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Given two partitions n, c of the set [n] = { 1, . . . . n} we call n and D complements 
if their only common refinement is the partition { { 1 }, . . . . {n}} and the only parti- 
tion relined by both n and cr is {[n]}. I f  n = {A,, . . . . A,} then we write In] = m. We 
prove that the number of complements e of II satisfying 1~1 = n - m + 1 is 

fi IAil .(n-m+ l)m--2. 
i= 1 

For the proof we assign to each D a hypertree describing the pattern of intersections 
of blocks of n and o and then count the number of hypertrees and the number of 
c corresponding to each hypertree. 0 1991 Academic Press, Inc. 

1. PROBLEM AND SKETCH OF SOLUTION 

A partition n = {A,, . . . . A,) of the set [n] = { 1, . . . . n} is an (unordered) 
family of nonempty subsets A,, . . . . A, of [n] which are pairwise disjoint 
and whose union is [n]. We call the Ai the blocks of rc, and let 1x1 =m. 
A partition {B,, . . . . B,} is a refinement of {A,, . . . . A,} if each Bj lies in 
some Ai. It is well known (but of no relevance in this paper) that the 
ordering relation so defined on the set of all partitions of [n] makes it into 
a lattice. Two partitions II and (r of [n] are complements if their only 
common refinement is { ( 1 }, . . . . {n}} (we then write R A CJ =6) and the 
only partition refined by both n and (T is ([n]} (we then write K v c = I). 
We will prove: 
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COMPLEMENTSIN THE PARTITION LATTICE 145 

THEOREM 1. Zf R= {A, ,..., A,} is a partition of [n], then the number of 
complements TV of x with loI= n - m + 1 is 

inI JAil .(n-m+ l)m-2. (1) 

Throughout the paper, 1z = {A,, . . . . A,} will be a fixed partition of [n], 
and we denote by C the set of partitions G counted in the theorem. In order 
to prove (1) we will split up ,?Y into pieces and count the pieces and their 
cardinalities. We will assign to each c EL a hypertree H,, and one piece 
will be the set of cr belonging to one fixed hypertree H. It will turn out that 
the cardinality of the piece depends only and in a simple manner on the 
vertex degrees (the degree sequence) of H. We will give a formula for the 
number of hypertrees with a fixed degree sequence, and summing over all 
degree sequences will yield (1). 

The relevant definitions and facts about hypertrees are given in 
Section 2, and the proof of Theorem 1 in Section 3. Some remarks as to 
possible simplifications and generalizations conclude the paper. 

2. HYPERTREES 

A hypergraph H= (V, E) consists of a finite vertex set V and a finite 
family E of nonempty subsets of V, the set of edges. E may contain multiple 
elements (multiple edges). A one-element edge is a singleton or loop. The 
degree of vertex u is the number of edges containing u. A path from vertex 
u to vertex w  is a sequence o = uO, e,, oi, . . . . e,, u, = w  of distinct vertices 
uO, . . . . u, and distinct edges e,, . . . . e, such that each e, contains its two 
neigbors. If u = w  but otherwise all vertices are distinct, and if r 2 2, we 
speak of a cycle. 

H is connected if there is a path between any two vertices, or, equiv- 
alently, if for any proper subset V’ of V there is an edge intersecting both 
I” and V- V’. H is a hypertree if H is connected and contains neither 
loops nor cycles. In particular, a hypertree has no multiple edges. 

The well-known fact that a connected graph on m vertices has at least 
m - 1 edges, and exactly m - 1 edges if and only if it is a tree, generalizes 
easily to: 

LEMMA 1. Let the hypergraph H = ( V, E) be connected and loop free. 
Then 

eFE I4 2 I VI + IEI - 1, (2) 

and equality holds if and only if H is a hypertree. 
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Proof: We replace each edge e= {ui, . . . . v,,,} by lel - 1 edges {u,, u,}, 
{u2, Q), **.> {ye,-I, Q} (numbering arbitrary). Obviously, the resulting 
graph is connected if and only if H is, and is a tree if and only if H is a 
hypertree. Now (2) is equivalent to 

and the assertion follows from the analogue for graphs. m 

We remark that if in the hypergraph H = (V, E) on the vertex set 
Y= [m] the vertices 1, . . . . m have degrees d,, . . . . d,,,, respectively, then 
CepE I4 =X1 4. 

The following formula appeared in [2], but for completeness we give a 
proof here. 

LEMMA 2. Let m, k, d,, . . . . d,,, be positive integers, X7= 1 di = m + k - 1. 
Then the number of hypertrees on the vertex set [m] with k edges in which 
vertex i has degree di (i= 1, . . . . m) is 

h(m,k;d,,...,d,)=S,-,,, d -Fyf, ml , 
1 

. . 
m  

where S, - 1, k is the Stirling number of the second kind. 

Proof: By induction on m. For m = 1 or k = 1 the claim is true. Let 
m > 1, k > 1. 

If k>m then CeEE lel = Cy= 1 did 2k - 1, hence some edge must be a 
loop, and there is no hypertree. Hence assume k <m - 1. 

Then some di must be one. Let d, = 1, and let H be a hypertree with 
degrees d,, . . . . d,, and let e be the edge containing vertex 1. 

Assume first lel = 2, e = { 1, i>. Let H’ be the hypergraph obtained by 
removing vertex 1 and edge e from H. H’ is a hypertree on m - 1 vertices, 
with k - 1 edges and vertex degrees d2, . . . . di - 1, . . . . d,,,, and di - 1 > 0 
because k > 1 and H’ is connected. Hence there are h(m - 1, k - 1;’ 
d *, . . . . di - 1, . . . . d,) possible H”s, and because we can recover H from i and 
H’ the number of H’s with jel = 2 is 

5 h(m-l,k-lid, ,..., di-l,...,d,)=Sm--Z,k-- 
i=2 

d -:-fi 
2 

. . . 
m  

-1). 
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If (el > 2 then we remove only vertex 1 and obtain a hypertree H’ on 
m - 1 vertices, with k edges and vertex degrees d,, . . . . d,,,. We can recover 
H from the knowledge of H’ and of the edge which contained vertex 1. 
Hence the number of H’s with lel > 2 is 

kh(m-1, k;d2 ,..., d,,,)=kS,,,-,, d -:-ld -1 . 
2 

. . . m > 

Now the recursion S, _ I,k = S, - 2,k- 1 + kS,- 2,k yields the result. 1 

Although we will not need it here, we note the immediate 

COROLLARY 1. The number of hypertrees with m vertices and k edges is 

S,- l,kmk- I. 

A hypertree is essentially the same as a graph all of whose blocks are 
complete graphs. Viewed in this way, the corollary follows also from the 
well-known block-tree-theorem which gives a formula for the number of 
graphs with prescribed blocks (see [ 13). 

3. SOLUTION 

Let 7r= (A,, . . . . A,} be tixed and o = {B,, . . . . B,} be any partition of 
[n], with 

Let H, be the hypergraph with vertex set Cm] and edges C1, . . . . Ck, where 

Cj={iE [m] I A,nBi#@} (j= 1, . . . . k). 

Thus we think of the blocks of II as vertices, and a set of vertices is an edge 
if for some j E [k], Bj has elements in common with exactly these vertices. 
Hence the number of edges of H, is just the number of nonsingleton blocks 
of u. 

LEMMA 3. H, has the following properties: 

(i) lC,l < IBjl forj= 1, . . . . k, and equality holds for all j iff A A CT = 6. 

(ii) HO is connected iff JZ v CT = 1. 
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(iii) Zf avo=T, then lal<n+l--1711, and equality holds zff 
x A a = d and H, is a hypertree. 

ProoJ: (i) lC,l < lBjl is clear, and (n A a=Oe lAinBj[ < 1, 
Vie [ml, Jo [k]) implies the second part. 

(ii) z v a = ? o there are no proper subsets Zc [m] and Jc [r] for 
which lJic, A, = lJjEJ Bj o for all proper subsets Zc [m] there is a Cj 
intersecting both Z and [m] -lo H, is connected. 

(iii) If n v a = ‘i then H, is connected, hence CT= i I C, I > m + k - 1 
by Lemma 1. By (i), FTC1 lC,l <ct=i lBjl =n-(r-k), and we obtain 
r<n+l-m, withequahtyiff~~=, ICjl=~,“=i IBjl (hence lCjl=IBjl and 
H, has no loops) and c/k= I I Cj I = m + k - 1 which by Lemma 1 and (i) is 
equivalent to rr A a = 6 and H, hypertree. 1 

Now we count the number of complements having the same hypertree. 

LEMMA 4. Given a hypertree H, there are I-I?!, (a,), complements a oj 
x with H, = H. Here di is the degree of vertex i in H, a, = IAi I and (cx)~ = 
@.(a-l)...(a-/?+l). 

ProoJ: Let C,, . . . . Ck be the edges of H. We obtain all a by first picking 
an element from every Ai with iE Cr , thus composing B,, then picking 
elements for B,, etc. In the end we will have picked di elements from Ai for 
every i, one after another. This is possible in ny= i (a,), ways, and each 
way gives a different a because H has no multiple edges. 1 

Proof of Theorem 1. We first count the number of complements 
a, Ial = n -m + 1, with a fixed number k of nonsingleton blocks. By Lem- 
ma 3(iii) any complement a for which H, is a hypertree has n -m + 1 
blocks, and by Lemmas 2 and 4 this number equals (with p = ny= 1 ai) 

c %I-1,k 
d,, . . . . d,,, 2 1 

d, _ ;.: ; 
m  
- 1) ,fi (ui)d, 

1=1 
d,+ +d,=m+k-I 

= Psm - l,k 
c 

e,, _.., em,0 
e,+ +e,=k-1 

(3) 
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Here we used 

LEMMA 5. For nonnegative integers r, m, ul, . . . . u, 

(u1+ ... 
= ( 

r 
+ %I), = 

e,, . . . . e, > 0 e, . ..e. > 
fi C”i)ej. 

i= 1 
e,+ ,,.+e,=r 

Proof. Let Ui (i = 1, . . . . m) be sets, (Uij =ui, and U= lJy!i Ui. The left 
hand side counts the number of ways to pick r elements in order from U; 
the right hand side counts the same, first determining which of the r 
elements are to be picked from each Ui. 1 

Now summing over k yields 

m-l 
P 1 %-l,k(n-m)k-l 

k=O 

= n-~+lm~1~~-l,k(n-m+l)k=p(n-m+l)“-2 
k-0 

by a well-known formula. m 

4. REMARKS 

The proof rests on the formula for the number of hypertrees which was 
proved by induction. But it seems that a more direct combinatorial proof, 
avoiding induction, should be possible, perhaps a generalization of the 
Priifer sequence procedure used to enumerate trees (see [3]). Also, 
formulae (3) and (1) appear to demand a more direct proof. 

The more general problem to determine the number C(n, r) of com- 
plements of 7~ with r blocks seems to be much more difficult. By Lemma 3 
wehaveC(n,r)=Oifr>n-m+l.If,forr<n-m+l,wewanttousethe 
same method, we have to count hypergraphs containing cycles; also, some 
care would have to be taken because of the possible occurence of multiple 
edges (see proof of Lemma 4). 

If we drop the condition 7c v tr = 1 and require only rt A r~ = 6 and 101 = r 
the problem becomes much easier. Using inversion, we obtain for the 
number of these (T 

S(n,r)=A i ‘; 
r. I=o 0 

(-l)‘-[ l-l U),A,T 
AEZ 
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see [4], end of Section 3. It is also proved there that the polynomial 
CraO S(TC, r) x’ has only real, nonpositive roots. It would be interesting to 
settle the corresponding problem for the numbers C(n, r). 

I thank Richard Stanley for telling me about the conjecture (1) and for 
some interesting conversations. 
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