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1 Introduction

In this paper we analyse a randomized variant of the recently proposed Sparse

Kaczmarz method [28, 29] to recover sparse solutions of linear systems. Let
A 2 Rm⇥n be a matrix with rows 0 6= a

T

i
2 Rn and b 2 Rm be such that the

linear system Ax = b is consistent. For the standard Kaczmarz method [25]
one goes through the indices of the rows cyclically, and projects a given iterate
onto the solution space of this row. For i = mod(k � 1,m) + 1 the method
iterates

xk+1 = xk �
hai , xki � bi

kaik
2
2

· ai. (1)

It is known that the method converges to the minimum norm solution x̂ of
Ax = b when it is initialized with x0 = 0, but the speed of convergence is not
simple to quantify, and especially, depends on the ordering of the rows, see
e.g. [21]. The situation changes if one considers a randomization such that in
each step one chooses a row of the system at random. In the seminal paper [43]
it has been shown that a choice of row i with probability pi = kaik

2
2/kAk

2
F

leads to a linear convergence rate in expectation,

E
⇥
kxk+1 � x̂k

2
2

⇤


�
1� 1

2

�
· E

⇥
kxk � x̂k

2
2

⇤
, (2)

where  = kAkF

�min(A) , kAkF is the Frobenius norm and �min(A) denotes the
smallest positive singular value of A. The result was obtained for a consistent
overdetermined system Ax = b with a full rank matrix A. But even without
the assumption of full rank, and in the possibly inconsistent case, when only a
noisy right hand side b

� is given with kb� b
�
k2  �, the iterates are expected

to reach an error threshold in the order of the noise-level with the same rate
as in the noiseless case, cf. [31, 49],

E [kxk � x̂k2] 
�
1� 1

2

� k
2
· kx̂k2 +

�

�min(A) .

Since then similar results have been achieved for randomized Block Kaczmarz
methods and systems of equalities and inequalities, see [9, 27, 33], and con-
nections to stochastic gradient descent have been drawn [32].

In [28, 29] a variant of the Kaczmarz method has been proposed that
produces sparse solutions. This Sparse Kaczmarz method uses two variables
and reads as

x
⇤
k+1 = x

⇤
k
�

hai , xki � bi

kaik
2
2

· ai

xk+1 = S�(x
⇤
k+1)

(3)

with � > 0 and the soft shrinkage function S�(x) = max{|x|��, 0}·sign(x). It
has been shown in [28] that for a consistent system Ax = b with an arbitrary
matrix A the iterates xk converge to the unique solution x̂ of the regularized

Basis Pursuit problem,

min
x2Rn

f(x) = �kxk1 +
1
2kxk

2
2 s.t. Ax = b , (4)
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see e.g. [15, 19, 22], and also [40] for explicit values of � > 0 that guarantee
exact recovery of sparse solutions. But no convergence rate has been given.
In [35], in the noiseless case, sublinear convergence rates have been obtained
for the Randomized Sparse Kaczmarz method by identifying the iteration as
a randomized coordinate gradient descent method applied to the objective
function

g(y) = 1
2 · kS�(A

T
y)k22 � hb , yi (5)

of the unconstrained dual of (4), see also [34, 44]. However, the rates given
in [35] are in terms of the dual objective function g, and not of the primal
iterates only, although, as mentioned there in the conclusions, the experimental
results indicate that such rates also hold for the primal iterates. Furthermore,
linear convergence could only be obtained by smoothing the primal objective
function f in (4), which results in an iteration that is slightly di↵erent from (3),
and need not solve (4).

Here we show that in the noiseless case the Randomized Sparse Kaczmarz

method in fact converges linearly in expectation without smoothing. And in
the noisy case, similarly to the Randomized Kaczmarz method, the iterates
are expected to reach an error threshold in the order of the noise-level with
the same rate as in the noiseless case. The proof is mainly based on two
observations: First, linear rates can be achieved because g is restricted strongly

convex, cf. [26, 41, 47]. Second, using the notion of Bregman distance with
respect to f as in [28] easily allows us to express the rates in terms of the primal
iterates only. Concretely, let supp(x̂) = {j 2 {1, . . . , n} | x̂j 6= 0}, denote by
AJ the matrix that is formed by the columns of A indexed by J , define

�̃min(A) = min{�min(AJ) | J ⇢ {1, . . . , n}, AJ 6= 0}, (6)

and set ̃ = kAkF

�̃min(A) . In case b 6= 0 we also have x̂ 6= 0 and hence

|x̂|min = min{|x̂j | | j 2 supp(x̂)} > 0 . (7)

If row i is chosen with probability pi = kaik
2
2/kAk

2
F
, then the iterates of (3)

fulfill

E [kxk � x̂k2] 
⇣
1� 1

̃2 ·
|x̂|min

2|x̂|min+4�

⌘ k
2
·

q
2�kx̂k1 + kx̂k22+

q
2|x̂|min+4�

|x̂|min
·

�

�̃min(A) .

The values of �̃min(A) and |x̂|min are those used in [26] to quantify the linear
convergence rate for the linearized Bregman method applied to (4).

Furthermore, we extend these results to a more general setting by using
the theoretical framework developed in [28]. There the solution x̂ of (4) is
considered as a solution to the convex feasibility problem (CFP)

find x 2 C :=
m\

i=1

Ci (8)

with the hyperplanes Ci = {x 2 Rn
| hai , xi = bi}. The Sparse Kaczmarz

method is then interpreted as an iterative projection method to solve (8),
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where in each iteration, instead of orthogonal projections, Bregman projections

with respect to f onto the sets Ci are employed. In this context the iteration
with exact Bregman projections reads as

x
⇤
k+1 = x

⇤
k
� tk · ai

xk+1 = S�(x
⇤
k+1) ,

where tk is obtained by an exact linesearch procedure, and the choice tk =
hai , xki�bi

kaik2
2

as in (3) corresponds to an inexact linesearch or relaxed Bregman

projection. The CFP-framework is quite flexible and allows to include other
convex constraints like inequalities Ci = {x 2 Rn

| hai , xi  bi}. We show sub-
linear convergence rates in expectation for the method of randomized Bregman

projections to solve a CFP, where in each iteration an index i is chosen with
some probability pi > 0, and a Bregman projection with respect to a general
strongly convex function f onto Ci is employed. As in [3] for the case of or-
thogonal projections, these results are proven with error bounds that hold un-
der the assumption of bounded linear regularity of the collection {C1, . . . Cm}.
Moreover, we derive su�cient conditions which ensure even linear convergence
rates. Especially, based on the recent results of [41], we get linear rates for any
piecewise linear-quadratic f , and also randomized iterations of the form

X
⇤
k+1 = X

⇤
k
�

hAi , Xki�bi

kAik2
F

·Ai

Xk+1 = S�(X
⇤
k+1)

(9)

to solve the regularized nuclear norm optimization problem in the area of low
rank matrix problems,

min
X2Rn1⇥n2

f(X) = �kXk⇤ +
1
2kXk

2
F

s.t. hAi , Xi = bi , i = 1, . . . ,m , (10)

where hA , Xi = trace(AT
· X) for two matrices A,X 2 Rn1⇥n2 , and S�(X)

denotes the singular value thresholding operator, see e.g. [14, 26, 36, 46].
In the next section we recall the basic properties of Bregman distances

and Bregman projections. The linear convergence rates for the Randomized
Sparse Kaczmarz method are derived in section 3. In section 4 we prove the
error bounds which are crucial for the convergence analysis in section 5, where
we treat the general case of the solution of the CFP and related split feasibility

problems (SFP) by the method of randomized Bregman projections. In the last
section we report some numerical results illustrating the performance of the
Sparse Kaczmarz method with and without randomization, and also its benefit
for sparsity problems compared to the standard Kaczmarz method, even in the
case of overdetermined systems.

2 Basic notions

At first we recall some well known concepts and properties of convex func-
tions [39].
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Let f : Rn
! R be convex. Since f is assumed to be finite everywhere, it

is also continuous. By @f(x) we denote the subdi↵erential of f at x 2 Rn,

@f(x) = {x
⇤
2 Rn

| f(y) � f(x) + hx
⇤
, y � xi for all y 2 Rn

} ,

which is nonempty, compact and convex. Furthermore for all R > 0 we have

sup
x2BR , x⇤2@f(x)

kx
⇤
k2 < 1 , where BR := {x 2 Rn

| kxk2  R} .

Definition 2.1 The convex function f : Rn
! R is said to be strongly convex,

if there is some ↵ > 0 such that for all x, y 2 Rn and x
⇤
2 @f(x) we have

f(y) � f(x) + hx
⇤
, y � xi+

↵

2
· ky � xk

2
2 .

When the concrete value of ↵ is relevant we indicate this by saying that f is
↵-strongly convex.

Theorem 2.2 ([39, Proposition 12.60]) If f : Rn
! R is ↵-strongly convex

then the conjugate function f
⇤(x⇤) := sup

x2Rnhx
⇤
, xi � f(x) is di↵erentiable

with a 1/↵-Lipschitz-continuous gradient, i.e.

krf
⇤(x⇤)�rf

⇤(y⇤)k2 
1

↵
· kx

⇤
� y

⇤
k2 for all x

⇤
, y

⇤
2 Rn

.

Example 2.3 The objective function f(x) = �kxk1+
1
2kxk

2
2 in (4) is 1-strongly

convex with @f(x) = {x+�·s | sj = sign(xj) if xj 6= 0, and sj 2 [�1, 1] if xj = 0},
f
⇤(x⇤) = 1

2kS�(x⇤)k22 and rf
⇤(x⇤) = S�(x⇤), cf. [45].

2.1 Bregman distance

The concept of Bregman distance goes back to Bregman [8] and since then has
successfully been used as a tool to analyse and design optimization algorithms,
see e.g. [2, 4, 10, 13, 28, 42].

Definition 2.4 Let f : Rn
! R be strongly convex. The Bregman distance

D
x
⇤

f
(x, y) between x, y 2 Rn with respect to f and a subgradient x⇤

2 @f(x)
is defined as

D
x
⇤

f
(x, y) := f(y)� f(x)� hx

⇤
, y � xi = f

⇤(x⇤)� hx
⇤
, yi+ f(y) .

If f is di↵erentiable then we have @f(x) = {rf(x)} and hence we simply write
Df (x, y) = D

x
⇤

f
(x, y).

For f(x) = 1
2kxk

2
2 we just have Df (x, y) = 1

2kx � yk
2
2. For the objective

function in (4) a short reformulation yields the following.

Example 2.5 For f(x) = �kxk1 +
1
2kxk

2
2 and any x

⇤ = x + � · s 2 @f(x) we
have

D
x
⇤

f
(x, y) =

1

2
kx� yk

2
2 + � · (kyk1 � hs , yi) .
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In the following lemma we state the key properties of the Bregman distance
that are needed for the convergence analysis of the randomized methods. They
immediately follow from the assumption of strong convexity, cf. [28].

Lemma 2.6 Let f : Rn
! R be ↵-strongly convex. For all x, y 2 Rn

and

x
⇤
2 @f(x), y⇤ 2 @f(y) we have

↵

2
kx� yk

2
2  D

x
⇤

f
(x, y)  hx

⇤
� y

⇤
, x� yi  kx

⇤
� y

⇤
k2 · kx� yk2

and hence

D
x
⇤

f
(x, y) = 0 , x = y.

For sequences xk and x
⇤
k
2 @f(xk) boundedness of D

x
⇤
k

f
(xk, y) implies bound-

edness of both xk and x
⇤
k
. If f has a L-Lipschitz-continuous gradient then we

also have Df (x, y) 
L

2 · kx� yk
2
2.

2.2 Bregman projections

Definition 2.7 Let f : Rn
! R be strongly convex, and C ⇢ Rn be a

nonempty closed convex set. The Bregman projection of x onto C with re-
spect to f and x

⇤
2 @f(x) is the unique point ⇧x

⇤

C
(x) 2 C such that

D
x
⇤

f

�
x,⇧

x
⇤

C
(x)

�
= min

y2C

D
x
⇤

f
(x, y) =: distx

⇤

f
(x,C)2 .

For di↵erentiable f we simply write ⇧C(x) and distf (x,C).

The notation for the Bregman projection does not capture its dependence
on the function f , which, however, will always be clear from the context. Note
that for f(x) = 1

2kxk
2
2 the Bregman projection is just the orthogonal projection

onto C. To distinguish this case we denote the orthogonal projection by PC(x).
We point out that in this case distf (x,C)2 and the usual dist(x,C)2 di↵er by
a factor of 2, but we prefer this slight inconsistency to incorporating the factor
into the definition of distf . The Bregman projection can also be characterized
by a variational inequality.

Lemma 2.8 ([28, Lemma 2.2]) Let f : Rn
! R be strongly convex. Then a

point x̂ 2 C is the Bregman projection of x onto C with respect to f and x
⇤
2

@f(x) i↵ there is some x̂
⇤
2 @f(x̂) such that one of the following equivalent

conditions is fulfilled

hx̂
⇤
� x

⇤
, y � x̂i � 0 for all y 2 C

D
x̂
⇤

f
(x̂, y)  D

x
⇤

f
(x, y)�D

x
⇤

f
(x, x̂) for all y 2 C .

We call any such x̂
⇤
an admissible subgradient for x̂ = ⇧

x
⇤

C
(x).

The next lemma shows that Bregman projections onto a�ne subspaces and
half-spaces can be computed by solving unconstrained optimization problems
involving the di↵erentiable conjugate function f

⇤.
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Lemma 2.9 ([28, Lemma 2.4]) Let f : Rn
! R be ↵-strongly convex,

A 2 Rm⇥n
, b 2 Rm

, u 2 Rn
and � 2 R.

(a) The Bregman projection of x 2 Rn
onto the a�ne subspace L(A, b) :=

{x 2 Rn
|Ax = b} 6= ; is

x̂ := ⇧
x
⇤

L(A,b)(x) = rf
⇤(x⇤

�A
T
ŵ) ,

where ŵ 2 Rm
is a solution of

min
w2Rm

f
⇤(x⇤

�A
T
w) + hw , bi .

Moreover, x̂
⇤ := x

⇤
�A

T
ŵ is an admissible subgradient for x̂ according to

Lemma 2.8. If A has full row rank then for all y 2 L(A, b) we have

D
x̂
⇤

f
(x̂, y)  D

x
⇤

f
(x, y)�

↵

2
· k(AA

T )�
1
2 (Ax� b)k22 .

(b) The Bregman projection of x 2 Rn
onto the hyperplane H(u,�) := {x 2

Rn
| hu , xi = �} with u 6= 0 is

x̂ := ⇧
x
⇤

H(u,�)(x) = rf
⇤(x⇤

� t̂ · u) ,

where t̂ 2 R is a solution of

min
t2R

f
⇤(x⇤

� t · u) + t · � .

Moreover, x̂
⇤ := x

⇤
� t̂ · u is an admissible subgradient for x̂ and for all

y 2 H(u,�) we have

D
x̂
⇤

f
(x̂, y)  D

x
⇤

f
(x, y)�

↵

2
·
(hu , xi � �)2

kuk22

.

If x is not in the half-space H(u,�) := {x 2 Rn
| hu , xi  �} then we

necessarily have t̂ > 0, ⇧x
⇤

H(u,�)(x) = x̂ and the above inequality holds for

all y 2 H(u,�).

3 Linear convergence of the Randomized Sparse Kaczmarz method

Here we show expected linear convergence for the Randomized Sparse Kacz-
marz method to solve the regularized Basis Pursuit problem (4) with objective
function

f(x) = �kxk1 +
1
2kxk

2
2 ,

where we assume that b 6= 0 is in the range R(A) of A, and hence (4) has
a unique solution x̂ 6= 0. Although linear convergence also follows from the
general result in section 5, the short proof given here illustrates well the main
ideas used to prove the general case, where most constants to quantify the rates
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Algorithm 1 Randomized Sparse Kaczmarz method (RaSK)

Input: starting points x0 = x⇤
0 = 0 2 Rn, matrix A 2 Rm⇥n with rows 0 6= aT

i
2 Rn, and

vector b 2 Rm

Output: (approximate) solution of minx2Rn �kxk1 + 1
2kxk

2
2 s.t. Ax = b

1: initialize k = 0
2: repeat

3: choose an index ik = i 2 {1, . . . ,m} at random with probability pi = kaik22/kAk2
F

4: update x⇤
k+1 = x⇤

k
�

haik
, xki�bik

kaik
k22

· aik
5: update xk+1 = S�(x⇤

k+1)
6: increment k = k + 1
7: until a stopping criterion is satisfied

are only given implicitly. The Randomized Sparse Kaczmarz method (RaSK)

with stepsize tk = hai , xki�bi

kaik2
2

is stated here as Algorithm 1.

The Exact-Step Randomized Sparse Kaczmarz (ERaSK) method with ex-
act linesearch corresponding to a Bregman projection onto the hyperplane
H(ai, bi) is stated as Algorithm 2. An exact linesearch is indeed computa-
tionally feasible, since in this case the derivative of the one-dimensional ob-
jective function in line 4 of Algorithm 2 is piecewise linear, see [28, Section
2.5.2]. Computing the “kinks” to determine the linear pieces and then the
optimal value can be done with at most 12n floating point operations and an
O
�
n · ln(n)

�
-sorting procedure. We provide a corresponding MATLAB code in

the complementary material.

Algorithm 2 Exact-Step Randomized Sparse Kaczmarz method (ERaSK)

Input: starting points x0 = x⇤
0 = 0 2 Rn, matrix A 2 Rm⇥n with rows 0 6= aT

i
2 Rn, and

vector b 2 Rm

Output: (approximate) solution of minx2Rn �kxk1 + 1
2kxk

2
2 s.t. Ax = b

1: initialize k = 0
2: repeat

3: choose an index ik = i 2 {1, . . . ,m} at random with probability pi = kaik22/kAk2
F

4: calculate tk = argmin
t2R f⇤(x⇤

k
� t · aik ) + t · bik

5: update x⇤
k+1 = x⇤

k
� tk · aik

6: update xk+1 = S�(x⇤
k+1)

7: increment k = k + 1
8: until a stopping criterion is satisfied

As noted in the introduction, linear convergence follows from the restricted
strong convexity of the dual objective function (5), which yields the following
error bound.

Lemma 3.1 Let �̃min(A) and |x̂|min be as defined in (6) and (7), respectively.
Then for all x 2 Rn

with @f(x) \ R(AT ) 6= ; and all x
⇤ = A

T
y 2 @f(x) \

R(AT ) we have

D
x
⇤

f
(x, x̂)  1

�̃
2
min(A)

·
|x̂|min+2�

|x̂|min
· kAx� bk

2
2 .
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Proof The proof is based on the results of [26]. There problem (4) is equiva-
lently formulated with primal objective function f̃(x) = 1

�
· f(x), and hence

the dual objective function is g̃(y) = �

2 · kS1(AT
y)k22 � hb , yi. In Lemma 7

of [26] it was shown that g̃ is restricted strongly convex: Let Ỹ denote the set
of minimizers of g̃. Then for all y 2 Rm we have

hy � P
Ỹ
(y) , rg̃(y)i � �̃

2
min(A) · �·|x̂|min

|x̂|min+2� · ky � P
Ỹ
(y)k22 .

We just have to reformulate this result for g in (5). Because of the relation
S�(� · A

T
y) = � · S1(AT

y) we have rg(� · y) = rg̃(y). Hence the set of
minimizers Ŷ of g and Ỹ are related by Ŷ = � · Ỹ , and we have P

Ŷ
(� · y) =

� · P
Ỹ
(y). From this observation we immediately infer the estimate

hy � P
Ŷ
(y) , rg(y)i � �̃

2
min(A) · |x̂|min

|x̂|min+2� · ky � P
Ŷ
(y)k22 .

For x⇤ = A
T
y 2 @f(x) \R(AT ) and x = S�(x⇤) this yields

�̃min(A) · |x̂|min

|x̂|min+2� · ky � P
Ŷ
(y)k2  krg(y)k2 = kAx� bk2 .

Finally, with x̂
⇤ := A

T
P
Ŷ
(y) 2 @f(x̂) and Lemma 2.6 we can estimate

D
x
⇤

f
(x, x̂)  hx

⇤
� x̂

⇤
, x� x̂i = hy�P

Ŷ
(y) , Ax�bi  ky�P

Ŷ
(y)k2 ·kAx�bk2 ,

from which the assertion follows. ut

Now we can prove the main theorems of the article.

Theorem 3.2 (noiseless case) The iterates xk of both the RaSK method

from Algorithm 1 and the ERaSK method from Algorithm 2 converge in ex-

pectation to the unique solution x̂ of the regularized Basis Pursuit problem (4)

with a linear rate, namely with ̃ = kAkF

�̃min(A) and contraction factor

q = 1� 1
̃2 ·

1
2 ·

|x̂|min

|x̂|min+2� (11)

it holds that

E
h
D

x
⇤
k+1

f
(xk+1, x̂)

i
 q · E

h
D

x
⇤
k

f
(xk, x̂)

i

and

E [kxk � x̂k2]  q
k
2 ·

q
2�kx̂k1 + kx̂k22 ,

where the expectation is taken with respect to the probability distribution pi =
kaik

2
2/kAk

2
F
.

Proof By Theorem 2.8 of [28] the following estimate from Lemma 2.9 (b) holds
for both the exact and the inexact stepsize,

D
x
⇤
k+1

f
(xk+1, x̂)  D

x
⇤
k

f
(xk, x̂)�

1
2 ·

(haik
, xki�bik

)2

kaik
k2
2

. (12)
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For the moment we fix the values of the indices i0, . . . , ik�1 and consider only
ik as a random variable with values in {1, . . . ,m}. Taking the expectation on
both sides of (12) conditional to the values of the indices i0, . . . , ik�1 yields

E
h
D

x
⇤
k+1

f
(xk+1, x̂)

��� i0, . . . , ik�1

i
 D

x
⇤
k

f
(xk, x̂)�

mX

i=1

kaik2
2

kAk2
F
·
1
2 ·

(hai , xki�bi)
2

kaik2
2

= D
x
⇤
k

f
(xk, x̂)�

1
2 ·

kAxk�bk2
2

kAk2
F

. (13)

Together with Lemma 3.1 we get

E
h
D

x
⇤
k+1

f
(xk+1, x̂)

��� i0, . . . , ik�1

i


⇣
1� 1

̃2 ·
1
2 ·

|x̂|min

|x̂|min+2�

⌘
·D

x
⇤
k

f
(xk, x̂) .

Now considering all indices i0, . . . , ik as random variables with values in {1, . . . ,m},
and taking the full expectation on both sides, yields the first estimate of the
assertion. The second estimate then follows from Lemma 2.6 with ↵ = 1. ut

Remark 3.3 (a) The contraction factor q = 1 �
1
̃2 ·

1
2 ·

|x̂|min

|x̂|min+2� depends on
x̂. This reflects the fact that the dual objective is just restricted strongly
convex for � > 0. The dependence on x̂ disappears in the case � = 0
corresponding to the strongly convex f(x) = 1

2kxk
2
2.

(b) By Example 2.5, if the iterates xk are close enough to x̂, such that the
signs of the components of xk and x̂ coincide on supp(x̂), we actually have

D
x
⇤
k

f
(xk, x̂) =

1
2kxk � x̂k

2
2. In this case we can remove the factor 1

2 in (13)
and consequently from q. Furthermore, if both x̂ and xk are sparse enough,
instead of applying Lemma 3.1 to (13), we may use a restricted isometry

constant [16], i.e. the smallest constant �r such that

(1� �r) · kxk
2
2  kAxk

2
2  (1� �r) · kxk

2
2

for all x 2 Rn with at most r nonzero components. This leads to the
contraction factor q = 1� 1��r

kAk2
F
, which is possibly smaller.

(c) If A has full column rank, we have �̃min(A) = �min(A). Hence for � = 0 we
recover the rate (2) for the standard Randomized Kaczmarz method.

Theorem 3.4 (noisy case) Assume that instead of exact data b 2 R(A) only
a noisy right hand side b

�
2 Rm

with kb
�
�bk2  � is given. If the iterates xk of

the RaSK method from Algorithm 1 and the ERaSK method from Algorithm 2

are computed with b replaced by b
�
, then, with the same contraction factor q

from (11) as in the noiseless case, we have

(a) for the RaSK method:

E [kxk � x̂k2]  q
k
2 ·

q
2�kx̂k1 + kx̂k22 +

q
2|x̂|min+4�

|x̂|min
·

�

�̃min(A) .

(b) for the ERaSK method with kAk1,2 :=
pP

m

i=1 kaik
2
1:

E [kxk � x̂k2]  q
k
2 ·

q
2�kx̂k1 + kx̂k22+

q
2|x̂|min+4�

|x̂|min
·

�

�̃min(A) ·

q
1 + 4kAk1,2

�
.
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Proof As in [31] we make use of the simple but important observation that

x
�

k
:= x̂+

b
�
ik

�bik

kaik
k2
2
· aik 2 H(aik , b

�

ik
). Similar to (12) this allows us to estimate

D
x
⇤
k+1

f
(xk+1, x

�

k
)  D

x
⇤
k

f
(xk, x

�

k
)� 1

2 ·
(haik

, xki�b
�
ik

)2

kaik
k2
2

,

which after a short reformulation is equivalent to

D
x
⇤
k+1

f
(xk+1, x̂)  D

x
⇤
k

f
(xk, x̂)�

1
2 ·

(haik
, xki�b

�
ik

)2

kaik
k2
2

+ hx
⇤
k+1 � x

⇤
k
, x

�

k
� x̂i .

In the RaSK method we have x
⇤
k+1 � x

⇤
k
= �

haik
, xki�b

�
ik

kaik
k2

· aik and thus

hx
⇤
k+1 � x

⇤
k
, x

�

k
� x̂i =

b
�
ik

�bik

kaik
k2
2
· hx

⇤
k+1 � x

⇤
k
, aiki

=
(b�ik

�bik
)2

kaik
k2
2

�
(b�ik

�bik
)·(haik

, xki�bik
)

kaik
k2
2

.

By rewriting

�
1
2 ·

(haik
, xki�b

�
ik

)2

kaik
k2
2

= �
1
2 ·

(haik
, xki�bik

)2

kaik
k2
2

+
(b�ik

�bik
)·(haik

, xki�bik
)

kaik
k2
2

�
1
2 ·

(b�ik
�bik

)2

kaik
k2
2

we get

D
x
⇤
k+1

f
(xk+1, x̂)  D

x
⇤
k

f
(xk, x̂)�

1
2 ·

(haik
, xki�bik

)2

kaik
k2
2

+ 1
2 ·

(b�ik
�bik

)2

kaik
k2
2

.

As in the proof for the noiseless case we get

E
h
D

x
⇤
k+1

f
(xk+1, x̂)

i
 q · E

h
D

x
⇤
k

f
(xk, x̂)

i
+ 1

2 ·
kb��bk2

2

kAk2
F

.

Inductively we infer that

E
h
D

x
⇤
k

f
(xk, x̂)

i
 q

k
· (�kx̂k1 +

1
2kx̂k

2
2) +

1
1�q

·
1
2 ·

kb��bk2
2

kAk2
F

.

By Lemma 2.6 with ↵ = 1, and since
p
u+ v 

p
u+

p
v, we get

E [kxk � x̂k2]  q
k
2 ·

q
2�kx̂k1 + kx̂k22 +

r
1

1�q
·
kb��bk2

2

kAk2
F

,

from which (a) follows. Now we turn to the ERaSK method. By Example 2.3
we have x

⇤
k+1 � x

⇤
k
= (xk+1 � xk) + (sk+1 � sk) with kskk1, ksk+1k1  1.

Since the exact linesearch guarantees hxk+1 , aiki = b
�

ik
, we get

hx
⇤
k+1 � x

⇤
k
, x

�

k
� x̂i =

b
�
ik

�bik

kaik
k2
2
·
�
hxk+1 � xk , aiki+ hsk+1 � sk , aiki

�


(b�ik

�bik
)2

kaik
k2
2

�
(b�ik

�bik
)·(haik

, xki�bik
)

kaik
k2
2

+
2|b�ik�bik

|·kaik
k1

kaik
k2
2

.

From this (b) follows analogously as for the RaSK method by using the esti-
mate

P
m

i=1 |b
�

i
� bi| · kaik1  kb

�
� bk2 · kAk1,2. ut
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Again we recover the result for the standard Randomized Kaczmarz method,
because there the stepsize tk = hai , xki�bi

kaik2
2

in fact corresponds to an exact line-

search. The error threshold for ERaSK is worse than the one for RaSK, which
is also observed in our numerical experiments in Section 6. Please note that
Theorem 3.4 tells us that RaSK and ERask are most useful for problems which
are almost consistent and are only a↵ected by moderately small noise. This is
also the case for the standard Randomized Kaczmarz method, which aims at
solving the constrained problem minx2Rn kxk2 s.t. Ax = b. If one wishes to
compute minimum 2-norm solutions to unconstrained least squares problems
of the form minx2Rn kAx � bk2, then one has to modify the iterations of the
standard Kaczmarz method appropriately, see [49]. We do not know yet how
to modify RaSK and ERask so as to compute minimum 1-norm solutions to
such least squares problems.

4 Bounded linear regularity and error bounds

In this section we derive some error bounds that we need for the analysis
of the method of randomized Bregman projections to solve general convex
feasibility problems. As in [3] for the case of orthogonal projections, we will
establish convergence rates with Bregman projections under the assumption
of bounded linear regularity. By rint(C) we denote the relative interior of a
subset C ⇢ Rn, i.e. the interior of C relative to its a�ne hull.

Definition 4.1 Let C1, . . . Cm ⇢ Rn be closed convex sets with nonempty
intersection C :=

T
m

i=1 Ci.

(a) The collection {C1, . . . Cm} is called boundedly linearly regular, if for every
R > 0 there exists � > 0 such that for all x 2 BR we have

dist(x,C)2  � ·

mX

i=1

dist(x,Ci)
2
,

and it is called linearly regular, if such an estimate holds globally for all
x 2 Rn.

(b) The collection {C1, . . . Cm} satisfies the standard constraint qualification,
if there exists q 2 {0, . . . ,m} such that Cq+1, . . . , Cm are polyhedral and

q\

i=1

rint(Ci) \
m\

i=q+1

Ci 6= ; .

The standard constraint qualification generalizes the well known Slater
condition for convex constraints, where C1, . . . , Cq are level sets of convex
functions. By the next theorem it implies bounded regularity.

Theorem 4.2 (Corollary 3 and 6 in [6]) If the collection {C1, . . . Cm} sat-

isfies the standard constraint qualification then it is boundedly linearly regular.

And if C is also bounded, then {C1, . . . Cm} is linearly regular.
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By Lemma 2.6, and since distx
⇤

f
(x,C)2  D

x
⇤

f

�
x, PC(x)

�
, we can immedi-

ately bound the Bregman distance by the metric distance.

Lemma 4.3 Let f : Rn
! R be strongly convex.

(a) For all x 2 Rn
, x

⇤
2 @f(x) and y

⇤
2 @f

�
PC(x)

�
we have

distx
⇤

f
(x,C)2  kx

⇤
� y

⇤
k2 · dist(x,C) .

(b) If f has a L-Lipschitz-continuous gradient then we have for all x 2 Rn

distf (x,C)2 
L

2 · dist(x,C)2 .

In general, it is not obvious how to extend the second (and better) estimate
to non-di↵erentiable functions f , because we lack an inequality like kx

⇤
�

y
⇤
k2  L · kx � yk2. However, we can achieve the better estimate for convex

piecewise linear-quadratic f .

Definition 4.4 A convex function f : Rn
! R is called piecewise linear-

quadratic if there are finitely many polyhedral sets Fi ⇢ Rn, i 2 I := {1, . . . , p},
whose union equals Rn, and relative to each of which f(x) is given by a convex
linear-quadratic function

f(x) = 1
2 · hx , Aixi+ hai , xi+ ↵i , x 2 Fi ,

with symmetric positive-semidefinite matrices Ai 2 Rn⇥n, vectors ai 2 Rn and
↵i 2 R. Without loss of generality we may assume that all Fi have nonempty
interior int(Fi) and that int(Fi) \ int(Fj) = ; for i 6= j. For x 2 Rn we define
If (x) := {i 2 I |x 2 Fi} and Fx :=

T
i2If (x)

Fi.

Note that each Fx is polyhedral and there are only finitely many di↵erent
sets Fx. The next lemma characterizes the subdi↵erential of a convex piecewise
linear-quadratic function.

Lemma 4.5 If f : Rn
! R is convex piecewise linear-quadratic then f

⇤
is

also convex piecewise linear-quadratic, and for all x 2 Rn
we have

@f(x) = conv{Aix+ ai | i 2 If (x)} .

Proof The assertion about f⇤ follows from Theorem 11.14 in [39]. In its proof
there is also given a characterisation of @f(x), from which the above characteri-
sation follows. But since the derivation would require some additional notation,
and because we have not found this result explicitly stated elsewhere in the
literature, we give a short proof here for convenience. The assertion is clear
for x 2 int(Ci) since f is di↵erentiable on int(Ci) with rf(x) = Aix + ai.
By taking limits to a boundary point x 2 Ci for i 2 If (x), it follows that
Aix + ai 2 @f(x) and thus Sx := conv{Aix + ai | i 2 If (x)} ⇢ @f(x). Now
suppose there exists some x

⇤
2 @f(x) such that x

⇤
/2 Sx. Since Sx is closed
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convex we can strictly separate x
⇤ from Sx by a hyperplane, i.e. there are

u 2 Rn and � 2 R such that

hu , x
⇤
i > � � hu , vi for all v 2 @f(x) . (14)

To x and u we find some i 2 If (x) such that x+ t · u 2 Ci for all t > 0 small
enough. Since Ai(x+ t ·u)+ai 2 @f(x+ t ·u) and the subdi↵erential mapping
is monotone [39, Theorem 12.17], it follows that

0  hAi(x+t·u)+ai�x
⇤
, (x+t·u)�xi = t

2
·hu , Aiui+t·(hAix+ai , ui�hx

⇤
, ui)

We apply (14) to v := Aix+ai 2 @f(x) and get 0 < hu , x
⇤
i��  t · hu , Aiui,

which for t & 0 leads to a contradiction. ut

We also need the following lemma, which exploits the fact that the sub-
gradients on the sets Fx =

T
i2If (x)

Fi are closely related.

Lemma 4.6 Let f : Rn
! R be strongly convex piecewise linear-quadratic

and set Lf := max{kAik2 | i 2 I}, cf. Definition 4.4. To R > 0 and a closed

convex set C ⇢ Rn
choose c > 0 such that kx

⇤
� y

⇤
k2  c for all x 2 BR,

x
⇤
2 @f(x) and y

⇤
2 @f

�
PC(x)

�
, and set

d := min{dist(BR \ Fx, C) |x 2 BR with Fx \ C = ;} > 0 .

Then for all x 2 BR and x
⇤
2 @f(x) we have

distx
⇤

f
(x,C)2 

(
c

d
· dist(x,C)2 , Fx \ C = ;

Lf · dist(x, Fx \ C)2 , Fx \ C 6= ;
.

Proof Since BR is compact we have dist(BR \ Fx, C) > 0 for all x 2 BR with
Fx \C = ;. Since there are only finitely many di↵erent sets Fx it follows that
indeed d > 0. Let x 2 BR and x

⇤
2 @f(x). By Lemma 4.5 there are �i 2 [0, 1]

with
P

i2If (x)
�i = 1 such that

x
⇤ =

X

i2If (x)

�i · (Aix+ ai) .

In case Fx \ C = ; we have dist(x,C) � d, and hence by Lemma 4.3 we get

distx
⇤

f
(x,C)2  kx

⇤
� y

⇤
k2 · dist(x,C) 

c

d
· dist(x,C)2 .

In case Fx\C 6= ; we set x̂ := PFx\C(x). Since x̂ 2 Fx we have If (x) ⇢ If (x̂),
and therefore we can choose the following subgradient of f at x̂,

x̂
⇤ :=

X

i2If (x)

�i · (Aix̂+ ai)

with the same �i as for x⇤. Hence we can estimate

hx
⇤
� x̂

⇤
, x� x̂i =

X

i2If (x)

�i · hAi(x� x̂) , x� x̂i  Lf · kx� x̂k
2
2 ,

which yields distx
⇤

f
(x,C)2  hx

⇤
� x̂

⇤
, x� x̂i  Lf · dist(x, Fx \ C)2. ut
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Now we can prove the main theorem of this section.

Theorem 4.7 Let f : Rn
! R be strongly convex piecewise linear-quadratic,

and let C ⇢ Rn
be closed convex such that the collections {Fx, C} are boundedly

linearly regular for all x 2 Rn
with Fx\C 6= ;. Then for all R > 0 there exists

L > 0 such that for all x 2 BR and x
⇤
2 @f(x) we have

distx
⇤

f
(x,C)2  L · dist(x,C)2 .

Proof The assertion immediately follows from Lemma 4.6 and Definition 4.1,
because dist(x, Fx) = 0. ut

Remark 4.8 If C is polyhedral then by Theorem 4.2 all collections {Fx, C} are
boundedly linearly regular.

We also need the following generalization of Ho↵mann’s error bound [24]
to possibly non-polyhedral sets, which are defined by convex constraints in the
range R(A) of a matrix A.

Lemma 4.9 Let the convex set C ⇢ Rn
have the form C = {x 2 Rn

|Ax 2 Q}

with A 2 Rm⇥n
and Q ⇢ Rm

closed convex such that the collection {Q,R(A)}
is boundedly linearly regular. Then for every R > 0 there exists � > 0 such

that for all x 2 BR we have

dist(x,C)  � · dist(Ax,Q) .

Proof In case A = 0 (and 0 2 Q) we have C = Rn and hence the assertion
holds trivially. Otherwise let �min > 0 be the smallest positive singular value
of A, and let R > 0. Since {Q,R(A)} is boundedly linearly regular, there
exists � > 0 such that for all x 2 BR we have

dist
�
Ax,Q \R(A)

�
 � · dist(Ax,Q) .

To x 2 BR we find some x̂ 2 C such that Ax̂ = PQ\R(A)(Ax). Since x̂ +
N (A) ⇢ C for the nullspace N (A) of A we get

dist(x,C)  kx� Px̂+N (A)(x)k2 = k(x� x̂)� PN (A)(x� x̂)k2


1

�min
· kAx�Ax̂k2 = 1

�min
· dist

�
Ax,Q \R(A)

�


�

�min
· dist(Ax,Q) ,

from which the assertion follows. ut

Note that for polyhedral sets Q the collection {Q,R(A)} is always bound-
edly linearly regular. Moreover in this case the classical result of Ho↵mann
holds globally for all x 2 Rn, cf. [24]. For non-polyhedral sets Q the asser-
tion holds if rint(Q) \R(A) 6= ;, cf. Theorem 4.2. Indeed, if this condition is
not fulfilled, the assertion cannot be guaranteed in general, as the following
counterexample demonstrates: For Q = {x 2 R2

| kx � (0, 1)T k2  1} and
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A =

✓
1 0
0 0

◆
we have Q \R(A) = {0}, C = {0} ⇥ R and hence for x1 > 0 we

get

dist(A(x1, 0)T , Q)

dist((x1, 0)T , C)
=

p
1 + x

2
1 � 1

x1
=

x1p
1 + x

2
1 + 1

�! 0 for x1 & 0 .

Finally we concentrate on feasible linearly constrained optimization prob-
lems,

min
x2Rn

f(x) s.t. Ax = b (15)

like in (4) or (10). If the objective function f is strongly convex then (15) has
a unique solution x̂ which fulfills @f(x̂) \ R(AT ) 6= ;, and hence coincides
with the Bregman projection ⇧

x
⇤

L(A,b)(x) with respect to f for all x 2 Rn with

x
⇤
2 @f(x)\R(AT ) 6= ;, cf. Lemma 2.9 (a). As a consequence for all such x, x⇤

we have distx
⇤

f
(x, L(A, b))2 = D

x
⇤

f
(x, x̂). Our next aim is an error bound of the

form D
x
⇤

f
(x, x̂)  � ·kAx� bk

2
2. For piecewise linear-quadratic or di↵erentiable

f this immediately follows from Lemma 4.7 and 4.3 (b) and Ho↵mann’s error
bound. But we will also achieve this result under weaker assumtions. To clarify
these assumtions we need the concept of calmness of a set-valued mapping [39].

Definition 4.10 A set-valued mapping S : Rn ◆ Rm is calm at x̂ 2 Rn if
S(x̂) 6= ; and there are constants ✏, L > 0 such that

S(x) ⇢ S(x̂) + L · kx� x̂k2 ·B1 for any x with kx� x̂k2  ✏ .

The following examples were given in [41].

Example 4.11 (a) Any polyhedral multifunction, i.e. a set-valued mapping whose
graph is the union of finitely many polyhedral sets, is calm at each x̂ 2 Rn.
In particular this holds for the subdi↵erential mapping @f(x) of a convex
piecewise linear-quadratic function f : Rn

! R, see Proposition 1 in [38].
(b) Let �(X) 2 Rm denote the vector of singular values of X 2 Rn1⇥n2 (with

m = min{n1, n2}), and let h : Rm
! R be a convex piecewise linear-

quadratic function which is absolutely symmetric, i.e. h(x1, . . . , xm) =
h
�
|x⇡(1)|, . . . , |x⇡(m)|

�
for any permutation ⇡ of the indices. Then the sub-

di↵erential mapping of f(X) := h
�
�(X)

�
is calm at each X̂ 2 Rn1⇥n2 . In

particular this holds for the nuclear norm kXk⇤ := k�(X)k1, the spectral

norm kXk2 := k�(X)k1 and f(X) = � · kXk⇤ + 1
2 · kXk

2
F
. Furthermore

the subdi↵erential mapping of

f(X1, X2) =
1
2 · kX1k

2
F
+ �1 · kX1k⇤ +

1
2 · kX2k

2
F
+ �2 · kX2k1

is calm at each (X̂1, X̂2) 2 Rn1⇥n2 ⇥ Rn1⇥n2 , where kXk1 denotes the
1-norm of all entries of a matrix X, see Example 2.10 in [41].

Now we can reformulate Theorem 2.12 in [41] to fit the present context.
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Theorem 4.12 Consider the linearly constrained optimization problem (15)
with A 2 Rm⇥n

, b 2 R(A), and strongly convex f : Rn
! R. Let x0 2 Rn

and x
⇤
0 2 @f(x0) \ R(AT ) be given. If the subdi↵erential mapping of f is

calm at the unique solution x̂ of (15) and if the collection {@f(x̂),R(AT )} is

linearly regular, then there exists � > 0 such that for all x 2 Rn
and x

⇤
2

@f(x) \R(AT ) with D
x
⇤

f
(x, x̂)  D

x
⇤
0

f
(x0, x̂) we have

distx
⇤

f
(x, L(A, b))2 = D

x
⇤

f
(x, x̂)  � · kAx� bk

2
2 .

Proof To obtain the error bound we apply the results of [41] to the objective
function g(y) = f

⇤(AT
y)� hb , yi of the unconstrained dual

min
y2Rm

f
⇤(AT

y)� hb , yi ,

which relates to the Bregman distance in the following way by setting x
⇤ =

A
T
y, x = rf

⇤(x⇤) and observing that hb , yi = hx
⇤
, x̂i,

D
x
⇤

f
(x, x̂) = g(y)� gmin .

It follows from Theorem 2.12 in [41] that the function g is restricted strongly

convex on all of its level sets. Hence, by Lemma 2.2 in [41], there exists � > 0

such that for all x 2 Rn and x
⇤
2 @f(x)\R(AT ) with D

x
⇤

f
(x, x̂)  D

x
⇤
0

f
(x0, x̂)

we have D
x
⇤

f
(x, x̂) = g(y)� gmin  � · krg(y)k22 = � · kAx� bk

2
2. ut

5 Randomized Bregman Projections for convex feasibility problems

We consider general convex feasibility problems (8) with finitely many closed
convex sets Ci ⇢ Rn and nonempty intersection C :=

T
m

i=1 Ci. As demon-
strated in [28] this framework allows for numerous generalizations of (4). A
widely known idea to solve a CFP is to project successively onto the individual
sets Ci, see e.g. [3–5, 8, 12, 18, 48]. For e�ciency it is essential that projec-
tions onto these sets can be computed relatively cheaply. But if some of the
sets have the form

Ci = {x 2 Rn
|Aix 2 Qi} , i 2 IQ ⇢ {1, . . . ,m} (16)

with a closed convex set Qi ⇢ Rmi and matrix Ai 2 Rmi⇥n, then projecting
onto such a set can be very expensive for large dimensions, and hence it is often
preferable to project onto an enclosing halfspace as in the following lemma.

Lemma 5.1 (Lemma 2.6 in [28]) Let Q ⇢ Rm
be a nonempty closed convex

set and A 2 Rm⇥n
. Assume that x̃ /2 C = {x 2 Rn

|Ax 2 Q} and set

w := Ax̃� PQ(Ax̃) and � := hA
T
w , x̃i � kwk

2
2 .

Then it holds that A
T
w 6= 0, x̃ /2 H(AT

w,�) and C ⇢ H(AT
w,�). In other

words, the hyperplane H(AT
w,�) separates x̃ from C.
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CFP’s with some sets of the form (16) are also called split feasibility prob-

lems, see e.g. [11, 13, 17, 28, 42]. We analyse the convergence behaviour of a
randomized projection algorithm to solve the CFP (8), stated as Algorithm 3.
It uses Bregman projections onto Ci in case i /2 IQ, and Bregman projections
onto an enclosing halfspace according to Lemma 5.1 for sets of the form (16)
in case i 2 IQ. In each iteration an index i is chosen with probability pi > 0.

Algorithm 3 Randomized Bregman projections (RBP)
Input: data according to (8) and (16), starting points x0 2 Rn, x⇤

0 2 @f(x0) and probabil-
ities pi > 0, i 2 {1, . . . ,m}

Output: a solution of (8)
1: initialize k = 0
2: repeat

3: choose an index ik = i 2 {1, . . . ,m} at random with probability pi > 0
4: if ik /2 IQ then

5: update xk+1 = ⇧
x
⇤
k

Cik
(xk) together with an admissible subgradient x⇤

k+1 2
@f(xk+1), cf. Lemma 2.8

6: else if ik 2 IQ
�
cf. (16)

�
then

7: set wk = Aikxk � PQik

�
Aikxk

�
and �k = hAT

ik
wk , xki � kwkk22

8: update xk+1 = ⇧
x
⇤
k

H(AT
ik

wk,�k)
(xk) with x⇤

k+1 2 @f(xk+1) as in Lemma 2.9 (b)

9: end if

10: increment k = k + 1
11: until a stopping criterion is satisfied

In [28] convergence of the iterates to a solution of (8) was shown for Breg-
man projections with respect to nondi↵erentiable functions, and for quite gen-
eral control sequences i : N ! {1, . . . ,m}. The only requirement was that�
i(k)

�
k2N encounters each index in {1, . . . ,m} infinitely often.1 However, no

assertion was made about convergence rates. Here we follow [1, 9, 20, 27, 30, 33,
37, 43, 49] and show that the iterates of the randomized version Algorithm 3
converge in expectation to a solution of (8) with an expected (sub-)linear
convergence rate.

Theorem 5.2 Consider the CFP (8) where some sets may have the form (16),
and assume that the collections {C1, . . . , Cm} and {Qi,R(Ai)} for each i 2 IQ

are boundedly linearly regular. Let f : Rn
! R be ↵-strongly convex. Then for

any starting points x0 2 Rn
and x

⇤
0 2 @f(x0) the iterates xk and x

⇤
k
of Algo-

rithm 3 remain bounded, the Bregman distances to the intersection C decrease

monotonically,

dist
x
⇤
k+1

f
(xk+1, C)  dist

x
⇤
k

f
(xk, C) ,

1 Because very general control sequences besides simple cyclic control fulfill this require-
ment, the corresponding method was also called method of random Bregman projections
in [4]. But such control sequences are not necessarily stochastic objects, in contrast to the
situation in the present work. Hence we use the word randomized in Algorithm 3 instead of
random to distinguish between the cases.
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and converge in expectation to zero, where the expectation is taken with respect

to the probability distribution pi > 0, i 2 {1, . . . ,m}. The expected rate of

convergence is at least sublinear: There is a constant c > 0 such that

E [dist(xk, C)] 
c
p
k
.

Proof At first we consider the case ik /2 IQ. By Lemma 2.6 we have

D
x
⇤
k

f
(xk, xk+1) �

↵

2
· kxk � xk+1k

2
2 �

↵

2
· dist(xk, Cik)

2
,

and together with Lemma 2.8 we can estimate for all x 2 C

D
x
⇤
k+1

f
(xk+1, x)  D

x
⇤
k

f
(xk, x)�

↵

2
· dist(xk, Cik)

2
. (17)

Now we consider the case ik 2 IQ. By Lemma 5.1 we have C ⇢ H(AT

ik
wk,�k),

and together with Lemma 2.9 (b) we can estimate for all x 2 C

D
x
⇤
k+1

f
(xk+1, x)  D

x
⇤
k

f
(xk, x)�

↵

2 · kAikk
2
2

· kAikxk � PQik

�
Aikxk

�
k
2
2 . (18)

We fix some x 2 C and conclude from (17), (18) and Lemma 2.6 that both
xk and x

⇤
k
remain bounded. Hence by Lemma 4.9 and the bounded linear

regularity of all {Qi,R(Ai)}, i 2 IQ, there exist �i > 0 such that for all k we
have

dist(xk, Ci)  �i · kAikxk � PQik

�
Aikxk

�
k2 .

Inserting this estimate into (18) we get

D
x
⇤
k+1

f
(xk+1, x)  D

x
⇤
k

f
(xk, x)�

�
2
i
· ↵

2 · kAikk
2
2

· dist(xk, Cik)
2
.

Together with (17) this implies that the Bregman distances decrease mono-
tonically, and that there is a constant c > 0 such that

dist
x
⇤
k+1

f
(xk+1, C)2  dist

x
⇤
k

f
(xk, C)2 � c · dist(xk, Cik)

2
. (19)

For the moment we fix the values of the indices i0, . . . , ik�1 and consider only
ik as a random variable with values in {1, . . . ,m}. Taking the expectation on
both sides of (19) conditional to the values of the indices i0, . . . , ik�1 yields

E
h
dist

x
⇤
k+1

f
(xk+1, C)2

��� i0, . . . , ik�1

i
 dist

x
⇤
k

f
(xk, C)2 �

mX

i=1

pi · c · dist(xk, Ci)
2
.

By boundedness of xk and bounded linear regularity of the collection {C1, . . . , Cm}

there is � > 0 such that for all k we have

E
h
dist

x
⇤
k+1

f
(xk+1, C)2

��� i0, . . . , ik�1

i
 dist

x
⇤
k

f
(xk, C)2 � � · dist(xk, C)2 . (20)
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Furthermore, by Lemma 4.3 (a) there is L > 0 such that for all k we have

distx
⇤

f
(xk, C)4  L · dist(xk, C)2, and hence we get

E
h
dist

x
⇤
k+1

f
(xk+1, C)2

��� i0, . . . , ik�1

i
 dist

x
⇤
k

f
(xk, C)2 � �

L
· dist

x
⇤
k

f
(xk, C)4 .

Now we consider all indices i0, . . . , ik as random variables with values in
{1, . . . ,m}, and take the full expectation on both sides,

E
h
dist

x
⇤
k+1

f
(xk+1, C)2

i
 E

h
dist

x
⇤
k

f
(xk, C)2

i
�

�

L
· E

h
dist

x
⇤
k

f
(xk, C)4

i

 E
h
dist

x
⇤
k

f
(xk, C)2

i
�

�

L
·

⇣
E
h
dist

x
⇤
k

f
(xk, C)2

i⌘2
.

We set dk := E
h
dist

x
⇤
k

f
(xk, C)2

i
. Then we have dk+1  dk �

�

L
d
2
k
. We observe

that dk is decreasing and by rearranging the inequality to

1

dk+1
�

1

dk
+

�

L

dk

dk+1
�

1

dk
+

�

L

we obtain 1
dk+1

�
1
d0

+ �

L
(k + 1), and we conclude dk 

Ld0
L+�d0·k as desired.

The expected sublinear convergence rates for dist(xk, C) now follow from the

estimate E [dist(xk, C)] 
q

2
↵
· E

h
dist

x
⇤
k

f
(xk, C)

i
, cf. Lemma 2.6. ut

Remark 5.3 According to Lemma 2.9 (b) the computation of the Bregman

projection xk+1 = ⇧
x
⇤
k

H(AT
ik

wk,�k)
(xk) onto the halfspace H(AT

ik
wk,�k) in

step 8 of Algorithm 3 amounts to an exact linesearch. In practice, this is
feasible only in special cases, e.g. for f(x) = kxk

2
2 or f(x) = � · kxk1 +

1
2kxk

2
2.

But the assertions of Theorem 5.2 and the next two theorems remain true for
inexact linesearches as well, cf. [28]. In particular, we may choose

tk := ↵ ·
kwkk2

2

kAT
ik

wkk2
2

, x
⇤
k+1 := x

⇤
k
� tk ·A

T

ik
wk , xk+1 = rf

⇤(x⇤
k+1) .

For piecewise linear-quadratic or di↵erentiable f the expected rate of con-
vergence is even linear.

Theorem 5.4 If f is piecewise linear-quadratic or has a Lipschitz-continuous

gradient, then under the assumptions of Theorem 5.2 the expected rate of con-

vergence is linear: There are constants q 2 (0, 1) and c > 0 such that

E
h
dist

x
⇤
k+1

f
(xk+1, C)2

i
 q · E

h
dist

x
⇤
k

f
(xk, C)2

i
,

and hence

E [dist(xk, C)]  c · q
k
2 .
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Proof By Theorem 4.7 and Lemma 4.3 (b) respectively, there is L > 0 such

that for all k we have dist
x
⇤
k

f
(xk, C)2  L·dist(xk, C)2. Hence, using this in (20)

in the proof of Theorem 5.2 we get

E
h
dist

x
⇤
k+1

f
(xk+1, C)2

i


�
1� �

L

�
· E

h
dist

x
⇤
k

f
(xk, C)2

i
,

from which the linear convergence rates follow. ut

Finally we turn to linearly constrained optimization problems.

Theorem 5.5 Consider the linearly constrained optimization problem (15)
under the assumptions of Theorem 4.12. Let I1, . . . , Ir be a covering of {1, . . . ,m}

(not necessarily disjoint), denote by Ai the matrix consisting of the rows of

A indexed by Ii, and let bi denote the vector consisting of the entries of b

indexed by Ii. In Algorithm 3 we may choose to project directly onto the sets

Ci = {x 2 Rn
|Aix = bi} according to Lemma 2.9 (a), or onto an enclos-

ing halfspace according to Lemma 5.1 with Qi = {bi}. If the initial values are

chosen as x
⇤
0 2 R(AT ) and x0 = rf

⇤(x⇤
0) then the iterates of Algorithm 3 con-

verge in expectation to the solution x̂ of (15). The expected rate of convergence

is linear: There are constants q 2 (0, 1) and c > 0 such that

E
h
D

x
⇤
k+1

f
(xk+1, x̂)

i
 q · E

h
D

x
⇤
k

f
(xk, x̂)

i
,

and hence

E [kxk � x̂k]  c · q
k
2 .

Proof Since x
⇤
0 2 R(AT ) and the updates are of the form x

⇤
k
= x

⇤
k�1 � A

T
vk

for some vk 2 Rm, we inductively get x
⇤
k
2 R(AT ) for all k � 0. Hence the

assertion follows from Theorem 4.12 as in the proofs of Theorem 5.2 and 5.4.
ut

By Theorem 5.5 we get linear rates for randomized iterations of the form (9)
to solve the regularized nuclear norm problem (10). Note that expected linear
convergence for a randomized and smoothed Sparse Kaczmarz method to ap-
proximately solve the regularized Basis Pursuit problem (4) was also shown
in [35]. There the objective function in (4) was replaced by

f✏(x) = � · r✏(x) +
1
2kxk

2
2

with ✏ > 0 and r✏(x) beeing the Moreau envelope of kxk1,

r✏(x) =
nX

i=1

(
|xi|�

✏

2 , |xi| > ✏

x
2
i

2✏ , |xi|  ✏
.

The function f✏ is 1-strongly convex and has a Lipschitz-continuous gradient.
Hence linear convergence is also guaranteed by Theorem 5.5. But as shown in
Section 3, this result holds without smoothing the objective function. Of course
this also holds for the Randomized Block Sparse Kaczmarz method considered
in [35] by applying Theorem 5.5 with a covering I1, . . . , Ir of {1, . . . ,m}.
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6 Numerical examples

In two experiments we illustrate the impact of the Randomized Sparse Kacz-
marz method versus the (non-sparse) Randomized Kaczmarz and the (non-
randomized) Sparse Kaczmarz method.

6.1 Experiment A: Sparse vs. non-sparse Randomized Kaczmarz

We constructed overdetermined linear systems with Gaussian matrices A 2

Rm⇥n for m � n, and sparse solutions x̂ 2 Rn with corresponding right
hand sides b = Ax̂ 2 Rm and also respective noisy right hand sides b

�. We
ran the usual Randomized Kaczmarz method (RK), the Randomized Sparse
Kaczmarz method (RaSK) (Algorithm 1), and the Exact-Step Randomized
Sparse Kaczmarz method (ERaSK) (Algorithm 2) on the problem. Note that,
since with high probability the matrices A have full rank, in the case of no
noise the solution x̂ is unique, and so all methods are expected to converge to
the same solution x̂.

Figure 1 shows the result for a five times overdetermined and consistent
system without noise where the value � = 1 was used for RaSK and ERaSK.
Note that the usual RK performs consistently well over all trials, while the per-
formance of RaSK and ERaSK di↵ers drastically between di↵erent instances.
As denoted by the quantiles, there are a few instances on which RaSK and
ERaSK are remarkably fast, especially for the exact-step method, while for
other instance they are rather slow. Also, the asymptotic linear rate of the
medians is fastest for ERaSK, and also RaSK has a faster asymptotic rate
than non-sparse RK.

Figure 2 shows results for the underdetermined and consistent case with
� = 3 for RaSK and ERaSK. The ERaSK method takes advantage of the fact
that the vectors x̂ are very sparse. On the other hand, the RaSK method does
not reduce the residual as fast as the RK method does. However, since the
problem is underdetermined, the RK method does not converge to a sparse
solution and hence, the error does not converge to zero.

Figures 3 and 4 show the results for noisy right hand sides, both with
� = 1 for RaSK and ERaSK. Figure 3 uses a two times overdetermined system
with 10% relative noise, Figure 4 has the same noise level and a five times
overdetermined system. All methods consistently stagnate at a residual level
which is comparable to the noise level, however, ERaSK achieves this faster
than RaSK which in turn is faster than RK. Regarding the reconstruction
error, ERaSK and RK achieve reconstructions with an error in the size of the
noise level, while RaSK achieves an even lower reconstruction error. At least
the smaller error of RaSK compared to ERaSK is explained by comparing the
estimates in Theorem 3.4 (a) and (b): The constant term in estimate in (b) for
ERaSK is worse than the one for RaSK by a factor of about

p
1 + 4kAk1,2/�.

On an intuitive level one may argue that the Sparse Kaczmarz method obtains
better reconstructions since it incorporates the sparsity of the solutions, but
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Fig. 1 Experiment A: Comparison of Randomized Kaczmarz (black) Randomized Sparse
Kaczmarz (red), and Exact-Step Randomized Sparse Kaczmarz (green), n = 200, m = 1000,
sparsity s = 25, no noise, � = 1. Left: Plots of relative residual kAx � bk/kbk, right: plots
of error kx� x̂k/kx̂k. Thick line shows median over 60 trials, light area is between min and
max, darker area indicate 25th and 75th quantile.
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Fig. 2 Experiment A: Comparison of Randomized Kaczmarz (black) Randomized Sparse
Kaczmarz (red), and Exact-Step Randomized Sparse Kaczmarz (green), n = 600, m = 200,
sparsity s = 10, no noise, � = 3. Left: Plots of relative residual kAx � bk/kbk, right: plots
of error kx� x̂k/kx̂k. Thick line shows median over 60 trials, light area is between min and
max, darker area indicate 25th and 75th quantile.

that the exact steps in the Sparse Kaczmarz method spoil this advantage by
trying to fullfill all equations exactly, despite the noise. In fact, RaSK with
inexact stepsize may be seen as a kind of relaxed Kaczmarz method.

6.2 Experiment B: Sparse cyclic vs. Randomized Sparse Kaczmarz

To investigate the impact of randomization within the Sparse Kaczmarz frame-
work, we studied an academic tomography problem. We used the AIRtools
toolbox [23] to create CT-measurement matrices of di↵erent sizes. We used fan-
beam geometry throughout and worked with overdetermined systems, sparse
solutions and noisefree right hand sides. We used � = 1 and compared RaSK
with the cyclic version of the Sparse Kaczmarz method, where we process the
rows of the linear system in their “natural” order. Figure 5 shows the result
for a small problem with n = 100 pixels, and Figure 6 shows the result for a
problem with n = 900 pixels. In both cases the randomization shows improve-
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Fig. 3 Experiment A: Comparison of Randomized Kaczmarz (black) Randomized Sparse
Kaczmarz (red), and Exact-Step Randomized Sparse Kaczmarz (green), n = 200, m = 400,
sparsity s = 25, 10% relative noise, � = 1. Left: Plots of relative residual kAx � b�k/kb�k,
right: plots of error kx�x̂k/kx̂k. Thick line shows median over 60 trials, light area is between
min and max, darker area indicate 25th and 75th quantile.
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Fig. 4 Experiment A: Comparison of Randomized Kaczmarz (black) Randomized Sparse
Kaczmarz (red), and Exact-Step Randomized Sparse Kaczmarz (green), n = 200, m = 1000,
sparsity s = 25, 10% relative noise, � = 1. Left: Plots of relative residual kAx � b�k/kb�k,
right: plots of error kx�x̂k/kx̂k. Thick line shows median over 60 trials, light area is between
min and max, darker area indicate 25th and 75th quantile.

ments for the median as well as for the extreme cases.

7 Conclusion

We proved that the iterates of the Randomized Sparse Kaczmarz method are
expected to converge linearly for consistent linear systems, and derived ex-
plicit estimates for the rates, cf. Theorem 3.2. Additionally, we show that in
the noisy/inconsistent case, the iterates reach an error threshold in the order
of the noise-level with the same rate as in the noiseless case. Numerical ex-
periments confirm the theoretical results and demonstrate the benefit of using
the method to recover sparse solutions of linear systems, even in the overde-
termined case. We also obtained (sub-)linear convergence rates in expectation
for the method of Randomized Bregman projections to solve general convex
feasibility problems. Let us remark that, motivated by the excellent perfor-
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Fig. 5 Experiment B: Sparse Kaczmarz (blue) vs. Randomized Sparse Kaczmarz (red),
n = 100, m = 1164, sparsity s = 20, � = 1. Left: Plots of relative residual kAx � bk/kbk,
right: plots of error kx�x̂k/kx̂k. Thick line shows median over 40 trials, light area is between
min and max, darker area indicate 25th and 75th quantile.
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Fig. 6 Experiment B: Sparse Kaczmarz (blue) vs. Randomized Sparse Kaczmarz (red),
n = 900, m = 3660, sparsity s = 180, � = 1. Left: Plots of relative residual kAx � bk/kbk,
right: plots of error kx�x̂k/kx̂k. Thick line shows median over 40 trials, light area is between
min and max, darker area indicate 25th and 75th quantile.

mance of the Randomized Sparse Kaczmarz method, we also tried to solve the
regularized nuclear norm problem (10) by applying a randomized Kaczmarz it-
eration of the form (9). Somewhat disappointingly, our preliminary numerical
experiments indicated that this unduly increases the number of times we have
to perform the expensive singular value thresholding. It would be interesting
to know if the use of low-rank matrices Ai in (9) allows for more e�cient up-
dates of S�(X⇤

k
) to compensate for this. A possible approach could be to use

low-rank modifications of the singular value decomposition of the dual iterates
X

⇤
k+1 = X

⇤
k
� tk ·Ai as shown in [7].
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