous division of labor could be important for many social phenomena,
such as leadership in simple societies, but also for developmental problems such as
cell differentiation in multicellular organisms. The capability of adaptive networks to
form complex topologies has not been studied in much detail, but it seems to offer
a highly elegant way to build up large-scale structures from simple building blocks.
A biological example where this certainly plays a role is for instance the growth of
vascular networks.

Many important processes have so far mainly been studied only on static networks.
However, by doing so important aspects of such systems may be overseen or neglected.
Take, for example, the spread of infectious diseases. Currently huge efforts are made
to determine the structure of real world social networks. These are then used as input
into complicated prediction models, which help to forecast the spread and dynamics
of future epidemics (e.g. influenza). However, the most involved model or the best
survey of the actual social network is in vain if it is not considered that people may
radically change their behaviour and social contacts during a major epidemic.

We want to stress that answers to the questions outlined above would not only
enhance our understanding of real world systems comprised of adaptive networks,
but could also be exploited in bio-inspired technical applications that self-assemble or
self-organize many subunits towards desired configurations. Such strategies are much
sought for because many of these artificial systems will soon be too complicated to
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be easily designed by hand. Thus adaptive network structures may hold the key to
provide novel, much-needed design principles and could well radically change the way
in which future electrical circuits, production systems or interacting swarms of robots
are operating.

Future challenges: towards a unifying theory of adaptive networks

From an applied point of view it is desirable to compose an inventory of the types
of microscopic dynamics that have been investigated in adaptive networks and their
impact on system-level properties. Such an inventory could give researchers a guide-
line as to what kind of phenomena can be expected in natural systems, where similar
processes are at work.

We note that the analysis of an adaptive network is not necessarily more involved
than that of its static counterpart. While the nodes in static networks generally
have different topological neighbourhoods, by contrast, the neighbourhood of nodes
in adaptive networks changes over time. Because of this mixing of local topologies the
network as such becomes more amenable to averaging and mean field descriptions.
However caution is in order, because naive mean field approximations can fail if a
spontaneous division of labour occurs in the system and is not taken into account.

While the study of adaptive networks is presently only a minor offshoot, the results
summarized above lead us to believe that it has the potential to grow into a strong
new branch of network research. In particular, the prospect of a unifying theory and
the widespread applications highlight adaptive network as a promising area for future
research.

Since adaptive networks appear in many different fields and are already implicitly
contained in many models a theory of adaptive networks can be expected to have a
significant impact on several areas of active research. Future fundamental research in
adaptive networks should focus on supplying and eventually assembling the building
blocks for such a theory. For example, one open question is how exactly the observed
‘division of labour’ arises and how exactly nontrivial global topologies emerge from the
local interactions. Finally, it is an interesting question which topological properties
are affected by a given set of evolution rules, so that they can act as topological
degrees of freedom.

At present there is a striking discrepancy between the huge areas of science in
which adaptive networks regularly appear in models and the small number of papers
which are devoted to a detailed investigation of the dynamics of adaptive networks.
This discrepancy shows that adaptive networks are at present only a small offshoot
of network science, however it also shows that any insights gained in the investigation
of adaptive networks will potentially have an immediate impact on a large variety of
different fields.
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