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LINEAR CONVERGENCE OF DESCENT METHODS FOR THE
UNCONSTRAINED MINIMIZATION OF RESTRICTED STRONGLY

CONVEX FUNCTIONS

FRANK SCHÖPFER∗

Abstract. Linear convergence rates of descent methods for unconstrained minimization are
usually proven under the assumption that the objective function is strongly convex. Recently it
was shown that the weaker assumption of restricted strong convexity suffices for linear convergence
of the ordinary gradient descent method. A decisive difference to strong convexity is that the set
of minimizers of a restricted strongly convex function need be neither a singleton nor bounded.
In this paper we extend the linear convergence results under this weaker assumption to a larger
class of descent methods including restarted nonlinear CG, BFGS and its damped limited memory
variants L-D-BFGS. For twice continuously differentiable objective functions we even obtain r-step
superlinear convergence for the CG DESCENT conjugate gradient method of Hager and Zhang,
where r is greater than or equal to the rank of the Hessian at a minimizer. This is remarkable since
the Hessian of a restricted strongly convex function need not have full rank. Furthermore we show
that convex quadratic splines and objective functions of the unconstrained duals to some linearly
constrained optimization problems are restricted strongly convex. In particular this holds for the
regularized Basis Pursuit problem and its analogues for nuclear norm minimization and Principal
Component Pursuit.

Key words. linear convergence, restricted strong convexity, error bound, quadratic splines,
BFGS, conjugate gradient

AMS subject classifications. 65K, 90C

1. Introduction. Let f : Rn → R be convex with a Lipschitz-continuous gradi-
ent and nonempty set of minimizers Xf . We consider the unconstrained minimization

fmin := min
x∈Rn

f(x) (1.1)

by iteration methods of the form

xk+1 = xk + tk · dk for k = 0, 1, 2, . . . (1.2)

with step length tk > 0 and search directions dk of the conjugate gradient (CG) type

dk = −gk + βk · dk−1 ,

where gk := ∇f(xk) and βk ∈ R is a parameter, or Quasi-Newton methods,

dk = −B−1k gk , (1.3)

with symmetric positive definite matrices Bk ∈ Rn×n. This comprises ordinary gra-
dient descent for dk = −gk as well as BFGS and its limited memory variant L-BFGS
for large-scale problems, see eg. [45]. While the above assumptions on f are generally
sufficient to prove global convergence results under mild restrictions on tk and Bk, lin-
ear (or superlinear) convergence rates are usually obtained only under the additional
assumption that f is strongly convex. In the recent papers [65, 66] it was shown that,
for the ordinary gradient descent, linear convergence rates can be proven under the
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2 Linear convergence of descent methods for restricted strongly convex functions

weaker assumption that f is only restricted strongly convex on Rn, i.e. there is a
constant ν > 0 such that f satisfies for all x ∈ Rn the restricted secant inequality〈

∇f(x)−∇f
(
PXf

(x)
)
, x− PXf

(x)
〉
≥ ν ·

∥∥x− PXf
(x)
∥∥2
2
, (1.4)

where PXf
(x) denotes the orthogonal projection of x onto Xf . A decisive difference

to strong convexity is that Xf need be neither a singleton nor bounded.
Here we analyse to what extend restricted strong convexity is also sufficient to

guarantee linear convergence rates for the general methods above. In particular, for
search directions of the form (1.3) and several line search strategies including Wolfe
conditions and backtracking, we prove linear convergence rates for the decrease of
both the function values f(xk) − fmin and the distance ‖xk − x̂‖2 of the iterates to
some minimizer x̂ ∈ Xf under the assumption that f is restricted strongly convex
on the level set Lf(x0) := {x ∈ Rn | f(x) ≤ f(x0)} and that all matrices Bk, B

−1
k are

uniformly bounded. In fact the assumption of restricted strong convexity allows for
a very simple proof. A similar result was shown in [32] for the special case of f being
a convex quadratic spline, i.e. a differentiable convex piecewise quadratic function.
There the convergence analysis is based on error bounds proven in [31]. Especially it
was shown in [31] that for any convex piecewise quadratic function f (not necessarily
differentiable) and any δ > 0 there exists a constant γ > 0 such that for all x ∈ Rn
with f(x)− fmin ≤ δ we have

dist(x,Xf ) ≤ γ ·
√
f(x)− fmin . (1.5)

In [38] convex, not necessarily differentiable, functions with property (1.5) were called
optimally strongly convex, and for the minimization of such functions linear con-
vergence of the so called asynchronous stochastic coordinate descent algorithm was
proven. We show that (1.5) and (1.4) are actually equivalent on any level set of a
differentiable convex function f . This immediately implies that a convex quadratic
spline is also restricted strongly convex on any level set. Hence we extend the result
of [32] to a larger class of functions, while giving an even simpler proof. Further-
more we show that some of the limited memory damped BFGS methods (L-D-BFGS)
considered in [2] produce uniformly bounded matrices Bk, B

−1
k , and thus retain linear

convergence rates under the weaker assumption of restricted strong convexity. For the
standard BFGS method with a line search satisfying the Wolfe conditions we obtain
linear convergence rates for the decrease of both the function values f(xk) − fmin
and the distance dist(xk, Xf ) of the iterates to the set of minimizers. We also prove
linear convergence rates for CG methods with restarts, several types of line searches
and many choices of the parameter βk found in the literature. For twice continuously
differentiable objective functions we even obtain r-step superlinear convergence for
the CG DESCENT conjugate gradient method of Hager and Zhang [23], where r is
greater than or equal to the rank of the Hessian at a minimizer. This is remarkable
since the Hessian of a restricted strongly convex function need not have full rank.

An important class of problems that can be cast in the form (1.1) are linearly
constrained convex optimization problems

min
y∈Rm

g(y) s.t. Ay = b , (1.6)

where A ∈ Rn×m, b ∈ R(A), and g : Rm → R is strongly convex, which implies
that (1.6) has a unique solution ŷ ∈ Rm. The objective function of the unconstrained
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dual (1.1) to (1.6) is then given by f(x) := g∗(ATx)− 〈b , x〉, where g∗ is the convex
conjugate of g. It can be shown that linear convergence of dist(xk, Xf ) implies linear
convergence of the iterates yk := ∇g∗(ATxk) to ŷ, even if the iterates xk do not
converge. Hence all of the discussed methods can be applied to solve (1.6) with linear
convergence rates in case f is restricted strongly convex on Lf(x0). The question arises
whether restricted strong convexity of f is automatically implied by some properties
of g which are relatively simple to check. We can immediately give a positive answer
for piecewise quadratic (not necessarily differentiable) functions g, because then g∗

and f are actually convex quadratic splines, see [55]. One of the most prominent
examples for this case is given by the regularized Basis Pursuit problem, which arises
in the vast area of sparse optimization, see e.g. [7, 11, 19],

min
y∈Rm

1
2 · ‖y‖

2
2 + τ · ‖y‖1 s.t. Ay = b . (1.7)

See also [56] for explicit values of τ > 0 that guarantee exact recovery of sparse
solutions. The dual objective function fτ to (1.7) can be written as

fτ (x) = 1
2 ·
∥∥shrinkτ (ATx)

∥∥2
2
− 〈b , x〉 ,

where shrinkτ (y) := sign(y) · max{|y| − τ, 0} is the componentwise soft shrinkage
operator. In [63] it was observed that the well known linearized Bregman method
for the solution of (1.7) can be interpreted as an ordinary gradient descent method
applied to the dual with fτ , see also [40]. It follows from the results in [27] that the
linearized Bregman method converges linearly for constant step length tk, kicking [46]
and a BB-line search [63]. Here we extend this result to more line search strategies
and efficient descent methods like CG. It also follows from the results in [27] that fτ is
indeed restricted strongly convex on all of Rn. The proof given there yields an explicit
value for the constant ν in (1.4) but relies on the special structure of fτ . Hence we
may ask whether there is a simple characterization of convex quadratic splines that
are restricted strongly convex on all of Rn. We can give a partial answer by showing
that a convex quadratic spline f is restricted strongly convex on all of Rn and has
a bounded set of minimizers, if and only if f is coercive. It follows that all dual
objective functions f to problems of the form (1.6) are restricted strongly convex on
all of Rn, if g is strongly convex piecewise quadratic (which is the case in (1.7)), and
if A has full row rank, because then f is coercive. We point out that in [27] restricted
strong convexity of fτ was proven even without this additional assumption on A.

More generally we prove that the objective function f to the unconstrained dual
of (1.6) is restricted strongly convex on Lf(x0) if the subdifferential mapping ∂g is calm

at the optimal solution ŷ and if the constraint qualification rint
(
∂g(ŷ)

)
∩R(AT ) 6= ∅

holds. We show that ∂g is always calm at ŷ for functions of the form g(Y ) = h
(
σ(Y )

)
for matrices Y ∈ Rm×n and an absolutely symmetric convex piecewise quadratic
function h, where σ(Y ) is the vector of all singular values of Y . In particular this
holds for the objective function of the regularized nuclear norm optimization problem,

min
Y ∈Rm×n

1
2 · ‖Y ‖

2
F + τ · ‖Y ‖∗ s.t. A(Y ) = b , (1.8)

and the objective function of the regularized Principal Component Pursuit problem,

min
Y1,Y2∈Rm×n

1
2 · ‖Y1‖

2
F + τ1 · ‖Y1‖∗ + 1

2 · ‖Y2‖
2
F + τ2 · ‖Y2‖1 s.t. Y1 + Y2 = B , (1.9)
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which are analogues to (1.7) in the area of low rank matrix solutions like low rank
matrix completion and robust principal component analysis, see eg. [8, 9, 27, 36, 53]
and [64], where also explicit parameter values are given that guarantee exact recovery
of low rank solutions. To the best of our knowledge this is the first time that linear
convergence rates can be proven for the singular value thresholding algorithm of [6]
and its generalization for the solution of (1.8) and (1.9). But see also [26] for linear
convergence of the proximal gradient method for nuclear norm regularized problems.

In the next section we review the most important properties of restricted strongly
convex functions that are used for the convergence analysis in section 3, and establish
the restricted strong convexity of convex quadratic splines and the objective functions
of the unconstrained duals to some linearly constrained optimization problems.

2. Restricted strong convexity. We slightly extend the definition of restricted
strong convexity given in [27, 65] to the case that a function f can be restricted
strongly convex only on a convex subset C ⊂ Rn, and not necessarily on all of Rn.

Definition 2.1. Let f : Rn → R be convex differentiable with a nonempty set of
minimizers Xf , and let C ⊂ Rn be a closed convex subset with Xf ∩ C 6= ∅. Then f
is restricted strongly convex on C with constant ν > 0 if it satisfies for all x ∈ C the
restricted secant inequality〈

∇f(x)−∇f
(
PXf∩C(x)

)
, x− PXf∩C(x)

〉
≥ ν ·

∥∥x− PXf∩C(x)
∥∥2
2
. (2.1)

Note that ∇f
(
PXf∩C(x)

)
= 0 and that strongly convex functions satisfy (2.1).

We need the following well-known properties of a convex function with Lipschitz-
continuous gradient (cf. Proposition 12.60 in [55]).

Lemma 2.1. Let f : Rn → R be convex with a Lipschitz-continuous gradient with
constant L > 0. Then for all x, y ∈ Rn we have

f(y)− f(x) ≤ 〈∇f(x) , y − x〉+
L

2
· ‖y − x‖22 , (2.2)

〈∇f(y)−∇f(x) , y − x〉 ≥ 1

L
· ‖∇f(y)−∇f(x)‖22 . (2.3)

Restricted strongly convex functions have nice properties and satisfy error bounds
that are important for the convergence analysis of gradient based iteration methods.
See also [41, 42, 47] for the use of error bounds in mathematical programming.

Lemma 2.2. Let f : Rn → R be restricted strongly convex on C with constant
ν > 0. Then for all x ∈ C we have

ν ·
∥∥x− PXf∩C(x)

∥∥
2
≤ ‖∇f(x)‖2 , (2.4)

ν

2
·
∥∥x− PXf∩C(x)

∥∥2
2
≤ f(x)− fmin , (2.5)

f(x)− fmin ≤
1

ν
· ‖∇f(x)‖22 . (2.6)

If in addition f has a Lipschitz-continuous gradient with constant L ≥ 0 then we also
have

‖∇f(x)‖2 ≤ L ·
√

2

ν
·
√
f(x)− fmin . (2.7)
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Proof. By applying the Cauchy-Schwartz inequality to (2.1) we get (2.4). To
show (2.5) we adopt the proof of Lemma 1 in [65]. For x ∈ C we set x̂ := PXf∩C(x)
and xt := x̂ + t(x − x̂) for t ∈ [0, 1]. Since C is convex we have xt ∈ C for all
t ∈ [0, 1] and x̂ is also the orthogonal projection of xt onto Xf ∩ C. By (2.1), and
since f(x̂) = fmin, we get

f(x)− fmin =

∫ 1

0

〈∇f(xt) , x− x̂〉 dt =

∫ 1

0

1

t
〈∇f(xt) , xt − x̂〉 dt

≥
∫ 1

0

ν

t
· ‖xt − x̂‖22 dt =

ν

2
· ‖x− x̂‖22 .

Furthermore, convexity of f implies

f(x)− fmin ≤ 〈∇f(x) , x− x̂〉 ≤ ‖∇f(x)‖2 · ‖x− x̂‖2 .

Inequality (2.6) then follows from (2.4), and (2.7) follows from (2.5).

An immediate consequence of (2.5) is the following.

Corollary 2.3. If f : Rn → R is restricted strongly convex on all of Rn and

has a bounded set of minimizers then f is coercive, i.e. lim‖x‖2→∞
f(x)
‖x‖2

=∞.

The following lemma shows that (2.1) and (2.5) are actually equivalent for convex
differentiable functions.

Lemma 2.4. Let f : Rn → R be convex differentiable with a nonempty set of
minimizers Xf , and let C ⊂ Rn be a closed convex subset with Xf ∩ C 6= ∅. If there
is a constant γ > 0 such that for all x ∈ C we have

dist(x,Xf ∩ C) ≤ γ ·
√
f(x)− fmin ,

then f is restricted strongly convex on C with constant ν := 1
γ2 .

Proof. By convexity of f we have f(x) − fmin ≤
〈
∇f(x) , x− PXf∩C(x)

〉
, from

which the assertion follows.

In general it is not easy to check whether a function f is restricted strongly convex,
since projections onto the set of mimimizers may not be easy to analyse. But there are
some interesting classes of functions with this property. The following example is a
slight variation of Theorem 5 in [65] and Theorem 2 in [66], and its proof is analoguous.
It shows that the composition of a linear mapping with a strongly convex mapping
is restricted strongly convex, even if the linear mapping has a nonempty nullspace,
so that the composition cannot be strongly convex. Let Lfδ := {x ∈ Rn | f(x) ≤ δ}
denote a level set of a function f : Rn → R.

Example 2.5. Let A ∈ Rm×n, δ > 0, and g : Rm → R be differentiable such that
the function f(x) := g(Ax) has a nonempty set of minimizers. If g is strongly convex

on Lgfmin+δ
then f is restricted strongly convex on Lffmin+δ

. If g is strongly convex
on all of Rn then f is restricted strongly convex on all of Rn. Obviously, if g is twice
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continuously differentiable then so is f .

See also [60] for related results. Further examples are discussed in the next two
subsections.

2.1. Convex quadratic splines. Several types of optimization problems can
be formulated as unconstrained minimization problems with convex quadratic splines,
e.g. the Basis Pursuit problem, least distance problems or convex quadratic programs,
see [32, 35] and the references therein. Restricted strong convexity of convex quadratic
splines is a consequence of Lemma 2.4 and the following error bound result.

Theorem 2.6 (Theorem 2.7 in [31]). For any convex piecewise quadratic func-
tion f : Rn → R with a nonempty set of minimizers and any δ > 0 there exists a
constant γ > 0 such that (1.5) holds for all x ∈ Lffmin+δ

.

Example 2.7. Any convex quadratic spline f : Rn → R with a nonempty set of
minimizers is restricted strongly convex on Lffmin+δ

for all δ > 0.

We point out that any convex quadratic spline also has a Lipschitz-continuous gradi-
ent. For further interesting properties we refer to [10]. Now we aim to characterize
convex quadratic splines that are restricted strongly convex on all of Rn.

Theorem 2.8. A convex quadratic spline f : Rn → R is restricted strongly con-
vex on all of Rn and has a bounded set of minimizers if and only if f is coercive.

Proof. Because of Corollary 2.3 it remains to prove the “if”-part. Coercivity of
f obviously implies a nonempty bounded set of minimizers Xf . Since f is piecewise
quadratic there are finitely many polyhedral sets Cj ⊂ Rn, j = 1, . . . , p, whose union
equals Rn and relative to each of which f(x) is given by a convex linear-quadratic
function

f(x) = 1
2 〈x ,Ajx〉+ 〈aj , x〉+ αj , x ∈ Cj ,

with symmetric positive semidefinite matrices Aj ∈ Rn×n, vectors aj ∈ Rn and scalars
αj ∈ R. To show that f is restricted strongly convex on all of Rn we use Example 2.7
on a level set and analyse the behaviour of f on unbounded regions Cj . By Corollary
3.53 in [55] each polyhedral region Cj can be written in the form Cj = Dj +Kj with
a bounded polyhedral set Dj and a closed convex cone Kj , j = 1, . . . , p. Then we
have

db := max
{

max
j=1,...,p

max
y∈Dj

‖y‖2 , max
y∈Xf

‖y‖2
}
<∞ .

Let J∞ be the set of all indices j such that Cj is unbounded. Especially we have
Kj 6= {0} for all j ∈ J∞. Fix some y ∈ Dj . Then for any 0 6= z ∈ Kj and t > 0 we
have y + t · z ∈ Cj and thus can write

f(y + t · z) = f(y) + t · 〈∇f(y) , z〉+
t2

2
〈z ,Ajz〉 .

By letting t → ∞ it follows that 〈z ,Ajz〉 > 0, because f is coercive. Hence we also
have

λ := min
j∈J∞

min
z∈Kj ,‖z‖2=1

〈z ,Ajz〉 > 0 .



Frank Schöpfer 7

Choose R > db large enough such that

µR :=
√
λ− (

√
λ+
√
L) · 2db

R− db
> 0

and set

fR := max
x∈Rn,‖x‖2≤R

f(x) .

By Example 2.7 there is a constant νR > 0 such that the restricted secant inequal-
ity (1.4) holds for all x ∈ LfR . Now let x /∈ LfR be arbitrary. Then we have
‖x‖2 > R > db and hence x must lie in some unbounded region, i.e. x = y + z ∈ Cj
for some j ∈ J∞ and y ∈ Dj , z ∈ Kj . We set x̂ := PXf

(x). Then we have
‖x− x̂‖2 ≥ R− db and hence

‖y − x̂‖2 ≤ 2db ≤
2db

R− db
· ‖x− x̂‖2 .

With this we can estimate√
〈x− x̂ , Aj(x− x̂)〉 ≥

√
〈z ,Ajz〉 −

√
〈y − x̂ , Aj(y − x̂)〉

≥
√
λ · ‖z‖2 −

√
L · ‖y − x̂‖2

≥
√
λ · ‖x− x̂‖2 − (

√
λ+
√
L) · ‖y − x̂‖2

≥
(√

λ− (
√
λ+
√
L) · 2db

R− db

)
· ‖x− x̂‖2

= µR · ‖x− x̂‖2 ,

which yields

〈x− x̂ , Aj(x− x̂)〉 ≥ µ2
R · ‖x− x̂‖

2
2 . (2.8)

Consider the line segment xt := x̂+t(x−x̂) for t ∈ [0, 1]. Since ‖x̂‖2 < R < ‖x‖2 there
is a unique point t1 ∈ (0, 1) such that ‖xt1‖2 = R < ‖xt‖2 for all t ∈ (t1, 1]. Hence
xt1 ∈ LfR . Furthermore we can find finitely many points t1 < t2 < . . . < tN = 1 and
corresponding indices jk such that xt ∈ Cjk for all t ∈ [tk, tk+1] and k = 1, . . . , N − 1.
It follows that all Cjk with k > 1 are unbounded and (2.8) also holds with x and Aj
replaced by xtk and Ajk respectively (note that we also have x̂ = PXf

(xtk)). Then
we can write

〈∇f(x) , x− x̂〉

=

N−1∑
k=1

〈
∇f(xtk+1

)−∇f(xtk) , x− x̂
〉

+ 〈∇f(xt1) , x− x̂〉

=

N−1∑
k=1

〈
xtk+1

− xtk , Ajk(x− x̂)
〉

+ 〈∇f(xt1) , x− x̂〉

=

N−1∑
k=1

tk+1 − tk
t2k+1

·
〈
xtk+1

− x̂ , Ajk(xtk+1
− x̂)

〉
+

1

t1
〈∇f(xt1) , xt1 − x̂〉
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Finally we estimate the first summand by (2.8) and the second summand by (1.4) to
get

〈∇f(x) , x− x̂〉 ≥
N−1∑
k=1

tk+1 − tk
t2k+1

· µ2
R ·
∥∥xtk+1

− x̂
∥∥2
2

+
νR
t1
· ‖xt1 − x̂‖

2
2

≥ min{µ2
R, νR} · ‖x− x̂‖

2
2 ,

from which the assertion follows.

Remark 2.9. Let the polyhedral sets Cj ⊂ Rn be the defining regions of f as in
the preceding proof. Since Xf is polyhedral too, we have

dmin := min{dist(Cj , Xf ) |Cj ∩Xf = ∅} > 0 ,

and hence dist(x,Xf ) ≥ dmin for all x ∈ Cj with Cj ∩Xf = ∅. As a consequence the
iterates of the descent methods in section 3 will always stay in a solution region Cj
(i.e. Cj ∩Xf 6= ∅) after finitely many iterations.

2.2. Unconstrained duals to linearly constrained optimization prob-
lems. To establish the restricted strong convexity result we need the concepts of
calmness of a set-valued mapping [55] and linear regularity of a collection of convex
sets [3]. Let Bε(x) denote the 2-norm ball with radius ε > 0 and center x ∈ Rn.

Definition 2.2. A set-valued mapping S : Rn ⇒ Rm is calm at x̂ ∈ Rn if
S(x̂) 6= ∅ and there are constants ε, L > 0 such that for all x ∈ Bε(x̂)

S(x) ⊂ S(x̂) + L · ‖x− x̂‖2 ·B1(0) .

Such mappings are also called locally upper Lipschitz-continuous in [54].

Example 2.10.

(a) Any polyhedral multifunction, i.e. a set-valued mapping whose graph is the
union of finitely many polyhedral convex sets, is calm at each x̂ ∈ Rn. In
particular this holds for the subdifferential mapping

∂f(x) := {x∗ ∈ Rn | f(y) ≥ f(x) + 〈x∗ , y − x〉 for all y ∈ Rn}

of a convex piecewise quadratic function f : Rn → R.
(b) Let h : Rm → R be a convex piecewise quadratic function which is absolutely

symmetric, i.e. h(x1, . . . , xm) = h
(
|xπ(1)|, . . . , |xπ(m)|

)
for any permutation

π of the indices. Then the subdifferential mapping of the convex function
g(X) := h

(
σ(X)

)
is calm at each X̂ ∈ Rm×n. In particular this holds for

the nuclear norm ‖X‖∗ := ‖σ(X)‖1, the spectral norm ‖X‖2 := ‖σ(X)‖∞
and the objective function in (1.8), g(X) = 1

2 · ‖X‖
2
F + τ · ‖X‖∗, where

‖X‖F := ‖σ(X)‖2 denotes the Frobenius norm.
(c) The subdifferential mapping of the objective function in (1.9), g(X1, X2) =

1
2 · ‖X1‖2F + τ1 · ‖X1‖∗ + 1

2 · ‖X2‖2F + τ2 · ‖X2‖1, is calm at each (X̂1, X̂2) ∈
Rm×n ×Rm×n. Here ‖X‖1 denotes the 1-norm of all entries of a matrix X.
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Proof. For (a) see Proposition 1 in [54], and (c) follows from (a) and (b). To show
(b) we may without loss of generality assume that m ≤ n. For d ∈ Rm we denote by
diag(d) ∈ Rm×n a (rectangular) matrix which is zero except for the vector d on its
main diagonal. Let X = U diag

(
σ(X)

)
V T be a singular value decomposition (SVD)

of a given matrix X ∈ Rm×n, i.e. U ∈ Rm×m and V ∈ Rn×n are orthogonal and σ(X)
is the vector of the singular values σ1(X) ≥ . . . ≥ σm(X) ≥ 0 of X. It follows from
Theorem 7.1 in [29] that the subdifferential of g at X is given by (see also [62])

∂g(X) = {U diag(d)V T |X = U diag
(
σ(X)

)
V T is a SVD of X and d ∈ ∂h

(
σ(X)

)
} .

Fix some X̂ ∈ Rm×n. It follows from Lemma 4.3 in [58] that for any X near X̂
and any SVD of X = U diag

(
σ(X)

)
V T there are orthogonal matrices Û ∈ Rm×m

and V̂ ∈ Rn×n such that U − Û = O(‖X − X̂‖2), V − V̂ = O(‖X − X̂‖2), and
both ÛT X̂X̂T Û and V̂ T X̂T X̂V̂ are diagonal where the first m diagonal elements are
σ1(X̂)2, . . . , σm(X̂)2 and the remaining ones are zero. For the positive singular values
σi(X̂) > 0 we redefine the column vectors Ûi := 1

σi(X̂)
X̂V̂i. Then Û remains orthog-

onal and X̂ = Û diag
(
σ(X̂)

)
V̂ T is a SVD of X̂. Since the singular value functions

σi(X) are Lipschitz-continuous (cf. [30, 58]) we still have U − Û = O(‖X − X̂‖2).

By (a) for X near X̂ and any d ∈ ∂h
(
σ(X)

)
there exists some d̂ ∈ ∂h

(
σ(X̂)

)
with

d − d̂ = O(‖X − X̂‖2). Hence for any X∗ ∈ ∂g(X) there exists some X̂∗ ∈ ∂g(X̂)
with X∗ − X̂∗ = O(‖X − X̂‖2).

The next theorem shows that the standard constraint qualification together with a
boundedness assumption implies linear regularity. For a closed convex set C ⊂ Rn we
denote by rint(C) the relative interior of C.

Theorem 2.11 (Corollary 6 in [3]). Suppose C1, . . . Cm ⊂ Rn are closed convex
sets, where Cr+1, . . . , Cm are polyhedral for some r ∈ {0, . . . ,m}. If C :=

⋂m
i=1 Ci is

bounded and
⋂r
i=1 rint(Ci)∩

⋂m
i=r+1 Ci 6= ∅, then the collection {C1, . . . Cm} is linearly

regular, i.e. there exists γ > 0 such that for all x ∈ Rn we have

dist(x,C) ≤ γ ·
m∑
i=1

dist(x,Ci) .

For a matrix A ∈ Rn×m we denote by R(A) the range of A and by N (A) the
nullspace of A. The convex conjugate g∗ of a convex function g : Rm → R is defined
as g∗(y∗) := supy∈Rm 〈y∗ , y〉−g(y), see [55]. Note that the optimization problems (1.8)
and (1.9), or more generally problems of the form

min
Y ∈Rm1×m2

g̃(Y ) s.t. A(Y ) = b ,

with matrix variables Y ∈ Rm1×m2 , objective function g̃ : Rm1×m2 → R and a linear
operator A : Rm1×m2 → Rn can equivalently be written in the form (1.6) by the usual
way of identifying the matrix Y = mat(y) with the vector y := vec(Y ) ∈ Rm1·m2 of all
of its columns, the operator A with a matrix A ∈ Rn×(m1·m2) such that A(Y ) = A · y,
and the objective function with g(y) := g̃

(
mat(y)

)
= g̃(Y ). The subdifferentials are

then related by ∂g(y) = vec
(
∂g̃
(

mat(y)
))

.
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Theorem 2.12. Consider the linearly constrained optimization problem (1.6)
with A ∈ Rn×m, b ∈ R(A), and strongly convex g : Rm → R. Then (1.6) has a
unique solution ŷ and the objective function f(x) := g∗(ATx) − 〈b , x〉 of the uncon-
strained dual (1.1) to (1.6) is convex with a Lipschitz-continuous gradient ∇f(x) =
A∇g∗(ATx) − b and nonempty set of minimizers Xf = {x ∈ Rn |A∇g∗(ATx) = b}.
If the subdifferential mapping of g is calm at ŷ and if the collection {∂g(ŷ),R(AT )}
is linearly regular, then f is restricted strongly convex on Lffmin+δ

for any δ > 0.
Especially this holds in any of the following cases:

(a) g is a convex piecewise quadratic function.
(b) ∂g is calm at ŷ and the constraint qualification rint

(
∂g(ŷ)

)
∩ R(AT ) 6= ∅

holds.
(c) g(y) = g̃

(
mat(y)

)
where g̃ : Rm1×m2 → R is of the form g̃(Y ) = h

(
σ(Y )

)
for matrices Y , and with an absolutely symmetric convex piecewise quadratic
function h, and the constraint qualification rint

(
∂g(ŷ)

)
∩R(AT ) 6= ∅ holds.

(d) g has a Lipschitz-continuous gradient. If g is twice continuously differentiable
then so is f .

Proof. At first we note that in cases (a) and (c) calmness of ∂g at ŷ is auto-
matically fulfilled by Example 2.10. By Proposition 12.60 in [55] it holds that if g is
strongly convex with constant νg > 0 then ∇g∗ is Lipschitz-continuous with constant

Lg∗ := 1
νg

, and therefore ∇f is Lipschitz-continuous with constant L := Lg∗ · ‖A‖22.

Furthermore, if g has a Lipschitz-continuous gradient, then g∗ is strongly convex, and
hence in case (d) restricted strong convexity of f follows from Example 2.5. The
assertion about twice continuous differentiability of g∗, and hence f , is an immediate
consequence of the classical Legendre transform, cf. Example 11.9 in [55]. Note that
the optimal solution ŷ of (1.6) fulfills ∂g(ŷ) ∩ R(AT ) 6= ∅ and ŷ = ∇g∗(ATx) for all
x ∈ Xf . Furthermore, ∂g(ŷ)∩R(AT ) is bounded because the closed convex set ∂g(ŷ)
is bounded. Hence by Theorem 2.11 all cases (a), (b) and (c) imply linear regularity
of {∂g(ŷ),R(AT )}, which in turn implies that there exists γ > 0 such that for all
y∗ ∈ R(AT ) we have

dist
(
y∗, ∂g(ŷ

)
∩R(AT )) ≤ γ · dist

(
y∗, ∂g(ŷ)

)
. (2.9)

We prove restricted strong convexity of f by contradiction. Assume that f is not
restricted strongly convex on Lffmin+δ

for some δ > 0. Then there exists a sequence

xn ∈ Lffmin+δ
such that xn /∈ Xf and

lim
n→∞

〈
∇f(xn) , xn − PXf

(xn)
〉∥∥xn − PXf

(xn)
∥∥2
2

= 0 . (2.10)

We set y∗n := ATxn ∈ R(AT ) and yn := ∇g∗(y∗n). Hence we have y∗n ∈ ∂g(yn) and
ATPXf

(xn) ∈ ∂g(ŷ), but y∗n /∈ ∂g(ŷ). Since g is strongly convex there is a constant
c > 0 such that we can estimate the denominator in (2.10) by〈

∇f(xn) , xn − PXf
(xn)

〉
=
〈
yn − ŷ , y∗n −ATPXf

(xn)
〉
≥ c · ‖yn − ŷ‖22 .

To y∗n we can find some x̂n ∈ Xf such that ŷ∗n := P∂g(ŷ)∩R(AT )(y
∗
n) = AT x̂n ∈ ∂g(ŷ).

By (2.9) we have

‖y∗n − ŷ∗n‖2 = dist
(
y∗n, ∂g(ŷ) ∩R(AT )

)
≤ γ · dist

(
y∗n, ∂g(ŷ)

)
.
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Let σmin(A) > 0 denote the minimal positive singular value of A. Since we have
Xf +N (AT ) ⊂ Xf we can estimate the nominator in (2.10) by∥∥xn − PXf

(xn)
∥∥
2
≤
∥∥xn − ((x̂n + PN (AT )(xn − x̂n)

)∥∥
2

≤ 1
σmin(A) ·

∥∥ATxn −AT x̂n∥∥2 = 1
σmin(A) · ‖y

∗
n − ŷ∗n‖2

≤ γ
σmin(A) · dist

(
y∗n, ∂g(ŷ)

)
.

Hence it follows from (2.10) that

lim
n→∞

‖yn − ŷ‖2
dist

(
y∗n, ∂g(ŷ)

) = 0 . (2.11)

Furthermore, g∗ is coercive since g is finite everywhere, see Theorem 11.8 in [55]. This

implies boundedness of ATLffmin+δ
. Hence dist

(
y∗n, ∂g(ŷ)

)
remains bounded and it

follows from (2.11) that the sequence yn converges to ŷ. But then calmness of ∂g at ŷ
implies that dist

(
y∗n, ∂g(ŷ)

)
= O

(
‖yn − ŷ‖2

)
for all n large enough, which together

with (2.11) leads to a contradiction.

3. Linearly convergent descent methods. Here we analyse the convergence
behaviour of iteration (1.2) to solve the unconstrained optimization problem (1.1).
Throughout this section we make the following assumption about the function f .

Assumption 3.1. f : Rn → R is restricted strongly convex on the level set Lf(x0)

with constant ν > 0 and has a Lipschitz-continuous gradient with constant L > 0.

Furthermore we assume that at each iteration we have gk := ∇f(xk) 6= 0, because
otherwise we stop iterating after finitely many iterations with xk being a minimizer
of f , and the estimates for the rate of decrease remain valid as long as gk 6= 0. We set
fk := f(xk) and consider the following line search strategies to choose suitable step
lengths tk > 0 in (1.2) for descent directions dk, i.e. 〈dk , gk〉 < 0:

(LS1) Explicit value: Set tk := −c · 〈gk , dk〉
L · ‖dk‖22

for some constant c ∈ (0, 2).

(LS2) Wolfe conditions: Let 0 < α < β < 1 and choose tk such that

fk+1 ≤ fk + α · tk · 〈gk , dk〉 (3.1)

〈gk+1 , dk〉 ≥ β · 〈gk , dk〉 . (3.2)

(LS3) Backtracking: Let η ∈ (0, 1) and 0 < τ1 < τ2 < 1.
If t = 1 satisfies f(xk + t ·dk) ≤ fk + η · t · 〈gk , dk〉 then set tk := t. Otherwise
choose a new t ∈ [τ1 · t, τ2 · t] and repeat the test.
(This backtracking includes the Goldstein-Armijo rule of multiplying the old
value t by a constant factor τ ∈ (0, 1), as well as polynomial interpolation
methods.)

(LS4) Exact line search: Let tmax > 1 and t̂k fulfill
〈
∇f(xk + t̂k · dk) , dk

〉
= 0.

(LS4a) (without safeguard) Set tk := t̂k.
(LS4b) (with safeguard) Set tk := min{t̂k, tmax}.

The explicit value in (LS1) requires knowledge of the Lipschitz-constant L. But since
it requires no additional function or gradient evaluations it may be especially useful
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for large-scale applications. The Wolfe conditions (LS2) guarantee positive definite
matrix-updates in Quasi-Newton methods. Backtracking (LS3) is often preferred in
Newton-like methods when the approximate Hessian matrices Bk are close to the true
Hessian. Assumption (3.1) ensures that a step length tk > 0 satisfying (LS2) or (LS3)
can always be found, cf. [45]. In general t̂k in (LS4) need not exist if the set of mini-
mizers is unbounded, as the following counterexample demonstrates.

Counterexample 3.2. Let C ⊂ R2 be the closed convex and unbounded set
C := {(u, v) ∈ R2 |u > 0 , v ≥ 1

u}. Then the function f(x) := 1
2 ‖x− PC(x)‖22 has

a Lipschitz-continuous gradient ∇f(x) = x− PC(x) and is restricted strongly convex

on all of R2 with an unbounded set of minimizers Xf = C. For x0 :=

(
0
0

)
and

B−10 :=

(
2 −1
−1 1

)
we have PC(x0) =

(
1
1

)
, g0 = −

(
1
1

)
, d0 := −B−10 · g0 =

(
1
0

)
.

Hence for all t > 0 we have x0 + t · d0 =

(
t
0

)
/∈ C and therefore

0 < f(x0 + t · d0) ≤ 1

2

∥∥∥∥(t0
)
−
(
t
1
t

)∥∥∥∥2
2

=
1

2t2
−→ 0 for t→∞ ,

i.e. the infimum is not attained.

But if f has a bounded set of mimimizers Xf then it follows from (2.5) that the
level set Lf(x0) is bounded, and hence a minimizer t̂k as in (LS4) exists. For convex

quadratic splines t̂k in (LS4) always exists, even if Xf is unbounded, and an exact line
search can often be performed cheaply, see [31, 34, 40, 48]. Under Assumption (3.1)
all these line search methods guarantee sufficient decrease of the function value at
each iteration, and provide some control on the step length.

Lemma 3.3. All line searches (LS1)–(LS4) imply one of the following decrease
conditions: There are constants c1, c2 > 0 such that at each iteration we have

fk+1 ≤ fk − c1 ·
〈gk , dk〉2

‖dk‖22
(3.3)

or fk+1 ≤ fk + c2 · 〈gk , dk〉 . (3.4)

Furthermore, for search directions of the form (1.3) we have

(LS1) c

L·‖B−1
k ‖2

≤ tk ≤
c·‖Bk‖2

L ,

(LS2) 1−β
L·‖B−1

k ‖2
≤ tk ≤

‖Bk‖2
α·ν ,

(LS3) tk = 1 or τ1·(1−η)
L·‖B−1

k ‖2
≤ tk ≤ 1,

(LS4a) 1

L·‖B−1
k ‖2

≤ tk,

(LS4b) tk = tmax or 1

L·‖B−1
k ‖2

≤ tk ≤ tmax.

Proof. (LS1) Since ∇f is Lipschitz-continuous we can estimate by (2.2)

fk+1 ≤ fk + tk · 〈gk , dk〉+ t2k ·
L

2
· ‖dk‖22 ≤ fk −

c · (2− c)
2L

· 〈gk , dk〉
2

‖dk‖22
,
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which implies (3.3) for c1 := c·(2−c)
2L . The estimates for tk follow from

−〈gk , dk〉
‖Bk‖2

≤ ‖dk‖22 ≤ −
∥∥B−1k ∥∥

2
· 〈gk , dk〉 .

(LS2) It is well known that the Wolfe conditions imply (3.3). But since we need some
intermediate result we repeat the proof here. By the second Wolfe condition (3.2) and
Lipschitz-continuity of ∇f we have

−tk · (1− β) · 〈gk , dk〉 ≤ 〈gk+1 − gk , xk+1 − xk〉 ≤ L · t2k · ‖dk‖
2
2 , (3.5)

which implies

tk ≥ −
(1− β) · 〈gk , dk〉

L · ‖dk‖22
≥ 1− β
L ·
∥∥B−1k ∥∥

2

. (3.6)

Inserting this into the first Wolfe condition (3.1) yields (3.3) for c1 := α·(1−β)
L . Fur-

thermore it follows from (3.1) and (2.6) (restricted strong convexity) that

tk ≤
fk − fk+1

−α · 〈gk , dk〉
≤

‖gk‖22
−α · ν · 〈gk , dk〉

≤
‖Bk‖2
α · ν

. (3.7)

(LS3) This is proven in Lemma 4.1 of [4] and the proof given there is valid under
Assumption (3.1).
(LS4a) Since f(xk + t̂k · dk) ≤ f(xk + t̃k · dk) for t̃k as in (LS1) (and c := 1), we
have (3.3) for c1 := 1

2L . The lower estimate for tk holds, because the second Wolfe
condition (3.2) is fulfilled with equality for β := 0.
(LS4b) In case 〈gk+1 , dk〉 ≥ 1

tmax
·〈gk , dk〉 the second Wolfe condition (3.2) is satisfied

with β := 1
tmax

. Hence we have tk ≥ − (1−β)·〈gk ,dk〉
L·‖dk‖22

=: t̃k, where t̃k is a step length

of the form (LS1). Since f(xk + t · dk) is monotonically decreasing for t ∈ [0, t̂k]
we have fk+1 ≤ f(xk + t̃k · dk) and (3.3) follows as for (LS1). In case 〈gk+1 , dk〉 <

1
tmax

· 〈gk , dk〉 < 0 we must have tk = tmax. By convexity of f we then estimate

fk − fk+1 ≥ 〈gk+1 , xk − xk+1〉 = −tmax · 〈gk+1 , dk〉 > −〈gk , dk〉 ,

which yields (3.4) for c2 := 1.

We do not know whether the exact minimizer in (LS4a) can be bounded from above,
even if we always choose the first minimizer.

3.1. Quasi-Newton methods. Consider iteration (1.2) with any of the line
searches (LS1)–(LS4) and search directions of the form (1.3).

Theorem 3.4. If all matrices Bk and B−1k in (1.3) are uniformly bounded, i.e.
for some constant M > 0 we have ‖Bk‖2 ,

∥∥B−1k ∥∥
2
≤ M , then the following linear

convergence results hold: There exist constants q ∈ (0, 1) and γ1 > 0 such that

fk+1 − fmin ≤ q · (fk − fmin) ≤ (f0 − fmin) · qk+1 , (3.8)

dist(xk, Xf ) ≤ γ1 · q
k
2 . (3.9)
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Furthermore any but the exact linesearch (LS4a) without safeguard guarantees that
the iterates xk converge linearly to some minimizer x̂ ∈ Xf , i.e. there is a constant
γ2 > 0 such that

‖xk − x̂‖2 ≤ γ2 · q
k
2 . (3.10)

Proof. By Lemma 3.3 all line searches imply at each iteration (3.3) or (3.4),
where (3.3) in turn implies

fk+1 ≤ fk −
c1

(‖Bk‖2 ·
∥∥B−1k ∥∥

2
)2
· ‖gk‖22 ≤ fk −

c1
M2
· ‖gk‖22 ,

and (3.4) in turn implies

fk+1 ≤ fk −
c2
‖Bk‖2

· ‖gk‖22 ≤ fk −
c2
M
· ‖gk‖22 .

Hence in any case there is a constant c > 0 such that

fk+1 − fmin ≤ fk − fmin − c · ‖gk‖22 . (3.11)

It follows inductively that all iterates xk remain in Lf(x0). Since f is assumed to be
restricted strongly convex on Lf(x0) we can use inequality (2.6) to estimate

−‖gk‖22 ≤ −ν · (fk − fmin) ,

from which (3.8) follows with q := 1 − c · ν. Together with (2.5) this immediately
implies (3.9). It remains to prove convergence of the iterates xk. By (2.7) we have

‖xk+1 − xk‖2 = tk · ‖dk‖2 ≤ tk ·
∥∥B−1k ∥∥

2
· ‖gk‖2

≤ tk ·
∥∥B−1k ∥∥

2
· L ·

√
2

ν
·
√
fk − fmin .

Since ‖Bk‖2 ≤ M we know by Lemma 3.3 that all but the exact linesearch (LS4a)
guarantee that the step length tk remains bounded. Hence together with (3.8) it

follows that for some constant γ > 0 we have ‖xk+1 − xk‖2 ≤ γ · q k
2 . From this we

conclude that xk is a Cauchy-sequence and hence convergent to some x̂ ∈ Rn with
the rate (3.10) for γ2 := γ

1−√q . Finally (3.9) shows that we indeed have x̂ ∈ Xf .

Remark 3.5. For (LS1), (LS2) and (LS4a) it actually suffices that the condition
numbers ‖Bk‖2 ·

∥∥B−1k ∥∥
2

of Bk are uniformly bounded.

One of the referees pointed out that a part of Theorem 3.4 follows from a more gen-
eral result of [61]. There the convergence of a class of projected gradient methods
for the solution of constrained optimization problems was analyzed for functions f
fulfilling some error bounds, which in the unconstrained case are fulfilled under our
Assumption 3.1. For unconstrained problems Theorem 8 in [61] reads as follows.

Theorem 3.6. Let β, γ > 0 such that the iterates xk satisfy

xk+1 = xk − tk · gk + ek , (3.12)

‖ek‖2 ≤ β · ‖xk − xk+1‖2 ,
fk − fk+1 ≥ γ · ‖xk − xk+1‖22 ,
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with step lengths tk such that infk tk > 0. Then the function values fk decrease lin-
early, i.e. (3.8) holds.

Indeed by setting ek := tk · (gk − B−1k gk) iteration (1.2), (1.3) can be written in the
form (3.12). For uniformly bounded ‖Bk‖2 ,

∥∥B−1k ∥∥
2
≤M we have

‖ek‖2 ≤ (1 +M) · tk · ‖gk‖2 ≤ (1 +M) ·M · ‖xk − xk+1‖2 ,

and ‖xk − xk+1‖2 ≤ tk ·M · ‖gk‖2. By Lemma 3.3 all line searches imply (3.11) and
all but (LS4a) guarantee that the step length remains bounded and away from zero
i.e. 0 < c1 ≤ tk ≤ c2. Hence we also have infk tk > 0 and

fk − fk+1 ≥ c · ‖gk‖22 ≥
c

(M · c2)2
· ‖xk − xk+1‖22 .

Nevertheless we decided to present our proof of Theorem 3.4 because of its simplicity
and because we do not see how to infer linear convergence from the result of [61] for
the exact line search (LS4a), which is meaningful for convex quadratic splines.

Now we analyse the convergence behaviour when the matrices Bk in (1.3) are
obtained by the BFGS update formula

Bk+1 = Bk −
Bksks

T
kBk

〈sk , Bksk〉
+

yky
T
k

〈yk , sk〉
, (3.13)

where yk := gk+1 − gk and sk := xk+1 − xk, see eg. [4, 5]. Matrix-updates of the
form (3.13) remain positive definite if the initial matrix B0 is positive definite and if
〈yk , sk〉 > 0, which is guaranteed by the second Wolfe condition (3.2), see Theorem
7.8. in [18].

Theorem 3.7. Consider iteration (1.2) together with the Wolfe conditions (LS2).
Choose a symmetric positive definite matrix B0 ∈ Rn×n and for k = 1, 2, . . . let the
matrices Bk in (1.3) be obtained by the BFGS update formula (3.13). Then there exist
constants q ∈ (0, 1) and γ > 0 such that

fk − fmin ≤ (f0 − fmin) · qk ,
dist(xk, Xf ) ≤ γ · q k

2 .

Proof. We define pk := 〈sk ,Bksk〉
‖Bksk‖22

= − 〈gk ,dk〉‖gk‖22
. From the first Wolfe condition (3.1)

and (2.6) it follows that

fk+1 − fmin ≤ fk − fmin − α · tk · pk · ‖gk‖22
≤ (fk − fmin) · (1− ν · α · tk · pk)

≤ (f0 − fmin) ·
k∏
j=0

(1− ν · α · tj · pj) .
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Applying the geometric/arithmetic mean inequality twice we obtain

fk+1 − fmin ≤ (f0 − fmin) ·

 1

k + 1
·
k∑
j=0

(1− ν · α · tj · pj)

k+1

≤ (f0 − fmin) ·

1− ν · α ·

 k∏
j=0

tj · pj

 1
k+1

 .

Hence to prove the assertion it suffices to show that there exists c > 0 such that

k∏
j=0

tj · pj ≥ ck+1 .

To this end we adopt the common strategy to analyse the trace and the determinant
of the matrices Bk. By (3.13) the trace obeys the recursion

tr(Bk+1) = tr(Bk)−
‖Bksk‖22
〈sk , Bksk〉

+
‖yk‖22
〈yk , sk〉

.

With (2.3) we can estimate
‖yk‖22
〈yk ,sk〉 ≤ L and thus

tr(Bk+1) ≤ tr(Bk)− 1

pk
+ L ≤ tr(B0)−

k∑
j=0

1

pj
+ (k + 1) · L .

It follows that tr(Bk) ≤ tr(B0) + k · L and

k∑
j=0

1

pj
≤ (k + 1) · (tr(B0) + L) .

Again applying the geometric/arithmetic mean inequality we get

k∏
j=0

1

pj
≤

 1

k + 1

k∑
j=0

1

pj

k+1

≤ (tr(B0) + L)k+1 ,

which yields

k∏
j=0

pj ≥
(

1

tr(B0) + L

)k+1

.

To obtain a lower estimate for
∏k
j=0 tj we use the determinant

det(Bk+1) = det(Bk) · 〈yk , sk〉
〈sk , Bksk〉

.

The nominator equals −t2k · 〈gk , dk〉 and, as a consequence of the second Wolfe condi-
tion (3.2), the denominator can be estimated as in (3.5) by

〈yk , sk〉 ≥ −tk · (1− β) · 〈gk , dk〉 .
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Hence we have

det(Bk+1) ≥ det(Bk) · 1− β
tk
≥ det(B0) ·

k∏
j=0

1− β
tj

,

which yields

k∏
j=0

tj ≥
det(B0) · (1− β)k+1

det(Bk+1)
.

Together with the following chain of inequalities,

det(Bk) ≤ ‖Bk‖n2 ≤ tr(Bk)n ≤
(

tr(B0) + k · L
)n
,

we finally conclude that there is a constant c > 0 such that
∏k
j=0 tj · pj ≥ ck+1.

For large-scale problems it is preferable to use the limited memory BFGS method
(L-BFGS), see [37]. At each iteration k only the m most recent vector pairs sj , yj for
j = k −m, . . . , k − 1 are used to build up an approximation to the inverse Hessian
Hk = B−1k . For the convergence analysis it is more convenient to use Bk itself. Then
the updates can be described as follows:

At each iteration k an initial symmetric positive definite matrix B0
k (which is

allowed to be different for each k) is updated only m times according to (3.13), i.e.
for j = k −m, . . . , k − 1,

Bm−k+j+1
k = Bm−k+jk −

Bm−k+jk sjs
T
j B

m−k+j
k〈

sj , B
m−k+j
k sj

〉 +
yjy

T
j

〈yj , sj〉
, (3.14)

and Bk := Bmk . In the first k < m iterations we use m = k.
In the recent paper [2] it was reported that in several cases it can be advantageous

to use a damped version of L-BFGS, which is called the limited memory damped BFGS
method (L-D-BFGS). In L-D-BFGS the vectors yj in the update formula (3.14) are
replaced by

ykj = φkj · yj + (1− φkj ) ·Bm−k+jk sj , (3.15)

where φkj ∈ (0, 1] is a damping parameter. The following lemma shows that the matri-

ces Bk, B
−1
k remain symmetric positive definite and uniformly bounded for a suitable

choice of the damping parameter. Hence by Theorem 3.4 we can extend the con-
vergence result obtained in [2] for strongly convex functions to the case of restricted
strongly convex functions.

Lemma 3.8. Consider the L-D-BFGS update formula (3.14) with yj replaced by
ykj as in (3.15) for j = k −m, . . . , k − 1 and define

τkj :=
〈yj , sj〉〈

sj , B
m−k+j
k sj

〉 ≥ 0 .

If all initial matrices B0
k, (B

0
k)−1 are symmetric positive definite and uniformly bounded

and the parameters φkj ∈ (0, 1] are chosen such that for some constant c > 0

φkj · τkj + (1− φkj ) ≥ c (3.16)
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then all Bk, B
−1
k are symmetric positive definite and uniformly bounded as well.

Proof. At first we note that all line searches (LS1)–(LS4) ensure that sj 6= 0 as

long as gj 6= 0, and by (2.3) we always have L · 〈yj , sj〉 ≥ ‖yj‖22 ≥ 0. This implies
τkj ≥ 0 and that 〈yj , sj〉 = 0 if and only if yj = 0. By (3.15) and (3.16) we get〈

ykj , sj
〉〈

sj , B
m−k+j
k sj

〉 = φkj · τkj + (1− φkj ) ≥ c > 0 .

From this we inductively infer that
〈
ykj , sj

〉
> 0 and hence all matrix updates are

symmetric positive definite. It remains to show the boundedness of Bk, B
−1
k . Since

the function h(y, t) =
‖y‖22
t is convex for (y, t) ∈ Rn × R+, we consider the points

(
ykj ,
〈
ykj , sj

〉 )
= φkj ·

(
yj , 〈yj , sj〉

)
+ (1− φkj ) ·

(
Bm−k+jk sj ,

〈
sj , B

m−k+j
k sj

〉)

on the line segment between
(
yj , 〈yj , sj〉

)
and

(
Bm−k+jk sj ,

〈
sj , B

m−k+j
k sj

〉)
to get

∥∥ykj ∥∥22〈
ykj , sj

〉 ≤ φkj · ‖yj‖22〈yj , sj〉
+ (1− φkj ) ·

∥∥∥Bm−k+jk sj

∥∥∥2
2〈

sj , B
m−k+j
k sj

〉 .
As in the proof of Theorem 3.7 we can now estimate the trace from above by

tr(Bm−k+j+1
k ) = tr(Bm−k+jk )−

∥∥∥Bm−k+jk sj

∥∥∥2
2〈

sj , B
m−k+j
k sj

〉 +

∥∥ykj ∥∥22〈
ykj , sj

〉
≤ tr(Bm−k+jk )− φkj ·

∥∥∥Bm−k+jk sj

∥∥∥2
2〈

sj , B
m−k+j
k sj

〉 + φkj ·
‖yj‖22
〈yj , sj〉

≤ tr(Bm−k+jk ) + L ,

which implies tr(Bk) ≤ tr(B0
k) +m ·L. Hence all Bk are uniformly bounded. For the

determinant we get

det(Bm−k+j+1
k ) = det(Bm−k+jk ) ·

〈
ykj , sj

〉〈
sj , B

m−k+j
k sj

〉
= det(Bm−k+jk ) ·

(
φkj · τkj + (1− φkj )

)
,

which by (3.16) implies that det(Bk) ≥ det(B0
k) · cm. Hence all B−1k are uniformly

bounded as well.

Corollary 3.9. Under the assumptions of Lemma 3.8 the assertions of Theo-
rem 3.4 hold for the L-D-BFGS method.
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The simplest admissible choice for the damping parameter is φkj ∈ (0, 1 − c). The
following choice was considered in [2] and switches to the undamped L-BFGS for
certain values of τkj :

φkj :=


σ2

1−τk
j

, τkj < 1− σ2
σ3

τk
j −1

, τkj > 1 + σ3

1 , otherwise

with positive constants σ2 < 1 and σ3. This choice fullfills (3.16) since we have

φkj · τkj + (1− φkj ) =


1− σ2 , τkj < 1− σ2
1 + σ3 , τkj > 1 + σ3

τkj ≥ 1− σ2 , otherwise

.

For σ3 = ∞ and σ2 = 0.8 it reduces to the one given in [52]. Several other choices
were also compared numerically in [2], but as far as we can see some of them guaran-
tee (3.16) only under the stronger assumption that f is strongly convex.

Finally we remark that in [35] for a large class of convex quadratic splines a
regularized Newton method called QSPLINE was shown to find a solution of (1.1)
after finitely many iterations.

3.2. Conjugate Gradient methods. Nonlinear CG methods differ by the
choice of the parameter βk. Several well-known examples are listed in Table 3.1.
For quadratic objective functions all those choices coincide, but for general nonlinear
functions the corresponding CG methods behave quite differently.

Most results about CG methods in the literature are concerned with proving global
convergence for general nonlinear functions in the sense that lim infk→∞ gk = 0, see
e.g. [16, 24] and the many references therein. Here we consider restricted strongly
convex functions under Assumption 3.1 and descent methods with 〈dk , gk〉 < 0 and
decreasing function values fk. Together with Lemma 2.2 this immediately implies the
following.

Corollary 3.10. For any globally convergent CG method we have

lim
k→∞

fk = fmin , lim
k→∞

gk = 0 , lim
k→∞

dist(xk, Xf ) = 0 .

Results about convergence rates are scarce and mostly concentrate on quadratic ob-
jective functions, or n-step quadratic or n-step superlinear convergence, see eg. [13,
14, 28, 43, 57]. To obtain linear convergence rates we consider CG methods with
restarts after every r-th iteration, i.e. the search directions are chosen as

dk :=

{
−gk , k = 0 or k is a multiple of r

−gk + βk · dk−1 , otherwise
. (3.17)

We do not necessarily assume r ≥ n. The following Lemma shows that restarts ensure
that the norm of the search direction is bounded by the norm of the gradient.
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Table 3.1
Several choices for the conjugate gradient parameter βk (with yk−1 := gk − gk−1).

βHSk =
〈gk , yk−1〉
〈dk−1 , yk−1〉

(Hestenes and Stiefel [25])

βFRk =
‖gk‖22
‖gk−1‖22

≥ 0 (Fletcher and Reeves [21])

βPRPk =
〈gk , yk−1〉
‖gk−1‖22

(Polak, Ribière and Polyak [49, 50])

βCDk =
‖gk‖22

−〈dk−1 , gk−1〉
≥ 0 (“Conjugate Descent” [20])

βLSk =
〈gk , yk−1〉
− 〈dk−1 , gk−1〉

(Liu and Storey [39])

βDYk =
‖gk‖22

〈dk−1 , yk−1〉
≥ 0 (Dai and Yuan [17])

βPRP+
k = max{βPRPk , 0} ≥ 0 (Powell [51])

βTSk = max{0,min{βPRPk , βFRk }} ≥ 0 (Touati-Ahmed and Storey [59])

βGNk = max{−βFRk ,min{βPRPk , βFRk }} (Gilbert and Nocedal [22])

βDY CDk = min{βDYk , βCDk } ≥ 0 (Dai [15])

βk(λk, µk)=
λk·‖gk‖22+(1−λk)·〈gk ,yk−1〉

µk·‖gk−1‖22+(1−µk)·〈dk−1 ,yk−1〉
, λk, µk ∈ [0, 1] (Nazareth [44])

βNk = βHSk − λ ·
‖yk−1‖22 · 〈gk , dk−1〉

(〈dk−1 , yk−1〉)2
, λ > 1/4 (Hager and Zhang [24])

Lemma 3.11. Consider a CG method with restarts (3.17). If there is a constant
c > 0 such that the parameter βk fulfills

|βk| ≤ c ·
‖gk‖2
‖gk−1‖2

, (3.18)

then there exists some constant η > 0 such that for all k ≥ 0 we have

‖dk‖2 ≤ η · ‖gk‖2 . (3.19)

Especially this holds for all βk with

|βk| ≤ c ·max{βFRk , |βPRPk |} , (3.20)

and hence for βPRP+
k , βTSk , βGNk and βk(λk, µk) with λk ∈ [0, 1] and 0 < µ ≤ µk ≤ 1.

Proof. By (3.17) and (3.18) we get

‖dk‖2 ≤ ‖gk‖2 + |βk| · ‖dk−1‖2 ≤ ‖gk‖2 ·
(

1 + c ·
‖dk−1‖2
‖gk−1‖2

)
,

which yields

‖dk‖2
‖gk‖2

≤ 1 + c ·
‖dk−1‖2
‖gk−1‖2

.
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Since dl·r = −gl·r for all l ≥ 0 we infer that for all 0 ≤ i ≤ r − 1 we have

‖dl·r+i‖2
‖gl·r+i‖2

≤
i∑

j=0

cj ≤
r−1∑
j=0

cj =: η ,

from which (3.19) follows. To prove that the assertion holds for all βk with (3.20),
it suffices to show that βFRk and βPRPk fulfill (3.18). Since the function values fk are
assumed to be decreasing, we can estimate by Lemma 2.2

‖gk‖2 ≤ L ·
√

2

ν
·
√
fk − fmin ≤ L ·

√
2

ν
·
√
fk−1 − fmin ≤

√
2 · L
ν
· ‖gk−1‖2 ,

i.e. ‖gk‖2 ≤ c · ‖gk−1‖2 with c :=
√
2·L
ν . Hence we have βFRk ≤ c · ‖gk‖2‖gk−1‖2

and

|βPRPk | = | 〈gk , gk − gk−1〉 |
‖gk−1‖22

≤
‖gk‖2
‖gk−1‖2

·
‖gk‖2 + ‖gk−1‖2
‖gk−1‖2

≤ (1 + c) ·
‖gk‖2
‖gk−1‖2

.

Finally by (2.3) we get 〈dk−1 , yk−1〉 = 1
tk−1
·〈xk − xk−1 , gk − gk−1〉 ≥ 0, which implies

that for all λk ∈ [0, 1] and 0 < µ ≤ µk ≤ 1 we have |βk(λk, µk)| ≤ 1
µ ·(β

FR
k +|βPRPk |).

Not all line searches guarantee descent directions for all choices of βk. Notable ex-
ceptions are βDY CDk [15] and βNk [24]. At first we prove linear convergence with

exact line searches. Note that in this case we have 〈dk , gk〉 = −‖gk‖22, i.e. dk
is always a descent direction. Furthermore several of the parameters βk in Ta-
ble 3.1 coincide, i.e. βFRk = βCDk = βDYk and βPRPk = βHSk = βLSk = βNk and
βk(λk, µk) = λk · βFRk + (1− λk) · βPRPk for all λk, µk ∈ [0, 1].

Theorem 3.12. If a CG method with restarts (3.17) and exact line search (LS4a)
fulfills (3.18) then it is linearly convergent in the sense of (3.8) and (3.9). In partic-
ular this holds for all parameters βk in Table 3.1.

Proof. An exact line search (LS4a) implies (3.3) with c1 = 1
2L . Together with (2.6)

and (3.19) we get

fk+1 − fmin ≤ fk − fmin −
1

2L
·
‖gk‖22
‖dk‖22

· ‖gk‖22 ≤
(

1− ν

2L · η

)
· (fk − fmin) .

Now we turn to the CG methods of Dai and Yuan, and Hager and Zhang, for which
a Wolfe line search suffices to ensure that dk is a descent direction.

Theorem 3.13. The CG methods with βDYk , βDY CDk or βNk with restarts (3.17)
and a Wolfe line search (LS2) produce descent directions dk and are linearly conver-
gent in the sense of (3.8) and (3.10), i.e. the iterates xk converge to some minimizer
x̂ ∈ Xf .

Proof. In the proofs of Theorem 4.1 in [16], formula (4.12), and Theorem 3.4
in [15], formula (3.17), it was inductively proven that for βDYk and βDY CDk , with
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initial search direction d0 = −g0 and without restarts, dk is a descent direction and
we have

‖dk‖22
〈gk , dk〉2

≤
‖dk−1‖22

〈gk−1 , dk−1〉2
+

1

‖gk‖22
, (3.21)

from which follows that
‖dk‖22
〈gk ,dk〉2

≤
∑k
j=0

1
‖gj‖22

. With restarts we can use the same

method of proof to conclude that dk is a descent direction and that for all l ≥ 0 and
0 ≤ i ≤ r − 1 we have

‖dl·r+i‖22
〈gl·r+i , dl·r+i〉2

≤
i∑

j=0

1

‖gl·r+j‖22
.

Since the function values fk are then decreasing, we can estimate as in the proof of
Lemma 3.11 to get ‖gl·r+i‖2 ≤ c · ‖gl·r+j‖2 for all 0 ≤ j ≤ i. Hence we have

‖dl·r+i‖22
〈gl·r+i , dl·r+i〉2

≤ c · (i+ 1)

‖gl·r+i‖22
≤ c · r
‖gl·r+i‖22

, (3.22)

which implies − 〈gk ,dk〉
2

‖dk‖22
≤ −‖gk‖

2
2

c·r . Linear convergence of the function values then

follows by (3.3) and (2.6). Finally by (3.22) and (3.7) we get

‖xk+1 − xk‖2 = tk · ‖dk‖2 ≤
‖gk‖2 · ‖dk‖2
−α · ν · 〈gk , dk〉

· ‖gk‖2 ≤
√
c · r
α · ν

· ‖gk‖2 ,

from which (3.10) follows similarly as in the proof of Theorem 3.4.
The search directions with βNk fulfill the sufficient descent condition [24]

〈gk , dk〉 ≤ −
(
1− 1

4λ

)
· ‖gk‖22 . (3.23)

For notational simplicity in the following we use a generic constant c > 0. By (3.23),
the second Wolfe condition (3.2) and Lemma 3.11 we can estimate the first summand
in βNk by

|βHSk | ≤ c · |βPRPk | ≤ c ·
‖gk‖2
‖gk−1‖2

,

and, since ‖yk−1‖2 ≤ ‖gk‖2 + ‖gk−1‖2 ≤ c · ‖gk−1‖2, we can estimate the second
summand by

‖yk−1‖22 · | 〈gk , dk−1〉 |
(〈dk−1 , yk−1〉)2

≤ c ·
‖gk−1‖22 · ‖gk‖2 · ‖dk−1‖2

‖gk−1‖42
= c ·

‖gk‖2 · ‖dk−1‖2
‖gk−1‖22

.

Hence we have |βNk | ≤ c ·
‖gk‖2
‖dk−1‖2

·
(
‖dk−1‖2
‖gk−1‖2

+
‖dk−1‖22
‖gk−1‖22

)
and arrive at the recursion

‖dk‖2
‖gk‖2

≤ 1 + c ·
‖dk−1‖2
‖gk−1‖2

+ c ·
‖dk−1‖22
‖gk−1‖22

,

which for restarts yields ‖dk‖2 ≤ c · ‖gk‖2. Together with (3.6), (3.7) and (3.23) we
conclude that tk remains bounded and away from zero, i.e. 0 < tmin ≤ tk ≤ tmax.
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Hence (3.23) and the first Wolfe condition (3.1) imply fk+1 ≤ fk − c · ‖gk‖22. Fur-
thermore we get ‖xk+1 − xk‖2 ≤ c · ‖gk‖2, from which the linear convergence results
follow. Note that βNk then also remains bounded.

For very large scale problems it may be advantageous to dispense with a line search
procedure and instead rely on the explicit step length (LS1), see also [12].

Theorem 3.14. A CG method with restarts (3.17) and tk := − c·〈gk ,dk〉
L·‖dk‖22

produces

descent directions dk and is linearly convergent in the sense of (3.8) and (3.10), i.e.
the iterates xk converge to some minimizer x̂ ∈ Xf , in any of the following cases

(a) 0 < c ≤ 1 and βk ≥ 0 satisfies (3.18),
(b) 0 < c < 2 and βk = βCDk or βk = βDY CDk .

Proof. By the Lipschitz-continuity of ∇f we have

‖yk−1‖2 = ‖gk − gk−1‖2 ≤ L · tk−1 · ‖dk−1‖2 = −c · 〈gk−1 , dk−1〉
‖dk−1‖2

.

Hence for all βk ≥ 0 we get

〈gk , dk〉 = −‖gk‖22 + βk ·
(
〈gk−1 , dk−1〉+ 〈yk−1 , dk−1〉

)
≤ −‖gk‖22 + βk · (1− c) · 〈gk−1 , dk−1〉 .

From this we inductively infer that 〈gk , dk〉 ≤ −‖gk‖22 < 0 for all 0 < c ≤ 1. For βCDk
we (inductively) get

〈gk , dk〉 = −
(

2 +
〈yk−1 , dk−1〉
〈gk−1 , dk−1〉

)
· ‖gk‖22 ≤ −(2− c) · ‖gk‖22 < 0 ,

and hence also βCDk ≤ 1
2−c ·

‖gk‖2
‖gk−1‖2

, i.e. (3.18) holds. For βDY CDk inequality (3.21) was

shown to hold independent of the line search in [15]. Hence in all cases it follows to-

gether with (3.19) that we have − 〈gk ,dk〉
2

‖dk‖22
≤ −c1 · ‖gk‖22 and ‖xk+1 − xk‖2 ≤ c2 · ‖gk‖2

for some constants c1, c2 > 0. The assertion now follows from (3.3) and (2.6) similarly
as in the proof of Theorem 3.4.

The established estimates for the constant q in the convergence rates of the CG
methods are rather pessimistic, and indeed much worse than those for ordinary gradi-
ent descent. But this holds also for nonlinear strongly convex functions. For instance
for CG DESCENT with βNk we have ‖dk‖2 ≤ c · ‖gk‖2 with

c = 1 +
L

µ
+ λ · L

2

µ2
,

where µ is the modulus of strong convexity, cf. proof of Theorem 2.2 in [23] (this also
holds without restarts). Since c determines the lower estimate (3.6) for tk, a Wolfe
line search (3.1) then leads to the estimate

q ≤ 1− α · (1− β)

c2
·
(
1− 1

4λ

)2 · ν
L
,

which is worse than the corresponding one for ordinary gradient descent, since c
may be considerably larger than 1. This is in sharp contrast to the good numerical
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performance observed in applications. CG DESCENT often even outperforms L-
BFGS, see [23]. Nevertheless in the initial iterations CG methods can sometimes be
observed to be actually worse than ordinary gradient descent, which conforms with the
theoretical analysis. But for a sufficiently accurate line search and twice continuously
differentiable strongly convex functions n-step superlinear or even n-step quadratic
convergence can be established, which explains the superior numerical performance
near the solution, see eg. [13, 28, 43].

Based on the idea of proof in [43] we extend this result to restricted strongly
convex functions for CG DESCENT of Hager and Zhang. In the following we again
use a generic constant c > 0. For an increasingly accurate line search we replace the
second Wolfe condition (3.2) by the strong Wolfe condition

| 〈gk+1 , dk〉 | ≤ −min{c, εk} · 〈gk , dk〉 . (3.24)

with a null sequence εk > 0. The assertions and estimates of Theorem 3.13 then
still hold true, i.e. the iterates xk converge linearly to some minimizer x̂ ∈ Xf

with ‖xk − x̂‖2 = O(q
k
2 ) for some 0 < q < 1, and we get | 〈gk+1 , dk〉 | ≤ c · εk · ‖gk‖22.

Furthermore we infer from the sufficient descent condition (3.23) that ‖gk‖2 ≤ c·‖dk‖2.
We will make repeated use of the following facts established so far

‖gk‖2 = O(‖dk‖2) , ‖dk‖2 = O(‖gk‖2) , ‖gk+1‖2 = O(‖gk‖2) (3.25)

〈gk+1 , dk〉 = O(εk · ‖gk‖22) , ‖gk‖2 = O(q
k
2 ) , ‖xk − x̂‖2 = O(q

k
2 )

0 < tmin ≤ tk ≤ tmax , |βNk | ≤ c .

We assume that f is twice continuously differentiable and denote by H(x) its Hessian
at x. We set Ĥ := H(x̂) and define

Ek :=

∫ 1

0

(
H(xk + τ · tk · dk)− Ĥ

)
dτ . (3.26)

Note that limk→∞ ‖Ek‖2 = 0. If H(x) is even Lipschitz-continuous then we have
‖Ek‖2 = O(‖xk − x̂‖2).

At first we analyse the asymptotic behaviour of the step length tk, the CG param-
eter βNk and the search directions dk with respect to the Hessian Ĥ at the minimizer.

Lemma 3.15. If f is twice continuously differentiable then for CG DESCENT
with increasingly accurate line search there is k0 ∈ N such that for all k ≥ k0 we have

(a)
〈dk ,Ĥdk〉
‖gk‖22

≥ c and
〈dk+1 ,Ĥdk〉
‖gk‖22

= O(εk + ‖Ek‖2),

(b) tk = −〈gk ,dk〉
〈dk ,Ĥdk〉 +O(εk + ‖Ek‖2),

(c) βNk = βHSk +O(εk−1).

Proof. By the sufficient descent condition (3.23) and the strong Wolfe condi-
tion (3.24) we get

c · ‖gk‖22 ≤ 〈gk+1 − gk , dk〉 = tk ·
〈
dk , Ĥdk

〉
+ tk · 〈dk , Ekdk〉 ,

from which the first part of (a) and (b) follow together with the facts stated in (3.25).
By the same arguments and ‖yk−1‖2 = ‖gk − gk−1‖2 = O(‖gk−1‖2) we can estimate
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the second summand in βNk to obtain (c). The second part of (a) then follows from

tk ·
〈
dk+1 , Ĥdk

〉
= 〈dk+1 , gk+1 − gk〉 − tk · 〈dk+1 , Ekdk〉

= −〈gk+1 , gk+1 − gk〉+ βNk+1 · 〈dk , gk+1 − gk〉+O(‖gk‖22 · ‖Ek‖2)

= −〈gk+1 , yk〉+ βHSk+1 · 〈dk , yk〉+O
(
‖gk‖22 · (εk + ‖Ek‖2)

)
= O

(
‖gk‖22 · (εk + ‖Ek‖2)

)
,

where the last equality is due to the definition of βHSk+1.

Now we can proof r-step superlinear convergence.

Theorem 3.16. Let f be twice continuously differentiable. Consider CG DESCENT
with increasingly accurate line search (3.24) and restarts with r ≥ r̂, where r̂ is the
rank of the Hessian Ĥ at the minimizer x̂ = limk→∞ xk. Then it holds

(a) We have r-step superlinear convergence in the following sense

lim
m→∞

‖gm·r+r̂‖2
‖gm·r‖2

= 0 and lim
m→∞

dist(xm·r+r̂, Xf )

dist(xm·r, Xf )
= 0 .

(b) If H(x) is Lipschitz-continuous and εk = O(‖gk‖2) then we have

‖gm·r+r̂‖2
‖gm·r‖2

= O(q
m·r
2 ) and

dist(xm·r+r̂, Xf )

dist(xm·r, Xf )
= O(q

m·r
2 ) .

(c) If there is a unique minimizer Xf = {x̂} then under the assumptions in (b)
we have r-step quadratic convergence in the following sense

‖gm·r+r̂‖2
‖gm·r‖2

= O(‖gm·r‖22) and
‖xm·r+r̂ − x̂‖2
‖xm·r − x̂‖2

= O(‖xm·r − x̂‖22) .

Proof. For simplicity we write k := m · r for all m ∈ N. For all 0 ≤ j ≤ r we have

Mk,j := max
0≤i≤j

{‖Ek+i‖2 , εk+i} → 0 , k →∞ .

At first we inductively show that for all 0 ≤ i ≤ j < r we have

〈gk+j+1 , dk+i〉 = O(‖gk+i‖2 · ‖gk‖2 ·Mk,j) ,

〈gk+j+1 , gk+i〉 = O(‖gk+i‖2 · ‖gk‖2 ·Mk,j) ,〈
dk+j+1 , Ĥdk+i

〉
= O(‖gk+i‖2 · ‖gk‖2 ·Mk,j) . (3.27)

For j = 0 this follows from the strong Wolfe condition (3.24) together with dk = −gk
for k = m · r, and Lemma 3.15 (a). Now assume that the assertion holds for some
j < r − 1 and all 0 ≤ i ≤ j. Then we have for i ≤ j

〈gk+j+2 , dk+i〉 = 〈gk+j+1 , dk+i〉+ 〈gk+j+2 − gk+j+1 , dk+i〉

= 〈gk+j+1 , dk+i〉+ tk+j+1 ·
〈

(Ĥ + Ek+j+1)dk+j+1 , dk+i

〉
= 2 · O(‖gk+i‖2 · ‖gk‖2 ·Mk,j) +O(‖gk+i‖2 · ‖gk‖2 · ‖Ek+j+1‖2)

= O(‖gk+i‖2 · ‖gk‖2 ·Mk,j+1)
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And for i = j + 1 this follows again from the strong Wolfe condition (3.24). Then we
also get for 0 < i ≤ j + 1

〈gk+j+2 , gk+i〉 = −〈gk+j+2 , dk+i〉+ βNk+i · 〈gk+j+2 , dk+i−1〉
= O(‖gk+i‖2 · ‖gk‖2 ·Mk,j+1) + βNk+i · O(‖gk+i−1‖2 · ‖gk‖2 ·Mk,j+1)

= O(‖gk+i‖2 · ‖gk‖2 ·Mk,j+1) ,

where the last estimate follows from
∥∥βNk+i · dk+i−1∥∥2 = ‖dk+i + gk+i‖2 = O(‖gk+i‖2)

and ‖gk+i−1‖2 = O(‖dk+i−1‖2). For i = 0 this holds since gk = −dk. Finally for i ≤ j
we get 〈

dk+j+2 , Ĥdk+i

〉
= −

〈
gk+j+2 , Ĥdk+i

〉
+ βNk+j+2 ·

〈
dk+j+1 , Ĥdk+i

〉
= −

〈
gk+j+2 , Ĥdk+i

〉
+O(‖gk+i‖2 · ‖gk‖2 ·Mk,j) ,

where we have

tk+i

〈
gk+j+2 , Ĥdk+i

〉
= 〈gk+j+2 , gk+i+1 − gk+i〉 − tk+i · 〈gk+j+2 , Ek+idk+i〉

= O(‖gk+i‖2 · ‖gk‖2 ·Mk,j+1) ,

which yields
〈
dk+j+2 , Ĥdk+i

〉
= O(‖gk+i‖2 · ‖gk‖2 ·Mk,j+1) for i ≤ j. For i = j + 1

this follows from Lemma 3.15 (a). Hence (3.27) is proven.

Now we define uk+i := Ĥ1/2dk+i

‖Ĥ1/2dk+i‖
2

∈ R(Ĥ1/2) = R(Ĥ) for 0 ≤ i ≤ r, where

Ĥ1/2 is the unique symmetric positive semidefinite square root of Ĥ. Note that by

Lemma 3.15 (a) we have
∥∥∥Ĥ1/2dk+i

∥∥∥
2
≥ c·‖gk+i‖2. Then ‖uk+i‖2 = 1 and from (3.27)

we infer that for all 0 ≤ i ≤ j < r we have

〈uk+j+1 , uk+i〉 = O
(
‖gk‖2

‖gk+j+1‖2
·Mk,j

)
. (3.28)

We will prove assertions (a) and (b) of this theorem by contradiction. Assume that (a)
is not true. Then there exists a subsequence of k = m·r, again denoted by k, such that
‖gk+r‖2
‖gk‖2

≥ c. It follows that ‖gk‖2 = O(‖gk+r‖2) = O(‖gk+j+1‖2). Hence by (3.28) we

get limk→∞ 〈uk+j+1 , uk+i〉 = 0, i.e. we may assume without loss of generality that

the vectors uk, . . . , uk+r̂−1 converge to an orthonormal basis û0, . . . , ûr̂−1 of R(Ĥ1/2).
But then, using (3.28) again for j = r̂ − 1, we arrive at a contradiction, because

1 =

r̂−1∑
i=0

| 〈uk+r̂ , ûi〉 |2 =

r̂−1∑
i=0

| 〈uk+r̂ , uk+i〉+ 〈uk+r̂ , ûi − uk+i〉 |2 → 0 , k →∞

Now we turn to (b). Since ‖xk − x̂‖2 = O(q
k
2 ) and ‖gk‖2 = O(q

k
2 ), a Lipschitz-

continuous Hessian H(x) and εk = O(‖gk‖2) imply ‖Ek‖2 = O(q
k
2 ) and εk = O(q

k
2 ).

Hence Mk,j = O(q
k
2 ). Assume that the assertion in (b) is not true. Then there exists

a subsequence of k = m · r, again denoted by k, such that
‖gk+r‖2
‖gk‖2·q

k
2
→∞ for k →∞.

But then we also get
‖gk+j+1‖2
‖gk‖2·q

k
2
≥ c · ‖gk+r‖2

‖gk‖2·q
k
2
→ ∞. Hence, again by (3.28), we get

limk→∞ 〈uk+j+1 , uk+i〉 = 0, which leads to the same contradiction as in case (a).
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Finally (c) follows similarly, because for a unique minimizer Xf = {x̂} we have

‖xk − x̂‖2 = dist(xk, Xf ) = O(‖gk‖2), and we can use ‖gk‖2 instead of q
k
2 .

As demonstrated in Counterexample 3.2 an exact minimizer tk for the line search
need not exist for restricted strongly convex functions. And even if it exists, e.g.
in case of a bounded set of minimizers Xf , convergence of the whole sequence xk
to a minimizer x̂ ∈ Xf cannot be guaranteed, which is crucial for the proof above.
Hence we actually have to use inexact line searches, both from theoretical as well
as computational considerations. Note that, since the rank r̂ of the Hessian Ĥ at x̂
may be considerably smaller than n, Theorem 3.16 suggests that in this case faster
convergence can be achieved by making restarts with r smaller than n. This may then
also be the case for strongly convex functions, if the Hessian Ĥ has several eigenvalues
close to zero. Preliminary numerical experiments seem to support this conjecture, but
more experiments are needed for decisive conclusions. To the best of our knowledge
this is the first kind of such a convergence result for CG methods applied to functions
with a rank deficient Hessian. In this regard Theorem 3.16 gives further strong the-
oretical support for the superior numerical performance of CG DESCENT compared
to several other CG methods. Indeed a close look at the proof of Theorem 3.16 reveals
that we needed the following properties of CG DESCENT:

• sufficient descent (3.23) with a (strong) Wolfe line search,
• the (asymptotic) conjugacy condition 〈yk−1 , dk〉 = 0 inherited from the CG

method with βHSk of Hestenes and Stiefel, cf. Lemma 3.15 (c).

So far we do not see how to extend this result to other CG methods, or even (L)-BFGS.

Finally we consider the case of strongly convex quadratic splines f . For such
functions it was shown in [33] that the iterates of a special CG method reach the
unique minimizer x̂ of f after finitely many iterations if f is twice continuously dif-
ferentiable at x̂. This method uses exact line searches and, instead of cyclic restarts,
automatically restarts if an iterate enters a new polyhedral region, where the repre-
senting linear quadratic function changes. Here we can extend this result to the CG
methods with any of the parameters βk in Table 3.1.

Theorem 3.17. Let f : Rn → R be a strongly convex quadratic spline with unique
minimizer x̂. Consider a CG method with an exact line search (LS4a) and any of the
parameters βk in Table 3.1. If we restart only if an iterate enters a new polyhedral
region, where the linear quadratic function representing f changes, then the iterates
converge linearly to x̂ in the sense of (3.8) and (3.10). If f is twice continuously
differentiable at x̂ then the iterates reach x̂ after finitely many iterations.

Proof. For strongly convex f and exact line searches all CG methods with any of
the parameters βk in Table 3.1 are known to be globally convergent without restarts.
It follows from Corollary 3.10 and Remark 2.9 that after finitely many iterations k0
all iterates will always be in a solution region of f . If never more than n consecutive
iterates stay in the same solution region, then restarts always occur after at most
max{n, k0} iterations, in which case the assertions of Theorem 3.12 remain valid.
Otherwise the linear quadratic function representing f remains the same for at least n
consecutive iterations, and, since a restart occured at entering the region, the method
reduces to the standard linear CG method which terminates after at most n iterations
with the exact solution x̂. Finally, if f is twice continuously differentiable at x̂ then x̂
lies in the interior of some solution region and hence the iterates will eventually stay
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in this same region, cf. proof of Theorem 3 in [33].

3.3. Linearly constrained optimization problems. Together with Theo-
rem 2.12, applying the descent methods to the unconstrained dual of (1.6), we imme-
diately get linear convergence of the primal iterates.

Corollary 3.18. Consider the linearly constrained convex optimization prob-
lem (1.6) with a strongly convex objective function g : Rm → R and unique solution
ŷ ∈ Rm. Apply any of the descent methods discussed in the previous subsections to the
unconstrained dual (1.1) with objective function f(x) = g∗(ATx)− 〈b , x〉, and define
the primal iterates as yk := ∇g∗(ATxk). If f satisfies Assumption 3.1, then there
exist constants q ∈ (0, 1) and γ > 0 such that

‖yk − ŷ‖2 ≤ γ · q
k
2 .

Especially this holds under the assumptions of Theorem 2.12. Furthermore, if g is
twice continuously differentiable then the CG method with βNk of Hager and Zhang
guarantees r-step superlinear convergence in the sense of Theorem 3.16, and also with
the corresponding expressions for ‖yk − ŷ‖2 replacing dist(xk, Xf ).

Proof. The assertion follows from the estimates

‖yk − ŷ‖2 =
∥∥∇g∗(ATxk)−∇g∗

(
ATPXf

(xk)
)∥∥

2
≤ Lg∗ · ‖A‖2 · dist(xk, Xf )

and dist(xk, Xf ) = O(
∥∥∇f(xk)−∇f

(
PXf

(xk)
)∥∥

2
) = O(‖yk − ŷ‖2).

We remark that here the explicit value (LS1) may be replaced by tk := − c·〈gk ,dk〉
Lg∗ ·‖AT dk‖22

,

which only involves Lg∗ and needs no estimate for ‖A‖2. And instead of the iterates
xk it suffices to store the iterates y∗k := ATxk, because we have y∗k+1 = y∗k + tk ·AT dk,
yk = ∇g∗(y∗k) and gk = ∇f∗(xk) = Ayk − b.

4. Conclusions. We have proven that, for a large class of descent methods for
unconstrained minimization including nonlinear CG and BFGS, linear convergence
rates can still be guaranteed if one replaces the assumption of strong convexity by the
weaker assumption of restricted strong convexity. For CG DESCENT we could obtain
r-step superlinear convergence, even if the Hessian at a minimizer is rank deficient.
Somewhat surprisingly there remains a little gap. So far we succeeded for the standard
BFGS method und its damped limited memory variant L-D-BFGS, but neither for
the damped BFGS [1] nor the undamped L-BFGS method. It would be interesting
to know whether this gap can be filled. Furthermore we have shown that convex
quadratic splines and objective functions of the unconstrained duals to some linearly
constrained optimization problems are restricted strongly convex. Future research
should establish restricted strong convexity for more classes of functions.
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