Note

Counting Complements in the Partition Lattice, and Hypertrees

DANIEL GRIESER*

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Communicated by the Managing Editors

March 31, 1989

Given two partitions π , σ of the set $[n] = \{1, ..., n\}$ we call π and σ complements if their only common refinement is the partition $\{\{1\}, ..., \{n\}\}$ and the only partition refined by both π and σ is $\{[n]\}$. If $\pi = \{A_1, ..., A_m\}$ then we write $|\pi| = m$. We prove that the number of complements σ of π satisfying $|\sigma| = n - m + 1$ is

$$\prod_{i=1}^{m} |A_i| \cdot (n-m+1)^{m-2}.$$

For the proof we assign to each σ a hypertree describing the pattern of intersections of blocks of π and σ and then count the number of hypertrees and the number of σ corresponding to each hypertree. © 1991 Academic Press, Inc.

1. PROBLEM AND SKETCH OF SOLUTION

A partition $\pi = \{A_1, ..., A_m\}$ of the set $[n] = \{1, ..., n\}$ is an (unordered) family of nonempty subsets $A_1, ..., A_m$ of [n] which are pairwise disjoint and whose union is [n]. We call the A_i the blocks of π , and let $|\pi| = m$. A partition $\{B_1, ..., B_r\}$ is a refinement of $\{A_1, ..., A_m\}$ if each B_j lies in some A_i . It is well known (but of no relevance in this paper) that the ordering relation so defined on the set of all partitions of [n] makes it into a lattice. Two partitions π and σ of [n] are complements if their only common refinement is $\{\{1\}, ..., \{n\}\}$ (we then write $\pi \wedge \sigma = \hat{0}$) and the only partition refined by both π and σ is $\{[n]\}$ (we then write $\pi \vee \sigma = \hat{1}$). We will prove:

* Current address: Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90024. THEOREM 1. If $\pi = \{A_1, ..., A_m\}$ is a partition of [n], then the number of complements σ of π with $|\sigma| = n - m + 1$ is

$$\prod_{i=1}^{m} |A_i| \cdot (n-m+1)^{m-2}.$$
 (1)

Throughout the paper, $\pi = \{A_1, ..., A_m\}$ will be a fixed partition of [n], and we denote by Σ the set of partitions σ counted in the theorem. In order to prove (1) we will split up Σ into pieces and count the pieces and their cardinalities. We will assign to each $\sigma \in \Sigma$ a hypertree H_{σ} , and one piece will be the set of σ belonging to one fixed hypertree H. It will turn out that the cardinality of the piece depends only and in a simple manner on the vertex degrees (the degree sequence) of H. We will give a formula for the number of hypertrees with a fixed degree sequence, and summing over all degree sequences will yield (1).

The relevant definitions and facts about hypertrees are given in Section 2, and the proof of Theorem 1 in Section 3. Some remarks as to possible simplifications and generalizations conclude the paper.

2. Hypertrees

A hypergraph H = (V, E) consists of a finite vertex set V and a finite family E of nonempty subsets of V, the set of edges. E may contain multiple elements (multiple edges). A one-element edge is a singleton or loop. The degree of vertex v is the number of edges containing v. A path from vertex v to vertex w is a sequence $v = v_0, e_1, v_1, ..., e_r, v_r = w$ of distinct vertices $v_0, ..., v_r$ and distinct edges $e_1, ..., e_r$ such that each e_i contains its two neigbors. If v = w but otherwise all vertices are distinct, and if $r \ge 2$, we speak of a cycle.

H is connected if there is a path between any two vertices, or, equivalently, if for any proper subset V' of V there is an edge intersecting both V' and V-V'. *H* is a hypertree if *H* is connected and contains neither loops nor cycles. In particular, a hypertree has no multiple edges.

The well-known fact that a connected graph on m vertices has at least m-1 edges, and exactly m-1 edges if and only if it is a tree, generalizes easily to:

LEMMA 1. Let the hypergraph H = (V, E) be connected and loop free. Then

$$\sum_{e \in E} |e| \ge |V| + |E| - 1, \tag{2}$$

and equality holds if and only if H is a hypertree.

DANIEL GRIESER

Proof. We replace each edge $e = \{v_1, ..., v_{|e|}\}$ by |e| - 1 edges $\{v_1, v_2\}$, $\{v_2, v_3\}, ..., \{v_{|e|-1}, v_{|e|}\}$ (numbering arbitrary). Obviously, the resulting graph is connected if and only if H is, and is a tree if and only if H is a hypertree. Now (2) is equivalent to

$$\sum_{e \in E} \left(|e| - 1 \right) \ge |V| - 1,$$

and the assertion follows from the analogue for graphs.

We remark that if in the hypergraph H = (V, E) on the vertex set V = [m] the vertices 1, ..., m have degrees $d_1, ..., d_m$, respectively, then $\sum_{e \in E} |e| = \sum_{i=1}^{m} d_i$.

The following formula appeared in [2], but for completeness we give a proof here.

LEMMA 2. Let $m, k, d_1, ..., d_m$ be positive integers, $\sum_{i=1}^m d_i = m + k - 1$. Then the number of hypertrees on the vertex set [m] with k edges in which vertex i has degree d_i (i = 1, ..., m) is

$$h(m, k; d_1, ..., d_m) = S_{m-1,k} \binom{k-1}{d_1 - 1 \cdots d_m - 1},$$

where $S_{m-1,k}$ is the Stirling number of the second kind.

Proof. By induction on m. For m = 1 or k = 1 the claim is true. Let m > 1, k > 1.

If $k \ge m$ then $\sum_{e \in E} |e| = \sum_{i=1}^{m} d_i \le 2k - 1$, hence some edge must be a loop, and there is no hypertree. Hence assume $k \le m - 1$.

Then some d_i must be one. Let $d_1 = 1$, and let H be a hypertree with degrees $d_1, ..., d_m$, and let e be the edge containing vertex 1.

Assume first |e| = 2, $e = \{1, i\}$. Let H' be the hypergraph obtained by removing vertex 1 and edge e from H. H' is a hypertree on m-1 vertices, with k-1 edges and vertex degrees $d_2, ..., d_i-1, ..., d_m$, and $d_i-1>0$ because k>1 and H' is connected. Hence there are h(m-1, k-1; $d_2, ..., d_i-1, ..., d_m)$ possible H''s, and because we can recover H from i and H' the number of H's with |e| = 2 is

$$\sum_{i=2}^{m} h(m-1, k-1; d_2, ..., d_i-1, ..., d_m) = S_{m-2, k-1} \binom{k-1}{d_2 - 1 \cdots d_m - 1}.$$

If |e| > 2 then we remove only vertex 1 and obtain a hypertree H' on m-1 vertices, with k edges and vertex degrees $d_2, ..., d_m$. We can recover H from the knowledge of H' and of the edge which contained vertex 1. Hence the number of H's with |e| > 2 is

$$kh(m-1, k; d_2, ..., d_m) = kS_{m-2,k} \binom{k-1}{d_2 - 1 \cdots d_m - 1}.$$

Now the recursion $S_{m-1,k} = S_{m-2,k-1} + kS_{m-2,k}$ yields the result.

Although we will not need it here, we note the immediate

COROLLARY 1. The number of hypertrees with m vertices and k edges is

 $S_{m-1,k}m^{k-1}.$

A hypertree is essentially the same as a graph all of whose blocks are complete graphs. Viewed in this way, the corollary follows also from the well-known block-tree-theorem which gives a formula for the number of graphs with prescribed blocks (see [1]).

3. SOLUTION

Let $\pi = \{A_1, ..., A_m\}$ be fixed and $\sigma = \{B_1, ..., B_r\}$ be any partition of [n], with

$$|B_1| \ge |B_2| \ge \cdots \ge |B_k| > 1 = |B_{k+1}| = \cdots = |B_r|.$$

Let H_{σ} be the hypergraph with vertex set [m] and edges $C_1, ..., C_k$, where

$$C_j = \{i \in [m] \mid A_i \cap B_j \neq \emptyset\} \qquad (j = 1, ..., k).$$

Thus we think of the blocks of π as vertices, and a set of vertices is an edge if for some $j \in [k]$, B_j has elements in common with exactly these vertices. Hence the number of edges of H_{σ} is just the number of nonsingleton blocks of σ .

LEMMA 3. H_{σ} has the following properties:

- (i) $|C_j| \leq |B_j|$ for j = 1, ..., k, and equality holds for all j iff $\pi \wedge \sigma = \hat{0}$.
- (ii) H_{σ} is connected iff $\pi \lor \sigma = \hat{1}$.

(iii) If $\pi \lor \sigma = \hat{1}$, then $|\sigma| \le n + 1 - |\pi|$, and equality holds iff $\pi \land \sigma = \hat{0}$ and H_{σ} is a hypertree.

Proof. (i) $|C_j| \leq |B_j|$ is clear, and $(\pi \wedge \sigma = \hat{0} \Leftrightarrow |A_i \cap B_j| \leq 1, \forall i \in [m], j \in [k])$ implies the second part.

(ii) $\pi \lor \sigma = \hat{1} \Leftrightarrow$ there are no proper subsets $I \subset [m]$ and $J \subset [r]$ for which $\bigcup_{i \in I} A_i = \bigcup_{j \in J} B_j \Leftrightarrow$ for all proper subsets $I \subset [m]$ there is a C_j intersecting both I and $[m] - I \Leftrightarrow H_{\sigma}$ is connected.

(iii) If $\pi \vee \sigma = \hat{1}$ then H_{σ} is connected, hence $\sum_{j=1}^{k} |C_j| \ge m+k-1$ by Lemma 1. By (i), $\sum_{j=1}^{k} |C_j| \le \sum_{j=1}^{k} |B_j| = n - (r-k)$, and we obtain $r \le n+1-m$, with equality iff $\sum_{j=1}^{k} |C_j| = \sum_{j=1}^{k} |B_j|$ (hence $|C_j| = |B_j|$ and H_{σ} has no loops) and $\sum_{j=1}^{k} |C_j| = m+k-1$ which by Lemma 1 and (i) is equivalent to $\pi \wedge \sigma = \hat{0}$ and H_{σ} hypertree.

Now we count the number of complements having the same hypertree.

LEMMA 4. Given a hypertree H, there are $\prod_{i=1}^{m} (a_i)_{d_i}$ complements σ of π with $H_{\sigma} = H$. Here d_i is the degree of vertex i in H, $a_i = |A_i|$ and $(\alpha)_{\beta} = \alpha(\alpha - 1) \cdots (\alpha - \beta + 1)$.

Proof. Let $C_1, ..., C_k$ be the edges of H. We obtain all σ by first picking an element from every A_i with $i \in C_1$, thus composing B_1 , then picking elements for B_2 , etc. In the end we will have picked d_i elements from A_i for every i, one after another. This is possible in $\prod_{i=1}^{m} (a_i)_{d_i}$ ways, and each way gives a different σ because H has no multiple edges.

Proof of Theorem 1. We first count the number of complements σ , $|\sigma| = n - m + 1$, with a fixed number k of nonsingleton blocks. By Lemma 3(iii) any complement σ for which H_{σ} is a hypertree has n - m + 1 blocks, and by Lemmas 2 and 4 this number equals (with $p = \prod_{i=1}^{m} a_i$)

$$\sum_{\substack{d_1,\dots,d_m \ge 1\\d_1+\dots+d_m=m+k-1}} S_{m-1,k} {\binom{k-1}{d_1-1\cdots d_m-1}} \prod_{i=1}^m (a_i)_{d_i}$$
$$= pS_{m-1,k} \sum_{\substack{e_1,\dots,e_m \ge 0\\e_1+\dots+e_m=k-1}} {\binom{k-1}{e_1\cdots e_m}} \prod_{i=1}^m (a_i-1)_{e_i}$$
$$= pS_{m-1,k} \left(\sum_{i=1}^m (a_i-1)\right)_{k-1}$$
$$= pS_{m-1,k} (n-m)_{k-1}.$$
(3)

Here we used

LEMMA 5. For nonnegative integers $r, m, u_1, ..., u_m$

$$(u_1+\cdots+u_m)_r=\sum_{\substack{e_1,\ldots,e_m\geq 0\\e_1+\cdots+e_m=r}}\binom{r}{e_1\cdots e_m}\prod_{i=1}^m(u_i)_{e_i}.$$

Proof. Let U_i (i = 1, ..., m) be sets, $|U_i| = u_i$, and $U = \bigcup_{i=1}^m U_i$. The left hand side counts the number of ways to pick r elements in order from U; the right hand side counts the same, first determining which of the r elements are to be picked from each U_i .

Now summing over k yields

$$p\sum_{k=0}^{m-1} S_{m-1,k}(n-m)_{k-1}$$
$$= \frac{p}{n-m+1} \sum_{k=0}^{m-1} S_{m-1,k}(n-m+1)_{k} = p(n-m+1)^{m-2}$$

by a well-known formula.

4. Remarks

The proof rests on the formula for the number of hypertrees which was proved by induction. But it seems that a more direct combinatorial proof, avoiding induction, should be possible, perhaps a generalization of the Prüfer sequence procedure used to enumerate trees (see [3]). Also, formulae (3) and (1) appear to demand a more direct proof.

The more general problem to determine the number $C(\pi, r)$ of complements of π with r blocks seems to be much more difficult. By Lemma 3 we have $C(\pi, r) = 0$ if r > n - m + 1. If, for r < n - m + 1, we want to use the same method, we have to count hypergraphs containing cycles; also, some care would have to be taken because of the possible occurence of multiple edges (see proof of Lemma 4).

If we drop the condition $\pi \vee \sigma = \hat{1}$ and require only $\pi \wedge \sigma = \hat{0}$ and $|\sigma| = r$ the problem becomes much easier. Using inversion, we obtain for the number of these σ

$$S(\pi, r) = \frac{1}{r!} \sum_{l=0}^{r} {r \choose l} (-1)^{r-l} \prod_{A \in \pi} (l)_{|A|},$$

DANIEL GRIESER

see [4], end of Section 3. It is also proved there that the polynomial $\sum_{r\geq 0} S(\pi, r) x^r$ has only real, nonpositive roots. It would be interesting to settle the corresponding problem for the numbers $C(\pi, r)$.

I thank Richard Stanley for telling me about the conjecture (1) and for some interesting conversations.

REFERENCES

- G. W. FORD AND B. E. UHLENBECK, Combinatorial problems in the theory of graphs, Proc. Nat. Acad. Sci. 42 (1956), 122-128.
- G. KREWERAS, Counting problems in dendroids, in "Combinatorial Structures and their Applications" (R. Guy, et al., Eds.), pp. 223-226, Gordon and Breach, New York, 1970.
- 3. J. W. MOON, Counting labelled trees, in "Canad. Math. Monographs," No. 1, 1970.
- 4. D. WAGNER, The Partition Polynomial of a Finite Set System, J. Combin. Theory Ser. A, to appear.