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Hanson posed the following problem: What is the minimum number ,~(n) of colors needed 
to color all subsets of an n-set such that there is no monochromatic triple A, B, C with A UB=C? 
It is known that z(n)~_I(n+ 1)/2l, while Erdfs and Shelah proved z(n)~_[(n+ 1)/41. Their proof 
suggests the following notion: Let C be any finite plane point-configuration. The hook-free coloring 
number z(C) is the smallest number of colors needed for C such that no monochromatic hooks 
arise, i.e. if (c,,, c~) are the coordinates of point cEC, then there are no 3 distinct points a, b, cEC 
with a,~=b,~<e,~, b~,=c~,.<a~,. In this paper x(R,,,D is determined exactly for an re• 
and asymptotically for the triangular staircase. As a corollary one obtains Z (n)-~ 0.293n. 

1. Introduct ion 

The motivation for this paper is the following problem which Professor 
ErdSs attributes to Hanson (see [2]): Color all subsets o f  X =  {1 . . . . .  n} such that 
any color class is unionfree, i.e. there are no distinct subsets A, B, C with A U B = C .  
What is the minimum number x(n) of  colors needed? 

q?he following coloring is well-known and probably due to Hanson himself: 
Put all 1-subsets, 3-subsets, 7-subsets . . . .  into color class 1, all 2-subsets, 5-subsets, 
ll-subsets . . . .  into class 2, and, in general, all 2i-subsets, (4i+ 1)-subsets, (8i+3)-  
subsets . . . .  into color class i+1 ,  l~_i~_n]2, qhis procedure obviously provides 
a coloring as required and uses [(n+ 1)/2] colors. "lhus 

What about lower bounds? In [2], ErdSs and Shelah showed that Z(n)_~ 
-~[(n+ 1)/4]. ~Iheir beautiful argument (which prompted the present paper) runs 
as follows. Let us just consider the subfamily J c=2  ~ o f  all intervals [i,j], l~_i~_ 
~_n/2<j~_n. We associate to J the complete bipartite graph Kt,/2j, r,/21, with 
[i,j] corresponding to the edge joining i and j .  We arrange the numbers 1 . . . . .  In/2 l 
on the left from top to bottom, and In/2]+ 1 . . . .  , n on the right from bottom to top 
(see figure 1 for n =  11). 

Suppose J is colored union-free. Consider numbers i, k, l, j with 1 ~_ i<  k_~ 
~_n/2<l<j~_n. "Ihen [i,j]=[i, l]U[k,j], and hence these three intervals cannot  
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Fig. I 

all receive the same color. For the complete bipartite graph this means that three 
edges forming a "hook" cannot all be colored the same, where by a hook we mean 
a path of length 2, going from left to right upward, then to left and finally to right 
downward (see figure 1 with i=2,  k=4,  l=7, j=9) .  Observe now that any cycle 
must contain such a configuration, implying that any color class in the graph is a 
forest. Hence a color class cannot contain more than n -  1 edges which means that 
the number of colors is at least 

n - - 1  - -  4 

Let us recast and slightly generalize Erd6s' argument. It is convenient to look 
at our problem in the dual form, i.e. we want to color the sets intersection-free. 
Whenever Af-)B=C for three distinct sets then A, B, C cannot all receive the same 
color. By exchanging the color of each set with that of its complement, it is clear 
that the two problems are equivalent. 

Consider the restricted problem of coloring the set ~ of all intervals [i,j], 

 o,o= oo.f oo wo as o i ,e a  t ir, se l ~_i~_j~_n, 
% - -  j 

SC, of length n, numbering the rows and columns 1 . . . . .  n, and letting the interval 
[i,j] correspond to the pair (i,j). Figure 2 shows SC5. 
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Fig. 2 

Consider now an intersection-free coloring of •. We claim that this corres- 
ponds precisely to the absence of monochromatic hooks in SC, as defined in the 
abstract. Indeed, [i, j] = [k, l] fq [s, t] for three distinct intervals implies i= max (k, s), 
j = m i n  (/, t). If, say, i=k  then j=t ,  and we obtain the hook as in figure 3. 

Conversely, any such hook corresponds precisely to an intersection relation. 
Thus we conclude that the problem of coloring J intersection-free is exactly the 
same as coloring the staircase "hook-free". 
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Fig. 3 

It is therefore reasonable to ask for the hook-free coloringnumber X(cg) in 
the sense just described for any plane point-configuration c~. In Section 2 we obtain 
the precise result for a rectangular array Rm,, of size m by n, and apply this to the 
staircase SC, in Section 3. 

2. Hook-free colorings of rectangles 

Let R(m, n) be a rectangular array of  size m by n. By z(m, n) we denote the 
minimum number of colors needed to color the points of  R(m, n) such that no 
monochromatic hooks arise. 

Theorem 1. Z(1, 1)=1 andfor m,n with re+n>-3 wehave 

(1) z(m,n)=[,  mn-1  .1 
re+n-2  " 

Proof. The result X(1, 1)= 1 is obvious, solet us assuffiemq:n_~3. We first establish 
that x(m, n)>=[(mn - 1)~(re+n-2)]. Consider any hook-free coloring g of R(m, n) 
and suppose it needs t colors. Since, obviously, z(m,n)~_min(m;n), we.may 
assume t~_n. Put a circle around a point . p=( i , j ) i f f  there is another point q in 
the same row to the right ofp  which received the same color as p, i.e.. q = (i, I) with 
l>j and g(p)=g(q). 

We note two facts: 

a) In any row there are at least n -  t circles, since at most one point of each color 
remains uneireled. 

b) In any column different from the last there are no two circles of the same color, 
since otherwise we would plainly obtain a monochromatic hook, considering 
our circle rule. Hence there are at most t circles in any column different from the 
last. Furthermore, if there are precisely t circles in a column, then again by 
the circle rule, one of these circles must appear in the first row. 

Now let K be the total number of circles in rows 2 to m. By a) and b) we 
obtain 

(m-1 ) (n - t )  <- K <= ( t - 1 ) ( n - 1 ) .  

Rearranging the two sides of this inequalitY yields precisely t~_(mn-1)~(re+n-2 I, 
and thus Z (m, n)~_ [(mn- 1)/(m+ n -  2)]~. 
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To prove the upper bound we define the following coloring f.  We number 
the rows 0, 1 . . . .  , m -  1 and the columns 0, 1 . . . .  , n-- 1, where again we assume 
m+n~'_3, and set r=[(mn-1)/(m+n-2)l.  Now we define f by 

(2) f ( i , j ) =  [( n - i ) i + ( m - 1 ) j ]  
m--+ ~ mod r 

for O~_i~_m-1, Om_jm_n-1. 
We have to show that f is hook-flee. Suppose there is a monochromatic 

hook (i,j), (k,j), (k, l) with i<k , j<L By the definition of f we have 

[(n-1) i+(m-1) . / ]  - 1 ) k + ( m - 1 ) j ]  _ [ ( n - 1 ) k + ( m - 1 ) I  
(3) i ~ 2  ,____[(n re+n-2  ! r e+n-2  ]modr .  

Since i<k, j< 1 it is clear that the first term in (3) is less than or equal to the 
second which is less than or equal to the third. It is now an easy matter to deduce 
from the congruence conditions in (3) that, in fact, they are all equal. Hence we 
obtain from i< k, j <  1 

[ [(n--1)(i+_l)+(m--1)(j+l)] 
m--~Z--2 = I" ~ >- re+n--2 I = 

= [ (n-1) i+(m--1) j+m+n-2 ] = 
m+n--2  

(n- -1) i+(myl) j ]  
= m + n - 2  ! +1 '  

a contradiction. II 

Observe that the coloring as described in the proof is completely determined 
by the coloring of  the first rowand first column, since by (2) f ( i +  1, j+  1)=-f(i , j)+ 1 
(mod r). 

Corollary. For a square R(n, n) the hook-free chromatic number is 

(4) zfn, n) = 

3. Hook-free coloring of staircases 

Let us return to the staircase SC. introduced in Section 1. We denote by 
x(SC.) the minimum number of  colors required in any hook-free coloring. 

Theorem 2. For the staircase SC. (n_~2) we have 

( 5 )  '2 + z(sc.) . 
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Proof. For the lower bound we use the same argument as in the proof of  Theorem 1. 
Suppose a proper coloring uses t colors, where we may assume t~=n - 1 since, 
obviously, x(SC,)<=n - 1. Circle the points as before, and let K be the total number 
of  circles in rows 2 to n. Any row rt (i_~2) contains at least max (n+ 1 - i - t ,  O) 
circles. Any column cj (j '~_n- I) contains at most min (j, t) circles, and if it contains 
t circles then one of  them must appear in row 1. Hence 

(6) (1 + 2 +  ... + (n  - 1 - t ) )  ~= K ~_ (1 + 2 +  ... + ( t - 2 ) ) + ( t -  1 ) (n -  t). 

Rearranging the inequality (6) yields 

n2+n 
(7) t~ - (2n-  I) t-~ ~ 1 <= 0. 

It follows that t must be at least as large as the smaller root of  the quadratic equation 
in (7), and this root is precisely the lower bound in (5). 

To prove the upper bound, consider the ease n - 0  (rood 3) first. We super- 
impose on SC, a square Q of  side length (2n)/3 touching the point in the upper 
right-hand corner. See figure 4 for n=9 .  By (4), Q can be colored in a hook-free 
manner with n/3+ 1 = [(n+ 1)/31 colors. Take the restriction Q' of  this coloring to 
the part that is inside SC,. t h e  small upper staircase U and the lower staircase L 
are both of  length n[3. Hence by taking a color for each of  the rows of  U and a color 
for each of  the columns in L, we may extend the coloring of  Q' to all of  SC,. 

Q 

Fig. 4 

In the ease n - 1  (mod 3) we superimpose a square of length (2n-2) /3  and 
when n-=2 (mod 3) we take one of  size (2n-1)/3.  In each case, [(n+ 1)]31 colors 
suffice, and the proof  is complete. I 

Since the lower bound argument furnished the exact result for rectangular 
arrays, it seems probable that the same holds for SC,, at least asymptotically. A 
rather complicated argument can be used to show that 

(8) 
thus establishing 

f 1 1 / n  ~ 1 l z(sc.) 

(I  1 'h (sc.)-[---~jn 0.293n (n+oo) .  
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We just give the idea of  this coloring. We choose a number t such 
that n-1]2-V(n"12)-n+ l/4<=t<3n/lO (n large enough). The coloring is done in 
two steps: First we mark all positions of  the staircase which may receive colors that 
also appear to the right in the same row (the circled points in our proof of 1 heorem 2). 
Secondly, we color all positions one by one observing the marked positions in step 1 
and not creating monochromatic hooks. At the end, not all marked positions are 
also circled in the sense above, which accounts for the fact that we cannot achieve 
the lower bound (5) exactly, but only asymptotically. 

"lhe lower bound (5) gives the correct value of  z(SC,) for n up to 21, and it 
is quite plausible that it is exact for all n. 

By our remarks in Section 1 we have x(SC,)~_x(n), and thus 

(9) x(n) ~0.293 (n-*~) ,  
n 

a result which has also been obtained by Kleitman and West (personal communi- 
cation). 

It was suggested by Hanson (see [2]) that a careful analysis of the argument 
by Erd6s and Shelah presented in Section 1 would, in fact, yield z(n)>=n/3 (n~ oo), 
but as (8) shows, this is not the case. It has come to our knowledge, however, that 
Kleitman bettered (9) by proving Z (n)/n~- log 2/2,.~ 0.349 (n ~ oo), using the Erd6s-- 
Ko- -Rad6  theorem [1]. Hanson himself conjectured that the trivial coloring men- 
tioned in Section 1 cannot be improved asymptotically, i.e. z(n)/n,~ 1/2; but this 
remains open. 

Acknowledgement. We thank the referee for several very useful comments. 
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