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Abstract

In this expository article we show how the concepts of manifolds with

corners, blow-ups and resolutions can be used e↵ectively for the construc-

tion of quasimodes, i.e. of approximate eigenfunctions of the Laplacian on

certain families of spaces, mostly exemplified by domains ⌦h ⇢ R2
, that

degenerate as h ! 0. These include standard adiabatic limit families and

also families that exhibit several types of scaling behavior. An introduc-

tion to manifolds with corners and resolutions, and how they relate to the

ideas of (multiple) scales and matching, is included.
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1 Introduction

This article gives an introduction to the ideas of blow-up and resolution, and
how they can be used for the construction of quasimodes for the Laplacian
in singular perturbation problems. Blow-up is a rigorous geometric tool for
describing multiple scales, which appear in many analytic problems in pure
and applied mathematics. The construction of quasimodes is a low-tech yet
non-trivial problem where this tool can be used e↵ectively.

The idea of scales. One of the fundamental ideas in analysis is scale. As an
illustration consider the function

f
h

(x) =
x

x+ h
, x 2 [0, 1] (1.1)

where h is a ‘small’ positive number, see Figure 1 for h = 0.1 and h = 0.01.
Observe that at x = 0 the function takes the value 0 while for ‘most’ values of
x it is ‘close’ to 1. On the other hand, taking x = h we get f

h

(h) = 1
2 , and

more generally if x is ‘on the order of h’ then f
h

(x) will be somewhere ‘definitely
between 0 and 1’.

This may be the way a physicist describes the function f
h

, even without the
quotation marks; to a mathematician the quotes create a sense of uneasiness,
so we search for a precise statement. We then realize that we are really talking
about the family of functions (f

h

)
h>0 and its limiting behavior as h! 0. More

precisely, we first have the pointwise limit

lim
h!0

f
h

(x) = f0(x) :=

(
0 if x = 0

1 if x > 0.
(1.2)

On the other hand, we have the rescaled limit where we set x = hX and fix X
while letting h! 0:

lim
h!0

f
h

(hX) = g(X) :=
X

X + 1
, X � 0 . (1.3)
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Figure 1: Graph of f
h

for h = 0.1 and h = 0.01, and limits at two scales

The function g shows how the transition from the value 0 to almost 1 happens
in f

h

. We call this the limit of f
h

at the scale x ⇠ h, while (1.2) is the limit at
the scale x ⇠ 1. We could also consider other scales, i.e. limits lim

h!0 fh(haX)
with a 2 R, but they don’t give new insights in this case: if a < 1 then we get
the jump function f0 while for a > 1 we just get zero.

Summarizing, we see that the family (f
h

) has non-trivial behavior at two
scales, x ⇠ 1 and x ⇠ h, for h! 0.

Geometric resolution analysis and matched asymptotic expansions. This rough
first explanation of scales will be made more precise in Section 2. But let us now
turn to real problems: Consider a di↵erential equation whose coe�cients depend
on a parameter h, and have non-trivial behavior at several scales as h! 0. We
then ask how the solutions behave as h ! 0. Of course we expect them to
exhibit several scales also.1 The same phenomenon arises in so-called singular
perturbation problems, where the type of the equation changes at h = 0.2

Similarly, we could think of a partial di↵erential equation on a domain which
depends on h and has parts that scale in di↵erent ways, or which degenerates
to a lower-dimensional domain as h! 0, or both. For examples see Figures 13
and 15. Such problems arise frequently in global and geometric analysis as well
as in applied analysis (sometimes under the name of boundary layer problems).

1Although it is not essential for this article, as a warm-up exercise you may analyze the
behavior as h ! 0 of the solution of the di↵erential equation u0 + fh(x)u = 0, u(0) = 1, or
(more di�cult) of u00 + fh(x)u = 0, u(0) = 0, u0(0) = 1.

2As an example, consider the equation hu0 + u = 0, u(0) = 1. At h = 0 this is not even
a di↵erential equation! For h > 0 it has the solution uh(x) = e�x/h, which exhibits scaling
behavior as h ! 0 similar to fh.
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We will call them singular problems.
There is a standard method to attack such problems, called matched asymp-

totic expansions (MAE) and commonly used in applied analysis since the mid-
1900s (see e.g. [31]): Roughly speaking, for each scale appearing in the problem
you make an ansatz for the Taylor expansion (in h) of the solution at this scale
and plug it into the equation. This yields recursive sets of equations for the
Taylor coe�cients. The fact that the solutions at di↵erent scales must ‘fit to-
gether’ yields boundary conditions that make these equations well-posed (and
often explicitly solvable).

Of more recent origin is a di↵erent but closely related method, which has
been used frequently in global and geometric analysis and which we call geomet-
ric resolution analysis3 (GRA): the starting point is a shift in perspective, which
in the example above is to consider f : (x, h) 7! f

h

(x) as a function of two vari-
ables rather than as a family of functions of one variable. Then f has singular
behavior at (x, h) = (0, 0), and the scaling considerations above can be restated
as saying that this singularity can be resolved by blowing up the point (0, 0) in
(x, h)-space, as will be explained in Section 2. In order to analyze the solutions
of a singular di↵erential equation we first resolve its singularities by suitably
blowing up (x, h)-space; then the asymptotic behavior of solutions is obtained
by solving model problems at the h = 0 boundary faces of the blown-up space.
The model problems are simpler than the original problem and correspond to
the recursive sets of equations of MAE.

Eigenfunctions and quasimodes. The purpose of this article is to introduce the
concepts needed for geometric resolution analysis and apply them to problems
in spectral theory. The needed concepts are manifolds with corners, blow-up
and resolution. The spectral problem is to analyze solutions � 2 R, u : ⌦ ! R
of the equation

��u = �u

where � is the Laplacian on a bounded domain ⌦ ⇢ R2, and the Dirichlet
boundary condition u = 0 at @⌦ is imposed. This problem has natural general-
izations to higher dimensions, manifolds and other boundary conditions, some
of which will occasionally also be considered. The eigenvalues form a sequence
0 < �1  �2  · · ·!1 and can usually not be calculated explicitly. But if we
look at families of domains ⌦

h

which degenerate to a line segment as h! 0 then
we have a chance to analyze the asymptotic behavior of �

k

(h) (and associated
eigenfunctions) as h ! 0. Here we fix k while letting h ! 0. Other regimes
are also interesting, e.g. k going to 1 like h�1, but we don’t consider them
here. One expects that the leading term in the asymptotics can be calculated
by solving a one-dimensional (ODE) problem. This is indeed the case also for
higher order terms, but the details of how this works depend crucially on how
⌦

h

degenerates (the ‘shape’ of ⌦
h

). We will analyze several interesting cases of
such degenerations.

3As far as I know, no name has been coined for the method in the literature. This name
must not be confused with the so-called geometric multi-resolution analysis, a method for the
analysis of high dimensional data.
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A standard approach to analyzing such eigenvalue problems is to first con-
struct so-called quasimodes, i.e. pairs (�, u) which solve the eigenvalue equation
up to a small, i.e. O(hN ), error, and then to show that the quasimodes are
close to actual solutions. The construction yields the full asymptotics (i.e. up
to errors O(hN ) for any N) of quasimodes, and then of actual eigenvalues and
eigenfunctions as h ! 0. It is in the construction of quasimodes where GRA
(or MAE) is used, and we will focus on this step in this article. The second
step is quite straight-forward if the operator is scalar and the limit problem is
one-dimensional, as is the case for all problems considered here. See Remark
5.5, [12], [20], [53] and point (V) below. For higher dimensional limit problems
quasimodes need not be close to modes, see [4].

Why GRA? The methods of geometric resolution analysis and matched asymp-
totic expansions are closely related: they are really di↵erent ways to encode the
same calculational base. GRA requires you to learn and get used to some new
concepts, like manifolds with corners and blow-up, while MAE is very ‘down-to-
earth’. Here are some points why it may be worth to invest the e↵ort to learn
about GRA. I hope they will become clear while you read this article.

(I) GRA provides a rigorous framework for the powerful idea of MAE. For
example, the ‘expansions at di↵erent scales’ of a putative solution u(x, h)
are simply Taylor expansions at di↵erent faces of u when considered on
(i.e. pulled back to) the blown-up space.

(II) GRA provides conceptual clarity. In GRA the ‘singular’ aspects of a
problem are dealt with in the geometric operation of blow-up. Then
the analysis (solution of di↵erential equations) is reduced to non-singular
model problems, and to a version of the standard Borel lemma. In this
way essential structures of a problem are clearly visible, while notationally
messy (but essentially trivial) calculations involving multiple Taylor series
run invisibly in the background. This also helps to identify common
features of seemingly di↵erent problems.

(III) GRA helps to stay sane in complex settings. Often more than two model
problems appear, and remembering how they fit together (the ‘match-
ing conditions’ of MAE) may be a torturous task. In GRA each model
problem corresponds to a boundary face of the resolved space, and their
relations can be read o↵ from how these faces intersect.

(IV) GRA may guide the intuition. The true art in solving singular problems is
to identify the scales that can be expected to appear in the solutions. The
geometric way of thinking about singularities often helps to ‘see’ how to
proceed, see Section 7 for a nice example. An added complication is that
sometimes solutions exhibit more scales than the data (i.e. the coe�cients
or the domains), as the setting in Section 6 shows. It is desirable to have
systematic methods to find these. These are beyond the scope of this
article however, and we refer to [51].
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(V) GRA can be refined to provide a systematic way to extend modern PDE
methods like the pseudodi↵erential calculus to singular problems, and
embeds them in a larger mathematical framework, see [50], [51], [14]. In
this way one may also carry out the second step mentioned above, proving
that quasimodes are close to actual solutions, in the framework of GRA,
by analyzing the resolvent on a blown-up double space, see e.g. [43].

In this article we use simple examples to explain structures which also arise in
more elaborate contexts. We consider planar domains and the scalar Laplacian,
but the methods generalize without much extra work to manifolds and systems
of elliptic PDEs (for example the Hodge Laplacian on di↵erential forms). This
is indicated at the end of each section. The methods can also be extended to
study many other types of singular degenerations (with more work!), for example
families of triangles degenerating to a line (ongoing work with R. Melrose, see
also [7], [53]), domains from which a small ball is removed etc.

The results presented here are not new, and in some cases more precise or
more general results have been obtained by other methods, as is indicated in
the subsections on generalizations. In the PDE literature blow-up methods have
mostly been used in the context of microlocal analysis. Our purpose here is to
illustrate their use on a more elementary level, and to introduce a systematic
setup for applying them to quasimode constructions. A minor novelty seems
to be the use of the quasimode and remainder spaces E(M),R(M) and their
associated leading part maps, see Section 3 and Definitions 5.1, 7.1 and 7.3,
although it is reminiscent of and motivated by the rescaled bundles used for
example in [43].

Outline of the paper

In Section 2 we introduce the main objects of geometric resolution analysis
(manifolds with corners, blow-up and resolution) and explain how they relate
to the idea of scales. If you are mostly interested in quasimode constructions
it will su�ce to skim this section and only use it for reference; however, for
Section 7 more of this material will be needed. In the remaining sections we
show how quasimodes can be constructed using geometric resolution analysis.
The examples are ordered to have increasing complexity, so that later examples
use ideas introduced in previous examples plus additional ones. For easier read-
ing the main steps of the constructions are outlined in Section 3. To set the
stage, we first consider regular perturbation problems in Section 4. All further
problems are eigenvalue problems on families of domains ⌦

h

which degenerate
to a line segment as h! 0. Such problems are sometimes called ‘adiabatic limit
problems’. The simplest setting for these, where the cross section has constant
lowest eigenvalue, is considered in Section 5. The treatment is general enough
to apply to fibre bundles with Riemannian submersion metrics. Variable eigen-
values of the cross section, which occur for example when ⌦

h

is an ellipse with
half axes 1 and h, will introduce new scales, and this is analyzed in Section 6.
Then in Section 7 we consider a problem where ⌦

h

scales di↵erently in some
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parts than in others. Here it will be especially apparent how the geometric way
of thinking guides us to the solution. The quasimode results are formulated in
Theorems 4.3, 5.4, 6.1, 7.6. In Section 8 we summarize the main points of the
various quasimode constructions.

Related literature

The book [51] (unfinished, available online) introduces and discusses in great
generality and detail manifolds with corners and blow-ups and their use in anal-
ysis. The big picture is outlined in [48]. The focus in the present article is on
problems depending on a parameter h, where singularities only appear as h! 0
(so-called singular perturbation problems). Closely related are problems which
do not depend on a parameter but where the underlying space (or operator)
is singular, and the methods of geometric resolution analysis can be and have
been applied extensively in this context. A basic introduction to this is given
by the author in [14], with applications to microlocal analysis, including many
references to the literature. Other frameworks for manifolds with corners have
been proposed, see for example [33] and references there.

Blow-up methods have also been used in the context of dynamical systems,
e.g. in celestial mechanics [46], for analyzing geodesics on singular spaces [13]
or in multiple time scale analysis, see for example [8], [38], [57] and the book
[37], which gives an excellent overview and many more references.

The survey [17] discusses various types of ‘thin tube’ problems including
the ones discussed here; their origin as well as various methods and results are
explained. The books [41], [42] discuss many singular perturbation problems of
geometric origin and their solution by a method called ‘compound asymptotic
expansions’ there, which is similar to matched asymptotic expansions.

More references are given at the end of each section.

Acknowledgements
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‘Geometric and Computational Spectral Theory’ at the Centre de Recherches
Mathématiques in Montreal. I am grateful to the organizers of the school for
inviting me to speak and for suggesting to write lecture notes. I thank Leonard
Tomczak for help with the pictures and D. Joyce, I. Shestakov, M. Dafinger and
the anonymous referee for useful comments on previous versions of these notes.
My biggest thanks go to Richard Melrose for introducing many of the concepts
discussed here, and for many inspiring discussions.

2 A short introduction to manifolds with cor-
ners and resolutions

In this section the basic concepts of geometric resolution analysis are introduced:
manifolds with corners, polyhomogeneous functions, blow-up, resolutions. We
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[dom f, (0, 0)]

dom g dom f0

Figure 2: Domains of f and of its rescaled limits f0 and g, and how they relate
to each other. Dotted arrows mean ‘identify with’.

emphasize ideas and introduce concepts mostly by example or picture (after all,
we are talking geometry here!), hoping that the interested reader will be able
to supply precise definitions and proofs herself, if desired. Many details can be
found in [50] and [51].

To see where we’re heading consider the example from the introduction:

f(x, h) =
x

x+ h
, x, h � 0, (x, h) 6= (0, 0) .

Recall its h! 0 limits at two scales:

f0(x) = lim
h!0

f(x, h) =

(
0 (x = 0)

1 (x > 0)
, g(X) = lim

h!0
f(hX, h) =

X

X + 1
,

see Figure 1. The ‘geometry’ (of geometric resolution analysis) resides in the
spaces on which these functions are defined, i.e. their domains:

dom f = R2
+, dom f0 = R+, dom g = [0,1]

where
R+ := [0,1) .

See Figure 2. Actually, f is not defined at (0, 0), but we ignore this for
the moment. For g we have added 1 to its domain, where we set g(1) =
lim

X!1 g(X) = 1. We’ll see in a moment why this makes sense.
These spaces are simple examples of manifolds with corners. We ask:

Can we understand f0 and g as restrictions of f to suitable subsets
of its domain?

For f0 this is easy: if we identify dom f0 with the lower edge of dom f then
f0 is simply the restriction of f . (Again we should exclude the point (0, 0).)
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How about understanding g as a restriction of f? Can we reasonably identify
dom g as a subset of dom f? This is less obvious. Note that, for any X � 0,
h 7! f(hX, h) is the restriction of f to the ray

R
X

:= {(x, h) 2 dom f : x = hX, h > 0} .

By definition, g(X) is the limit of this restriction as h ! 0, so it should be
the value of f at the endpoint of R

X

. This remains true for X = 1 if we set
R1 = {(x, 0) : x > 0}. Now this endpoint is (0, 0), so we have two problems:
First, f is not defined there, and second, the endpoints of all rays R

X

(with
di↵erent X) coincide.

That’s why we don’t find dom g in dom f . But there is a way out, and this
is the idea of blow-up: we simply add a separate endpoint for each ray R

X

to
the picture.

That is, we remove (0, 0) from dom f and replace it by a quarter circle as
in Figure 2. This produces a new space, denoted [dom f, (0, 0)] and called the
blow-up of (0, 0) in dom f . A precise definition is given in Section 2.3. It involves
polar coordinates, and the quarter circle corresponds to r = 0. We denote the
quarter circle by ↵ (‘front face’). Each point of the blown-up space corresponds
to a point of dom f , as is indicated in Figure 2 by the dashed rays. We encode
this by a map

� : [dom f, (0, 0)]! dom f

which maps ↵ to (0, 0) and is bijective between the complements of these sets.
Under this correspondence, f translates into the function �⇤f := f � � on
[dom f, (0, 0)]. Essentially, we will see that �⇤f is ‘f written in polar coordi-
nates’. This simple construction solves all our problems:

• �⇤f is defined on all of [dom f, (0, 0)], including its full boundary. It is
actually smooth, once we define what smoothness means on [dom f, (0, 0)].

• If we identify ↵ with [0,1] (the endpoint of the ray R
X

being identified
with X 2 [0,1]) then g is the restriction of �⇤f to ↵.

• The pointwise limit f0(x) = lim
h!0 f(x, h) is, for x > 0, still the restric-

tion of f to the lower part of the boundary of [dom f, (0, 0)].

In addition, as we will see later, �⇤f also encodes how f0 and g relate to each
other (so-called ‘matching’).

Summarizing, the multiple scales behavior of f is completely encoded by
the behavior of �⇤f near the boundary of [dom f, (0, 0)], and di↵erent scales
correspond to di↵erent segments (later called boundary hypersurfaces) of the
boundary.

2.1 Manifolds with corners

Even if we wanted to study problems on domains in Rn only, the natural setting
for our theory is that of manifolds, for (at least) two reasons:
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1. Just as finite dimensional vector spaces are like Rn without choice of a ba-
sis, manifolds are locally like Rn without choice of a (possibly non-linear)
coordinate system – and foregoing such a choice leads to greater concep-
tual clarity. To put it more mundanely, it will be useful to use di↵erent
coordinate systems (e.g. polar coordinates, projective coordinates), and
it is reassuring to know that all constructions are independent of such
choices.

2. Globally, a manifold represents how various local objects fit together –
and one of our goals is to fit di↵erent scales together. In fact, even if the
problem to be studied is topologically trivial, there may be non-trivial
topology (or combinatorics) in the way that di↵erent scales relate to each
other.

To get an idea what a manifold with corners is, look at Figure 3. The most
complicated specimen appearing in this text is on the right in Figure 16.

Recall that a manifold is a space which can locally be parametrized by
coordinates. For a manifold with corners some coordinates will be restricted to
take only non-negative values. As before we use the notation

R+ := [0,1)

and write Rk

+ = (R+)k.

Definition 2.1. A manifold with corners (mwc) of dimension n is a space
M which can locally be parametrized by open subsets of the model spaces Rk

+⇥
Rn�k, for various k 2 {0, . . . , n}.

In addition, we require that the boundary hypersurfaces be embedded, as ex-
plained below.

The model space condition is meant as in the standard definition of man-
ifolds, for which only k = 0 is allowed. So for each point p 2 M there is
k 2 {0, . . . , n} and a neighborhood U of p with a coordinate map U ! Ũ , with
Ũ ⇢ Rk

+ ⇥ Rn�k open, and it is required that coordinate changes are smooth.4

The smallest k which works for a fixed p is called the codimension of p. See
Figures 3, 4 for some examples and non-examples of mwc.

The set of points of codimension 0 is the interior int(M) of M . The closure
of a connected component of the set of points of codimension k is called a
boundary hypersurface (bhs) if k = 1, and a corner of codimension k if
k � 2. So the examples in Figure 3 have 1, 2, 3, 2 boundary hypersurfaces.

It is clear that each boundary hypersurface itself satisfies the local model
condition, with n replaced by n� 1. However, as in the example on the right in

4 Open means relatively open, that is, there is an open subset Ũ 0 ⇢ Rn with Ũ 0 \ (Rk
+ ⇥

Rn�k) = Ũ . For example, [0, 1) is open in R+. A smooth function on an open subset
Ũ ⇢ Rk

+ ⇥ Rn�k is a function which extends to a smooth function on such a Ũ 0. A map

Ũ ! Rk
+ ⇥ Rn�k is smooth if each component function is smooth. The space of smooth

functions on M (which are sometimes called ‘smooth up to the boundary’ for emphasis) is
denoted by C1(M).
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Figure 3: Examples of manifolds with corners, with codimensions of points
indicated

Figure 4: Not manifolds with corners. The cone and pyramid are understood as
3-dimensional bodies. The teardrop satisfies the local condition of a mwc, but
the boundary line is not embedded.

Figure 4, it may happen that a boundary hypersurface ‘intersects itself’, that
is, it is an immersed rather than an embedded submanifold (with corners). So
according to our definition it is not a manifold with corners.

The embeddedness requirement is equivalent to the existence of a boundary
defining function for each bhs H, i.e. a smooth function x : M ! R+ which
vanishes precisely on H and whose di↵erential at any point of H is non-zero. A
boundary defining function x can be augmented to a trivialization near H,
i.e. an identification of a neighborhood U of H with [0, ")⇥H for some " > 0,
where x is the first component and each y 2 H ⇢ U corresponds to (0, y).

Each bhs and each corner of a mwc M is a mwc. But if M has corners then
its full boundary is not a manifold with corners.

Some authors, e.g. D. Joyce [32], define manifolds with corners without the
embeddedness condition on boundary hypersurfaces. Also, Joyce defines the
notion of boundary of a mwc di↵erently, so that it is also a mwc.

Taylor’s theorem implies the following simple fact which we need later.

Lemma 2.2. Let M be a manifold with corners and S a finite set of boundary
hypersurfaces of M . Let h be a total boundary defining function for S, i.e. the
product of defining functions for all H 2 S.

Then any u 2 C1(M) which vanishes at each H 2 S can be written as
u = hũ with ũ 2 C1(M).

Exercise: Prove this. Show that the analogous statement would not be true
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for the pyramid in Figure 4.5

Remark 2.3. The corners of a mwc should not be considered as a

problem, but as (part of) a solution – of all kinds of problems involving
singularities. They should not be thought of as corners in a metric sense, only
in a di↵erential sense (i.e. some coordinates are � 0).

For example, suppose you want to analyze the behavior of harmonic func-
tions near the vertex of R2

+ or of a cone or of the pyramid in Figure 4 (where the
Laplacian is the standard Laplacian for the Euclidean metric on these spaces).
The essential first step towards a solution would be to introduce polar coordinates
around the vertex, and in the case of the pyramid also cylindrical coordinates
around the edges. Geometrically this corresponds to the operation of blow-up,
discussed below. This results in manifolds with corners. The fact that the orig-
inal (metric) R2

+ happens to be a mwc also is irrelevant.

Remark 2.4. Manifolds with corners are an oriented analogue of manifolds
with normal crossings divisors as used in real algebraic geometry. ‘Oriented’
means that the boundary hypersurfaces, which correspond to the components of
the divisor, have a relative orientation, i.e. possess a transversal vector field.
The use of manifolds with corners allows for greater flexibility in many analytic
problems. See also Remark 2.12.

2.2 Polyhomogeneous functions

All functions we consider will be smooth in the interior of their domains. Our
interest will lie in their boundary behavior – partly because we have a much
better chance to analyze their boundary behavior than their interior proper-
ties. Functions smooth up to the boundary (see Footnote 4) have the following
important properties:

1. A smooth function on R+ has a Taylor expansion f(x) ⇠
P1

k=0 akx
k as

x! 0, i.e. at @R+.

2a. A smooth function on R2
+ has Taylor expansions

f(x, y) ⇠
1X

k=0

a
k

(y)xk as x! 0, f(x, y) ⇠
1X

l=0

b
l

(x)yl as y ! 0 (2.1)

at the boundary hypersurfaces x = 0 and y = 0 of R2
+, with a

k

, b
l

smooth
on R+.

2b. (Matching) For each k, l 2 N0 the l-th Taylor coe�cient of a
k

at y = 0
equals (‘matches’) the k-th Taylor coe�cient of b

l

at x = 0. This corre-
sponds to the Taylor expansion of f at the corner (0, 0).

5If you understand this then you understand one of the main points about manifolds with
corners!
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2c. (Borel lemma) Conversely, given a
k

, b
l

2 C1(R+) satisfying these match-
ing (or compatibility) conditions for all k, l, there is a function f 2 C1(R2

+)
satisfying (2.1), and it is unique modulo functions vanishing to infinite or-
der at the boundary of R2

+.

It turns out that requiring smoothness up to the boundary is too restrictive
for many purposes. The class of polyhomogeneous functions6 is obtained by
replacing the powers xm, m 2 N0 in these expansions by terms xz logj x where
z 2 C and j 2 N0, and is big enough for many problems.

Apart from this, polyhomogeneous functions enjoy the analogous properties
as listed above. Properties 2b. and 2c. will be essential for our purpose of
analyzing multiple scale solutions of PDEs.

2.2.1 Definition and examples

We will define the space of polyhomogeneous functions on a manifold with cor-
ners M . The essence of the definition can be grasped from two special cases:
M = R+⇥Rn where n 2 N0 andM = R2

+. The terms permitted in an expansion
are characterized by a set E ⇢ C⇥ N0 satisfying

{(z, j) 2 E : Re z  r} is finite for every r 2 R . (2.2)

This guarantees that the expansion (2.3) below makes sense.

Definition 2.5. A polyhomogeneous function on M = R+⇥Rn or M = R2
+

is a smooth function u on int(M) satisfying:

(a) For M = R+ ⇥ Rn: u has an asymptotic expansion

u(x, y) ⇠
X

(z,j)2E

a
z,j

(y)xz logj x as x! 0 (2.3)

for each y 2 Rn, for a set E as above, where each a
z,j

2 C1(Rn).

The set of these functions with E fixed is denoted AE(R+ ⇥ Rn).

(b) For M = R2
+: u has an asymptotic expansion (2.3) for each y > 0, where

each a
z,j

2 AF (R+), for sets E,F ⇢ C⇥ N0 satisfying (2.2).
Also, the same condition is required to hold with x,E and y, F interchanged.

The set of these functions with E,F fixed is denoted AE,F (R2
+).

By definition, we understand asymptotic expansions always ‘with derivatives’,
i.e. @

x

u has the asymptotic series with each term di↵erentiated, and similarly
for @

y

u and higher derivatives. In addition, certain uniformity conditions are
required.

6These are called ‘nice functions’ in [14].
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All asymptotic expansions occuring in the problems in this article have no
logarithms, so E ⇢ C⇥ {0}.7

The ‘asymptotics with derivatives’ condition is equivalent to
������
(x@

x

)↵@�
y

0

@u(x, y)�
X

(z,j)2E,Re zr

a
z,j

(y)xz logj x

1

A

������
 C

r,↵,�

xr (2.4)

for all r 2 R and all ↵ 2 N0,� 2 Nn

0 . Here C
r,↵,�

may depend on y. For
M = R+ ⇥ Rn the local uniformity condition is that for any compact K ⇢ Rn

the same constant can be chosen for all y 2 K.
For M = R2

+ this is required for all compact K ⇢ (0,1), plus a local uniformity
near (x, y) = (0, 0): there is N 2 R so that estimate (2.4) holds for all y 2 (0, 1),
with @

y

replaced by y@
y

and C
r,↵,�

by C
r,↵,�

y�N .
We now give examples and then formulate the general definition.

Examples 2.6.

1. u(x) = 1
x

is in AE(R+) for E = {(�1, 0)}.

2. If E = F = N0⇥{0} then u 2 AE,F (R2
+) if and only if u extends smoothly

to the boundary of R2
+.

8

3. u(x, y) = x

x+y

is smooth on R2
+ \ {(0, 0)}, but not polyhomogeneous (for

any index sets) on R2
+. To see this, we expand u as x! 0 for fixed y > 0:

u(x, y) =
x

x+ y
=

1

y

x

1 + x

y

=
1

y
x� 1

y2
x2 +

1

y3
x3 �+ · · · (2.5)

We see that u has an expansion as in (2.3), but the coe�cients a
k,0(y) =

(�1)ky�k become more and more singular (for y ! 0) as k increases, so
there is no index set F for which all coe�cients lie in AF (R+).

Note that this is precisely our first example (1.1).

A set E ⇢ C ⇥ N0 satisfying (2.2) and in addition (z, j) 2 E, l  j )
(z, l) 2 E is called an index set. This condition guarantees that AE(R+ ⇥
Rn) is invariant under the operator x@

x

. If, in addition, (z, j) 2 E ) (z +
1, j) 2 E then E is called a smooth (or C1) index set. This guarantees

7 However, logarithms are included in the definition since they appear in the solutions of
many di↵erential equations even if they don’t appear in their coe�cients. For example, the
equation u0 = fh, u(0) = 0 with fh as in (1.1) has solution uh(x) = x� h log

�
x
h
+ 1

�
which

for fixed positive x has the expansion

uh(x) ⇠ x+ h log h� h log x+O(h2)

as h ! 0. The appearance of the log term here can be predicted without calculating inte-
grals, using geometric resolution analysis via the push-forward theorem of Melrose [49], as is
explained in [14] for the related example where fh(x) =

p
x2 + h2, see also [18].

8Exercise: prove this.
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coordinate independence, i.e. any self-di↵eomorphism of R+ ⇥Rn preserves the
space AE(R+ ⇥ Rn). The index set E in Example 2.6.1 is not smooth; the
smallest smooth index set containing E is {�1, 0, 1, . . . }⇥ {0}.

We now consider general manifolds with corners. Of course we want to say
a function is polyhomogeneous if it is so in any coordinate system. Since we
want to allow corners of higher codimension, we give an inductive definition.

An index family for M is an assignment E of a C1 index set E(H) to each
boundary hypersurface H of M . Recall that there is a trivialization near each
H, i.e. we may write points near H as pairs (x, y) where x 2 [0, ") and y 2 H,
for some " > 0.

Definition 2.7. Let M be a manifold with corners and E an index family for M .
A polyhomogeneous function on M with index family E is a smooth function
u on int(M) which has an expansion as in (2.3) at each boundary hypersurface
H, in some trivialization near H, where E = E(H) and the functions a

z,j

are
polyhomogeneous on H with the induced index family for H.9

The set of these functions is denoted AE(M).

Again, if E(H) = N0⇥{0} for all H then u 2 AE(M) if and only if u extends
to a smooth function on all of M .

Remark 2.8. In our terminology a ‘polyhomogeneous function on a manifold
with corners M ’ needs to be defined on the interior int(M) only. The terminol-
ogy is justified since its behavior near the boundary is prescribed; C1(int(M)) is
the much larger space of functions without prescribed boundary behavior. More
formally, AE defines a sheaf over M , not over int(M).

2.2.2 Matching conditions and Borel lemma

A central point of polyhomogeneity is to have ‘product type’ asymptotic expan-
sions at corners. This is most clearly seen in the case of R2

+. To ease notation
we formulate this only for the case without logarithms.

Lemma 2.9 (Matching conditions). Let E,F ⇢ C⇥ {0} be index sets for R2
+.

Suppose u 2 AE,F (R2
+), and assume u has expansions

u(x, y) ⇠
X

(z,0)2E

a
z

(y)xz as x! 0

u(x, y) ⇠
X

(w,0)2F

b
w

(x) yw as y ! 0
(2.6)

9The index family E for M induces an index family EH for the mwc H as follows: Any
boundary hypersurface H0 of H is a component of a set H \ G where G is boundary hy-
persurface of M uniquely determined by H0. Then we let EH(H0) := E(G). We require
az,j 2 AEH (H) for each (z, j) 2 E(H) and each H. If this is true in one trivialization then
it is true in any other, since each E(H) is a C1 index set. Local uniformity is also required,
analogous to the explanation after equation (2.4).

This definition is inductive over the highest codimension of any point in M .
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where a
z

2 AF (R+), bw 2 AE(R+) for each (z, 0) 2 E, (w, 0) 2 F . Expand

a
z

(y) ⇠
X

(w,0)2F

c
z,w

yw, b
w

(x) ⇠
X

(z,0)2E

c0
z,w

xz (2.7)

as y ! 0 resp. x! 0. Then

c
z,w

= c0
z,w

for all z, w. (2.8)

This has a converse, which is a standard result:

Lemma 2.10 (Borel lemma). Let E,F be as in the previous lemma, and assume
that functions a

z

, b
w

satisfying (2.7) are given.
If (2.8) holds then there is u 2 AE,F (R2

+) satisfying (2.6). It is uniquely
determined up to errors vanishing to infinite order at the boundary.

This will be a central tool in our analysis since it allows us to construct
approximate solution of a PDE from solutions of model problems.

2.3 Blow-up and resolution

We now introduce blow-up, which is what makes the whole manifolds with
corners business interesting. Here are the most important facts about blow-up.
They will be explained in this section:

• Blow-up is a geometric and coordinate free way to introduce
polar coordinates.

• Blow-up serves to desingularize singular objects.

• Blow-up helps to understand scales and transitions between scales
– and therefore to solve PDE problems involving di↵erent scales.

We first explain the idea in the case of blow-up of 0 in R2 and then give the
general definition in Subsection 2.3.2. After discussing resolutions and projective
coordinates we return to our motivating example (1.1) in Example 2.18. There
is also a short discussion of quasihomogeneous blow-up, which occurs naturally
in Section 6.

2.3.1 The idea

We first explain the idea in the case of blowing up the point 0 in R2, see Figure 5:
Consider the set of rays (half lines) in R2 emanating from 0. They are pairwise
disjoint except that they all share the common endpoint 0. The blow-up of 0

in R2 is the space constructed from R2 by removing 0 and replacing it by one
separate endpoint for each ray. This space is denoted by [R2, 0]. So we replace 0
by a circle, and each point on the circle corresponds to a direction of approach
to 0. This circle is called the front face of the blow-up. Thus, blowing-up 0 in
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R2

� �

[R2, 0]

Figure 5: Blow-up of 0 in R2, with a few rays (dashed) and a pair of corre-
sponding circles (dotted) drawn; the white disk is not part of [R2, 0]; its inner
boundary circle is the front face

# # # #

(a) (b) (c) (d)

Figure 6: Some examples of blow-up; in each bottom picture the submanifold
being blown up is drawn fat, and the blown-up space is in the top picture.
The vertical arrow is the blow-down map. The third and fourth example are
3-dimensional, and only the edges are drawn.
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R2 means taking out 0 from R2 and then choosing a new ‘compactification at
0’ of R2 \ 0, by adding the front face instead of 0.

Here is a concrete mathematical model realizing this idea: As a space we
take [R2, 0] = R+ ⇥ S1, where S1 = {! 2 R2 : |!| = 1} is the unit circle. The
front face is ↵ := {0} ⇥ S1. In Figure 5 the rays are the sets ! = const, the
unbroken circle is ↵ and the dotted circle is {1}⇥ S1. We then need to specify
how points of [R2, 0] correspond to points of R2. This is done using the map

� : [R2, 0]! R2, �(r,!) = r!

called the blow-down map. Note that � is a di↵eomorphism from (0,1)⇥S1

to R2 \ {0}; this means that it provides an identification of [R2, 0] \ ↵ with
R2 \ {0}. The sets ! = const are mapped to rays, and two di↵erent such sets
have di↵erent endpoints on ↵. All these endpoints are mapped to 0 by �. Thus,
this model and � do precisely what they were supposed to do.

In addition, the model gives [R2, 0] a di↵erentiable structure, making it a
smooth manifold with boundary and � a smooth map.

Note that if we parametrize S1 by ! = (cos', sin') then � is just the polar
coordinates map

(r,') 7! (x, y), x = r cos', y = r sin' . (2.9)

Recall that ‘polar coordinates on R2’ are not coordinates at the origin. So [R2, 0]
is the space on which polar coordinates are actual coordinates – also at r = 0.

Exercise 2.11. Show that points of ↵ correspond to directions at 0 not only of
rays, but of any regular curve. That is: Let � : [0, 1) ! R2 be a smooth curve
with �(0) = 0, �̇(0) 6= 0 and �(t) 6= 0 for t 6= 0. Show that there is a unique
smooth curve �̃ : [0, 1) ! [R2, 0] lifting �, i.e. satisfying � � �̃ = �, and that

�̃(0) = �̇(0)
k�̇(0)k .

2.3.2 Definition and examples

The general operation of blow-up associates to any manifold X and submanifold
Y ⇢ X a manifold with boundary, denoted [X,Y ], and a surjective smooth map
� : [X,Y ]! X. We say that [X,Y ] is obtained from blowing up Y in X and
call � the blow-down map.10 X,Y may also be manifolds with corners, then
a local product assumption (see below) must be placed on Y , and [X,Y ] is a
manifold with corners. The preimage ��1(Y ) is called the front face ↵ of the
blow-up. It is a boundary hypersurface of [X,Y ], and � maps di↵eomorphically
[X,Y ] \ ↵ ! X \ Y . See Figure 6 for some examples.

To define blow-up we use local models as in the previous subsection, but you
should always keep the original idea of adding endpoints of rays in mind. We

10For this to be defined Y must have codimension at least one. We will always assume that
the codimension is at least two, the other case being less interesting.
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start with blow-up of an interior point, then generalize this in two ways: blow-
up of a point on the boundary, and blow-up of a subspace (by taking products).
Finally both generalizations are combined to yield the most general case.

Definition of blow-up for the local models.
Recall that a model space is a space of the form Rn�k⇥Rk

+ (or Rk

+⇥Rn�k).
We consider these first.

1. Blow-up of11 0 in Rn: Define

[Rn, 0] := R+ ⇥ Sn�1, �(r,!) = r!

where Sn�1 = {! 2 Rn : |!| = 1} is the unit sphere, n � 1.

Note that [Rn, 0] is a manifold with boundary.

2. Blow-up of 0 in the upper half plane R⇥ R+: Define

[R⇥ R+, 0] := R+ ⇥ S1
+, �(r,!) = r!

where S1
+ = S1 \ (R⇥ R+) is the upper half circle. See Figure 6(a).

This is simply the upper half of case (1) with n = 2. This generalizes in
an obvious way to the blow-up of zero in any model space:

[Rn�k ⇥ Rk

+, 0] := R+ ⇥ Sn�1
k

, �(r,!) = r!

where Sn�1
k

:= Sn�1 \ (Rn�k ⇥ Rk

+). See Figure 6(b) for n = k = 2 and
Figure 6(c) for n = k = 3.

Note that [Rn�k ⇥ Rk

+, 0] has corners if k � 1.

3. Blow-up of the x-axis R⇥ {0} in R3: Define

[R3,R⇥ {0}] := R⇥ [R2, 0], �(x, y, z) = (x,�0(y, z))

with �0 : [R2, 0]! R2 from case (1). So the line Y = R⇥ {0} is blown up
to a cylinder, the front face of this blow-up. Any point p 2 Y is blown up
to a circle ��1(p). Points on the front face correspond to a pair consisting
of a point p 2 Y and a direction of approach to p, modulo directions
tangential to Y .

This generalizes in an obvious way to the blow-up of Rn�m ⇥ {0} in Rn:

[Rn,Rn�m ⇥ {0}] = Rn�m ⇥ [Rm, 0]

(write Rn = Rn�m ⇥ Rm and take out the common factor Rn�m).

4. Blow-up of R+ ⇥ {0} in R3
+. Combining cases (2) and (3) we define

[R3
+,R+ ⇥ {0}] = R+ ⇥ [R2

+, 0]

11To simplify notation we often write 0 instead of {0}. Also 0 denotes the origin in any Rk.
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see Figure 6(d).

The main point here is the product structure. In general, for model spaces
X,W,Z,

for X = W ⇥ Z, Y = W ⇥ {0} define [X,Y ] = W ⇥ [Z, 0] (2.10)

with [Z, 0] defined in (2). In the example, X = R3
+, W = R+, Z = R2

+.

Definition of blow-up for manifolds (possibly with corners). It can
be shown (see [47], [51]) that these constructions are invariant in the following
sense: for model spaces X,Y as in case (4), any self-di↵eomorphism of X fixing
Y pointwise lifts to a unique self-di↵eomorphism of [X,Y ].12 Now if X is a
manifold and Y ⇢ X a submanifold, then Y ⇢ X is locally Rn�m⇥{0} ⇢ Rn, in
suitable coordinates. Therefore, the blow-up [X,Y ] is well-defined as a manifold,
along with the blow-down map � : [X,Y ]! X.13

IfX is a manifold with corners then a subset Y ⇢ X is called a p-submanifold
if it is everywhere locally like the models (2.10) (p is for product). Therefore,
the blow-up [X,Y ] is defined for p-submanifolds Y ⇢ X. For example, the fat
subsets in the bottom line of Figure 6 are p-submanifolds, as are the dashed
rays in the top line. However, the dashed rays in (b), (c) and (d) in the bottom
line are not p-submanifolds.

Put di↵erently, a subset Y ⇢ X is a p-submanifold if near every q 2 Y there
are local coordinates centered at q so that Y and every face of X containing q is
a coordinate subspace, i.e. a linear subspace spanned by some coordinate axes,
locally.

The preimage ��1(Y ) ⇢ [X,Y ] is a boundary hypersurface of [X,Y ], called
the front face of the blow-up. The other boundary hypersurfaces of [X,Y ] are
in 1-1 correspondence with those of X.

Remark 2.12. This notion of blow-up, sometimes called oriented blow-up,
is closely related to (unoriented) blow-up as defined in real algebraic geometry,
where one ‘glues in’ a real projective space instead of a sphere. Unoriented blow-
up can be obtained from oriented blow-up by identifying pairs of antipodal points

12In the case of [R2, 0] this can be rephrased as follows: let x, y be standard cartesian
coordinates and r,' corresponding polar coordinates. Let x0, y0 be some other coordinate
system defined near 0 (possibly non-linearly related to x, y), with x0 = y0 = 0 corresponding
to the point 0. Define polar coordinates in terms of x0, y0, i.e. x0 = r0 cos'0, y0 = r0 sin'0.
Then (r,') 7! (r0,'0) is a smooth coordinate change on [R2, 0].

It is in this sense that blow-up is a coordinate free way of introducing polar coordinates:
the result does not depend on the (cartesian) coordinates chosen initially. This is important,
for example, for knowing that we may choose coordinates at our convenience. For example,
when doing an iterated blow-up we may choose projective coordinates after the first blow-up,
or polar coordinates, and will get the same mathematics in the end.

13The original idea that points on the front face correspond to directions at 0 can be used
directly as an invariant definition: Let M be a manifold and p 2 M . The set of directions
at p is SpM := (TpM \ {0})/R>0 where TpM is the tangent space and R>0 acts by scalar
multiplication. Then [M,p] = (M \ {p})[SpM , with � the identity on M \ {p} and mapping
SpM to p. One still needs local coordinates to define the di↵erentiable structure on [M,p].
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R2
+

0

�1 �

[R2
+, 0]

Z
�2 �

[[R2
+, 0], Z]

Figure 7: A double blow-up

of this sphere. This results in an interior hypersurface (usually called excep-
tional divisor) rather than a new boundary hypersurface as front face. Compare
Remark 2.4.

Unoriented blow-up has the virtue of being definable purely algebraically, so
it extends to other ground fields, e.g. to complex manifolds. See [24], where
also a characterization of blow-up by a universal property is given (Proposition
7.14).

2.3.3 Multiple blow-ups

Due to the geometric nature of the blow-up operation, it can be iterated. So
if X is a manifold with corners and Y a p-submanifold, we can first form the
blow-up �1 : [X,Y ] ! X. Next, if Z is a p-submanifold of [X,Y ] then we can
form the blow-up �2 : [[X,Y ], Z]! [X,Y ]. The total blow-down map is then
the composition

� = �1 � �2 : [[X,Y ], Z]! X .

See Figure 7 for a simple example. Of course one may iterate any finite number
of times.

2.3.4 Resolutions via blow-up

The main use of blow-ups is that they can be used to resolve singular objects,
for example functions and sets.

Definition 2.13 (Resolving functions). Let � : X 0 ! X be a (possibly iterated)
blow-down map of manifolds with corners and f : int(X) ! C a function. We
say that f is resolved by � if �⇤f is a polyhomogeneous function on X 0. Here
�⇤f := f � � is the pull-back.

Recall that �⇤f need only be defined on the interior of X 0, compare Remark
2.8. In Example 2.18 we will see that the function f(x, y) = x

x+y

on R2
+ \ {0} is

resolved by blowing up zero.
For subsets we need a slight generalization of p-submanifolds. A d-submanifold

of a manifold with corners X is a subset Y ⇢ X which is everywhere locally
modelled on

X = W ⇥ Z ⇥ Rl , Y = W ⇥ {0}⇥ Rl

+ (2.11)
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for some l � 0 and model spaces W,Z (d means decomposable). This is a p-
submanifold i↵ l = 0, see (2.10). For example, R2

+ ⇢ R2 is a d-submanifold
which is not a p-submanifold.

Definition 2.14 (Resolving subsets). Let � : X 0 ! X be a (possibly iterated)
blow-down map of manifolds with corners and S ⇢ X a subset. We say that S
is resolved by � if �⇤S is a d-submanifold of X 0. Here the lift

14 �⇤S under a
blow-down map [X,Y ]! X is defined as

�⇤S = ��1(S \ Y ) if S 6⇢ Y, �⇤S = ��1(S) if S ⇢ Y.

For an iterated blow-down map � = �1 � · · · � �k we define �⇤S = �⇤
k

. . .�⇤
1S.

For example, the solid cone S ⇢ R3 (left picture in Figure 4) is resolved by
blowing up 0 in R3. Here �⇤S ⇢ [R3, 0] is a manifold with corners, the local
model at the corner is (2.11) with W = R ⇥ R+, Z = {0} and l = 1. The
boundary of the cone is also resolved by �, its lift is even a p-submanifold.

Note that in general the lift �⇤S is almost the preimage, but not quite. In
the cone example, the preimage ��1S would be the union of �⇤S and the front
face of the blow-up, which is a 2-sphere. We consider �⇤S since it contains the
only interesting information about S.

See Figure 8(d) for another example (dashed lines) and Figure 16 for an
example of a resolution by a multiple blow-up. Both of them will be used later.

Of course we can combine Definitions 2.14 and 2.13: If S ⇢ X then a
function f on S \ int(X) is resolved by � : X 0 ! X if S is resolved and �⇤f is
polyhomogeneous on �⇤S.

Note that in these definitions we consider polyhomogeneous functions and d-
submanifolds as ‘regular’ and more general functions resp. subsets as ‘singular’.
Regular objects in this sense remain regular after blow-up, as is easy to see
using projective coordinates, introduced below.15

Remark 2.15. By a deep famous theorem of Hironaka every algebraic variety
S ⇢ CPn can be resolved by a sequence of blow-ups (in the algebraic geometric
sense, see Remark 2.12). Similar statements hold for algebraic (or even semi-
or subalgebraic) subsets of Rn, see [30] and [27] for a more entertaining and
low-tech survey.

Remark 2.16. There is a generalization of blow-up which is sometimes useful
when resolving several scales simultaneously, see [32], [36].

2.3.5 Projective coordinates

Projective coordinates simplify calculations with blow-ups and also provide the
link of blow-ups to the discussion of scales.

14The lift is also called the strict transform in the algebraic geometry literature.
15For a d-submanifold S ⇢ X to lift to a d-submanifold under blow-up of Y ⇢ X we must

require that S and Y intersect cleanly (which might be called ‘normal crossings’ by algebraic
geometers), i.e. near every intersection point there are coordinates in which X, S and Y are
given by model spaces.
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Figure 8: Projective coordinates for examples (b), (c), (d) of Figure 6. Dashed
lines in (d) indicate a singular subset (below) and its resolution (above).

We first discuss this for the space [R2
+, 0], see Figure 8(b). Recall that points

of [R2
+, 0] correspond to pairs consisting of a ray (in R2

+, emanating from 0) and
a point on that ray. Now, with x, y standard coordinates on R2

+,

rays $ values of
y

x
, points on a ray $ values of x

except if the ray is the y-axis (which would correspond to y

x

=1). Here y

x

� 0
and x � 0, and x = 0 is the endpoint of the ray.

This means that y

x

and x provide a coordinate system for [R2
+, 0] \ lf, where

lf (‘left face’) is the lift of the y-axis:16

(x,
y

x
) : [R2

+, 0] \ lf ! R2
+ (2.12)

We need to check that this is a smooth coordinate system. This means:

1. The function

y
x
, which is defined and smooth on [R2

+, 0] \ (lf [ ↵),

extends smoothly to [R2
+, 0] \ lf.

2. The map (2.12) is a di↵eomorphism.

Both statements refer to the di↵erentiable structure on [R2
+, 0], which was

defined by writing [R2
+, 0] = R+ ⇥ S

1
++ where S

1
++ is the quarter circle.

16It would be formally better to write �⇤y
�⇤x and �⇤x instead of y

x
and x, but this quickly

becomes cumbersome. Note that �⇤x vanishes on lf [ ↵ and �⇤y vanishes on ↵ [ rf.
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If we use the angle coordinate ' 2 [0,

⇡
2 ] on S

1
++ then we need to check

that the map (r,') ! (x,

y
x
) extends smoothly from r > 0,' <

⇡
2 to

r � 0,' <

⇡
2 and is a di↵eomorphism R+ ⇥ [0,

⇡
2 ) ! R+ ⇥ R+. This can

be seen from the explicit formulas x = r cos',

y
x

= tan', and for the

inverse map r = x

q
1 +

�
y
x

�2
, ' = arctan

y
x
.

By symmetry, we have another smooth coordinate system given by x

y

and y

on the set [R2
+, 0] \ rf, where rf (‘right face’) is the lift of the x-axis.

Note that in the coordinate system x, y

x

the boundary defining function of
the front face is x, and in the coordinate system y, x

y

it is y.
Projective coordinates can be used to check that a function is resolved under

a blow-up:

Lemma 2.17. A function f on R2
>0 is resolved by the blow up of 0 if and only

if f is polyhomogeneous as a function of x

y

, y and as a function of x, y

x

.

This is clear since polyhomogeneity (or smoothness) of a function on a man-
ifold means polyhomogeneity (or smoothmess) in each coordinate system of an
atlas.

Example 2.18. We consider the function f(x, y) = x

x+y

on R2
+ \ 0 again. We

saw in Example 2.6(3) that f is not polyhomogeneous at 0. However,

in coordinates X =
x

y
, y : �⇤f =

X

X + 1

in coordinates x, Y =
y

x
: �⇤f =

1

1 + Y

and both of these functions are smooth for (X, y) 2 R2
+ resp. (x, Y ) 2 R2

+, the
respective ranges of these coordinates. So f is resolved by �, and �⇤f is even
smooth on [R2

+, 0].
As another example, consider f2(x, y) = x

x+y+xy

. Here �⇤f2 = X

X+1+Xy

and �⇤f2 = 1
1+Y+xY

in the two coordinate systems, so f2 is also resolved by �.
Note that these agree with �⇤f at y = 0 and x = 0 respectively, which means
�⇤f2 = �⇤f at the front face. This is clear a priori since xy vanishes to second
order at x = y = 0.

Remark 2.19 (Relation of projective coordinates to scaled limit). Suppose
a function f on R2

>0 is resolved by � : [R2
+, 0] ! R2

+, and assume �⇤f is
even smooth. To emphasize the relation to the discussion of scales, we denote
coordinates by x, h and write f

h

(x) = f(x, h).

1. The rescaled limit g(X) = lim
h!0 fh(hX) is simply the restriction of �⇤f

to the front face ↵, when parametrizing ↵ by the projective coordinate X.

To see this, note that in the projective coordinate system X,h the map �
is given by �(X,h) = (hX, h) (this is the meaning of writing X = x

h

), so
(�⇤f)(X,h) = f(hX, h), and h = 0 is the front face.
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2. That f is resolved by � contains additional information beyond existence
of this scaled limit: information on derivatives as well as information on
the behavior of g(X) as X ! 1. Note that X = 1 corresponds to the
‘lower’ corner in [R2

+, 0]. More precisely, g is smooth at 1 in the sense
that ⌘ 7! g( 1

⌘

) is smooth at ⌘ = 0. Here ⌘ is the coordinate h

x

in the second
projective coordinate system.

For more general blow-ups it is useful to have:

Quick practical guide to finding projective coordinate sys-
tems:

Point blow-up of 0 in Rk

+⇥Rn�k: Near the (lift of the) x-axis projec-
tive coordinates are x and yj

x

, where y
j

are the variables other than
x. These are coordinates except on the (lift of the) set {x = 0}.
Similarly for any other axis.

Blow-up of coordinate subspace Y 2 Rk

+⇥Rn�k: Apply the previous
to variables x, y

j

vanishing on Y . Other variables remain unchanged.

It may be useful to think of x as ‘dominant’ variable on the coordinate patch:
for any compact subset of the patch there is a constant C so that |y

j

|  Cx. So
yj

x

is bounded there. Note:

dominant variable = boundary defining function of front face

For the examples in Figure 6(a),(c),(d) we get the projective coordinate
systems, see also Figure 8(c),(d) (where only one system is indicated):

(a) [R⇥R+, 0]: near the interior of the front face: y, x

y

; in a neighborhood of

the lift of the x-axis: x, y

x

.17

(c) [R3
+, 0]: outside the left boundary hypersurface: x, y

x

, z

x

; outside the back
boundary hypersurface: y, x

y

, z

y

; outside the bottom boundary hypersur-

face: z, x

z

, y

z

.

(d) [R3
+,R+ ⇥ {0}]: outside the back boundary hypersurface: x, y, z

y

; outside

the bottom boundary hypersurface: x, z, y

z

.

Exercise 2.20. Show that the function f(x, y) =
p

x2 + xy + y3 on R2
+ is

resolved by the double blow-up in Figure 7, but not by the simple blow-up of
0 2 R2

+.
18

17The latter are really two coordinate patches, one for x � 0 (near right corner) and one
for x  0 (near left corner). Near the left corner it is more customary to use |x|, y

|x| instead

so the dominant variable is positive.
18Solution: In coordinates x, Y = y

x
the function �⇤

1f = x
p
1 + Y + xY 3 is polyhomoge-

neous since it is smooth. In coordinates X = x
y
, y the function �⇤

1f = y
p

X2 +X + y is

polyhomogeneous outside X = y = 0, but not at this point.
Therefore we blow up X = y = 0, which is the point Z in Figure 7. Let � = �1 � �2. In coor-
dinates X, ⌘ = y

X
the function �⇤f = X3/2⌘

p
X + 1 + ⌘ is polyhomogeneous. In coordinates

⇠ = X
y
, y the function �⇤f = y3/2

p
⇠2y + ⇠ + 1 is polyhomogeneous. So f is resolved by �.
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2.3.6 Quasihomogeneous blow-up

In many problems scalings other than x ⇠ y appear, for example x ⇠ py in the
function f(x, y) = 1

x

2+y

. These can be understood either by multiple blow-ups,
as in Exercise 2.20, or by the use of quasihomogeneous blow-up.

This occurs, for example, in Section 6, and also for the heat kernel (where y
is time), see e.g. [50], [15], [45].

For simplicity we only consider the quasihomogeneous blow-up of 0 in R2
+,

with x scaling like
p
y. We denote it by [R2

+, 0]q. This is sometimes called
parabolic blow-up. The idea is analogous to regular blow-up, except that the
rays in R2

+ through 0 are replaced by ‘parabolas’, by which we mean the sets
{y = Cx2} including the cases C = 0, i.e. the x-axis, and C = 1, i.e. the
y-axis. Then the blown-up space is constructed by removing 0 and replacing it
by one separate endpoint for each parabola. These endpoints can be thought of
as forming a quarter circle again, so the blown-up space looks just like, and in
fact will be di↵eomorphic to, [R2

+, 0]. However, the blow-down map � will be
di↵erent.

Here is a local model realizing this idea: Let r(x, y) =
p
x2 + y and S1

q

=
{(!, ⌘) 2 R2

+ : r(!, ⌘) = 1}. Then we let [R2
+, 0]q = R+ ⇥ S1

q

with blow-down
map

�(r, (!, ⌘)) = (r!, r2⌘).

This is constructed so that � maps each half line {(!, ⌘) = const} to a parabola,
so that indeed endpoints of parabolas correspond to points of ↵ := {0} ⇥ S1

q

.
Also, � maps ↵ ⇢ [R2

+, 0]q to 0 2 R2
+ and is a di↵eomorphism between the

complements of these sets.19

Projective coordinates are as shown in Figure 9. The coordinates near A
seem quite natural: x smoothly parametrizes the points on each parabola {y =
Cx2} (except C = 1), and the parabolas are parametrized by the value of
C = y

x

2 , so pairs ( y

x

2 , x) parametrize pairs (parabola, point on this parabola).
On the other hand, the coordinates near B require explanation. One way to
understand them is to check in the model that these are indeed coordinates
(compare the explanation after (2.12); do it!). Without reference to the model
the exponents that occur can be understood from three principles:

(a) The coordinate ‘along the front face’ should reflect the scaling x ⇠ py.

(b) � should be smooth, so both x and y must be expressible as monomials
in the coordinates,20 near A and near B

(c) The smooth structure on [R2
+, 0]q should be the minimal one satisfying (a)

and (b), i.e. the exponents should be maximal possible.

19Maybe you ask: why this model, not another one? In fact, the precise choice or r and S1
q

are irrelevant – any choice of positive smooth function r which is 1-homogeneous when giving
x the weight 1 and y the weight 2, and any section transversal to all parabolas which stays
away from the origin will do, with the same definition of �. Choosing S1

q = r�1(1) has the
nice feature that use of the letter r is consistent in that r(�(R, (!, ⌘))) = R.

20This means that we require � to be a b-map, a condition stronger than smoothness, see
[51].
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Figure 9: Projective coordinate systems for quasihomogeneous blow-up [R2
+, 0]q

So for the system near A, (b) implies that in the coordinate along ↵ the exponent
of y must be 1

m

for some m 2 N, and then (c) implies m = 1. Hence the
coordinate must be y

x

2 by (a). The exponent of x in the other coordinate must
be 1 by (b) and (c). Similarly, near B in the coordinate along ↵ we need x in
first power by (b) and (c), and (a) gives xp

y

. Then (b) and (c) leave no choice

but to have
p
y as the other coordinate.21

Projective coordinates can be used as in Lemma 2.17 to check whether quasi-
homogeneous blow-up resolves a function.

For more details, including the question of coordinate invariance, see [9] and
[51]; see also [19]. A more general blow-up procedure is introduced in [36], see
also [32], [35]. This is closely related to blow-up in toric geometry, see [5].

2.4 Summary on blow-up and scales; further examples

We first summarize our discussion of the function f(x, h) = x

x+h

: f is smooth

on R2
+ \ 0 but has no continuous extension to 0. The behavior of f near 0 can

be described by saying that the scaling limit lim
h!0 f(hX, h) = g(X) exists for

all X. This can be restated in terms of the blow-up of 0 in R2
+ with blow-down

map � : [R2
+, 0]! R2

+ and front face ↵ = ��1(0): the function �⇤f , defined on
[R2

+, 0] \ ↵, extends continuously to ↵, and g is the restriction of this extension
to ↵ when ↵ is parametrized by X. Here X = x

h

is part of the projective
coordinate system X,h.

In fact, we saw that the extension of �⇤f is not only continuous but even
smooth on [R2

+, 0]. That is, f is resolved by � in the sense of Definition 2.13.
The fact that g is not constant leads to the discontinuity of f at 0.

The example suggests that the vague idea of scaling behavior is captured by
the notion of resolution, which is defined rigorously in Definition 2.13. We note
a few details of this definition:

21A di↵erent way to understand the coordinates y
x2 ,

xp
y

along ↵ is to note that y
x2 is a

defining function of rf in its interior x > 0, and xp
y

is a defining function of lf in its interior

y > 0.
This reflects the fact that only the point 0 2 R2

+ is a↵ected by the blow-up, that is, that � is a

di↵eomorphism between the complements of ��1(0) and {0}. In particular, quasihomogeneous
blow-up is not the same as first replacing the variable y by

p
y and then doing a standard

blow-up.
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1. The resolved function �⇤f is required to be polyhomogeneous, which
means in particular:

• the asymptotics holds with all derivatives

• full asymptotics is required, not just leading order asymptotics

To include derivatives is natural since we want to deal with di↵erential
equations. To require full asymptotics is then natural since for example
smoothness at a boundary point means having a full asymptotic series (the
Taylor series). Only the combination of both conditions yields a unified
theory.22

2. On the other hand, requiring �⇤f to be smooth would be too restrictive
(compare Footnote 7). What really matters is the product structure near
corners as explained in Section 2.2.2.

3. Of course any function can be ‘over-resolved’, for example if f is smooth
on R2

+ then we may still look at �⇤f which is still smooth. This would
correspond to ‘looking at f at scale x ⇠ h’.23

We give some more examples to illustrate these points.

Examples 2.21. In these examples we denote coordinates on R2
+ by x, h to

emphasize the relation to scaling. � is always the blow-down map for the blow-
up of 0 in R2

+.

1. f(x, h) = x+h is smooth on R2
+. In scaled coordinates f(hX, h) = h(X+1)

is the expansion of �⇤f at the front face.

2. f(x, h) =
p
x+ h is not polyhomogeneous on R2

+ as can be seen from the
Taylor expansion as h! 0 for fixed x > 0:

p
x+ h =

p
x

r
1 +

h

x
=

1X

k=0

✓ 1
2

k

◆
x

1
2�khk

compare (2.5). However, note that f
h

= f(·, h) converges uniformly to f0
on R+. But already f 0

h

does not converge uniformly to f 0
0. The same is

true for f2(x, h) =
p
x2 + h2 even though f0 is smooth.

Both f and f2 are resolved by blowing up 0 in R2
+.

These examples show that non-trivial scaling behavior may only be visible
in the derivatives.

22Of course one could define finite order (in number of derivatives or number of asymptotic
terms) theories, and this may be useful for some problems. However, many problems do admit
infinite order asymptotics – once the scales are correctly identified. Requiring less than the
best possible sometimes obfuscates the view towards the structure of a problem.

23So really we should not say that a function ‘exhibits the scale x ⇠ h’, since every function
does. More appropriate may be ‘f requires scale x ⇠ h’, or ‘The scale x ⇠ h is relevant for
f ’. In any case, ‘f is resolved by �’ is a well-defined statement giving an upper bound on the
‘badness’ of f .
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3. f(x, h) =
p
x2 + xh+ h3 is resolved by the double blow-up in Figure 7,

see Exercise 2.20. The two front faces correspond to the scales x ⇠ h and
x ⇠ h2. Any problem involving f needs to take into account both of these
scales.

To end this section we consider an example in three dimensions where a set
is resolved by two blow-ups. This will be used in Section 7.

Consider the family of plane domains ⌦
h

⇢ R2, h > 0, shown in Figure
10: The 1⇥ h rectangle [0, 1)⇥ (0, h) with a fixed triangle (e.g. a right-angled
isosceles triangle), scaled to have base h, attached at one end. Again we want to
describe the behavior of ⌦

h

as h! 0. As in the first example, di↵erent features
emerge at di↵erent scales:

1. We can consider B := lim
h!0 ⌦h

. This is just an interval.24 Many features
of ⌦

h

are lost in the limit: the thickness h, the triangular shape at the
end.

2. More information is retained by noting that y scales like h, hence consid-
ering

A
h

:= {(x, Y ) : (x, hY ) 2 ⌦
h

}, (2.13)

the domain obtained from stretching by the factor h�1 in the y-direction.
Then A := lim

h!0 Ah

is the square (0, 1) ⇥ (0, 1). This still forgets the
triangular shape at the end.

3. At the left end, both x and y scale like h. So we consider

S
h

:= {(X,Y ) : (hX, hY ) 2 ⌦
h

} = h�1⌦
h

. (2.14)

Then S := lim
h!0 Sh

is a half infinite strip of width one with a triangle
attached at the left end. This limit remembers the triangle, but not that
⌦

h

has essentially length 1 in the x-direction.

For the asymptotic analysis of the eigenvalue problem on ⌦
h

in Section 7
it will be essential to understand A and S as parts of one bigger space, which
arises as resolution of the closure of ⌦ =

S
h>0

⌦
h

⇥ {h} ⇢ R3. This resolution

is shown in Figure 16 and explained there. Note that A and S are boundary
hypersurfaces. The limit interval B occurs as the base of a natural fibration of
the face A.

3 Generalities on quasimode constructions; the
main steps

In this section we give an outline of the main steps of the quasimode construc-
tions that will be carried out in the following sections.

24The precise meaning of the limit is irrelevant for this motivational discussion. You may
think of Hausdor↵ limits.
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Figure 10: A family of domains ⌦
h

and three rescaled limits as h! 0

For each h > 0 let ⌦
h

be a bounded domain in R2, and let P
h

= �� be
the Laplacian on ⌦

h

, acting on functions that vanish at the boundary @⌦
h

. We
assume that @⌦

h

is piecewise smooth.25

A quasimode for the family (⌦
h

)
h>0 is a family (�

h

, u
h

)
h>0 where �

h

2 R
and u

h

is in the domain of P
h

(in particular, u
h

= 0 at @⌦
h

), so that

(P
h

� �
h

)u
h

= O(h1) as h! 0. (3.1)

Here O(h1) means O(hN ) for each N . We are ambitious in that we require
these estimates to hold uniformly, also for all derivatives with respect to x 2 ⌦

h

and with respect to h.
We reformulate this as follows: Consider the total space

⌦ =
[

h>0

⌦
h

⇥ {h} ⇢ R2 ⇥ R+.

We assume that ⌦
h

depends continuously on h in the sense that ⌦ is open. A
family of functions u

h

on ⌦
h

corresponds to a single function u on ⌦ defined by
u(x, h) = u

h

(x). The operators P
h

define a single operator P on ⌦ via

(Pu)(·, h) = P
h

(u
h

).

The operator P di↵erentiates only in the ⌦
h

directions, not in h. Then a
quasimode is a pair of functions � : R

>0 ! R, u : ⌦ ! R satisfying the
boundary conditions and

(P � �)u = O(h1) as h! 0.

25More generally one can consider families of compact manifolds with (or without) boundary
and di↵erential operators on them which are elliptic and self-adjoint with respect to given
measures and for given boundary conditions. The methods are designed to work naturally in
this context. Non-smooth boundary may require extra work.
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How can we find quasimodes? Since the only issue is the behavior as h! 0,
one expects that finding � and u reduces to solving PDE problems ‘at h = 0’,
along with an iterative construction: first solve with O(h) as right hand side,
then improve the solution so the error is O(h2) etc.

This is straightforward in the case of a regular perturbation, i.e. if the family
(⌦

h

)
h>0 has a limit ⌦0 at h = 0, and the resulting family is smooth for h � 0.

This essentially means that the closure ⌦ of the total space ⌦ is a manifold with
corners, see Section 4.1 for details. In particular, ⌦0 is still a bounded domain
in R2. Then the problem at h = 0 is the model problem

(P0 � �0)v = g on ⌦0, v = 0 at @⌦0

where P0 = �� on ⌦0. Solving the model problem is the only analytic input in
the quasimode construction. As we recall in Section 4 the iterative step reduces
to solving this equation, plus some very simple algebra.

However, our main focus will be on singular perturbations, where a limit
⌦0 exists but ⌦

h

does not depend smoothly on h at h = 0, so ⌦ has a singularity
at h = 0. For example, if ⌦0 is an interval or a curve, then this singularity looks
approximately like an edge, see Figures 12, 14 and 16. We will consider several
concrete such families. Their common feature is that this singularity can be
resolved by (possibly several) blow-ups, yielding a manifold with corners M and
a smooth map

� : M ! ⌦ .

As explained in Section 2 this corresponds to a certain scaling behavior in the
family (⌦

h

)
h>0 as h ! 0. The boundary hypersurfaces of M at h = 0, whose

union is
@0M := ��1(⌦ \ {h = 0}),

will now take the role of ⌦0, i.e. they will carry the model problems whose
solution is used for constructing quasimodes.

Since in the singular case several model problems are involved, the algebra
needed for the quasimode construction is more complicated than in the regu-
lar case. However, this can be streamlined, and unified, by cleverly defining
function spaces E(M) and R(M) which will contain putative quasimodes u and
remainders f = (P � �)u, respectively, along with suitable notions of leading
part (at h = 0). The leading parts will lie in spaces E(@0M) and R(@0M),
and are, essentially, functions on @0M . All model problems together define the
model operator (P � �)0 : E(@0M)! R(@0M). Denoting for the moment by
LP the leading part map, the needed algebra will be summarized in a Leading
part and model operator lemma, which states26

26This is analogous to the algebra needed for the parametrix construction in the classical
pseudodi↵erential calculus, as explained in [14]: LP corresponds to the symbol map, the
model operator is the constant coe�cient operator obtained by freezing coe�cients at any
point. Invertibility of the model operator (which amounts to ellipticity) allows construction
of a parametrix, which is the analogue of the construction of a quasimode.
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a) the exactness of the sequences

0 ! hE(M) ! E(M)
LP��! E(@0M) ! 0

0 ! hR(M) ! R(M)
LP��! R(@0M) ! 0 ;

(3.2)

The main points here are exactness at R(M) and at E(@0M), explicitly:

f 2 R(M), LP(f) = 0) f 2 hR(M),

and any v 2 E(@0M) is the leading part of some u 2 E(M);

b) the commutativity of the diagram

E(M)

P��

✏✏

LP // E(@0M)

(P��)0
✏✏

R(M)
LP // R(@0M)

(3.3)

That is, (P � �)0 encodes the leading behavior of P � � at h = 0.

Summarizing, the main steps of the quasimode constructions are:

1. Resolve the geometry, find the relevant scales

2. Find the correct spaces for eigenfunctions and remainders

3. Find the correct ‘leading part’ definition for eigenfunctions and remain-
ders. Identify model operators, prove Leading part and model operator
lemma.

4. Study model operators (solvability of homogeneous/non-homogeneous PDE
problems)

5. Carry out the construction: Initial step, inductive step

The examples are progressively more complex, so that some features will occur
only in later examples. Of course the process of finding the correct spaces etc.
may be non-linear, as usual.

The ‘meat’ is in step 4. After this, step 5 is easy. Steps 1-3 are the conceptual
work needed to reduce the construction of quasimodes to the study of model
operators.

The results are formulated in Theorems 4.3, 5.4, 6.1, 7.6. They all have the
same structure: given data for � and u at h = 0 there is a unique quasimode
having this data. For � the data is the first or first two asymptotic terms, for u
the data is the restriction to the boundary hypersurfaces of M at h = 0. Both
cannot be freely chosen but correspond to a boundary eigenvalue problem.

There are many other types of singular perturbations which can be treated
by the same scheme. For example, ⌦0 could be a domain with a corner and
⌦

h

be obtained from ⌦0 by rounding the corner at scale h. Or ⌦
h

could be
obtained from a domain ⌦0 by removing a disk of radius h.
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Remark 3.1 (Are the blow-ups needed?). Our constructions yield precise asymp-
totic information about u as a function of h, x, y. Di↵erent boundary hypersur-
faces of M at h = 0 correspond to di↵erent asymptotic regimes in the family
⌦

h

. This is nice, but is it really needed if we are only interested in �, say?
The leading asymptotic term for � and u as h ! 0 is often easier to come

by and does not usually require considering di↵erent regimes. But in order to
obtain higher order terms of �, it is necessary to obtain this detailed information
about u along the way. As we will see, all regimes of the asymptotics of u
will ‘influence’ the asymptotics of �, often starting at di↵erent orders of the
expansion. Another mechanism is that justifying a formal expansion up to a
certain order usually requires knowing the expansion to a higher order (as is
explained in [20], for example).

4 Regular perturbations

To set the stage we first consider the case of a regular perturbation. Here basic
features of any quasimode construction are introduced: the reduction to an
initial and an inductive step, the identification of a model operator, and the use
of the solvability properties of the model operator for carrying out the initial
and inductive steps.

4.1 Setup

Let ⌦
h

, h � 0 be a family of bounded domains in R2 with smooth boundary.27

We say that this family is a regular perturbation of ⌦0 if one of the following
equivalent conditions is satisfied:

(A) There are di↵eomorphisms �
h

: ⌦0 ! ⌦
h

so that �
h

is smooth in x 2 ⌦0

and h � 0, and �0 = Id⌦0
.

(B) The closure of the total space

M = ⌦ =
[

h�0

⌦
h

⇥ {h} ⇢ R2 ⇥ R+

is a manifold with corners, with boundary hypersurfaces

X := ⌦0, @DM :=
[

h�0

@⌦
h

.

See Figure 11.28 Note that the two boundary hypersurfaces play di↵erent roles:

27Everything works just as well in Rn or in a smooth Riemannian manifold. Also the
smoothness of the boundary can be relaxed, for example the ⌦h could be domains with
corners, then the requirement (B) below is that M be a d-submanifold of Rn ⇥R+, as defined
before Definition 2.14.

28To prove the equivalence of (A) and (B) note that ⌦0⇥R+ is a manifold with corners and
that the �h define a trivialization (di↵eomorphism) � : ⌦0 ⇥ R+ ! ⌦, (x, h) 7! (�h(x), h),
and conversely a trivialization defines �h.

(B) could also be reformulated as: M is a p-submanifold of R2 ⇥ R+
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h

X

@DM

Figure 11: The total space M for a regular perturbation

At @DM , the ‘Dirichlet boundary’, we impose Dirichlet boundary conditions.
The quasimode construction proceeds at X = {h = 0}. To unify notation, we
denote the boundary of X by @DX.

In the geometric spirit of this article, and to prepare for later generalization,
we use condition (B). For explicit calculations the maps �

h

in (A) are useful,
as we indicate in Subsection 4.3.

As explained in Section 3 the quasimode construction problem is to find u
and � satisfying (P � �)u = O(h1), where u is required to satisfy Dirichlet
boundary conditions. Here P = �� on each ⌦

h

.

4.2 Solution

The idea is this: Rather than solve (P � �)u = O(h1) directly, we proceed
inductively with respect to the order of vanishing of the right hand side:

Initial step: Find �, u satisfying (P � �)u = O(h).

Inductive step: Given �, u satisfying (P � �)u = O(hk) where k � 1,

find �̃, ũ satisfying (P � �̃)ũ = O(hk+1).

Before carrying this out, we prepare the stage. We structure the exposition of
the details so that it parallels the later generalizations.

4.2.1 Function spaces, leading part and model operator

For a regular perturbation we expect � and u to be smooth up to h = 0.
Therefore we introduce the function spaces

C1
D (M) = {u 2 C1(M) : u = 0 at @DM}

C1
D (X) = {v 2 C1(X) : v = 0 at @DX}

and

hkC1(M) = {hkf : f 2 C1(M)}, h1C1(M) =
\

k2N
hkC1(M).

So h1C1(M) is the space of smooth functions on M vanishing to infinite order
at the boundary h = 0. For simplicity we always consider real-valued functions.
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We seek u 2 C1
D (M) for which the remainders f = (P��)u lie in hkC1(M)

for k = 1, 2, 3, . . . . Our final goal is:

Find � 2 C1(R+), u 2 C1
D (M) so that (P � �)u 2 h1C1(M) .

The leading part of u 2 C1
D (M) and of f 2 C1(M) is defined to be the

restriction to h = 0:
u
X

:= u|X , f
X

:= f|X .

The following lemma is obvious. In (a) use Taylor’s theorem.

Leading part and model operator lemma (regular perturbation).

a) If f 2 C1(M) then

f 2 hC1(M) if and only if f
X

= 0.

b) For � 2 C1(R+) we have

P � � : C1
D (M)! C1(M)

and
[(P � �)u]

X

= (P0 � �0)uX

where P0 = �� is the Laplacian on ⌦0 and �0 = �(0).

We call
P0 � �0 : C1

D (X)! C1(X)

the model operator of P � �, since it models its action at h = 0. Thus, the
leading part of (P � �)u is obtained by applying the model operator to the
leading part of u.

Remark 4.1. In the uniform notation of Section 3, see (3.2), (3.3), we have
@0M = X and E(M) = C1

D (M), E(@0M) = C1
D (X),R(M) = C1(M),R(@0M) =

C1(X) and LP(u) = u
X

, LP(f) = f
X

, (P � �)0 = P0 � �0.

4.2.2 Analytic input for model operator

The core analytic input in the construction of quasimodes is the following fact
about P0.

Lemma 4.2. Let �0 2 R and g 2 C1(X). Then there is a unique � 2 Ker(P0 � �0)
so that the equation

(P0 � �0)v = g + � (4.1)

has a solution v 2 C1
D (X). Also, � = 0 if and only if g ? Ker(P0 � �0).

The solution v is unique up to adding an element of Ker(P0 � �0).

Note that the lemma is true for any elliptic, self-adjoint elliptic operator on
a compact manifold with boundary.

Proof. By standard elliptic theory, self-adjointness of P0 in L2(X) and ellip-
tic regularity imply the orthogonal decomposition C1(X) = Ran(P0 � �0) �
Ker(P0 � �0). This implies the lemma.
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4.2.3 Inductive construction of quasimodes

Initial step We want to solve

(P � �)u 2 hC1(M). (4.2)

By the leading part and model operator lemma this is equivalent to [(P � �)u]
X

= 0
and then to

(P0 � �0)uX

= 0.

Therefore we choose

�0 = an eigenvalue of P0

u0 = a corresponding eigenfunction

then any u having u
X

= u0 will solve (4.2). For simplicity we make the29

Assumption: the eigenspace Ker(P0 � �0) is one-dimensional. (4.3)

Inductive step

Inductive step lemma (regular perturbation). Let �0, u0 be chosen as
in the initial step, and let k � 1. Suppose � 2 C1(R+), u 2 C1

D (M)
satisfy

(P � �)u 2 hkC1(M)

and �(0) = �0, uX

= u0. Then there are µ 2 R, v 2 C1
D (M) so that

(P � �̃)ũ 2 hk+1C1(M)

for �̃ = �+ hkµ, ũ = u+ hkv. The number µ is unique, and v
X

is unique
up to adding constant multiples of u0.

More precisely, µ and v
X

(modulo Ru0) are uniquely determined by �0,
u0 and the leading part of h�k(P � �)u.

Proof. Writing (P � �)u = hkf and �̃ = �+ hkµ, ũ = u+ hkv we have

(P � �̃)ũ = hk[f � µu+ (P � �)v � hkµv]

This is in hk+1C1(M) if and only if the term in brackets is in hC1(M),
which by the leading part and model operator lemma (and by k � 1) is
equivalent to f

X

� µu
X

+ (P0 � �0)vX = 0, i.e. (using u
X

= u0) to

(P0 � �0)vX = �f
X

+ µu0 . (4.4)

This equation can be solved for µ, v
X

by applying Lemma 4.2 to g = �f
X

,
since Ker(P0 � �0) = {µu0 : µ 2 R} by (4.3). Having v

X

we extend it to
a smooth function v on M . Lemma 4.2 also gives the uniqueness of µ and
the uniqueness of v

X

modulo multiples of u0.
29The method can be adjusted to the case dimKer(P0 � �0) > 1. The main di↵erence is

that generically, not every eigenfunction u0 of P0 will arise as a limit of quasimodes uh with
h > 0.
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The initial and inductive steps give eigenvalues and quasimodes to any order
hN , and this is good enough for all purposes. It is still nice to go to the limit
and also consider uniqueness. We get the final result:

Theorem 4.3 (quasimodes for regular perturbation). Assume the setup of a
regular perturbation as described in Section 4.1. Given a simple eigenvalue �0
and associated eigenfunction u0 of P0, there are � 2 C1(R+), u 2 C1

D (M)
satisfying

(P � �)u 2 h1C1(M)

and
�(0) = �0, u

X

= u0 .

Furthermore, � and u are unique in Taylor series at h = 0, up to replacing u
by a(h)u where a is smooth and a(0) = 1.

Clearly, u cannot be unique beyond what is stated.

Proof. Let u(k), �(k) be as obtained in the initial step (if k = 0) or the inductive
step (if k � 1), respectively. Then u(k+1) = u(k)+O(hk), �(k+1) = �(k)+O(hk)
for all k by construction, so by asymptotic summation (Borel Lemma, cf. Lemma
2.10) we obtain �, u as desired.

To prove uniqueness, we show inductively that for �,�0 and u, u0 having
the same leading terms, the assumptions (P � �)u 2 hkC1(M), (P � �0)u0 2
hkC1(M) imply that � � �0 = O(hk) and u � a(k)(h)u

0 2 hkC1
D (M) for a

smooth function a(k), a(k)(0) = 1.
For k = 1 there is nothing to prove. Suppose the claim is true for k, and

let (P � �)u 2 hk+1C1(M), (P � �0)u0 2 hk+1C1(M). By the inductive
hypothesis, we have � � �0 = O(hk) and u � a(k)(h)u

0 2 hkC1
D (M). Since the

leading terms of h�k(P � �)u and h�k(P � �0)u0 both vanish, the uniqueness
statement in the inductive step lemma implies that � � �0 = O(hk+1) and
u�a(k)(h)u0�chku0 2 hk+1C1

D (M) for some c 2 R. Then a(k+1)(h) = a(k)(h)+
chk satisfies u � a(k+1)(h)u

0 2 hk+1C1
D (M). Now define a from the a(k) by

asymptotic summation.

4.3 Explicit formulas

The proof of Theorem 4.3 is constructive: it gives a method for finding u(x, h)
and �(h) to any order in h, under the assumption that the model problem
(4.1) can be solved. We present two standard alternative ways of doing the
calculation.

We use the maps �
h

: X ! ⌦
h

, see (A) in Section 4.1, where X = ⌦0. In
fact, only the restriction of �

h

to @DX is needed, as will be clear from the first
method presented below.
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4.3.1 Boundary perturbation

We will compute �̇, where the dot denotes the first derivative in h at h =
0. This is the first order perturbation term since �(h) = �(0) + h�̇ + O(h2).
Di↵erentiating the equation (P � �)u 2 h2C1(M) in h at h = 0 we obtain

(Ṗ � �̇)u0 + (P0 � �0)u̇ = 0 . (4.5)

In our case Ṗ = 0. The boundary condition is u(x, h) = 0 for all x 2 @D⌦h

and
all h, so u(�

h

(y), h) = 0 for y 2 @DX. Di↵erentiating in h yields the boundary
condition for u̇:

V u0 + u̇ = 0 on @DX

where V u0 is the derivative of u0 in the direction of the vector field V =
(@

h

�
h

)|h=0. Now take the L2(X) scalar product of (4.5) with u0. We write
the second summand using Green’s formula as

h(P0 � �0)u̇, u0i =
Z

@DX

(�@
n

u̇ · u0 + u̇ · @
n

u0) dS + hu̇, (P0 � �0)u0i

where @
n

denotes the outward normal derivative. Using u0|@DX

= 0, (P0 �
�0)u0 = 0 we obtain

�̇ = � 1

ku0k2

Z

@DX

V u0 · @nu0 dS

where ku0k is the L2(X)-norm of u0. Commonly one chooses �
h

so that V = a@
n

for a function a on @DX. This means that the boundary is perturbed in the
vertical direction at velocity a. For L2-normalized u0 this yields Hadamard’s
formula (see [23]) �̇ = �

R
@DX

a(@
n

u0)2 dS. Higher order terms are computed
in a similar way.

Note that we did not need to solve the model problem. Its solution is only
needed to compute u̇ or higher derivatives of � and u.

4.3.2 Taylor series ansatz

Here is a di↵erent method where in a first step all operators are transferred
to the h-independent space X. Using the maps �

h

: X ! ⌦
h

pull back the
operator P

h

to X:
P 0
h

= �⇤
h

P
h

.

Now P 0
h

is a smooth family of elliptic operators on X, so we can write

P 0
h

⇠ P0 + hP1 + . . .

Here P0 is the Laplacian on X since �0 is the identity. We also make the ansatz

u ⇠ u0 + hu1 + . . . , � ⇠ �0 + h�1 + . . .
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where all u
i

2 C1
D (X), multiply out the left side of

(P0 + hP1 + · · ·� �0 � h�1 � . . . )(u0 + hu1 + . . . ) ⇠ 0,

order by powers of h and equate each coe�cient to zero. The h0 term gives the
initial equation

(P0 � �0)u0 = 0 (4.6)

and the hk term, k � 1, gives the recursive set of equations

(P0 � �0)uk

= �(P1 � �1)uk�1 � · · ·� (P
k

� �
k

)u0

=: �f
k

+ �
k

u0
(4.7)

where f
k

is determined by u0, . . . , uk�1 and �0, . . . ,�k�1. This is the decompo-
sition of Lemma 4.2 for g = f

k

, so it can be solved for �
k

, u
k

.

We can solve (4.7) explicitly as follows: Taking the scalar product with u0

and using h(P0 � �0)uk

, u0i = huk

, (P0 � �0)u0i = 0 we get

�
k

=
hf

k

, u0i
ku0k2

, (4.8)

for example

�1 =
hP1u0, u0i
ku0k2

, �2 =
h(P1 � �1)u1 + P2u0, u0i

ku0k2

Here u1, u2 etc. are computed as

u
k

= (P0 � �0)�1(�f
k

+ �
k

u0)

where (P0��0)�1 is a generalized inverse of P0��0, i.e. a left inverse defined on
Ran(P0��0). The choice (4.8) of �k guarantees that �f

k

+�
k

u0 2 Ran(P0��0).

Remark 4.4. This method seems simpler and more e↵ective than the one pre-
sented in Section 4.2. However, in the context of singular perturbations, where
several model problems occur, it will pay o↵ to have a geometric view and not
to have to write down asymptotic expansions.

The relation between these two methods becomes clearer if we formulate the
present one in terms of the operator P 0 on the space ⌦

0
= X⇥R+. The product

structure of ⌦
0
allows us to extend functions on X to functions on ⌦

0
in a

canonical way (namely, constant in h). This yields the explicit formulas. In
comparison, for ⌦ there is no such canonical extension.

4.4 Generalizations

Theorem 4.3 generalizes to any smooth family of uniformly elliptic operators
P
h

with elliptic boundary conditions on a compact manifold with boundary,
supposing P0 is self-adjoint. Note that P

h

for h > 0 need not be self-adjoint. If
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P
h

has complex coe�cients then u and � will be complex valued, and if all P
h

are self-adjoint then � can be chosen real-valued.
The method in Subsection 4.3.2 can be formulated abstractly for any family

of operators P 0
h

on a Hilbert space which has a regular Taylor expansion in h as
h! 0. Using contour integration one may find the asymptotics of eigenfunctions
and eigenvalues, not just quasimodes, directly and show that they vary smoothly
in the parameter h under the simplicity assumption (4.3). See [34].

5 Adiabatic limit with constant fibre eigenvalue

The adiabatic limit30 is a basic type of singular perturbation which will be part
of all settings considered later. Its simplest instance is the Laplacian on the
family of domains

⌦
h

= (0, 1)⇥ (0, h) ⇢ R2 . (5.1)

Since the domain of the variable y is (0, h) it is natural to use the variable
Y = y

h

2 (0, 1) instead. Then

� = @2
x

+ @2
y

= h�2@2
Y

+ @2
x

. (5.2)

Although it is not strictly needed for understanding the calculations below,
we explain how this is related to blow-up, in order to prepare for later general-
izations: The closure of the total space ⌦ =

S
h>0 ⌦h

⇥ {h} ⇢ R2 ⇥ R+ has a
singularity (an edge) at h = 0.31 This singularity can be resolved by blowing
up the x-axis L = {y = h = 0} in R2 ⇥ R+. If � : [R2 ⇥ R+, L] ! R2 ⇥ R+ is
the blow-down map then the lift

M = �⇤⌦

is contained in the domain of the projective coordinates system x, Y = y

h

, h,
compare Figure 8(d). In these coordinates the set M is given by x 2 [0, 1], Y 2
[0, 1], h 2 R+. See Figure 12. Note that the operators � turn into the ‘singular’
family of operators (5.2) on M .

This example, and the generalization needed in Section 6, motivates consid-
ering the following setting. See Section 5.4 for more examples where this setup
occurs.

5.1 Setup

Suppose B,F are compact manifolds, possibly with boundary. For the purpose
of this article you may simply take B,F to be closed intervals (but see Subsec-
tion 5.5 for a generalization needed later). We consider a family of di↵erential

30The word adiabatic originally refers to physical systems that change slowly. In their
quantum mechanical description structures similar to the ones described here occur, where x
corresponds to time and h�1 to the time scale of unit changes of the system. This motivated
the use of the word adiabatic limit in global analysis in this context.

31 The precise meaning of this is that ⌦ is not a d-submanifold of R2 ⇥ R+, as defined
before Definition 2.14. This is what distinguishes it from a regular perturbation. Note that
⌦ happens to be a submanifold with corners of R3, but this is irrelevant here.

40



x
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h

⌦
h

x
y

h

⌦

� �

x

Y

h

A

M

Figure 12: Domain ⌦
h

, total space ⌦ and resolution M of ⌦ for adiabatic
limit. Compare Figure 8(d). On the right only the part of the blown-up space
[R2 ⇥ R+, {y = h = 0}] where the ‘top’ projective coordinates h, Y = y

h

are
defined is shown. Dotted lines are fibres of the natural fibration of the front
face A.

operators depending on h > 0

P (h) ⇠ h�2P
F

+ P0 + hP1 + . . . (5.3)

on A = B ⇥ F . We assume

P
F

is a self-adjoint elliptic operator on F (5.4)

where boundary conditions are imposed if F has boundary.32 For example, if
F = [0, 1] then we could take P

F

= �@2
Y

with Dirichlet boundary conditions.
P0, P1, . . . are di↵erential operators on A. A condition on P0 will be imposed
below, see equations (5.11), (5.12).

One should think of A as the union of the fibres (preimages of points) of the
projection ⇡ : A = B⇥F ! B, i.e. A =

S
x2B

{x}⇥F , see also Remark 5.6 below.

We call F the fibre and B the base. The analysis below generalizes to the case
of fibre bundles A ! B, see Section 5.5. The letter A is used for ‘adiabatic
limit’.

We will denote coordinates on B by x and on F by Y . This may seem
strange but serves to unify notation over the whole article, since this notation
is natural in the following sections.

5.2 What to expect: the product case

To get an idea what happens, we consider the case of a product operator, i.e.

P (h) = h�2P
F

+ P
B

where P
B

, P
F

are second order elliptic operators on B and F , self-adjoint with
given boundary conditions. An example is (5.1), (5.2) where B = F = [0, 1] and

32Formally it would be more correct to write IdB ⌦PF instead of PF in (5.3), but here and
in the sequel we will use the simplified notation.
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P
B

= �@2
x

, P
F

= �@2
Y

. More generally, P
B

, P
F

could be the Laplacians on com-
pact Riemannian manifolds (B, g

B

), (F, g
F

). Then P would be the Laplacian
on A with respect to the metric h2g

F

� g
B

in which the lengths in F -direction
are scaled down by the factor h.

By separation of variables P (h) has the eigenvalues �
k,l

= h�2�
F,k

+ �
B,l

where �
F,k

, �
B,l

are the eigenvalues of P
F

, P
B

respectively, with eigenfunc-
tions33 �

k

⌦  
l

.
Although we have solved the problem, we now rederive the result using

formal expansions, in order to distill from it essential features that will appear
in the general case. We make the ansatz

u = u0 + hu1 + . . . , � = h�2��2 + . . .

and plug in

(h�2P
F

+P
B

�h�2��2�h�1��1��0� . . . )(u0+hu1+h2u2+ . . . ) = 0. (5.5)

The h�2 term gives
(P

F

� ��2)u0 = 0 (5.6)

so ��2 must be an eigenvalue of P
F

. Suppose it is simple and let  be a
normalized eigenfunction. It follows that

u0(x, Y ) = �(x) (Y )

for some yet unknown function �. How can we find �? The h�1 term gives
(P

F

� ��2)u1 = ��1u0. Taking the scalar product with u0 and using self-
adjointness of P

F

we get ��1 = 0. The h0 term then gives

(P
F

� ��2)u2 = �(P
B

� �0)u0.

By Lemma 4.2, applied to P
F

for fixed x 2 B, this has a solution u2 if and only
if

(P
B

� �0)u0(x, ·) ?  in L2(F ) for each x 2 B. (5.7)

Now the left side is [(P
B

� �0)�(x)] , so we get

(P
B

� �0)� = 0 on B.

Thus, �0 is an eigenvalue of P
B

with eigenfunction �. This solves the problem
since �⌦  is clearly an eigenfunction of P (h) with eigenvalue h�2��2 + �0.

From these considerations, we see basic features of the adiabatic problem:

• ��2 is an eigenvalue of the fibre operator P
F

.

• �0 is an eigenvalue of the base operator P
B

.

• The leading term of the eigenfunction, u0, is the tensor product of the
eigenfunctions on fibre and base. It is determined from the two ‘levels’,
h�2 and h0 of (5.5).

33For functions � : B ! R and  : F ! R we write �⌦ : B⇥F ! R, (x, Y ) 7! �(x) (Y ).
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For a general operator (5.3) we cannot separate variables since P0 (and the
higher P

i

) may involve Y -derivatives (or Y -dependent coe�cients). However,
the ‘adiabatic’ structure of P (h) still allows separation of variables to leading
order: The h�2 term of (5.5) still yields u0 = � ⌦  and the h�1 term yields
��1 = 0. The h0 term now yields condition (5.7) with P

B

replaced by P0. This
shows that � must be an eigenfunction of the operator

U 7! (⇧ � P0)(U ⌦  )

where ⇧u = hu, i
F

is the L2(F ) scalar product with  . This motivates the
definition of the horizontal operator P

B

below.

5.3 Solution

The solution of the formal expansion equation (5.5) is complicated by the fact
that a single u

i

is only determined using several hk. It is desirable to avoid
this, in order to easily progress to more complex problems afterwards. Thus,
we need a procedure where consideration of a fixed hk gives full information on
the corresponding next term in the u expansion.

This can be achieved by redefining the function space containing the remain-
ders f = (P � �)u in the iteration, as well as their notion of leading part.

As before, we consider a family (u
h

)
h�0 of functions on B⇥F as one function

on the total space
M = B ⇥ F ⇥ R+

and consider a di↵erential operator P acting on functions on M and having an
expansion as in (5.3). Let

A := B ⇥ F ⇥ {0}
be the boundary at h = 0 of M .

5.3.1 A priori step: Fixing a vertical mode. The horizontal operator.

A priori we fix

��2 = a simple eigenvalue of P
F

 = an L2(F )-normalized corresponding eigenfunction.
(5.8)

We will seek (quasi-)eigenvalues of P of the form h�2��2 + C1(R+).
Every f 2 C1(F ) may be decomposed into a  component and a component

perpendicular to  :

f = hf, i
F

 + f?, f? ?
F

 (5.9)

where h , i
F

is the L2(F ) scalar product. The same formula defines a fibrewise
decomposition of f in C1(A) or in hkC1(M), k 2 Z. The coe�cient of  
defines projections

⇧ : C1(A)! C1(B)

⇧ : hkC1(M)! hkC1(B ⇥ R+)
f 7! hf, i

F
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By self-adjointness of P
F

⇧ � (P
F

� ��2) = 0 (5.10)

on the domain of P
F

. Motivated by the consideration at the end of the previous
section we define the horizontal operator34

P
B

: C1
D (B)! C1(B), U 7! ⇧P0(U ⌦  ). (5.11)

We can now formulate the assumption on P0:

P
B

is a self-adjoint elliptic di↵erential operator on B (5.12)

where self-adjointness is with respect to some fixed density on B and given
boundary conditions. This notation is consistent with the use of P

B

in the
product case.

5.3.2 Function spaces, leading part and model operator

We will seek quasimodes u in the solution space C1
D (M), the space of smooth

functions on M satisfying the boundary conditions. The leading part of u 2
C1

D (M) is defined to be

u
A

:= u|h=0 2 C1
D (A).

The following definition captures the essential properties of the remainders
f = (P � �)u arising in the iteration.

Definition 5.1. The remainder space for the adiabatic limit is

R(M) := {f 2 h�2C1(M) : ⇧f is smooth at h = 0}
= {f = h�2f�2 + h�1f�1 + · · · : ⇧f�2 = ⇧f�1 = 0}.

The leading part of f 2 R(M), f = h�2f�2 + h�1f�1 + . . . is35

f
AB

:=

✓
f�2

⇧f0

◆
2 C1(A)⇧? � C1(B)

where
C1(A)⇧? := {v 2 C1(A) : ⇧v = 0} .

For functions in the solution space we clearly have:

Let u 2 C1
D (M). Then u 2 hC1

D (M) () u
A

= 0 .

The definition of the leading part of f 2 R(M) is designed to make the corre-
sponding fact for f true:

34PB is also called the e↵ective Hamiltonian, e.g. in [56].
35The notation fAB is meant to indicate that the leading part has components which are

functions on A and on B.
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Leading part and model operator lemma (adiabatic limit).

a) If f 2 R(M) then

f 2 hR(M) if and only if f
AB

= 0.

b) For � 2 h�2��2 + C1(R+) we have

P � � : C1
D (M)! R(M) (5.13)

and

[(P � �)u]
AB

=

✓
(P

F

� ��2)uA

⇧(P0 � �0)uA

◆
(5.14)

where �0 is the constant term of �.

The operator (P � �)
A

:=

✓
P
F

� ��2

⇧(P0 � �0)

◆
is called the model operator for

P � � at A.

Proof.

a) Let f = h�2f�2 + h�1f�1 + f0 + . . . with ⇧f�2 = ⇧f�1 = 0. Suppose
f
AB

= 0, so f�2 = 0 and ⇧f0 = 0. Then f = h�1f�1 + f0 + O(h) with
⇧f�1 = ⇧f0 = 0, so f 2 hR(M). The converse is obvious.

b) If u 2 C1
D (M) then (P � �)u = h�2(P

F

� ��2)u + (P0 � �0)u + O(h) is
in R(M) by (5.10), and then the definition of leading part implies (5.14).

Remark 5.2. In the uniform notation of Section 3, see (3.2), (3.3), we have
@0M = A and E(M) = C1

D (M), E(@0M) = C1
D (A), R(M) is defined in Def-

inition 5.1, R(@0M) = C1(A)⇧? � C1(B), and LP(u) = u
A

, LP(f) = f
AB

,
(P � �)0 = (P � �)

A

.

5.3.3 Analytic input for model operator

For the iterative construction of quasimodes we need the solution properties of
the model operator, analogous to Lemma 4.2. The main additional input is the
triangular structure of the model operator, equation (5.16) below.

By definition

(P � �)
A

: C1
D (A)! C1(A)⇧? � C1(B)

In the proof below it will be important to decompose functions v 2 C1
D (A) into

their fibrewise ⇧? and ⇧ components. More precisely, the decomposition (5.9)
defines an isomorphism

C1
D (A) ⇠= C1

D (A)⇧? � C1
D (B) , v 7! (v?,⇧v) (5.15)

so that v = v? + (⇧v)⌦  .
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Lemma 5.3. Let P be an operator on M having an expansion as in (5.3), (5.4),
and assume P and ��2 2 R,  2 C1

D (F ) satisfy (5.8), (5.12).
Then for each g 2 C1(A)⇧? � C1(B) and �0 2 R there is a unique � 2

Ker(P
B

� �0) ⇢ C1
D (B) so that the equation

(P � �)
A

v = g +

✓
0
�

◆

has a solution v 2 C1
D (A). This solution is unique up to adding w ⌦  where

w 2 Ker(P
B

� �0).

Proof. Decompose v 2 C1
D (M) as in (5.15). Then (P

F

���2)v = (P
F

���2)v?

and ⇧(P0 � �0)v = ⇧P0v? + (P
B

� �0)⇧v since ⇧v? = 0 and by definition of
P
B

. Therefore, we may write (P � �)
A

as a 2⇥ 2 matrix:

(P � �)
A

=

0

@
P
F

� ��2 0

⇧P0 P
B

� �0

1

A :
C1

D (A)⇧?

�
C1

D (B)
!

C1(A)⇧?

�
C1(B)

(5.16)

In order to solve (P � �)
A

v = g+

✓
0
�

◆
we write v =

✓
v?

v⇧

◆
and g =

✓
g?

g⇧

◆
and

get the system

(P
F

� ��2)v
? = g?

⇧P0v
? + (P

B

� �0)v⇧ = g⇧ + �

The first equation has a unique solution v? by Lemma 4.2 applied to P
F

. Then
by Lemma 4.2 applied to P

B

, there is a unique � 2 Ker(P
B

� �0) so that the
second equation has a solution v⇧, and v⇧ is unique modulo Ker(P

B

� �0).

5.3.4 Inductive construction of quasimodes

We now set up the iteration.

Initial step: We want to solve

(P � �)u 2 hR(M). (5.17)

By the leading part and model operator lemma this is equivalent to [(P � �)u]
AB

= 0
and then to

(P
F

� ��2)uA

= 0, ⇧(P0 � �0)uA

= 0.

By (5.8) the first equation implies u
A

= �⌦  for some function � on B,
and then the second equation is equivalent to (P

B

� �0)� = 0 by (5.11),
so if we choose

�0 = an eigenvalue of P
B

� = a corresponding eigenfunction of P
B

46



then any u having u
A

= �⌦  satisfies (5.17). Again, we make the

Assumption: the eigenvalue �0 of P
B

is simple (5.18)

From now on, we fix the following data:

��2, �0 2 R, u0 := �⌦  2 C1
D (A).

Inductive step:

Inductive step lemma (adiabatic limit). Let ��2, �0 and u0 be as above,
and let k � 1. Suppose � 2 h�2C1(R+), u 2 C1

D (M) satisfy

(P � �)u 2 hkR(M)

and � = h�2��2+�0+O(h), u
A

= u0. Then there are µ 2 R, v 2 C1
D (M)

so that
(P � �̃)ũ 2 hk+1R(M)

for �̃ = �+ hkµ, ũ = u+ hkv. The number µ is unique, and v
A

is unique
up to adding constant multiples of u0.

Proof. Writing (P � �)u = hkf and �̃ = �+ hkµ, ũ = u+ hkv we have

(P � �̃)ũ = hk[f � µu+ (P � �)v � hkµv]

This is in hk+1R(M) if and only if the term in brackets is in hR(M),
which by the initial step and model operator lemma is equivalent to [f �
µu+ (P � �)v]

AB

= 0 and then to

(P � �)
A

v
A

= �f
AB

+

✓
0
µ�

◆

where we used (h2u)
h=0 = 0 and ⇧u

A

= ⇧u0 = �. Now Lemma 5.3 gives
the result.

We obtain the following theorem.

Theorem 5.4 (quasimodes for adiabatic limit). Suppose the operator P in
(5.3) satisfies (5.4) and (5.12), where P

B

is defined in (5.11). Given simple
eigenvalues ��2, �0 of P

F

, P
B

with eigenfunctions  , � respectively, there are
� 2 h�2C1(R+), u 2 C1

D (M) satisfying

(P � �)u 2 h1C1(M)

and
� = h�2��2 + �0 +O(h), u

A

= �⌦  .

Furthermore, � and u are unique in Taylor series at h = 0, up to replacing u
by a(h)u where a is smooth and a(0) = 1.
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Proof. This follows from the initial and inductive step as in the proof of Theorem
4.3.

Remark 5.5 (Quasimodes vs. modes). This construction works for any simple
eigenvalues ��2,�0 of P

F

, P
B

respectively. However, when we ask whether a
quasimode (�, u) is close (for small h) to an actual eigenvalue/eigenfunction
pair we need to be careful: while � will still be close to a true eigenvalue, u may
not be close to an eigenfunction unless ��2 is the smallest eigenvalue of P

F

(‘first vertical mode’). This is in contrast to the case of a regular perturbation
where this problem does not arise.

The reason is that closeness of u to an eigenfunction can only be proved
(and in general is only true) if we have some a priori knowledge of a spectral
gap, i.e. separation of eigenvalues. Such a separation is guaranteed for small h
only for the smallest ��2. For example, in the case of intervals B = F = [0,⇡]
we have eigenvalues �

l,m

= h�2l2 + m2, k, l 2 N. Then for each m there are
h
i

! 0 and m0
i

2 N so that �2,m = �1,m0
i
for each i. Then besides u2,m also

au2,m + bu1,m0 , a, b 2 R are eigenfunctions for these eigenvalues, and in fact
under small perturbations (i.e. if P1 6= 0) only the latter type may ‘survive’.

If one fixes k and considers the kth eigenvalue �
k

(h) of ⌦
h

then, for su�-
ciently small h, it will automatically correspond to the first vertical mode. This
is clear for the rectangle but follows in general from the arguments that show
that such a quasimode is close to an eigenfunction.

Remark 5.6 (Why fibres?). Why is it natural to think of the subsets F
x

:=
{x}⇥F of A = B⇥F as ‘fibres’ (and not the sets B⇥ {Y }, for example)? The
reason is that these sets are inherently distinguished by the operator P : if u is
a smooth function on M = A ⇥ R+ then Pu is generally of order h�2. But it
is bounded as h! 0 if and only if u and @

h

u are constant on each set F
x

. Put
invariantly, P determines the fibres F

x

to second order at the boundary h = 0.
In the geometric setup of the problem, which is sketched in Figure 12, the

fibres arise naturally as fibres (i.e. preimages of points) of the blow-down map
� restricted to the front face.

Exercise 5.7. Find a formula for the first non-trivial perturbation term �1.

5.4 Examples

We already looked at the trivial example of a rectangle. A non-trivial example
will be given in Section 6. Tubes around curves provide another interesting
example: Let � : I ! R2 be a smooth simple curve in the plane parametrized
by arc length, where I ⇢ R is a compact interval. The tube of width h > 0
around � is

T
h

= {�(x) + hY n(x) : x 2 I, Y 2 [� 1
2 ,

1
2 ]}

where n(x) is a unit normal at �(x). For h small the given parametrization is a
di↵eomorphism, and in coordinates x, Y the euclidean metric on T

h

is a2dx2 +
h2dY 2 where a(x, Y ) = 1�hY (x) with  the curvature of �, so the Laplacian is
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� = a�1@
x

a�1@
x

+ h�2a�1@
Y

a@
Y

, which is selfadjoint for the measure adxdY .
This does not have the desired form. However, the operator P = �a1/2�a�1/2

is unitarily equivalent to �� and self-adjoint in L2(I⇥[� 1
2 ,

1
2 ], dxdY ), and short

calculation gives

P = �h�2@2
Y

� @2
x

� 1

4
2 +O(h).

Theorem 5.4 now yields quasimodes where ��2 = ⇡2k2 and �0 is a Dirichlet
eigenvalue of the operator �@2

x

� 1
4

2 on I. See [17] and [11] for details.

In all previous examples (and also in the example of Section 6) the operators
P
F

and P0 commute. Here is a simple example where this is not the case.
Take B = F = [0, 1], P

F

= �@2
Y

and P0 = �@2
x

+ b(x, Y ) for some smooth
function b. Then P

B

= �@2
x

+ c(x) where c(x) = hb(x, Y ) (Y ), (Y )i
F

=
1
2

R 1
0 b(x, Y ) sin2 ⇡Y dY if ��2 = ⇡2 is the lowest eigenvalue of P

F

. Here P0

commutes with P
F

i↵ b = b(x), and then c = b.

5.5 Generalizations

Fibre bundles

The product B⇥F can be replaced by a fibre bundle ⇡ : A! B with base B and
fibres F

x

= ⇡�1(x). We assume P is given as in (5.3), where P
F

di↵erentiates
only in the fibre directions. That is, for each x 2 B there is an operator P

Fx

on the fibre F
x

. We assume that P
Fx

has the same eigenvalue ��2 for each
x 2 B, with one-dimensional eigenspace K

x

. Under this assumption there are
no essential changes, mostly notational ones:

The K
x

form a line bundle K over B. Sections of K ! B may be identified
with functions on A which restricted to F

x

are in K
x

, for each x, so

C1(B,K) ⇢ C1(A).

The line bundle K ! B may not have a global non-vanishing section (replacing
 ). We deal with this by replacing functions on B by sections of K ! B. The
projections C1(F

x

)! K
x

fit together to a map

⇧ : C1(M)! C1(B ⇥ R+,K)

and then
P
B

= ⇧P0i : C
1
D (B,K)! C1(B,K)

where i : C1
D (B,K)! C1

D (A) is the inclusion. We replace C1(B) by C1(B,K)
and � ⌦  by u0 2 C1

D (B,K) ⇢ C1
D (A), an eigensection of P

B

, everywhere.
Then the construction of formal eigenvalues and eigenfunctions works as before.

The adiabatic limit for fibre bundles has been considered frequently in the
global analysis literature, see for example [43], [6].
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x

y

Figure 13: Thin domain ⌦
h

of variable thickness

Multiplicities

The construction can be generalized to the case where ��2 and �0 are multiple
eigenvalues. In the case of fibre bundles it is important that the multiplicity of
��2 is independent of the base point, otherwise new analytic phenomena arise.

Noncompact base

The base (or fibre) need not be compact as long as P
B

(resp. P
F

) has compact
resolvent (hence discrete spectrum) and the higher order (in h) terms of P
behave well at infinity.

For example, the case B = R with P
B

= �@2
x

+ V (x) where V (x) ! 1 as
|x|!1 arises in Section 6.

6 Adiabatic limit with variable fibre eigenvalue

In this section we consider thin domains of variable thickness, see Figure 13.
We will see that the nonconstancy of the thickness makes a big di↵erence to
the behavior of eigenfunctions and hence to the construction of quasimodes.
However, using a suitable rescaling, reflected in the second blow-up in Figure
14, we can reduce the problem to the case considered in the previous section.

We consider a family of domains ⌦
h

⇢ R2 defined as follows. Let I ⇢ R be
a bounded open interval and a�, a+ : I ! R be functions satisfying a�(x) <
a+(x) for all x 2 I. Let

⌦
h

= {(x, y) 2 R2 : ha�(x) < y < ha+(x), x 2 I} (6.1)

for h > 0. We assume that the height function a := a+ � a� has a unique,
non-degenerate maximum, which we may assume to be at 0 2 I. More precisely

for each " > 0 there is a � > 0 so that |x| > ") a(x) < a(0)� �, and
a is smooth near 0 and a00(0) < 0

(6.2)
The conditions in the second line sharpen the first condition near 0. See Section
6.3 for generalizations.

As before, we want to construct quasimodes (�
h

, u
h

) for the Laplacian on
⌦

h

with Dirichlet boundary conditions, as h ! 0. Our construction will apply
to ‘low’ eigenvalues, see Remark 6.2 below.
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As in the previous section we rescale the y-variable to lie in a fixed interval,
independent of x: Let

Y =
y � ha�(x)

ha(x)
2 (0, 1). (6.3)

The change of variables (x, y)! (x, Y ) transforms the vector fields @
x

, @
y

to36

@
x

 @
x

+ b(x, Y )@
Y

, b =
@Y

@x
= �

a0�
a
� Y

a0

a

@
y

 @Y

@y
@
Y

= h�1a�1@
Y

Therefore
� = h�2a�2@2

Y

+ (@
x

+ b@
Y

)2

This is reminiscent of the adiabatic limit considered in Section 5, but the fibre
operator a�2@2

Y

has first eigenvalue ⇡2a(x)�2 depending on x, so the analysis
developed there is not directly applicable.

We deal with this by expanding around x = 0 and rescaling the x-variable.

6.1 Heuristics: Finding the relevant scale

The assumption a00(0) < 0 implies that the Taylor series of a�2 around 0 is

a�2(x) ⇠ c0 + c2x
2 + . . . , c0 > 0, c2 > 0 (6.4)

so
� = c0h

�2@2
Y

+ c2h
�2x2@2

Y

+ · · ·+ (@
x

+ b@
Y

)2 (6.5)

near x = 0.
Which behavior do we expect for the eigenfunctions with small eigenvalues,

say the first? Such an eigenfunction u will minimize the Rayleigh-quotient

R(u) =
h��u, ui
kuk2

among functions satisfying Dirichlet boundary conditions. Let us see how the
di↵erent terms in (6.5) contribute to R(u):

• The h�2@2
Y

term contributes at least c0⇡2h�2, since h�@2
Y

 , i[0,1] �
⇡2k k2[0,1] for any  : [0, 1]! R having boundary values zero.37

36This is common but terrible notation. For calculational purposes it helps to write (x0, Y )

for the new coordinates, related to (x, y) via x0 = x and (6.3). Then @
@x

= @x0

@x
@

@x0 +
@Y
@x

@
@Y

=
@

@x0 + b(x0, Y ) @
@Y

and similarly for @
@y

. In the end replace x0 by x to simplify notation.

Put di↵erently,  means push-forward under the map F (x, y) = (x, Y (x, y)).
37This is just the fact that the smallest eigenvalue of the Dirichlet Laplacian on [0, 1] is ⇡2.
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• The h�2x2@2
Y

term contributes a positive summand which is O(h�2), but
can be much smaller if the eigenfunction is large only for x near zero.
Specifically, if u concentrates near x = 0 on a scale of L, i.e.

u(x, Y ) ⇡ �( x
L
) (Y )

for a function � on R that is rapidly decaying at infinity then this term
will be of order

h�2L2

since x2�( x
L

) = L2�̃( x
L

) for �̃(⇠) = ⇠2�(⇠) and �̃ is bounded38. If L ! 0
for h! 0 then this is much smaller than h�2.

• On the other hand, the @2
x

term will be of order L�2 if u concentrates on
a scale of L near x = 0.

• The other terms are smaller.

We can now determine the scale L (as function of h) for which the sum of the
h�2x2@2

Y

and @2
x

terms is smallest: For fixed h the sum h�2L2+L�2 is smallest
when h�2L2 = L�2 (since the product of h�2L2 and L�2 is constant), i.e.

L = h1/2.

The expectation of concentration justifies using the Taylor expansions around
x = 0.

The heuristic considerations of this section are justified by the construction
of quasimodes in the next section.

6.2 Solution by reduction to the adiabatic limit with con-
stant fibre

The scaling considerations suggest to introduce the variable

⇠ =
x

h1/2
(6.6)

in (6.5). Expanding also b(x, Y ) in Taylor series around x = 0 and substituting
x = ⇠h1/2 we obtain

� ⇠ h�2c0@
2
Y

+ h�1
�
@2
⇠

+ ⇠2c2@
2
Y

�
+

1X

j=�1

hj/2P
j

(6.7)

where P
j

are second order di↵erential operators in ⇠, Y whose coe�cients are
polynomial in ⇠ (of degree at most j + 4) and linear in Y .

The right hand side of (6.7) is a formal series of di↵erential operators which
are defined for Y 2 (0, 1) and ⇠ 2 R. Now we may apply the constructions of

38It is useful to think of this as follows: ‘�( x
L
) contributes only for x ⇡ L, and then x2 ⇡ L2’.
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Figure 14: Total space for adiabatic limit with variable thickness and its reso-
lution

Section 5, with F = [0, 1] and B = R. More precisely, �� = h�1P where, with
t = h1/2,

P ⇠ t�2P
F

+ P0 + tP1 + . . .

with P
F

= �c0@2
Y

and P0 = �@2
⇠

� ⇠2c2@2
Y

. These operators act on bounded
functions satisfying Dirichlet boundary conditions at Y = 0 and Y = 1. Using
the first eigenvalue, ��2 = c0⇡2, of P

F

we get the horizontal operator (see
(5.11))

P
B

= �@2
⇠

+ !2⇠2, ! =
p
c0c2⇡.

This is the well-known quantum harmonic oscillator, with eigenvalues µ
m

=
!(2m+ 1), m = 0, 1, 2, . . . , and eigenfunctions

 
m

(⇠) = H
m

(
p
!⇠)e�

1
2!⇠

2

(6.8)

where H
m

is the mth Hermite polynomial.
The exponential decay of  

m

as |⇠| ! 1 justifies a posteriori the scaling
limit considerations above. It means that quasimodes concentrate on a strip
around x = 0 whose width is of order h1/2 .

By Theorem 5.4 in Section 5 the operator P has quasimodes sin⇡Y  
m

(⇠)+
O(t). To get quasimodes for �� on ⌦

h

we simply substitute the coordinates
Y, ⇠ as in (6.3), (6.6). In addition, we should introduce a cuto↵ near the ends
of the interval I so that Dirichlet boundary conditions are satisfied there.

We state the result in terms of resolutions. Introducing the singular coordi-
nates Y and ⇠ corresponds to a resolution of the total space ⌦ =

S
h>0 ⌦h

⇥{h}
by two blow-ups as shown in Figure 14:

⌦ � [⌦, {y = h = 0}] =: M0  � [M0, {x = h = 0}]
q

=: M .

The blow-up of ⌦ in the x axis corresponds to introducing Y , as in Section
5, and results in the space M0. The quasihomogeneous blow-up (see Subsection
2.3.6) of M0 in the Y -axis corresponds to introducing ⇠ = xp

h

. Compare Figure

9 (with y replaced by h): ⇠ and
p
h = t, the variables used for the operator P ,
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are precisely the ‘top’ projective coordinates defined away from the right face.
Denote the total blow-down map by

� : M ! ⌦ .

Each of the two blow-ups creates a boundary hypersurface of M at h = 0:
the first blow-up creates Z, the second blow-up creates A (for ‘adiabatic’). In
addition, M has the Dirichlet boundary @

D

M which is the lift of
S

h>0(@⌦h

)⇥
{h} ⇢ ⌦.

The essence of these blow-ups is that we can construct quasimodes as smooth
functions on M .39 Their expansion at A is the one obtained using the analysis
of P . Since the quasimodes of P are exponentially decaying as ⇠ ! ±1, we
may just take the zero expansion at Z (hence the letter Z).

Summarizing, we obtain the following theorem. We denote

C1
1/2(R+) = {µ : R+ ! R : µ(h) = µ̃(

p
h) for some µ̃ 2 C1(R+)} .

Theorem 6.1 (quasimodes for adiabatic limit with variable fibre eigenvalue).
Consider the family of domains ⌦

h

defined in (6.1) and satisfying (6.2). Define
M as above. Then for each m 2 N there are �

m

2 h�2C1
1/2(R+), um

2 C1
D (M)

satisfying
(��� �

m

)u
m

2 h1C1(M)

and

�
m

⇠ c0⇡
2h�2 +

p
c0c2⇡(2m+ 1)h�1 +O(h�1/2)

u
m

= sin⇡Y  
m

(⇠) at A, u
m

= 0 at Z

where c0 = a(0)�2, c2 = �a00(0)a(0)�1. In addition, u
m

vanishes to infinite
order at Z.

In the original coordinates on ⌦
h

the conditions on u
m

translate to

u
m

(h, x, y) = sin⇡
y � ha�(x)

ha(x)
 
m

(
x

h1/2
) + O(h1/2

⇣
1 + x

2

h

⌘�N

) (6.9)

for all N . There is also a uniqueness statement similar to the one in Theorem
5.4.

Proof. Choose a function u
m

on M satisfying the following conditions: The
expansion of u

m

at the face A is given by the expansion for the quasimodes of
P discussed above. The expansion of u

m

at the face Z is identically zero; and
u
m

is zero at the Dirichlet boundary of M . Since  
m

is exponentially decaying
and all P

j

have coe�cients which are polynomial in ⇠, all terms in the expansion
at A are exponentially decaying as ⇠ ! 1. Since ⇠ = 1 corresponds to the
corner A\Z, the matching conditions of the Borel Lemma 2.10 are satisfied, so

39Of course this means that we construct quasimodes on ⌦ so that their pull-backs to M
extend smoothly to the boundary of M .
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u
m

2 C1
D (M) exists having the given expansions. Since both expansions satisfy

the eigenvalue equation to infinite order, so does u
m

. The extra decay factor in
the error term of u

m

in (6.9) corresponds to the infinite order vanishing at Z,

since x

2

h

defines Z near A \ Z, see Figure 9.

Remark 6.2. The scaling considerations depended on the assumption that u
concentrates near x = 0 as h! 0, and this was justified a posteriori by Theorem
6.1. On the other hand, it can also be shown a priori using Agmon estimates that
eigenfunctions for eigenvalues �

k

(h), where k is fixed as h ! 0, behave in this
way (and this can be used to prove closeness of quasimodes to eigenfunctions,
see [1], [7] for example).

Quasimodes can also be constructed for higher vertical modes, i.e. taking
��2 = l2c0⇡2 for any l 2 N. However, the same caveat as in Remark 5.5
applies.

Exercise 6.3. Compute the next term in the expansion of �
m

, i.e. the coe�-
cient of h�1/2.

6.3 Generalizations

Degenerate maximum

A very similar procedure works if a has a finitely degenerate maximum, i.e. if
the condition a00(0) < 0 in (6.2) is replaced by

a(j)(0) = 0 for j < 2p, a(2p)(0) < 0 (6.10)

for some p 2 N. The order is even by smoothness. The expansion (6.4) is
replaced by a�2(x) ⇠ c0 + c2px2p + . . . with c2p > 0, and then the correct

scaling is found from the equation h�2L2p = L�2, so L = h
1

p+1 . So we set

⇠ = x

t

where t = h
1

p+1 , then �� = t�2P where

P = t�2p(�c0@2
Y

) + (�@2
⇠

� c2p⇠
2p@2

Y

) + tP1 + . . .

The adiabatic limit analysis works just as well with t�2p as with t�2 in the
leading term (do it!), and the eigenfunctions of the operator �@2

⇠

+ !2⇠2p are
still rapidly decaying at infinity, so we obtain

�
m

⇠ c0⇡
2h�2 +

1X

j=�2

d
jm

h
j

p+1

and a similar statement for u
m

.
This problem with weaker regularity assumptions (and also allowing half-

integer p in (6.10)) was analyzed in [12], by a di↵erent method.
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⌦
L

1
x

y

h

⌦
h

1
x

Y

1

⌦0
h

Figure 15: Example of domains ⌦
L

and ⌦
h

, and rescaling after first blow-up

Several maxima

If the height function a has several isolated maxima then each one will contribute
quasimodes. For instance, consider the case of two maxima at x = x1 and
x = x2, with a

i

= a(x
i

), and let �
k

(h) be the kth eigenvalue of ⌦
h

for fixed
k 2 N. If a1 > a2 then the leading term of the quasi-eigenvalue constructed
at a1 is smaller than the one at a2, and therefore the aymptotics of �

k

(h) as
h! 0 is determined from the Taylor series of a around x1, and the eigenfunction
concentrates near x1 alone. On the other hand, if a1 = a2 then both maxima
will generally contribute, and it is interesting to analyze their interaction (so-
called tunnelling). A special case of this was analyzed in [53], and a detailed
study of tunnelling for Schrödinger operators with potentials was carried out in
[29] and [28].

Other approaches

A di↵erent, more operator-theoretic approach to the problem considered here
(and more general ones, e.g. higher dimensions) is taken in [40], [22], [39], see
also the book [56].

7 Adiabatic limit with ends

We consider the following problem, see Figure 15 left and center: Let ⌦
L

⇢ R2

be a bounded domain contained in the left half plane x < 0, having {0}⇥ [0, 1]
as part of its boundary. For h > 0 consider the domain

⌦
h

= h⌦
L

[R
h

⇢ R2, R
h

= [0, 1)⇥ (0, h) (7.1)

i.e. a 1⇥ h rectangle with the ‘end’ ⌦
L

, scaled down by the factor h, attached
at its left boundary. To simplify notation we assume that ⌦

L

is such that the
boundary of ⌦

h

is smooth, except for the right angles at the right end; however,
this is irrelevant for the method.

We denote coordinates on ⌦
h

by x, y. We will construct quasimodes (�
h

, u
h

)
for the Laplacian �

h

= @2
x

+ @2
y

on ⌦
h

, with Dirichlet boundary conditions, as
h! 0.
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The central di�culty, and new aspect compared to the adiabatic limit, is
the fact that there are two di↵erent scalings in the problem:

• in the rectangular part of ⌦
h

only the y-direction scales like h,

• in the left end both x- and y-directions scale like h.

This leads to di↵erent ways in which these two parts of ⌦
h

influence eigenvalues
and eigenfunctions.

This is a simple case of a much more general setup arising in contexts such
as surgery in global analysis and ‘fat graph’ analysis, see Section 7.4. The
essential structures, however, already appear in this simple case. An explicit
analysis using matched asymptotic expansions was carried out in [20]. We will
rederive the quasimode expansions in a more conceptual way using the idea of
resolutions.

7.1 Resolution

First, we construct a space on which we may hope the eigenfunctions (and
quasimodes) to be smooth. We start with the total space on which these are
functions, which is

⌦ =
[

h>0

⌦
h

⇥ {h} ⇢ R3

see the left picture in Figure 16. Really we want to consider the closure ⌦ since
we are interested in the behavior of quasimodes as h! 0, compare Remark 2.8.
This set is not a manifold with corners, let alone a d-submanifold of R2 ⇥ R+

(compare Footnote 31). At y = h = 0 the set ⌦ has an adiabatic limit type
singularity as in the case of Section 5. In addition, it has a conical singularity
(with singular base) at the point x = y = h = 0.

So we blow up these two submanifolds of R3 and find the lift (see Definition
2.14) of ⌦: The blow up of {y = h = 0} results in the space M0 in the center
of Figure 16. Projective coordinates are x, Y = y

h

and h, globally on M0 since

|y|  Ch on ⌦.40 The bottom face of M0 is h = 0, and the preimage of the
point x = y = h = 0 is the bold face line x = h = 0 in M0. So we blow up this
line and define M to be the lift of M0.41

As always we will use x, y, h to denote the pull-backs of the coordinate
functions x, y, h on ⌦ to M . Projective coordinate systems for the second blow-
up give coordinates h,X = x

h

, Y on M \A and h

x

, x, Y in a neighborhood of A.
The space M has two types of boundary hypersurfaces:

40To make sense of the picture for M0 it may help to note that M0 is the closure ofS
h>0 ⌦

0
h ⇥ {h} where ⌦0

h = {(x, Y ) : (x, y) 2 ⌦h, Y = y
h
} is depicted on the right in Figure

15.
41You may wonder if we would have obtained a di↵erent space if had first blown up the

point x = y = h = 0 and then the (lift of the) line y = h = 0. It can easily be checked that
this results in the same space M – more precisely that the identity on the interiors of this
space and of M extends to the boundary as a di↵eomorphism. This also follows from the fact
that {x = y = h = 0} ⇢ {y = h = 0} and a general theorem about commuting blow-ups, see
[51].
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⌦

x

h

y

 

M0

x

h

Y

 

A
S

@DM

M

B
⇡
a

Figure 16: Total space and its resolution for adiabatic limit with ends, with
fibration of the adiabatic face A; solid lines are codimension 2 corners of M ,
dashed or dotted lines are not

S A

0

1 Y

X
10

x

0 1

Figure 17: ‘Flattened’ picture of h = 0 boundary of resolved total space M ,
with coordinates for each face
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• The ‘Dirichlet boundary’ @DM , which corresponds to the boundary of ⌦
h

.
This is the union of the two ‘vertical’ faces in the right picture of Figure
16:

@DM = ��1

 
[

h>0

@⌦
h

⇥ {h}
!

where � : M ! ⌦ is the total blow-down map.

• The boundary at h = 0,
@0M = S [A

where A and S are the front faces of the two blow-ups, which meet in the
corner S \A.42

Our interest lies in the behavior of quasimodes at A and S. All functions will
be smooth at the Dirichlet boundary.

The faces A and S are rescaled limits of ⌦
h

, see the discussion at the end of
Section 2.4. The adiabatic face A is naturally a rectangle

A ⌘ [0, 1]⇥ [0, 1] with coordinates x and Y =
y

h
.

It is the limit as h ! 0 of {(x, y

h

) : (x, y) 2 R
h

} – this is precisely what
the blow-up means, in terms of projective coordinates. The Laplacian in these
coordinates is

� = h�2@2
Y

+ @2
x

.

Thus, we have an adiabatic problem, with base B = [0, 1]
x

and fibre F = [0, 1]
Y

and P
F

= �@2
Y

, P
B

= �@2
x

. The corresponding projection is

⇡
A

: U
A

! U
B

, (x, Y, h) 7! (x, h) (7.2)

where U
B

= B ⇥ [0, ") for some " > 0 and U
A

is a neighborhood of A. There is
a di↵erence to the setup in Section 5 in that h is not a defining function for A.
This leads to various issues below.

The interior of the surgery face S can be identified with the plane domain
⌦1 obtained by taking h�1⌦

h

and letting h ! 0 (again, by definition of the
blowup):

int(S) ⌘ ⌦1 := ⌦
L

[ ([0,1)⇥ (0, 1)) with coordinates X =
x

h
and Y =

y

h
,

(7.3)
and the Laplacian is

� = h�2(@2
X

+ @2
Y

).

The corner S \ A is the interval [0, 1] and corresponds to x = 0 in A and
to X = 1 in S. Coordinates near the corner are x, defining S locally, and
h

x

= X�1, defining A locally and even globally.
Note that the face A carries naturally a non-trivial fibration, compare Re-

mark 5.6, but the face S does not: locally near any point of S no direction is
distinguished.

42A is for adiabatic and S is for surgery, see Section 7.4 for an explanation.
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7.2 Solution

The construction of quasimodes builds on the construction for the adiabatic
limit in Section 5. The presence of the extra scale, i.e. the left end of ⌦

h

, leads
to a number of new features.

To emphasize the relation with previous sections and motivated by the con-
siderations above we will use the notation

P = �� = �@2
x

� @2
y

P
F

= �@2
Y

, P
B

= �@2
x

, P
S

= �@2
X

� @2
Y

(7.4)

7.2.1 A priori step: Fixing the vertical mode.

Since an adiabatic limit is involved, we fix a priori

��2 = a simple eigenvalue of P
F

on [0, 1], with Dirichlet boundary conditions

 = an L2-normalized corresponding eigenfunction.

Here we take the lowest fibre eigenvalue43

��2 = ⇡2,  (Y ) =
p
2 sin⇡Y

We will seek (quasi-)eigenvalues of P of the form �(h) 2 h�2��2 + C1(R+).

7.2.2 Function spaces, leading parts and model operators

We want to define spaces E(M) and R(M) which will contain the eigenfunc-
tions/quasimodes and remainders in the construction, respectively.

Our resolution was chosen so that eigenfunctions have a chance of being
smooth on M , so E(M) ⇢ C1(M). Since h

x

is a defining function for A,
functions u 2 C1(M) have an expansion at A

u ⇠
1X

j=0

✓
h

x

◆
j

ũ
j

(x, Y ), ũ
j

2 C1(A).

In the sequel it will be convenient44 to write this as

u ⇠
1X

j=0

hju
j

(x, Y ) (7.5)

where u
j

= x�j ũ
j

. Note that u
j

may be not smooth at x = 0, i.e. at S\A, even
though u 2 C1(M). We posit that quasimodes satisfy the stronger condition
that u

j

be smooth on A (including S \A) and define

C1,tr(M) = {u 2 C1(M) : u
j

2 C1(A) in the expansion (7.5)} (7.6)

43One could also consider higher fibre modes, but this would change the analysis at S, see
also Remark 5.5.

44In order to have Pu ⇠
P
j
hjPuj . But note that h is not a defining function of A.
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See Remark 7.5 below for an explanation why we expect quasimodes to satisfy
this condition. This can be reformulated as a ‘triangular’ condition on the
indices in the expansion at the corner S \A:

If u 2 C1(M), u ⇠
1X

j,l=0

a
jl

(Y )

✓
h

x

◆
j

xl near S \A

then u 2 C1,tr(M) () (a
jl

6= 0) l � j) .

(7.7)

In addition, quasimodes should vanish at the Dirichlet boundary @DM . As
before, we indicate this by the index D in the function spaces. For functions
on the faces A, S, S \ A we use a similar notation. For example, C1

D (A) is
the space of smooth functions on A vanishing on the Dirichlet boundary of A,
which consists of the three sides x = 1, Y = 0, Y = 1.

Definition 7.1. The space of quasimodes for the adiabatic limit with ends
is defined as

E(M) = C1,tr
D (M)

i.e. smooth functions on M satisfying Dirichlet boundary conditions and the
triangular condition explained above. The leading parts of u 2 E(M) are
defined as

u
S

:= u|S , u
A

:= u|A.

What are the restrictions of elements of E(M) to @0M = S [A? Define

C1,tr
D (S) := {u

s

2 C1
D (S) : u

s

= a(Y ) +O(X�1) as X !1, a 2 C1
D (S \A)}

(7.8)

E(@0M) := {(u
s

, u
a

) : u
s

2 C1,tr
D (S), u

a

2 C1
D (A), u

s

= u
a

at S \A}
(7.9)

Here we use the coordinate X on S. Recall that X�1 defines the face S \ A of
S.

Lemma 7.2 (leading parts of quasimodes, adiabatic limit with ends). If u 2
E(M) then (u

S

, u
A

) 2 E(@0M). Conversely, given (u
s

, u
a

) 2 E(@0M) there is
u 2 E(M) satisfying (u

S

, u
A

) = (u
s

, u
a

), and u is unique modulo hE(M).

This could be formulated as existence of a short exact sequence:

0! hE(M)! E(M)! E(@0M)! 0 (7.10)

where the left map is inclusion and the right map is restriction.

Proof. It is clear that the restrictions of u 2 E(M) to S,A are smooth and agree
at S \ A. Write the expansion of u at the corner as in (7.7). The l = 0 terms
give the expansion of u

S

at S \ A, i.e. as h

x

! 0. The only such term is j = 0,

so u
S

= a00(Y ) +O(
�
h

x

�1
). From h

x

= X�1 we get (u
S

, u
A

) 2 E(@0M).
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Given (u
s

, u
a

) 2 E(@0M) one constructs u 2 E(M) having this boundary
data using the Borel Lemma 2.10, as follows. We write ⌘ = X�1 for the function
defining A and suppress the Y -coordinate. Write u

a

(x) ⇠
P

l�0 a0lx
l, x ! 0.

We choose u having complete expansions

u(x, ⌘) ⇠ u
s

(⌘) +
1X

l=1

a0lx
l as x! 0, i.e. at S

u(x, ⌘) ⇠ u
a

(x) as ⌘ ! 0, i.e. at A

(with error O(⌘1) in the second case). Such a u 2 C1
D (M) exists by the Borel

Lemma – the matching conditions at x = ⌘ = 0 are satisfied since @a0l
@⌘

= 0

for all l. Also, the expansions satisfy the triangular condition in (7.7), hence
u 2 C1,tr

D (M).
Finally, we need to show that if u 2 E(M), (u

S

, u
A

) = 0 then u 2 hE(M).
Now h = h

x

x is a total boundary defining function for {S,A}, so u = hũ for
some ũ 2 C1

D (M) by Lemma 2.2. In the expansion (7.5) all u
j

are smooth and
u0 = u

A

= 0, so ũ =
P

j�1 h
j�1u

j

is in C1,tr
D (M).

The definition of the remainder space combines the triangular condition with
the remainder space for the adiabatic limit. First, the choice of ��2 defines a
projection type map related to the projection ⇡ : U

A

! U
B

, see (7.2),

⇧ : C1(M)! C1(U
B

), f 7! hf|UA
, i

F

.

Then
⇧ � (P

F

� ��2) = 0 (7.11)

where this is defined.

Definition 7.3. The remainder space for the adiabatic limit with ends is
defined as

R(M) = {f 2 h�2C1,tr(M) : ⇧f is smooth at B}.

where B := B ⇥ {0} ⇢ U
B

. The leading parts of f 2 R(M) are

f�2,S := (h2f)|S , f
AB

:=

✓
f�2,A

⇧f0,A

◆

where f�2,A = (h2f)|A, ⇧f0,A = (⇧f)|B.

Thus, a function f 2 h�2C1(M) is in R(M) i↵ it has an expansion f ⇠
h�2f�2,A + h�1f�1,A + f0,A + . . . at A with f

j,A

2 C1(A) analogous to (7.5),
and ⇧f�2,A = ⇧f�1,A = 0. This defines f�2,A and f0,A in the definition of f

AB

.
Note that f 2 R(M) implies that

f�2,S 2 C1,tr(S), ⇧f�2,S = 0 at S \A. (7.12)

The first statement follows as in the proof of Lemma 7.2 and the second from
⇧(h2f)

A

= 0 and (h2f)
A

= (h2f)
S

at S \A.
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As usual, the remainder space and leading part definitions are justified by
the following properties. Recall the definition of the operators P, P

F

, P
B

, P
S

in
(7.4).

Leading part and model operator lemma (adiabatic limit with ends).

a) If f 2 R(M) then

f 2 hR(M) if and only if f�2,S = 0, f
AB

= 0.

b) For � 2 h�2��2 + C1(R+) we have

P � � : E(M)! R(M)

and

[(P � �)u]�2,S = (P � �)
S

u
S

where (P � �)
S

= P
S

� ��2 (7.13)

[(P � �)u]
AB

= (P � �)
A

u
A

where (P � �)
A

=

✓
P
F

� ��2

⇧(P
B

� �0)

◆

(7.14)

where �0 is the constant term of �.

The operators (P ��)
S

, (P ��)
A

are called the model operators of P ��
at S and at A. There is also a short exact sequence like (7.10) for R(M), but
we need only what is stated as a).

Proof.

a) “)” is obvious. “(”: If f 2 R(M) then h2f 2 C1,tr(M), and f�2,S = 0,
f
AB

= 0 imply (h2f)
S

= 0, (h2f)
A

= 0, so Lemma 7.2 gives h2f 2
hC1,tr(M), so f = hf̃ with f̃ 2 h�2C1,tr(M). Furthermore, f

AB

= 0
implies f�2,A = 0 and ⇧f0,A = 0, so ⇧f̃ is smooth at B, hence f̃ 2 R(M).

b) If u 2 E(M) then (P � �)u = h�2(P
S

� ��2 + O(h2))u near S and
(P � �)u = h�2(P

F

� ��2)u+ (P
B

� �0)u+O(h) near A. This is clearly
in h�2C1,tr(M), and even in R(M) by (7.11). The definition of leading
parts directly implies (7.13), (7.14).

7.2.3 Analytic input for model operators

At the face A, i.e. for the operators P
F

= �@2
Y

and P
B

= �@2
x

on F = [0, 1]
Y

resp. B = [0, 1]
x

, with Dirichlet boundary conditions, we have the standard
elliptic solvability result, Lemma 4.2.

The solvability properties of the model operator (P � �)
S

are of a di↵erent
nature, essentially since this operator has essential spectrum.

Recall from (7.3) that the interior of S can be identified with the unbounded
domain ⌦1 ⇢ R2, see Figure 17. This set is the union of a compact set and an
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infinite strip, hence an example of a space with infinite cylindrical ends, and we
can use the standard theory for such spaces. We assume:

Non-resonance assumption: The resolvent z 7! (P
S

� z)�1

of the Laplacian P
S

on ⌦1 has no pole at z = ��2 = ⇡2.
(7.15)

It is well-known that this condition is equivalent to the non-existence of bounded
solutions of (P

S

���2)v = 0, and also to the unique solvability of (P
S

���2)v =
f for compactly supported f , with bounded v, see [50, Proposition 6.28]. Also,
this condition is satisfied for convex sets ⌦1, see [20, Lemma 7], and holds for
generic ⌦

L

.

Lemma 7.4. Assume ⌦1 ⇢ R2 satisfies the non-resonance assumption (7.15).
If f

s

2 C1,tr(S), ⇧f
s

= 0 at S \A then the equation

(P
S

� ��2)vs = f
s

(7.16)

has a unique bounded solution v
s

, and v
s

2 C1,tr
D (S).

Proof. Uniqueness holds since (P
S

� ��2)v = 0 has no bounded solution. For
existence, we first reduce to the case of compactly supported f

s

, then use the
non-resonance assumption to get a bounded solution v

s

and then show that
v
s

2 C1,tr
D (S). The first and third step can be done by developing f

s

and
v
s

for each fixed X > 0 in eigenfunctions  
k

(Y ) =
p
2 sin k⇡Y of the ‘vertical’

operator�@2
Y

on [0, 1] with Dirichlet conditions: f
s

(X,Y ) =
P1

k=1 fk(X) 
k

(Y ).

Then (7.16) is equivalent, in X > 0, to the ODEs (� d

2

dX

2 + µ
k

)v
k

= f
k

where
µ
k

= (k2 � 1)⇡2, and these can be analyzed explicitly. For example, if k > 1
and f

k

(X) = 0 for large X then any bounded solution v
k

must be exponentially
decaying. For details see [20, Lemma 6 and Lemma 9 (with p = 0)].

Remark 7.5. This lemma explains why we expect the ‘triangular’ condition
on the Taylor series of quasimodes: for compactly supported f

s

the solution v
s

lies in C1,tr
D (S). This leads to the definition of E(@0M). Then E(M) must be

defined so that the sequence (7.10) is exact.

7.2.4 Inductive construction of quasimodes

Initial step We want to solve

(P � �)u 2 hR(M), u 2 E(M).

By the leading part and model operator lemma this means

(P
S

� ��2)uS

= 0 (7.17)

(P
F

� ��2)uA

= 0 (7.18)

(P
B

� �0)⇧uA

= 0 (7.19)

where we used that ⇧ commutes with P
B

= �@2
x

.
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Also, (u
S

, u
A

) 2 E(@0M), defined in (7.9).

First, Lemma 7.4 implies u
S

= 0.

Therefore u
A

= 0 at S\A, hence u
A

satisfies Dirichlet boundary conditions
at all four sides of the square A. Thus we have an adiabatic problem
as treated in Section 5, so �0 must be a Dirichlet eigenvalue of �@2

x

on
B = [0, 1], i.e.

�0 = ⇡2m2, u
A

= u0 := �⌦  , �(x) =
p
2 sin⇡mx

for some m 2 N. Since B is one-dimensional, �0 is a simple eigenvalue as
required in (5.18).

From now on we fix m, �, ��2 = ⇡2, �0, and u0 = �⌦  .

Inductive step

Inductive step lemma (adiabatic limit with ends). Let ��2, �0 and
u0 be chosen as above in the initial step, and let k � 1. Suppose � 2
h�2C1(R+), u 2 E(M) satisfy

(P � �)u 2 hkR(M)

and � = h�2��2+�0+O(h) and u
S

= 0, u
A

= u0. Then there are µ 2 R,
v 2 E(M) so that

(P � �̃)ũ 2 hk+1R(M)

for �̃ = � + hkµ, ũ = u + hkv. The number µ and the restriction v
S

are
unique, and v

A

is unique up to adding constant multiples of u0.

Proof. Writing (P � �)u = hkf , f 2 R(M) we have

(P � �̃)ũ = hk[f � µu+ (P � �)v � hkµv]

This is in hk+1R(M) if and only if the term in brackets is in hR(M),
which by the leading part and model operator lemma is equivalent to

(P
S

� ��2)vS = �f�2,S (7.20)

(P
F

� ��2)vA = �f�2,A (7.21)

(P
B

� �0)⇧v
A

= �⇧f0,A + µ� (7.22)

where we have used that (h2u)
S

= 0, (h2u)
A

= 0 and ⇧u
A

= ⇧u0 = �.

We first solve at S: We have f 2 R(M), so by (7.12) we can apply
Lemma 7.4 with f

s

= �f�2,S and obtain v
S

2 C1,tr
D (S) solving (7.20).

This determines in particular v|S\A

, i.e. the boundary value of v
A

at S\A.

Now at A we need to solve an adiabatic problem, but with an inhomo-
geneous boundary condition at S \ A. To this end we extend v|S\A

to
v0 2 C1

D (A). Writing v
A

= v0 + v00 we then need to find v00 satisfy-
ing homogeneous boundary conditions also at S \ A, and solving (7.21),
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(7.22) with f�2,A modified to f�2,A + (P
F

� ��2)v0 and f0,A modified to
f0,A + (P

B

� �0)v0.
This is an adiabatic problem, so Lemma 5.3 guarantees the existence of a
solution v00. Note that since ⇧ commutes with P

B

there is no o↵-diagonal
term in (5.16) (where P0 = P

B

in current notation).

The uniqueness follows directly from (7.20)-(7.22): The di↵erence between
two solutions v would satisfy the same equations with f = 0, so would
have to vanish at S and therefore solve the adiabatic problem at A with
homogeneous boundary condition at S \ A, for which we have already
shown that µ is unique and v

A

is unique up to multiples of u0.

Now by the same arguments as for Theorem 4.3 we obtain from the initial
and inductive steps:

Theorem 7.6 (quasimodes for adiabatic limit with ends). Consider the family
of domains ⌦

h

defined in (7.1). Suppose the non-resonance assumption (7.15)
is satisfied. Then for each m 2 N there are �

m

2 h�2C1(R+), um

2 C1,tr
D (M)

satisfying
(P � �

m

)u
m

2 h1C1(M)

and

�
m

= h�2⇡2 +m2⇡2 +O(h)

u
A

= 2 sinm⇡x sin⇡Y , u
S

= 0

There is also a uniqueness statement similar to the one in Theorem 5.4.

Remark 7.7 (Quasimodes vs. modes). It is shown in [20] that for convex ⌦
h

all eigenfunctions are captured by this construction. That is, for each m 2 N
there is h0 > 0 so that for h < h0 the mth eigenvalue of ⌦

h

is simple, and both
eigenvalue and (suitably normalized) eigenfunction are approximated by �

m

, u
m

with error O(h1). However, if ⌦
h

is not convex then there may be an additional
finite number of eigenvalues not captured by this construction. Essentially, these
arise from L2-eigenvalues of the Laplacian on ⌦1 below the essential spectrum.
See [16] and references there for a detailed discussion.

7.3 Explicit formulas

The inductive step yields a method for finding any number of terms in the
expansions of �

m

and u
m

as h! 0 in terms of solutions of the model problems.
In [20] the next two terms for �

m

are computed:

�
m

= h�2⇡2 +m2⇡2(1 + ah)�2 +O(h3)

where a > 0 is determined by the scattering theory of �� on ⌦1 at the infimum
of the essential spectrum, which equals ⇡2. More precisely, there is, up to scalar
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multiples, a unique polynomially bounded solution v of (�+ ⇡2)v = 0 on ⌦1,
and it has the form

v(X,Y ) = (X + a) sin⇡Y +O(e�X) as X !1.

This fixes a. Another description is a = 1
2�

0(0) where �(s) is the scattering
phase at frequency ⇡2 + s2.

7.4 Generalizations

The structure of ⌦
h

may be described as ‘thin cylinder with end attached’. A
natural general setup for this structure is obtained by replacing the Y -interval
[0, 1] by a compact Riemannian manifold, of dimension n�1, and the end ⌦

L

by
another compact Riemannian manifold, of dimension n, which has an isometric
copy of Y as part of its boundary. One may also add another Riemannian
manifold as right end. This is studied in global analysis (where it is sometimes
called ‘analytic surgery’) as a tool to study the glueing behavior of spectral
invariants, see [25], [26], [44] for example. Other degenerations which have
been studied by similar methods include conic degeneration [21], [54], [55] and
degeneration to a (fibred) cusp [2], [3].

Another generalization is to have several thin cylinders meeting in prescribed
ways, so that in the limit h = 0 one obtains a graph-like structure instead of
an interval. This is called a ‘fat graph’. For example, consider a finite graph
embedded in Rn with straight edges, and let ⌦

h

be the set of points of Rn having
distance at most h from this graph. This was studied in detail in [10], [16] and
[52], see also [17] for a discussion and many more references. The methods in
these papers actually yield a stronger result: �

m

(h) is given by a power series
in h which converges for small h, plus an exponentially small error term.

8 Summary of the quasimodes constructions

We summarize the essential points of the quasimode constructions, continuing
the outline given in Section 3.

In the case of a regular perturbation we introduced the iterative setup that
allowed us to reduce the quasimode construction to the solution of a model
problem (Lemma 4.2). It involves spaces of quasimodes and remainders and
notions of leading part. In this case these are simply smooth functions and
their restriction to h = 0.

For the adiabatic limit problem with constant fibre eigenvalue this needs
to be refined: the di↵erent scaling in fibre and base directions requires a new
definition of remainder space and leading part of remainders (Definition 5.1).
The model operator combines fibre and horizontal operators, and its triangular
structure with respect to the decomposition of functions in fibrewise ��2 modes
and other modes, Equation (5.16), enables us to solve the model problem.

The adiabatic limit problem with variable fibre eigenvalue can be reduced
to the previous case by expanding the fibre eigenvalue (as function on the base)
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around its maximum and by rescaling the base variable. This rescaling balances
the leading non-constant term in the expansion of the eigenvalue with the leading
term of the base operator. The rescaling is encoded geometrically by a blow-up
of the total space.

The adiabatic limit problem with ends carries the new feature of having two
regions with di↵erent scaling behavior. Geometrically this corresponds to two
boundary hypersurfaces, A and S, at h = 0 in the resolved total space. The
model problem at A is the same as for the adiabatic limit with constant fibre
eigenvalue. The model problem at S is a scattering problem, i.e. a spectral
problem on a non-compact domain. The properties of the solutions of the
scattering problem lead to the triangular condition on the Taylor series at the
corner S \ A in the spaces of quasimodes and remainders. Once this setup is
installed the construction proceeds in a straight-forward way as in the other
cases.
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