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1 Introduction

In this paper we consider the solution of linear systems

Ax = b (1.1)

with row-action methods, i.e methods that only use single rows of the system in each
step. This is beneficial, for example, in situations where the full system is too large
to store or keep in memory. Probably the first method of this type is the Kaczmarz
method where each step consists of a projection onto a hyperplane given by the solu-
tion space of a single row. If a

T is a row vector of the system and the corresponding
entry on the right hand side is (with slight abuse of notation) b, then the orthogonal
projection of a given vector x onto the solution space of ha , xi= b is

x� ha , xi�b

kak2 ·a.

Thus, one updates the current vector x in the direction of a which is the correspond-
ing column of A

T . A question that has been motivated by the use of the Kaczmarz
method in tomographic reconstruction (where it is known under the name algebraic

reconstruction technique (ART), [4], see also [6]) is: Will the method still converge, if

we do not use A
T

as the adjoint but a different matrix V
T

? In tomographic reconstruc-
tion, the linear operator A models the “forward projection” operation, which maps an
object’s density to a set of measured line integrals. The adjoint map A

T , however,
also has a physical interpretation: This map is called “backprojection” and, roughly
speaking, “distributes the values along lines through the measurement volume”. Since
both A and A

T have their own physical significance, their corresponding maps are of-
ten implemented by different means. For example, [2] proposes and discusses several
methods for the implementation of the backprojection method and shows that special
methods compare favorably with respect to reconstruction quality. In [12], the authors
discuss the use of mismatched projection pairs, for the purposes of improved com-
putational efficiency when using the Landweber algorithm for reconstruction. Hence,
one does not always use the actual adjoint, but a different map, and we refer to this
situation as using a “mismatched adjoint”.

The goal of this paper is to analyze the convergence behavior of the randomized
Kaczmarz method with mismatched adjoint.

Notation. For a vector x 2Rn we denote by Diag(x) the n⇥n matrix with the entries
of x on the diagonal and, similar to the MATLAB operator, for an n⇥ n matrix A,
Diag(A) denotes the n vector of diagonal entries of A. For two A,B 2 Rn⇥n we use
the inner product hA , Bi = trace(AT

B) (which induces the Frobenius norm) and we
see that the map Diag : Rn ! Rn⇥n fulfills

hDiag(x) , Ai= trace(Diag(x)A) =
n

Â
i=1

xiaii = hx , Diag(A)i,

i.e. the linear map Diag is “self adjoint” in a slightly weird way.
For a real and symmetric matrix M we denote by lmin(M) the smallest eigenvalue

of M and for general (non-symmetric) real square matrices M we denote by r(M) its
spectral radius, i.e. the largest absolute value of its eigenvalues.
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2 The overdetermined consistent case

The Kaczmarz method is known to converge for any consistent linear system, but the
speed of convergence is hard to quantify since it depends on the ordering of the rows.
This is notably different for the randomized Kaczmarz method as shown in [10]: If the
rows are chosen independently at random the method converges linearly. To fix nota-
tion, let A= (aT

i
)i=1,...,m 2Rm⇥n with m� n and vectors ai 2Rn and V = (vT

i
)i=1,...,m,

with vectors vi 2 Rn. Moreover let pi > 0, i 2 {1, . . . ,m} denote a probability distri-
bution on the set of indices of the rows, i.e., pi is the probability to choose the i-th row
for the next step. We discuss several choices of these probabilities later in Remark 2.4
and methods to determine optimal probabilities (in a certain sense) in Section 5.

Algorithm 1 Randomized Kaczmarz with Mismatched Adjoint
Input: starting point x0 2 Rn, probabilities pi > 0, i 2 {1, . . . ,m}, matrices A and V

1: initialize k = 0
2: repeat

3: choose an index ik = i 2 {1, . . . ,m} at random with probability pi

4: update xk+1 = xk �
hai

k
,xki�bi

k

hai
k
,vi

k
i · vik

5: increment k = k+1
6: until a stopping criterion is satisfied

The algorithm we consider in this work is the randomized Kaczmarz method
with mismatched adjoint, abbreviated RKMA, and is given in Algorithm 1. The dif-
ference to the standard randomized Kaczmarz method is that the usual projection step
xk+1 = xk �

hai
k
,xki�bi

k

kai
k
k2 ·aik

is replaced by xk+1 = xk �
hai

k
,xki�bi

k

hai
k
,vi

k
i · vik

. This results in

hxk+1 , aik
i = bik

, i.e., the next iterate xk+1 is on the hyperplane defined by the ik-th
equation of the system, but since vik

is not orthogonal to this hyperplane, this is an
oblique projection, instead of an orthogonal projection as it would be in the original
Kaczmarz method (see Figure 2.1).

xk

x̃k+1

ai

xk+1

vi

Fig. 2.1 Oblique projection xk+1 of xk onto the hyperplane {x | hai , xi= bi}. The orthogonal projection is
x̃k+1.

First we state a result on the expected outcome of one step of RKMA. A simi-
lar result has been observed earlier in the case with no mismatch, see e.g. [10], [8,
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Lemma 2.2]) or [13, Lemma 3.6]). In the following, we generally assume that the
rows of A and V fulfill hai , vii 6= 0 and, without loss of generality, that hai , vii> 0.1

Lemma 2.1 Let x̂ fulfill Ax̂ = b, x be arbitrary and x
+ = x � hai ,xi�bi

hai ,vii · vi be the

oblique projection onto the hyperplane {x | hai , xi = bi}. Further we let pi > 0,

i = 1, . . . ,m, be probabilities and denote D := Diag
�

pi

hai ,vii
�

and S := Diag
� kvik2

hai ,vii
�
.

If i is randomly chosen with probability pi (i.e., x
+

is a random variable) then it holds

that

E(x+� x̂) = (I �V
T

DA)(x� x̂) (2.1)

and if

l := lmin
�
V

T
DA+A

T
DV �A

T
SDA

�
> 0 (2.2)

is fulfilled, it holds that

E(kx
+� x̂k2) (1�l ) ·kx� x̂k2

(where both expectations are with respect to the probabilities pi).

Proof Since bi = hai , x̂i, the expectation E(x+� x̂) is

E(x+� x̂) =
m

Â
i=1

pi · (x�
hai , xi�bi

hai , vii
· vi)� x̂

= x�
m

Â
i=1

pi ·
hai , x� x̂i
hai , vii

· vi � x̂

= x� x̂�
m

Â
i=1

pi

hai ,vii · via
T

i
(x� x̂),

where we deliberately wrote the outer product via
T

i
to make it apparent that (2.1)

follows from here. To calculate the expectation of the squared norm we calculate

kx
+� x̂k2 =kx� x̂k2 �2 · hai , x� x̂i · hvi , x� x̂i

hai , vii

+

�
hai , x� x̂i

�2

�
hai , vii

�2 ·kvik2 . (2.3)

Taking the expectation gives

E(kx
+� x̂k2) =kx� x̂k2

�
m

Â
i=1

pi ·2 ·
hai , x� x̂i · hvi , x� x̂i

hai , vii

+
m

Â
i=1

pi ·
�
hai , x� x̂i

�2

�
hai , vii

�2 ·kvik2 .

1 If hai , vii= 0, Algorithm 1 is not defined and in the case of hai , vii< 0, the probabilities pi below in
Rmeark 2.4 would not be non-negative. However, in the case hai , vii < 0 we could switch the sign of the
vis, and the expressions in (2.1) and (2.2) would not change).
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By the definition of D and S the right hand side can be written as

kx� x̂k2 �hx� x̂ , (2V
T

DA�A
T

SDA)(x� x̂)i
= kx� x̂k2 �hx� x̂ , (2V

T �A
T

S)DA(x� x̂)i (2.4)

and hence, we aim to bound hx� x̂ , (2V
T �A

T
S)DA(x� x̂)i from below. More pre-

cisely, we want

hx� x̂ , (2V
T �A

T
S)DA(x� x̂)i � l ·kx� x̂k2

and this is the case if and only if

hx� x̂ , ((2V
T �A

T
S)DA�l I)(x� x̂)i � 0.

Since we have 2hz ,V
T

DAzi= hz , (V T
DA+A

T
DV )zi for all z, this is equivalent to

hx� x̂ , (V T
DA+A

T
DV �A

T
SDA�l I)(x� x̂)i � 0

and this is ensured if

lmin(V
T

DA+A
T

DV �A
T

SDA)� l .

Hence, if (2.2) is fulfilled, we obtain the estimate

E(kxk+1 � x̂k2) (1�l ) ·kx� x̂k2 .

ut

Equation (2.1) shows that kE(x+� x̂)k2  kI�V
T

DAk2kx� x̂k2. Recall that r(M)
kMk for asymmetric matrices M, and note that the above inequality is not true, if we
replace the norm by the spectral radius. Due to Jensen’s inequality we generally have
kE(x+� x̂)k2  E(kx

+� x̂k2) and Lemma 2.1 provides different estimates for both
quantities.

Iterating the previous lemma, we obtain the convergence result:

Theorem 2.2 Assume that the assumptions of Lemma 2.1 are fulfilled and denote by

xk the iterates of Algorithm 1.

If r(I �V
T

DA)< 1 then xk converges in expectation to x̂,

E(xk � x̂)! 0 for k ! • ,

moreover, it holds that

kE(xk � x̂)k  kI �V
T

DAkkkx0 � x̂k.

If condition (2.2) is fulfilled then it holds that

E
⇥
kxk+1 � x̂k2⇤ (1�l ) ·E

⇥
kxk � x̂k2⇤ .
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Proof The first claim follows from Lemma 2.1 and the well known fact that (I �
V

T
DA)k ! 0 if the spectral radius of I �V

T
DA is smaller than one (see, e.g., [3,

Theorem 11.2.1]). The second claim is also immediate from the previous lemma.
Finally, we get for expectation with respect to ik (conditional on i0, . . . , ik�1)

E
⇥
kxk+1 � x̂k2 �� i0, . . . , ik�1

⇤
 (1�l )kxk � x̂k2

Now we consider all indices i0, . . . , ik as random variables with values in {1, . . . ,m},
and take the full expectation on both sides to get the assertion. ut

Here are some remarks on the result:

Remark 2.3 Since eigenvalues depend continuously on perturbations, both condi-

tion (2.2) and r(I �V
T

DA) < 1 are fulfilled for V ⇡ A. Note that kI �V
T

DAk =
r(I�V

T
DA) does hold for V = A and is generally not true otherwise. It may even be

the case that kI �V
T

DAk > 1 while r(I �V
T

DA)< 1.

Remark 2.4 (Relation to the result of Strohmer and Vershynin) Note that Theo-

rem 2.2 contains the result of Strohmer and Vershynin [10] as a special case: Take

V = A and the probabilities pi proportional to the squared row-norms, i.e., pi =
kaik2

kAk2
F

.

Then we have

D = Diag
�

pi

hai ,vii
�
= 1

kAk2
F

· I and S = Diag
� kvik2

hai ,vii
�
= I

and hence we get

l =
lmin(AT

A)

kAk2
F

=
smin(A)

kAk2
F

(where smin(A) denotes the smallest singular value of A) as in [10].

To get a similarly simple expression for the convergence rate of the method with

mismatch we set

pi =
hai , vii
kAk2

V

, with kAk2
V
= Â

i

hai , vii.

This leads to

D = 1
kAk2

V

· I

and thus, from (2.1),

kE(xk+1 � x̂)k  kI � V
T

A

kAk2
V

kkxk � x̂k = smax(I � V
T

A

kAk2
V

) ·kxk � x̂k.

However, in general the contraction factor does not simplify to 1� smin(V
T

A)
kAk2

V

as it

would in the case with no mismatch.

We also get

E(kxk+1 � x̂k)
⇣

1� lmin(V
T

A+A
T

V�A
T

SA)
kAk2

V

⌘1/2
kxk � x̂k

for the expectation of the error.
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Remark 2.5 (Asymptotic convergence rate and expected improvement in norm)

The above theorem states that the RKMA method has the asymptotic convergence rate

of

r(I �V
T

DA) (2.5)

(in expectation), however, the expected improvement of the squared error, i.e. E(kxk�
x̂k2) in every iteration is

(1�lmin(V
T

DA+A
T

DV �A
T

SDA)) = r(I �V
T

DA�A
T

DV +A
T

SDA)

= kI �V
T

DA�A
T

DV +A
T

SDAk.
(2.6)

Using the spectral norm we can also estimate

kE(xk+1 � x̂)k = k(I �V
T

DA)(xk � x̂)k  kI �V
T

DAk ·kxk � x̂k.

We can express this norm by the spectral radius as

kI �V
T

DAk = r(I �V
T

DA�A
T

DV +A
T

DVV
T

DA). (2.7)

Note that all three expressions in (2.5), (2.6) (2.7) are equal in the case of V = A,

but for the mismatched case, they are in general different. Numerically it seems

like (2.5)  (2.7)  (2.6), but we do not have a proof for this.

Remark 2.6 (Different possibilities for stepsizes) We could consider the slightly more

general iteration

xk+1 = xk �wik
· (haik

, xki�bik
) · vik

with a steplength wik
. The iteration in Algorithm 1 uses wi = hai , vii�1

, but there are

other meaningful choices:

– As for the case with no mismatch, one could take wik
= kaik

k�2
, but this would not

imply hxk+1 , aik
i= bik

. Similarly, wi = kvik
k�2

does not imply hxk+1 , vik
i= bik

.

– The choice wik
=

hxk ,vi
k
i�bi

k

(hxk ,ai
k
i�bi

k
)kvik2 implies that hxk+1 , vik

i= bik
.

Although none of these cases guarantees that the iterates solve one of the equations

of the linear system Ax = b, one can still deduce that iterates converge to the solution

of this system of equalities. The result of Theorem 2.2 can also be derived for this

slightly more general iteration and the respective condition for linear convergence

with contraction factor (1�l ) is that

l := lmin
�
V

T
DA+A

T
DV �A

T
SDA

�
> 0

with

D = Diag(piwi), S = Diag(wikvik2).

Experiments show that other probabilities than pi = kaik2/kAk2
F

in the case V =A

or pi = hai , vii/kAk2
V

in the mismatched case frequently lead to faster convergence.
This should not be surprising as one could scale the rows of system Ax = b arbitrarily
by multiplying with a diagonal matrix which leaves the solution unchanged, but leads
to arbitrary row-norms of the scaled system. In this sense, the row-norms do not
reflect the geometry of the arrangements of hyperplanes. We will come back to the
problem of selecting probabilities in Section 5.



8 Dirk A. Lorenz et al.

3 Inconsistent overdetermined systems

Now we consider the inconsistent case, i.e., we do not assume that the overdetermined
system has a solution. This case has been treated in [8] for the case V = A. We model
an additive error and assume that the right hand side is b+ r with b 2 rgA.

Theorem 3.1 Denote by x̂ the unique solution of Ax = b and let xk denote the iterates

of Algorithm 1 where the right hand side is b+ r. With M = (I�V
T

DA) it holds that

E(xk � x̂) = M
k(x0 � x̂)+

k�1

Â
l=0

M
l
V

T
Dr. (3.1)

Moreover, with l defined in (2.2), we have

E(kxk � x̂k2) (1� l
2 )

k ·kx0 � x̂k2 + 2(2�l )
l 2 · g2 (3.2)

with g := maxi

|ri|·kvik
|hai ,vii| .

Proof For the iterate xk we denote by x̃k+1 the oblique projection onto the “true hy-
perplane” H = {x | hai , xi= bi}, i.e., x̃k+1 = xk � hai ,xki�bi

hvi ,aii · vi. Then it holds that

xk+1 � x̂ = x̃k+1 � x̂+ ri

hai ,vii · vi.

For one step of the method we get (taking the expectation with respect to the random
variable ik+1)

E(xk+1 � x̂) = E(x̃k+1 � x̂)+E( ri
k

hai
k
,vi

k
ivik

) = (I �V
T

DA)(xk � x̂)+V
T

Dr.

The formula for E(xk � x̂) (with the expectation with respect to all indices i0, . . . , ik)
follows by induction.

Moreover, we get

kxk+1 � x̂k2 = kx̃k+1 � x̂k2 +2 ri

hai ,vii · hx̃k+1 � x̂ , vii+
r

2
i

hai ,vii2 ·kvik2

 kx̃k+1 � x̂k2 +2 ri

hai ,vii · hx̃k+1 � x̂ , vii+ g2. (3.3)

Now we use Cauchy-Schwarz and Young with e > 0 (i.e. 2ab  ea
2 +b

2/e) to get

kxk+1 � x̂k2  kx̃k+1 � x̂k2 +2kx̃k+1 � x̂k · ri

hai ,vii ·kvik+ g2

 (1+ e) ·kx̃k+1 � x̂k2 +(1+ 1
e ) · g

2.

Applying Lemma 2.1 we get

E(kxk+1 � x̂k2) (1+ e) · (1�l ) ·kxk � x̂k2 +(1+ 1
e ) · g

2.

Recursively we obtain

E(kxk � x̂k2)
⇣
(1+e) ·(1�l )

⌘
k

·kx0� x̂k2+
k�1

Â
j=0

⇣
(1+e) ·(1�l )

⌘
j

·(1+ 1
e ) ·g

2.



The Randomized Kaczmarz Method with Mismatched Adjoint 9

Now we choose e = l
2(1�l ) , observe that

(1�l ) · (1+ e) = 1� l
2 and (1+ 1

e ) =
2
l �1

and get

E(kxk � x̂k2) (1� l
2 )

k ·kx0 � x̂k2 +
k�1

Â
j=0

(1� l
2 )

j+1( 2
l �1) · g2

 (1� l
2 )

k ·kx0 � x̂k2 + 2(2�l )
l 2 · g2

which proves the claim. ut

The first equation in Theorem 3.1 shows that the iteration of RKMA will reach a
final error of the order of kÂ•

l=0 M
l
V

T
Drk= k(I�M)�1

V
T

Drk= k(V T
DA)�1

V
T

Drk
if r(M)< 1.

The final estimate in Theorem 3.1 is a little worse than the respective result in [8,
Theorem 2.1]. For one, the factor in front of kx0 � x̂k2 is only (1�l/2) instead of
(1�l ) (since l corresponds to 1/R in [8] in the case of no mismatch and “standard”
probabilities pi = kaik2

2/kAk2
F

) and also, the constant in front of g is larger. This
estimate can be improved a little bit by noting that hx̃k+1 � x̂ , aii = 0 and thus, we
can estimate the right hand side in (3.3) by

(1+ e)kx̃k+1 � x̂k2 +(1+ d 2

e )kgk2

with d = maxi

kvi�aik
kvik . In case d = 0 (i.e., no mismatch) we can even take e = 0 and

recover the result from [8]. For d > 0 we get the final estimate

E(kxk � x̂k2) (1� l
2 )

k ·kx0 � x̂k2 + 2l (1�2d 2)+4d 2

l 2 · g2

which gives the result from Theorem 3.1 for d = 1 but is better for d < 1.

4 Underdetermined systems

Now we consider the underdetermined case, i.e., the case where m < n, but we will
still assume full row rank of A and V . In the case of no mismatch, linear convergence
has been proven for the probabilities pi = kaik2/kAk2

F
in [7]. In this case, conver-

gence does not follow from Theorem 2.2: On the one hand, the matrix V
T

DA+A
T

DV

is never positive definite, so l from (2.2) is always zero. On the other hand, V
T

DA al-
ways has a non-trivial kernel, and thus, I�V

T
DA always has spectral radius equal to

one. However, the iteration often converges in practice and this is due to the following
simple observation: All the iterates xk of Algorithm 1 are in rgV

T if the starting point
x0 is there. So, if the equation Ax = b has a solution x̂ in rgV

T , then all vectors xk � x̂

are also in the range.
Inspecting the proof of Lemma 2.1 we note that the constant l that needs to be

positive to guarantee improvement in each step, is in fact not the smallest eigenvalue
of V

T
DA+V

T
DA�A

T
DSA but the smallest eigenvalue of this matrix when restricted
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to the range of V
T . More explicitly, let Z 2 Rn⇥m be a matrix whose columns form

on orthonormal basis of rgV
T . So, the term in (2.4) can also be written as

kxk � x̂k2 �hZZ
T (xk � x̂) , (2V

T
DA�A

T
DSA)ZZ

T (xk � x̂)i
= kxk � x̂k2 �hZT (xk � x̂) , Z

T (2V
T

DA�A
T

DSA)ZZ
T (xk � x̂)i.

Consequently, we need an estimate of the form

hZT (xk � x̂) , Z
T (2V

T
DA�A

T
DSA)ZZ

T (xk � x̂)i � l ·kxk � x̂k2

and, since kZ
T (xk � x̂)k2 = kxk � x̂k2, this is fulfilled for

l = lmin(Z
T (V T

DA+A
T

DV �A
T

DSA)Z).

Similarly, the convergence of E(xk� x̂) is equivalent to the convergence of E(ZT (xk�
x̂)), and it holds that

E(ZT (xk+1 � x̂)) = Z
T (I �V

T
DA)(xk � x̂)

= Z
T (I �V

T
DA)ZZ

T (xk � x̂)

= (I �Z
T

V
T

DAZ)ZT (xk � x̂).

Finally, note that the system Ax = b has only one solution that lies in rgV
T if AV

T is
non-singular.

Thus, we have proved the following theorem:

Theorem 4.1 Consider the consistent system (1.1) with A,V 2 Rm⇥n
for m  n both

with full row rank such that AV
T

is non-singular. Furthermore let the columns of Z

be an orthonormal basis for rgV
T

and let p 2 Rm
with pi � 0 and Âi pi = 1 and set

D := Diag
�

pi

hai ,vii
�

and S := Diag
� kvik2

hai ,vii
�
. Then it holds:

1. The system Ax = b has exactly one solution x̂ that lies in rgV
T

.

2. If x0 2 rgV
T

and r(I �Z
T

V
T

DAZ)< 1, then the iterates of Algorithm 1 fulfill

E(xk � x̂)! 0 for k ! •.

3. If x0 2 rgV
T

and

l := lmin
�
Z

T (V T
DA+A

T
DV �A

T
SDA)Z

�
> 0 (4.1)

is fulfilled, then it holds that

E
⇥
kxk+1 � x̂k2⇤ (1�l ) ·E

⇥
kxk � x̂k2⇤ .

This result has the following practical implication: If one can measure the quan-
tity x by linear measurements, encoded by the vectors ai, but only has less measure-
ments available than degrees of freedom in x, it is beneficial to use a mismatched
adjoint V with rows v

T

i
such that the vi are close to the vectors ai (such that the con-

vergence condition is fulfilled), but which also ensure that x is in the range of the
vectors vi. Mismatched forward/back projection models in CT provide a useful ex-
ample to illustrate this result. Forward projection in CT is often implemented using
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a ray-tracing algorithm known as Siddon’s method [9]. This algorithm models line
integration and has the benefit of being computationally efficient and amenable to
parallelization; however, it does not model the finite width of the detector bin. This
can lead to Moire pattern artifacts when using a matched forward/back-projection
pair if the image pixel size is smaller than the detector bin size [2]. Mismatched pro-
jector pairs — in which the backprojection operator models the finite detector bin
width — are often used to avoid these artifacts. We illustrate how RKMA can be
used in this manner in Section 6.

5 Optimizing the probabilities

In the case of exact adjoint, a common choice for the probabilities pi is to use pi =
kaik2/kAk2

F
which leads to the simple expression l = lmin(AT

A)/kAk2
F

. However,
numerical experiments show that this vector p of probabilities does not lead to the
best performance in practice. This is of no surprise: For any diagonal matrix W =
Diag(wi) one can consider the problem WAx = Wb which has different row norms,
while each Kaczmarz iteration stays exactly the same. This shows that the choice of
probabilities based on the norms of the rows is in some sense arbitrary. In [1] the
authors proposed a method to find the smallest contraction factor of the method by
minimizing the largest eigenvalue of an auxiliary matrix of size Rn

2⇥n
2 . Here we

present a different method that also works for the case of mismatched adjoint.
Theorem 2.2 states that the asymptotic convergence rate is given by r(I�V

T
DA),

while the expected improvement in each step is either expressed by 1�lmin(V T
DA+

A
T

DV �A
T

SDA) or kI�V
T

DAk (recall that D = Diag(pi/hai , vii) and S = Diag(si)
with si = kvik2/hai , vii). One would like to choose p (i.e. D) in such a way that these
quantities are as small as possible. Numerically, we observe that the asymptotic rate is
indeed quite tight, while the expected improvement is only a loose estimate in the case
of mismatched adjoint. However, the numerical radius of a non-symmetric matrix is
not easily characterized and is neither a convex, nor concave function of the entries
of the matrix. The minimal eigenvalue of a symmetric matrix, on the other hand,
is characterized by a minimization problem and it will turn out, that lmin is indeed
a concave function in p. Also, the spectral norm is convex and thus, the function
kI �V

T
DAk is also convex in p. We therefore aim to choose p such that lmin is

maximized or kI �V
T

DAk is minimized, i.e. we aim to solve

max
p

lmin(V
T

DA+A
T

DV �A
T

SDA), s.t.
m

Â
i=1

pi = 1, p � 0. (5.1)

or

min
p

kI �V
T

DAk, s.t.
m

Â
i=1

pi = 1, p � 0. (5.2)

5.1 Maximizing lmin

The super-gradient of the objective functional in (5.1) is given by the next lemma:
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Lemma 5.1 The function f (p)= lmin(V T
DA+A

T
DV �A

T
SDA) is concave. A super-

gradient at p is given by

∂lmin

∂ p
=

✓
h2vi � siai , xihai , xi

hai , vii

◆

i=1,...,m

where x is an eigenvector of V
T

DA+A
T

DV �A
T

SDA corresponding to the smallest

eigenvalue.

Proof By the min-max principle for eigenvalues of symmetric matrices, we have

lmin(V
T

DA+A
T

DV �A
T

SDA) = min
kxk=1

h(V T
DA+A

T
DV �A

T
SDA)x , xi

= min
kxk=1

hDAx , (2V �SA)xi

= min
kxk=1

m

Â
i=1

pi

h2vi � siai , xihai , xi
hai , vii

.

This shows that f is a minimum over linear functions in p, and hence, concave.
To compute a super-gradient, let x be a minimizer, i.e. an eigenvector of V

T
DA+

A
T

DV �A
T

SDA corresponding to the smallest eigenvalue. Since this is a point where
the minimum is assumed, a super-gradient is given by

∂lmin

∂ p
=

✓
h2vi � siai , xihai , xi

hai , vii

◆

i=1,...,m
.

ut

The previous lemma allows one to solve (5.1) by projected super-gradient ascent
as follows: Choose a stepsize sequence tk and iterate:

1. Initialize with p
0
i
= 1/m, k = 0

2. Form V
T

DA+A
T

DV �A
T

SDA and compute an eigenvector x corresponding to
the minimal eigenvalue.

3. Compute the super-gradient g
k

i
= ∂lmin

∂ p
(p

k) according to Lemma 5.1.
4. Update p

k+1 = projDm
(p

k + tkg
k) where projDm

is the projection onto the m-
dimensional simplex.

It is worth noting, how this algorithm looks in the special case of V = A. There we
only want to maximize lmin(AT

DA) and the super-gradient of this at some p
k is just

g
k =

⇣
hai ,xi2

kaik2

⌘

i=1m...,m
. As this is always positive, we can project onto the simplex by

a simple rescaling as

p
k+1 =

p
k + tkg

k

kpk + tkgkk1
.
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5.2 Minimizing kI �V
T

DAk

The subgradient of the objective functional in (5.2) is given by the next lemma:

Lemma 5.2 Let si = hai , vii. The function f (p) = kI �V
T

DAk with D = Diag(p/s)
is convex. A subgradient is given by

� (Aq1)� (V r1)

s
2 ∂ f (p)

where q1 and r1 are left and right singular vectors of I �V
T

DA corresponding the

largest singular value, � denotes component-wise product, and the division is also

to be understood component-wise.

Proof The convexity of f follows from the convexity of the norm and the fact that
the map M : Rm ! Rn⇥n, p 7! �V

T
DA is linear in p.

Example 1 in [11] shows that the subgradient of the spectral norm is given as
follows: If B has a singular value decomposition B=QSR

T and the maximal singular
value has multiplicity j, then

∂BkBk = conv{qir
T

i
| i = 1, . . . , j}

where qi and ri are the ith columns of Q and R, respectively.
By the chain rule for subgradients, we get that

∂p f (p) = M
⇤∂kI �Mpk.

where the adjoint of M is the map M
⇤ : Rn⇥n ! Rm defined by the property that

for all p 2 Rm and all B 2 Rn⇥n it holds that hp , M
⇤
Bi = hMp , Bi. Note that we do

not consider M as a matrix (e.g. of size m⇥ n
2) but as a linear map, that we do not

vectorize the n⇥n matrices, and that we use the inner product hA , Bi = trace(AT
B)

for square matrices. We calculate (recalling the abuse of notation for Diag operator
from the intoduction)

hp , M
⇤
Bi= hMp , Bi

= trace((Mp)T
B)

=� trace(V T Diag(p/s)AB)

=� trace(Diag(p/s)ABV
T )

= hp ,�Diag(Diag(1/s)ABV
T )i,

and this means that M
⇤
B 2 Rm is given as

M
⇤
B =�Diag

⇣
Diag(1/s)ABV

T

⌘
.

Plugging in the previous formula we obtain that

�Diag(Diag(1/s)Aq1r
T

1 V
T ) =�Diag((V r1)

T Diag(1/s)(Aq1)) =
(Aq1)� (V r1)

s

is a subgradient of f , which shows the assertion. ut
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Similar to the previous subsection we can solve (5.2) by projected subgradient
descent as follows: Choose a stepsize sequence tk and iterate:

1. Initialize with p
0
i
= 1/m, k = 0

2. Compute a pair q,r of left and right singular vectors of I �V
T

DA corresponding
to the largest singular vector.

3. Compute a subgradient g
k according to Lemma 5.2

4. Update p
k+1 = projDm

(p
k + tkg

k) where projDm
is the projection onto the m-

dimensional simplex.

Both the routines to find optimized probabilities in this and the previous section
need spectral decompositions. In Section 5.1 we need an eigenvector corresponding
to the smallest eigenvalue of a symmetric matrix and in this section we need a pair
of left and right singular vectors corresponding to the largest singular values. These
operations are the most costly ones within the method and in fact, in may not be
doable in some applications. However, the experiments in Section 6 show that there
often exist much “better” probabilties than the widely used pi = kaik2/kAk2

F
(or pi =

hai , vii/kAk2
V

in the case of mismatch).

6 Numerical experiments

In this section we report a few numerical experiments that illustrate the results.2 We
start with an illustration of Theorem 2.2, i.e. the consistent and overdetermined case.
We used a Gaussian matrix A 2 R500⇥200 (i.e., the entries are independently and nor-
mally distributed). To obtain a mismatched adjoint V we simply set all entries of
A with magnitude smaller that 0.5 to zero.3 The unique solution x̂ was also gener-
ated as a Gaussian vector and as probabilities we used pi = kaik2/kAk2

F
. The con-

vergence condition (2.2) is fulfilled and 1 � l ⇡ 1 � 5.5 · 10�4 and we also have
r(I �V

T
DA) ⇡ 1� 7.5 · 10�4. Figure 6.1 shows the error and the residuals for the

randomized Kaczmarz method with and without mismatched adjoint. For both the
error and the residual, the results for the mismatched adjoint are quite close to the
case with exact adjoint (while the residual is slightly smaller for the former, but the
error is slightly smaller for the latter). We note that this is not universal: other ran-
dom instances constructed in the same way show different behavior, although both
methods are always quite close to each other.

Our second numerical example treats the inconsistent and overdetermined case.
The matrix A and solution x̂ and the probabilities are similar to the previous example,
but now the right hand side is b=Ax̂+r (with Gaussian r). Figure 6.2 shows the result
of the RKMA method on this example and also the error bound from Theorem 3.1. As
predicted, the error does not go to zero, but levels out at a non-zero level (the same is
true for the residual). As in the previous example one sees that the upper bound from
Theorem 3.1 is quite loose.

2 The code to produce the figures in this article is available at https://github.com/dirloren/
rkma.

3 We could also add a perturbation to A - the numerical results would be rather similar. Setting entries to
zero would be numerically beneficial if A would have many small entries, but this was not be the motivation
here.
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Fig. 6.1 Comparison of the randomized Kaczmarz method with and without mismatched adjoint in the
overdetermined and consistent case. Left: Decay of the error and also the asymptotic rate r(I �V

T
DA)k

from Theorem 2.2. Right: Decay of the residual.
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Fig. 6.2 The RKMA method in the inconsistent case. The plot shows the decay of the error, the theoretical
upper bound (3.2), and the expected final error kÂ•

l=0 M
l
V

T
Drk from (3.1) from Theorem 3.1.

Now we illustrate the behavior of RKMA in the underdetermined case. We used
A,V 2 R100⇥500, again A with Gaussian entries and we obtained V from A by setting
the entries of A to zero that have magnitude smaller than 0.3. The solution x̂ was
constructed as x̂=V

T
c for some random vector c and the right hand side was obtained

through b = Ax̂. Hence, generically x̂ is not in the range of A
T and the standard

randomized Kaczmarz method can not converge to x̂. Figure 6.3 shows that the error
decays quickly to zero for RKMA but not for the standard randomized Kaczmarz
method. The residuals, however, behave similarly for both methods.

For another illustration of the underdetermined case, we consider a toy prob-
lem from computerized tomography: For a 50⇥ 50 pixel image we generated a CT
projection matrix for a parallel beam geometry with 36 equi-spaced angels and 150
rays per angle, which gives a projection matrix of size 5,400 ⇥ 2,500 (we used
the AIRtools package from [5] and the respective MATLAB command is Afull =
paralleltomo(50,0:5:180,150,70)). For the matrix A for the forward projec-
tion we used every third row of the matrix while for V (the backprojection) we used
the average of three consecutive rows, thereby employing a simple model for detec-
tor bin width in the backprojection operation. Then we eliminated the rows of A and
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Fig. 6.3 Comparison of the randomized Kaczmarz method with and without mismatched adjoint in the
underdetermined and consistent case but with true solution x̂ 2 rgV

T and x̂ /2 rgA
T . Plot shows the decay

of the error.

V which correspond to zero-rows in A which leaves us with two matrices of size
1,636⇥2,500. Then we generated a smooth image by

im = phantomgallery(’ppower’,N,0.3,1.3,155432);
im = imfilter(im,fspecial(’gaussian’,16,4));
im = im/max(max(im));
x = im(:);

and generated the data by b = A*x. We reconstructed x by RKMA and RK (with
the probabilities pi = kaik2

2/kAk2
F

from Remark 2.4). Figure 6.4 shows the recon-
structions after a quite small number of sweeps (one sweep corresponds to m steps of
the methods, where m is is the number of rows). One sees that using a mismatched
adjoint is beneficial in this setting: First, the iteration converges to a limit which is
closer to the original image (which is due to the fact that this is closer to the range
of V

T than to that of A
T since the image is smoother than the elements in the range

of A
T ). Moreover, the initial iterates are better. As expected, the reconstruction with

A
T and A suffers from Moire patterns. Using V

T as adjoint avoids these artifacts as
the range of V

T contains smoother functions, in some sense. Finally, we note that
applying RK using V for both the forward and back-projection does also converge,
but leads to an even worse reconstruction than using RK with A.

Finally, we illustrate that the optimization of the probabilities according to Sec-
tion 5 does indeed improve the practical performance. We used A,V 2R300⇥100 where
A is a random matix with Gaussian entries where the ith row has been scaled with the
factor 2/(

p
i + 2) and V has been obtained from A by setting 5% randomly cho-

sen entries of A to zero. We calculated optimized probabilities by the methods from
Sections 5.1 and 5.2, respectively (initialized with uniform probabilities, applied 600
iterations of the method to maximize l and 200 iterations to minimize kI �V

T
DAk,

in both cases with decaying stepsizes t ⇡ 1/k). We applied RKMA with these opti-
mized probabilities, uniform probabilities, and pi µ hai , vii. Figure 6.5 shows that the
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(c) RK, 1 sweep (d) RK, 3 sweeps (e) RK, 10 sweeps (f) RK, 20 sweeps

(g) RKMA, 1 sweep (h) RKMA, 3 sweeps (i) RKMA, 10 sweeps (j) RKMA, 20 sweeps

Fig. 6.4 Reconstruction for a toy CT example.

optimized probabilites indeed outperform the uniform choice and the choice propor-
tional to hai , vii. Table 6.1 shows the respective quantities for the different probabil-
ities. Although both approaches optimize different quantities and neither optimizes
the asymptotic convergence rate, both probabilities are rather similar in practice, and,
as shown in Figure 6.5 on the right, the probabilities for the different optimization
problems are quite similar.

Table 6.1 Quantities describing the convergence of RKMA for different probabilities.

unif row maxl minkI �V
T

DAk

1�l 0.998588 0.999079 0.997820 0.998311
r(I �V

T
DA) 0.997908 0.998352 0.997540 0.997327

kI �V
T

DAk 0.998029 0.998485 0.997752 0.997439
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Fig. 6.5 A sample run of RKMA on a consistent system with different probabilities: “unif” refers to
the uniform probabilities pi = 1/m, “µ hai , vii” uses pi = hai , vii/kAk2

V
(cf. Remark 2.4) and “opt kI �

V
T

DAk” and “opt l” refer to probabilities obtained by the methods from Section 5.

7 Conclusion

We derived several results on the convergence of the randomized Kaczmarz method
with mismatched adjoint and could show that the method converges linearly when the
mismatch is not too large. The results are a little bit more complicated compared to
the case of no mismatch due to the asymmetry of the matrix I �V

T
DA. In particular,

estimates for the norm of the expected error and the expectation of the norm of the
error are different in this case. We were also able to characterize the asymptotic con-
vergence rate of RKMA and numerical experiments indicate that this estimate of the
rate is indeed quite sharp. In the underdetermined case one may even take advantage
of the use of a mismatched adjoint to drive the randomized Kaczmarz method to a
solution in the subspace rgV

T . This last point may be important for algebraic recon-
struction techniques in computerized tomography where mismatched projector pairs
are often employed. Using the conditions derived here, a thorough study of com-
monly used mismatched projector pairs could be performed to determine what pairs
have guaranteed asymptotic convergence properties. We did not investigate other uses
of mismatched adjoints, but it may be that certain control problems could benefit from
some freedom in the adjoint when the adjoint corresponds to the solution of an adjoint
state equation.
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