Arch. Math., Vol. 49, 114-118 (1987)

On the representing number of intersecting families

By

M. AIGNER, P. ERDÖS and D. GRIESER

Herrn Professor Pickert zum 70. Geburtstag in Verehrung gewidmet

1. Introduction. One of the best-known results in extremal set theory is the Theorem of Erdős-Ko-Rado [3]:

Suppose $n \ge 2k$, and let \mathfrak{M} be a family of k-subsets of an n-set M such that any two members of \mathfrak{M} intersect non-trivially, then $|\mathfrak{M}| \le \binom{n-1}{k-1}$. Furthermore, the bound can be attained, and the extremal families are precisely the families $\mathfrak{M}_a = \{X \ni a : a \in M\}$ for $k \ge 3$. Many proofs of this result have been given, in addition to the original proof see e.g. [4, 9, 10]. Since all the members of an extremal familiy \mathfrak{M} have an element in common, we say that \mathfrak{M} has representing number 1.

What if we do not allow the sets of \mathfrak{M} to have an overall nontrivial intersection? How large can then \mathfrak{M} be? The answer to this question has been given by Hilton-Milner [8] with a further proof appearing e.g. in [6]: Let \mathfrak{M} be an intersecting family of k-subsets of an n-set M such that $\bigcap_{X \in \mathfrak{M}} X = \emptyset$, then $|\mathfrak{M}| \leq {\binom{n-1}{k-1}} - {\binom{n-k-1}{k-1}} + 1$ for n > 2k. Again the extremal families are characterized. Since the members of \mathfrak{M} are allowed to contain one of two points, but not a single one we say that \mathfrak{M} has representing number 2.

In this paper we estimate the cardinality of an intersecting family with an arbitrary representing number $r, 1 \leq r \leq k$. We first give the relevant definitions. All sets will be assumed to be finite. The collection of all k-subsets of a set M will be denoted by $\binom{M}{k}$.

We say that a family \mathfrak{M} is *intersecting* if any two members of \mathfrak{M} have a non-trivial intersection.

D e f i n i t i o n. Let \mathfrak{M} be a family of sets, and R a single set. R is said to represent \mathfrak{M} or be a representing set for \mathfrak{M} if $R \cap X \neq \emptyset$ for all $X \in \mathfrak{M}$. \mathfrak{M} has representing number r if r is the cardinality of a smallest set representing \mathfrak{M} .

Since an intersecting family \mathfrak{M} is represented by every one of its members we note that the representing number r of such a family satisfies $r \leq \min(|X|: X \in \mathfrak{M})$. In particular, if $\mathfrak{M} \subseteq \binom{M}{k}$ then $1 \leq r \leq k$.

Vol. 49, 1987

Intersecting families

Theorem. Let n, r, k be natural numbers with $1 \leq r \leq k \leq n$. Denote by g(n; r, k) the maximal cardinality of an intersecting family $\mathfrak{M} \subseteq \binom{M}{k}$ of an n-set M with representing number r. Then there are constants $c_{r,k}, C_{r,k}$ only depending on r and k, such that

$$c_{r,k}n^{k-r} \leq g(n;r,k) \leq C_{r,k}n^{k-r}.$$

Sections 2 and 3 are devoted to a proof of this result with a few additional comments appearing in Section 4.

2. Proof of the upper bound. This section establishes the existence of the constant $C_{r,k}$ as spelled out in the statement of the theorem. We divide the proof into a series of lemmas. First we need a definition.

Definition. Let \mathfrak{A} be a family of sets and let $u \in \mathbb{N}$, u > 1. A $\Lambda(u)$ -system of \mathfrak{A} is a subfamily $\mathfrak{B} \subseteq \mathfrak{A}$ such that

- (i) $|\mathfrak{B}| = u$,
- (ii) any two members of \mathfrak{B} have the same intersection C. C is called the stem of \mathfrak{B} .

The following lemma appeared in [2]. The easy proof goes by induction on a.

Lemma 1. Let $a, b \in \mathbb{N}$, b > 1. Then there exists a smallest number $f(a, b) \in \mathbb{N}$ such that any family of sets \mathfrak{A} with $|\mathfrak{A}| > f(a, b)$ and $(X \in \mathfrak{A} \Rightarrow |X| \leq a)$ possesses a $\Delta(b)$ -system. Furthermore, $f(a, b) \leq a! (b-1)^a$.

Lemma 2. Let \mathfrak{A} be a family of sets with $X \in \mathfrak{A} \Rightarrow |X| \leq k$. Let, further, \mathfrak{B} be a family of sets such that every $X \in \mathfrak{B}$ is a representing set of \mathfrak{A} and satisfies $|X| \leq b$. If $|\mathfrak{B}| > f(b, k + 1)$, then there exists a representing set Y of \mathfrak{A} with $|Y| \leq b - 1$ and $Y \subseteq Z$ for some $Z \in \mathfrak{B}$.

Proof. Let $\{Y_1, ..., Y_{k+1}\}$ be a $\Delta(k+1)$ -system of \mathfrak{B} with $|Y_i| \leq b$ for all *i* and stem Y (guaranteed by Lemma 1). Then $|Y| \leq b-1$, $Y \subseteq Y_i \in \mathfrak{B}$. We claim that Y represents \mathfrak{A} . If, on the contrary, there existed $X \in \mathfrak{A}$ with $X \cap Y = \emptyset$ then X would have to intersect all the disjoint set $Y_1 - Y, Y_2 - Y, ..., Y_{k+1} - Y$, in contradiction to $|X| \leq k$. \Box

To facilitate the induction used in the proof of the theorem we introduce the following function.

Definition. Let $n, r, k \in \mathbb{N}$. For $\ell \in \mathbb{N}, \ell \leq k$ define the functions $h'_{\ell} \colon \mathbb{Q} \to \mathbb{Q}$

$$h_k(x) = x$$

$$h_\ell(x) = \frac{1}{\binom{n-r}{k-r}} (x - f(k, k+1)) - \sum_{i=\ell+1}^{k-1} f(i, k+1) \text{ for } \ell < k.$$

The following facts are immediately verified from the definition.

Lemma 3. i)
$$h_{\ell+1}\left(x - h_{\ell}(x)\binom{n-r}{k-r}\right) = f(\ell+1, k+1)$$
 for all x,
ii) if $x > \binom{n-r}{k-r} \sum_{i=r}^{k-1} f(i, k+1) + f(k, k+1)$ then $h_{r-1}(x) > 0$.

We come to the crux of the proof.

Lemma 4. Let n, k, r and M, \mathfrak{M} be given as in the statement of the theorem. For a subfamily $\mathfrak{M}' \subseteq \mathfrak{M}$ and $\ell \leq k$ let

$$\mathfrak{M}'_{\ell} = \{X \subseteq M : X \text{ represents } \mathfrak{M}, |X| \leq \ell \text{ and there exists } Y \in \mathfrak{M}' \text{ with } X \subseteq Y\}.$$

Then $|\mathfrak{M}_{\ell}| \geq h_{\ell}(|\mathfrak{M}'|)$.

Proof. We use downward induction on ℓ . For $\ell = k$ we have $\mathfrak{M}'_k \supseteq \mathfrak{M}'$ and thus $|\mathfrak{M}'_k| \ge h_k(|\mathfrak{M}'|) = |\mathfrak{M}'|$. Suppose we already know that $|\mathfrak{M}'_{\ell+1}| \ge h_{\ell+1}(|\mathfrak{M}'|)$ holds for all subfamilies $\mathfrak{M}' \subseteq \mathfrak{M}$. We determine step by step distinct sets $X_1, X_2, \ldots, X_{\alpha} \in \mathfrak{M}'_{\ell}$ with $\alpha = \max(0, [h_{\ell}(|\mathfrak{M}'|)])$. Let $\alpha > 0$ and $1 \le \beta \le \alpha$. Suppose we have already found sets $X_1, X_2, \ldots, X_{\beta-1} \in \mathfrak{M}'_{\ell}$. Set

$$\mathfrak{M}'' = \{ X \in \mathfrak{M}' \colon X \supseteq X_i \text{ for some } i, 1 \leq i \leq \beta - 1 \}$$
$$\mathfrak{M} = \mathfrak{M}' - \mathfrak{M}''.$$

Then $\widetilde{\mathfrak{M}} \subseteq \mathfrak{M}$ and hence $|\widetilde{\mathfrak{M}}_{\ell+1}| \ge h_{\ell+1}(|\widetilde{\mathfrak{M}}|)$ by the induction hypothesis. As every X_i represents \mathfrak{M} we have $|X_i| \ge r$ by the assumption on \mathfrak{M} , and thus

$$|\{X \subseteq M \colon X \supseteq X_i\}| \leq \binom{n-r}{k-r} \quad (i=1,\ldots,\beta-1).$$

From this we infer

$$\begin{split} |\mathfrak{M}| &= |\mathfrak{M}'| - |\mathfrak{M}''| \\ &\ge |\mathfrak{M}'| - (\beta - 1) \binom{n - r}{k - r} \\ &\ge |\mathfrak{M}'| - (\alpha - 1) \binom{n - r}{k - r} \\ &> |\mathfrak{M}'| - h_{\ell} (|\mathfrak{M}'|) \binom{n - r}{k - r}. \end{split}$$

Since $h_{\ell+1}$ is strictly increasing we conclude from Lemma 3 (i)

$$|\mathfrak{M}_{\ell+1}| \ge h_{\ell+1}(|\mathfrak{M}|) > f(\ell+1, k+1).$$

Now Lemma 2 applied to $\mathfrak{A} = \mathfrak{M}, \mathfrak{B} = \mathfrak{M}_{\ell+1}$ implies the existence of a set X_{β} with $|X_{\beta}| \leq \ell$ representing \mathfrak{M} and of $Y \in \mathfrak{M}_{\ell+1}$ with $X_{\beta} \subseteq Y$. Y is, in turn, contained in a set $Z \in \mathfrak{M}, Y \subseteq Z$, by the definition of $\mathfrak{M}_{\ell+1}$. In summary, $X_{\beta} \subseteq Z \in \mathfrak{M} \subseteq \mathfrak{M}'$. Hence $X_{\beta} \in \mathfrak{M}'_{\ell}$ and X_{β} must be distinct from all sets $X_1, \ldots, X_{\beta-1}$ since $X_{\beta} = X_i$ would imply $Z \in \mathfrak{M}'' = \mathfrak{M}' - \mathfrak{M}$, whereas $Z \in \mathfrak{M}$. \Box

116

Vol. 49, 1987

Intersecting families

117

Proof of the upper bound. Suppose, on the contrary, there is no such constant $C_{r,k}$. Then there are n, M and a family \mathfrak{M} satisfying the assumptions of the theorem with

(*)
$$|\mathfrak{M}| > {n-r \choose k-r} \sum_{i=r}^{k-1} f(i,k+1) + f(k,k+1).$$

Applying Lemma 4 with $\mathfrak{M}' = \mathfrak{M}$ and $\ell = r - 1$, we conclude $|\mathfrak{M}_{r-1}| \ge h_{r-1}(|\mathfrak{M}|)$ and thus $|\mathfrak{M}_{r-1}| > 0$ by Lemma 3 (ii). But this contradicts the fact that \mathfrak{M} cannot be represented by a set of cardinality less than r, and the proof is complete. \Box

From the inequality (*) and Lemma 1 we obtain the following estimate of $C_{r,k}$.

Corollary. For given n, r, k and M, \mathfrak{M} as in the statement of the theorem we have

$$|\mathfrak{M}| \leq \left(\sum_{i=r}^{k} i! k^{i}\right) n^{k-r}.$$

3. Proof of the lower bound. Let r and k be given. The Erdös-Ko-Rado Theorem states $g(n; 1, k) = \binom{n-1}{k-1}$ for $n \ge 2k$, hence $c_{1,k}$ exists. For r > 1 we use a generalization of the construction in [1] which includes the optimal family of the Hilton-Milner Theorem [8] for r = 2 and the one given by Frankl [5] for r = 3 as special cases.

Assume $n \ge k + (k-1) + \dots + (k-r+2) + 1$. Choose pairwise disjoint sets S_i $(i = 0, \dots, r-2)$ with $|S_i| = k - i$, a subset $T \subseteq S_0$ with |T| = r - 1 and an element $x \notin \bigcup S_i$. Denote by \mathfrak{M}_i the family

$$\mathfrak{M}_i = \{X \colon X \supseteq S_i, |X \cap S_j| = 1 \text{ for } 1 \le j < i, |X \cap T| = 1\}$$

(*i* = 1, ..., *r* - 2),

and by \mathfrak{M}_{x} the family

 $\mathfrak{M}_{\mathbf{x}} = \{ X \colon |X| = k, \mathbf{x} \in X, X \cap S_i \neq \emptyset \text{ for all } i \} \cup \{ X \colon |X| = k, \mathbf{x} \cup T \subseteq X \}.$

The family $\mathfrak{M} = \bigcup_{i=1}^{r-2} \mathfrak{M}_i \cup \mathfrak{M}_x \cup \{S_0\}$ is intersecting, has $T \cup x$ as representing set, and it is readily seen that no smaller set can represent \mathfrak{M} . Since the second part of \mathfrak{M}_x contains already $\binom{n-r}{k-r}$ sets, the existence of $c_{r,k}$ is established.

4. Families with representing number k. As mentioned before, the precise value of g(n; 1, k) and g(n; 2, k) is known whereas the family \mathfrak{M} of the previous section was shown to be optimal in [5] for r = 3 and $n \ge n_0(k)$. Let us go to the other end and consider g(n; k, k).

The theorem says in this case that g(n; k, k) is independent of n for $n \ge n_0(k)$, so we denote it shortly by g(k).

The corollary in Sect. 2 gives $g(k) \leq k! k^k$, and it was shown in [1] that, in fact, $g(k) \leq k^k$. To gain further insight into g(k) we observe that any maximal family

 $\mathfrak{M} \subseteq \binom{M}{k}$ with representing number k must include all representing sets of \mathfrak{M} of size k. This, in turn, immediately yields the following alternate characterization.

Proposition. Let $\mathfrak{M} \subseteq \binom{M}{k}$ be an intersecting family. Then the following conditions are equivalent:

- i) \mathfrak{M} is maximal with representing number k.
- ii) \mathfrak{M} is maximal with respect to the condition that to every $X \in \mathfrak{M}$, $x \in X$ there exists $Y \in \mathfrak{M}$ with $X \cap Y = \{x\}$.

The construction of Erdös and Lovász in [1] yields $g(k) \ge k! \sum_{i=1}^{k} \frac{1}{i!}$, and thus $g(k) \ge (e-1) k!$ for $k \to \infty$. For small k, we have g(1) = 1, g(2) = 3. Using the preceding proposition it can be easily shown that g(3) = 10 and, with a little more work, g(4) = 41 which was also found in [7]. Hence for these values, the construction in [1] is optimal, and it is quite plausible that optimality always holds.

Two interesting questions come to mind: First, improve the bounds on g(k), and, secondly, estimate the threshold value $n_0(k)$.

A c k n o w l e d g e m e n t. The authors are grateful for some very useful comments by Z. Füredi who independently proved our main theorem.

References

- P. ERDÖS and L. LOVÁSZ, Problems and results on 3-chromatic hypergraphs and some related questions. In: Finite and Infinite Sets (A. Hajnal et al., eds.). Proc. Coll. Math. Soc. J. Bolyai 10, 609-627 (1974).
- [2] P. ERDÖS and R. RADO, Intersection theorems for systems of sets. J. London Math. Soc. 35, 85-90 (1960).
- [3] P. ERDÖS, C. Ko and R. RADO, Intersection theorems for systems of finite sets. Quart. J. Oxford Ser. 12, 313-320 (1961).
- [4] D. DAYKIN, Erdös-Ko-Rado from Kruskal-Katona. J. Combin. Theory (A) 17, 254-255 (1974).
- [5] P. FRANKL, On intersecting families of finite sets. Bull. Austral. Math. Soc. 20, 363-372 (1980).
- [6] P. FRANKL and Z. FÜREDI, Non-trivial intersecting families. To appear.
- [7] D. HANSON and B. TOFT, On the maximum number of vertices in *m*-uniform cliques. Ars Combin. (A) 16, 205-216 (1983).
- [8] P. HILTON and E. MILNER, Some intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2), 18, 369-384 (1967).
- [9] G. KATONA, A simple proof of the Erdös-Ko-Rado theorem. J. Combin. Theory 13, 183–184 (1972).
- [10] R. WILSON, The exact bound in the Erdös-Ko-Rado theorem. Combinatorica (2-3) 4, 247-257 (1984).

Eingegangen am 28. 8. 1986

Anschriften der Autoren:

M. Aigner und D. Grieser II. Math. Institut Freie Universität Berlin, Arnimallee 3 D-1000 Berlin 33 P. Erdös Math. Institut Ungarische Akademie der Wissenschaften Realtánoda u. 13-15 H-1053 Budapest