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Abstract 
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179-192. 

Let ‘Y be a property of graphs on a fixed n-element vertex set V. The complexity c(P) is the 

minimal number of edges whose existence in a previously unknown graph H has to be tested 

such that it becomes possible to decide whether H has property 9 or not. We investigate 

properties (in the broader sense of families of sets) whose complexity is much less than the 

maximum (which is (2) for graph properties). It is well known that such properties must be 

representable as a disjoint union of long intervals (in the boolean lattice of graphs on V). We 

show that, if the number of intervals is not too large, the converse is true as well. We also show 

that there are graph properties whose complexities differ by at most 4n from any given number 

between 2n - 4 and (;). Finally, we give estimates on the complexity of the scorpion graph 

property. 

1. Introduction 

Let $3’ be a family of subsets of a set T. We consider a measure of complexity 
that was first introduced by Holt and Reingold ([4]) and Rosenberg ([5]). This 
measure is defined as follows: 

Suppose two players, s$ (Algy or Seeker) and Y (Strategist or Hider) play the 
following game: Y thinks of some subset H of T. d wants to determine if H is in 
9. For this purpose ti chooses an e1emen.t x E T, and Y tells ti whether x is in H 
or not. Then & tries another element and so on until d is able to decide if H is in 
PP. The goal of d is to make this decision as soon as possible, while Y tries to 
force ~2 to ask many questions. We allow Y to change the set H in the course of 
the game as long as the answers given so far remain correct. The complexity ~($2’) 

is defined as the number of questions when both players play optimally. 
Obviously c(9) is bounded above by t = 1 TI, and is zero if and only if 9’ = 0 or 

2’ in which cases we call B trivial. ‘3” is elusive if c(9) = t. We will use the word 
algorithm for the way & plays, and strategy for the way Y plays. We think of 9 as 
a property of subsets of T. Especially, when T is the set of all two-element subsets 
of v = {1,2, . . . , n}, we may interpret subsets of T as graphs on the vertex set 
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V, and we call 9 a graph property if 9 is invariant under all permutations of the 
vertices. 

Up to now research has concentrated on: 

(i) showing that large classes of properties and some special (‘natural’) graph 
properties have high complexity, or even are elusive, and 

(ii) giving general lower bounds for the complexity of graph properties, and 
constructing graph properties of low complexity. 

We shortly state some results which will be of interest in the sequel. 

Theorem 1 ([6,2]). Zf c(9) s k, then 9 is the disjoint union of intervals of length 
t - k. 

Here an interval [A, B] is a class of subsets of T of the form 

[A,B]={XIAcXsB} 

where A G B. Its length is l([A, B]) = 1 BI - (Al. This theorem can be used to 
prove lower bounds or even elusiveness for many properties. Concerning general 
lower bounds for the complexity of graph properties, Bollobas and Eldrigde 
proved the following theorem. 

Theorem 2 ([3]). Zf 9 is a nontrivial graph property, then 

c(P) 3 2n - 4. 

Probably this bound is not best possible. The graph property of lowest 
complexity known today is the property Yc of being a scorpion graph. A graph on 
n 2 5 vertices is a scorpion graph if it has a vertex t of degree 1 (tail), a vertex b 
of degree n - 2 (body) and a vertex 1 of degree 2 incident to t and b (link). The 
remaining n - 3 vertices can be connected in an arbitrary manner (see Fig. 1). 

The property Yc was investigated first in [2]. The algorithm was slightly 
improved in [l] yielding the following theorem. 

Theorem 3. c(Y’c) s 6n - 10. 

n-3 

t 

I 

Fig. 1. Scorpion. 
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In Section 2 we will prove a result which can be viewed as a weak inversion of 
Theorem 1: If P is the disjoint union of r > 1 intervals of length at least t - k, 

then c(P) < 2k log r. This yields a nontrivial upper bound in the case where k is 
small compared with t (the intervals are ‘long’) and r is not too large, e.g. if 9 is a 
graph property (i.e. t = (‘;)), k is linear and I is ~lynomial in n (which is the case 
for scorpions). 

In Section 3 we will investigate scorpion graphs. We will define what a scorpion 
with a tumour of size p is (a ‘normal’ scorpion has p = 0), and we will generalize 
the well-known algorithm for scorpions to the case of scorpions with tumours. We 
will also improve the algorithm to establish an upper bound of 6n - t/z;T - 6 for 
c(.Y’c). Turning to lower bounds in 3.2, we will construct a strategy to show 
c(Yc) L (3 + cu)n - C, for any cy, 0 < LY < 1.5, and sufficiently large IZ, with some 
constant C, only depending on a. This is considerably better than the easily 
obtained lower bound 3n - 6, and possibly some ideas in the strategy might be 
applicable to more general classes of graph properties. Finally, in 3.3 we show 
how scorpions with tumours can be used to construct graph properties whose 
complexities are close to any given number between 2n - 4 and (2). 

In the description of an algorithm that decides 9 (i.e. that decides if the set W 
is in 9) we will often use phrases like “.# determines that H is of some specified 
form” and mean: “sdr’ decides that either H has this form or else H is not in 9”. A 
question of Algy will sometimes be called a probe or a test. 

For later use and as an example we now prove that the complexity of an 
interval [A, B], A c: B c T, is t - l([A, B]): 

If .& probes all elements of A U B’ then SB clearly is able to decide PP. On the 
other hand it is necessary to probe all these elements because Y may choose the 
strategy of giving all elements of A (i.e., answering “X E H” for all x E A) and 
refusing all elements of B’. Hence 

c([A, B]) = IA U B”I = t - (IBI - IAl). 

2. An upper bound for c(p) 

Theorem 4. Let 9 be a disjoint union of r intervals of length at - k. Then for the 
complexity of 9 we have the upper bound: 

if r 2 2, 
if r=l, 

where log i.r the natural logarithm. 

Proof. We construct an algorithm which decides 9 in at most that many steps. 
The idea comes from the scorpion graph algorithm: In order to decide if a graph 
is a scorpion, player d determines tail, body and link and then checks the 
requirements on their incidences (see Section 3.1). Now in the class Yc of 
scorpion graphs on n vertices the graphs with fixed t, b and 1 form an interval, and 
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%z is the disjoint union of all such intervals (one for each choice of t, 1, b). 
Therefore, it is natural to generalize this proceeding as follows. If 9 is the 
disjoint union of the intervals 4j, j E J, then at first ti determines the interval Sj 
which contains H as an element (see the convention at the end of Section 1) and 
then decides if H is actually in 9j. Because every 9; has length St - k, the second 
part takes at most k steps. Therefore we have to show that for r = IJ( 3 2 the first 
part can be accomplished in at most k(2 log r - 1) steps. We will do this 
recursively using the following observation. 

Lemma 1. Let 8 be a property of subsets of T. Zf PI:, P& E S!? and x E T is 
contained in every member of 9, and in no member of S?&:, then by probing x & 
can determine that H E 9 - PI (if x is refused) or that H E 9 - 9$ (if x is given). 

Proof. Clear by the definitions. 0 

Let’s apply this to our situation: 

and 

~‘=U.aj, 
jcJ 

4j = [Aj, BT] with Aj, Bj E T, Aj f~ Bj = 0 Vj 

We write pJp = IJjeJ, Sj for J’ E J. Choose x E T and let ??r = PJ,, g2 = gJ, with 

J~={ilx~AjIt J2 = {i 1 X E Bj}. 

By the lemma after the probe x SB knows that H E pJ-J1 (if x is refused) or that 
HE P?J_J2 (otherwise). If, say, x is refused, then in the case (J - Jll s 1 we are 
done, and in the case IJ - Jll > 1 we can use the same procedure with J replaced 
by J - J1 and thereby reduce the number of possible intervals step by step until 
we arrive at one interval. One such step will be the more effective the larger 
min{lJ,I, (Jzl} is (regarding the worst case for the answer to the probe x), and we 
may use our freedom in the choice of x to make this number large. Therefore we 
have to solve the following problem: 

Given a family of r > 1 pair-wise disjoint intervals [Ai, BF] of length St - k, find 
x E T which is in many A’s and in many B’s! 

Observing that for intervals 4 = [A, B’], 9’ = [C, DC] the condition 9 II 9’ = 0 is 
equivalent to (A fl D # 0 or B fl C #0), we can formulate this as a problem on 
families of pairs of sets; we will prove the following lemma. 

Lemma 2. Let {(Ai, Bj)}j.J, r = (Jl > 1, be a family of pairs of subsets of a set T 
having the properties: 

(a) Aj Il Bj = 0 Vj, 
(b) AinBj#fl or AjnBi#O ViZj, 
(C) (Aj U Bjl G k Vj. 
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Then there is an x E T which is contained in at least [r/2k] A’s and at least [r/2k] 

B’s. 

Before we prove this lemma, we show how the theorem follows. By the lemma 
with every question the number of possible intervals can be reduced by the factor 
1 - 1/2k as long as there are at least 2 intervals, hence after I questions there will 
be at most max{r(l - 1/2k)‘, l} intervals left. Using (1 - 1/2k)2k <e-l, it is easy 
to see that for 1~ k(2 log r - 1) we have r(1 - 1/2k)’ < fi< 2, and the conclu- 
sion follows. Cl (Theorem 4) 

It remains to prove Lemma 2. We will first show that the problem of finding 
such an x is equivalent to a problem concerning coverings of a complete graph by 
bipartite graphs, and then solve this problem. 

Let the dual family {(R,, Sx)}xeT of {(Ai, Bj)}j,J be the family of pairs of 
subsets of J defined by 

R,={jEJ(XEAj}, &={~EJIxEB~}. 

Then (a), (b), ( c are easily seen to be equivalent to: ) 
(a’) &n&=0 Vx, 
(b’) Vi #j 3x such that i E R,, j E S, or i E S,, j E R,, 

(c’) Every j is contained in at most k of the sets R, U S,, 
and the lemma asserts that for some x, both R, and S, contain at least [r/2kl 

elements. 

If KJ is the complete graph on the vertex set J, then (a’), (b’) mean that the 
complete bipartite graphs G, with vertex classes RX, S, cover the edges of KJ. We 
prove the following lemma. 

Lemma 3. Zf the bipartite graphs G,, x E T, cover all the edges of a complete 

graph K,, r 3 2, and if every vertex of the complete graph belongs to at most k of 

the G,, then in one of the G, both vertex classes have at least [r/2kl elements. 

Proof. Loosely speaking, this comes from the fact that a bipartite graph with one 
small vertex class has many vertices compared with its number of edges, while the 
K, has (r - 1)/2 as many edges as vertices. 

To be precise, we estimate for a bipartite graph G, with vertex classes of size a 

and b, a s b < r, the ratio 

IV(GJl a+b 1 1 1 1 

If every G, has one vertex class with at most v vertices (with some integer v), 
then a s v and therefore 



184 D. Grieser 

Therefore at least one of the vertices of the K, is in more than (r - 1)/2v and 
hence in at least r/2v of the G,. Choosing v as the largest integer less than r/2k, 
v = [r/2kl - 1, yields the desired result. 0 (Lemma 3 and Lemma 2) 

As an example for Theorem 4 we consider the property .Yc of scorpion graphs. 
.% is the disjoint union of n(n - l)(n - 2) intervals of length (‘;) - (3n - 6), 

hence 

c(Yc) s 2(3n - 6)log n(n - l)(n - 2) < 18n log IZ. 

Even if this is much more than the known upper bound 6n, it can be seen that .Yc 
is not elusive for large n. 

3. Scorpions 

We first define a scorpion with a tumour of size p. 

Definition. Let II, p be natural numbers, 12 >p + 5. The class .Yc(~) consists of 
the Graphs G on n vertices with the property: 

In G there are p + 2 pairwise connected vertices; among them, there are p 

vertices which have no other incidences (the tumour vertices), and the vertices 1 
(link) and b (body). 1 is incident to only one other vertex, t (tail), which has 
degree one, and b to all other vertices except t. The remaining n - p - 3 vertices 
can be connected arbitrarily (see Fig. 2). 

t, 1, b and the tumour vertices are called critical, as well as all edges (of the 
complete graph K,) incident with at least one of them. In order to prove upper 
and lower bounds for c(~‘c(~)) we will give algorithms and strategies. The 
following definitions will simplify the language in their description. 

At any stage in the course of the questioning we call an edge green if it has 
been given, red if it has been refused, and colourless if it has not been probed yet. 
A vertex is colourless if all edges incident with it are colourless, otherwise it is 
green, red or many coloured with the obvious meanings. 

n-p-3 

Fig. 2. Scorpion with a tumour of size p. 
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3 1 . . Upper bounds for c(L&‘)) 

We must slightly modify the well-known algorithm for scorpion graphs 
([2, 1,7]) to get a good algorithm for .!%?). 

Theorem 5. 

c(%@)) c (6 +p)n - 8 - . 

Proof. Player .& determines t, 1, b and the tumour vertices first and then checks 
all conditions on their incidences. Clearly, for the second part it is sufficient to 
test all edges incident with critical vertices. Some of these edges will have been 
probed before and need not be probed again. In order to simplify the counting of 
the number of steps, in the first part we don’t count those probed edges which 
become critical in the end. 

At any time during the questioning a candidate tail (body) is a vertex at most 
one of whose incident edges has been given (refused). T (B) denotes the set of 
candidate tails (bodies). The weight w(x) of a candidate tail (body) x is 2 if none 
of its incident edges has been given (refused), otherwise it is 1. w(x) is the least 
number of probes incident to x that can make x a noncandidate. In the beginning, 
B = T = V. The first part of the algorithm consists of three main steps: After the 
first step candidate bodies and candidate tails will be separated (B rl T = 0) after 
the second step B or Twill contain only one element (i.e., body or tail is known), 
and after the third step all critical vertices will be known. 

Step 1: SB tests the IZ edges of a Hamiltonian circuit C. Then all vertices are 
coloured. Let BO E B be the set of green vertices, TO E T the set of red vertices, 
and M = V - B,, - TO = T fl B the set of manycoloured vertices. Let m = [MI. 
Then m is even. We distinguish three cases: 

Casea: m=O. 
Then T or B is empty, and H is not a scorpion. 

Case b: m = 2, M = {x, y} and x, y are neighbours on C. 
Then TO = 0 or BO = 0. Choose the vertices x’, y’ such that x’, X, y, y’ 
are consecutive on C in this order. If BO = 0 then B = {x, y}, 
T = V - {x, y}, and Step 1 is finished; if TO = 0 then B = V, T = 
{x, y}, and after the tests x’y and xy’ we have B n T = 0. 

Case c: m = 2, M = {x, y} and x, y are not neighbours on C, or m 2 4. 
Then there are m/2 colourless edges connecting the vertices of M in 
pairs, and after these m/2 tests we have B rl T = 0. 

The sum of the weights of all candidates is at most 2(n - m) + m = 2n - m in any 
case, and the number of (noncritical) edges asked so far is at most (n - 4) + m/2 
because at least 4 edges of C become critical in the end and in Case b, TO = 0 at 
least one of the additional edges becomes critical. 



186 D. Grieser 

Step 2: & asks for colourless edges between T and B as long as there is any left 
and b or t is not determined uniquely. The sum of weights is reduced by 1 in 
every question, therefore at most 2n - m - 3 questions are necessary. At the end 
of this questioning let t = ITI, @ = IBJ. If r = 1 or /3 = 1 then Step 2 is finished. 
Otherwise all r/3 edges between T and B have been asked. At most /3 of them are 
red and at most t are green, therefore r/3 G t + B, i.e. (r - l)(p - 1) G 1, and we 
conclude t = p = 2. 

In this case let B = {b,, b2}, T = {tl, t2}. There must be precisely two disjoint 
green edges joining B and T, or otherwise H is not a scorpion. Let the edges blt,, 
b& be green, the edges blt2, b2tl be red. Then either b = bl, t = tZ, 1= b2 or 
b = bz, t = ti, 1= br. By choosing p + 1 vertices x1, . . . , x~+~ not in B U T and 
asking for the edges blxi, i = 1, . . . , p + 1, ~4 can easily decide if b1 or b, is the 
body. Because all these additional edges become critical, the number of 
noncritical probes in this step is at most 2n - m - 3. 

Step 3: Now t or b is known, and by probing all edges incident to this vertex ,s4 
gets 1 (resp. t) and then similarly the other critical vertices, only probing critical 
edges. 

The number of critical edges is 

hence the total number of questions is at most 

(n-4+:)+(2n- m - 3) + (3 + p)n - (” l “) 

=(6+p)n-F-7-(P14). Cl 

By a good choice of the order in which &! asks for the edges of the circuit C in 
Step 1 and for the edges between B and Tin Step 2, we can improve this with the 
following theorem. 

Theorem 6. 

c(P’&‘)) c (6 +p)n - 6 - (” l”>. 

Proof. Let t’(/3’) be the number of red (green) vertices after probing the n edges 
ofC.~canforcet’~m+1or~‘~m+1(seebelow).Letz’~m+1,theother 
case is analogous. Then (TI 6 t’ + m < 2m + 1, hence either m is ‘large’ which 
leads to an improved bound by the last expression in the proof of Theorem 5, or 
IT( is ‘small’. If ti asks the T-B-edges in Step 2 in such an order that their t-end 
goes cyclically through T, then after k questions every remaining t-candidate is 
incident to at least k/(z’ + m) - 1 of all tested T-B-edges, and at least this 
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number of T-B-edges tested in Steps 1 and 2 will become critical. Hence, if 
k s 2n - m - 3 is the number of edges tested in Step 2, the total number of steps 
is at most 

n+;+k- &- 1) + ((3+/G -(“l”)) 

c(4+p)n - (P;4)+;+1+(2n-m-3)(1-2--&) 

<(6+p)n-fi- 

as can easily be shown by use of the arithmetic-geometric mean inequality. 
We still have to show how to test the edges of C. Let n be even, the case n odd 

is similar. 
First ask for the edges of a perfect matching. Let the number of red edges be 

less than or equal to the number of green edges. Now choose the circuit C in such 
a way that its edges alternately are matching- and nonmatching-edges and such 
that every red matching edge lies between green matching edges. Then every 
edge of C asked for in the sequel which generates a red vertex must generate a 
manycoloured vertex also, and hence in the end there are at least as many 
manycoloured as red vertices. 0 

3.2 Lower bout& 

We obtain a simple lower bound for the complexity of .Y&‘) and then 
strengthen this bound for regular scorpions (p = 0). 

Theorem 7. 

c(Yc’P’)2 (‘I) - (” -; -‘) =(3+p)n - i” 2’“). 

Proof. If P # 0 is a property and c(P) < 1- k then by Theorem 1 9’ must contain 
an interval 9 of length k. If 9 = [A, B], then 

l(9) = PI - IAl G max{ 1x1 ) X E 9} - min{ 1x1 1 X E .9}. 

For Yc@) this last difference is just (” -5 -3), the maximal number of edges 
between noncritical vertices. The assertion follows. 0 

Theorem 8. Let 0 < a < 1.5. Then there is a constant C, such that for suficiently 

large n : 

c(.Yc) 2= (3 + cv)n - C,. 
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Proof. We will give a strategy for player 9. One probe and its answer will be 
called a step. Y always answers in such a way that there is still a scorpion 
compatible with the given answers. The strategy consists of two parts. In the first 
part (an steps) Y gives answers according to rules to be described later. Then 9’ 
fixes vertices b, t and 1 and answers in the second part accordingly. When b, t, 1 
have been fixed, d must still ask all critical unprobed edges. Because the total 
number of critical edges is 3n - 6, Y can force & to ask 3n - C, questions if it’s 
possible to choose t, 1, b in such a manner that the sum of their degrees in the 
graph of probed edges is less than some constant (and, of course, such that there 
are scorpions compatible with this choice). The following lemma shows that this is 
possible (for large n) if after the first part there are linearly many red vertices and 
linearly many green vertices. 

Lemma 4. Let a, A, u > 0 be fixed real numbers. Then the following is true for 
sufficiently large n: 

If G is a graph with n vertices and an edges, some of whose vertices are 
coloured green or red, and if at least An vertices are coloured green and at least ,un 
red, then there are a green vertex b and two nonadjacent red vertices I, t whose 
degrees sum up to at most 2a/A + 6alu. 

Proof. First we remark that in a graph with n vertices and k edges there are less 
than 2k/p vertices with degree greater than p; otherwise the sum of all degrees 
would be greater than p2k/p = 2k which is impossible. Now there are less than 
An vertices of degree >2anlAn = 2&/A, hence there is a green vertex with degree 
~2a/ll. There are less than 2pn/3 vertices of degree >3a/p; hence at least un/3 
red vertices have degree ~3a/p. If un/3 > 3o/p + 1 then two of them are not 
connected, and this inequality holds for sufficiently large n. 0 

It remains to prescribe the answers in the first part such that there are linearly 
many red and green vertices in the end. 9’ answers to the probe of the edge xy 
according to the colour of x and y and to the number R of red and G of green 
vertices existing at that time. Table 1 shows the strategy. The type number serves 
for reference (note that type numbers 4, 5 and 6 occur in two rows). c is some 
integral constant (only depending on cy, c * 3) that will be determined later. The 
idea is as follows: 9’ tries to make the number of one-coloured (i.e. red or green) 
or colourless vertices large while keeping the ratio G/R bounded (between l/c 
and c, if possible). Questions of the form g-c or r-c (i.e., one vertex of the 
probed edge is green resp. red and the other is colourless) are more difficult to 
handle because these two objectives may become inconsistent. It is mainly this 
difficulty which forces us to choose a < 1.5. 

In the sequel we will prove several assertions which imply in the end that this 
strategy fulfills our requirements. Initially all vertices are colourless. Step 1 is of 
Type 1 and Step 2 of Type 1 or 5. Assertions (I) through (IV) are true after the 
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Table 1 
Strategy for .Yc (g = green, r = red, m = manycoloured, c = colourless) 

Type Question Answer Condition 

1 

2 

3 

c-c 

m-c 

r-g I 

redifGsR, 

green otherwise 

4 g-c green G/R<corG=l, R=O 

5 g-c red G=2, R=O 

6 g-c red else 

4 r-c red RJG<corR=l, G=O 

5 r-c green R=2, G=O 

6 r-c green else 

other cases such that G + R 

7 (m-m, r-r, g-g, is maximal 

g-m, r-m) afterwards 

first step: 

(I). R+G>O. 

For R + G is reduced only in a Type 3 step, and even this leaves one 
one-coloured vertex. 

This is true after the first step. Suppose it is true before Step k and let R’, G’ 

be the values of R, G after Step k, and suppose R’ + G’ 2 3. If Step k has Type 
1, 2, 3 or 7 then it is clear that the assertion is true for R’, G’ also. Suppose now 
that Step k has Type 4, 5 or 6 and the question was g-c. First, assume R + G 2 3; 
then G/R s c by assumption. If G/R < c then we have Type 4 and 

G’ G+l 

R)=RscC. 

If G/R = c then we have Type 6 and 

G’ G-l c+l 1 -_=-=c-- 
R’ R-t-l R+l 

al>-. 
C 

Finally, if R + G < 3 we must have Type 4 (because R’ + G’ > R + G) and 
R = G = 1, hence the assertion is true in this case as well. 
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Assertions (III) and (IV) show that Type 5 and 6 cannot occur too often (they 
are bad in the sense that they destroy colourless vertices without increasing 
G+R): 

(III). Between any two steps of Type 6 there are at least (c - 1)/2 steps not of Type 

6. 

Proof. Let Step k be of Type 6, with the question g-c and numbers G = G,, 
R = RO. By (II) we have Go = cRO and by (I) R0 > 0, hence G,, - R0 = (c - l)& > 
c - 1. Let k < i 6 k + (c - 1)/2 and suppose Step i exists (i.e. i s cm). Because 
G - R is changed by at most 2 in every Step, we have G - R zz 0 before Step i. 
From this we conclude that R is never reduced in Steps k, k + 1, . . . , i - 1. 
Because Step k is of Type 6, R is increased by one in this step, and before Step i 
we have 

GSG0+2(i-k)CGO+c-l=c(R,+l)-l<cR. 

Also, R s G <CC, and Step i cannot have Type 6. q 

(IV). Between any two steps of Type 5 there is at least one step of Type 4. 

For G = 2, R = 0 can only originate from G = 1, R = 0 by a Type 4 step (except 
in the beginning), and ~alogously for G = 0, R = 2. 

Now let r = [rmj, and denote by ai the number of steps of Type i, i = 1, 3, 5, 
6, and by s the number of all the other steps, counting only Steps 2 to r. 

For R + G equals 2 after Step 1, increases by 2 in Type 1, by at most 1 in the 
steps counted by s and is left unchanged in Type 5 and 6; Type 3 reduces R $ G 
by 1, and in the end we have R + G Z- 1 by (I). 

Now the main point is following. 

(VI). After r steps there are at most $-(1 + l/(c + 1)) + f manycoloured vertices. 

Proof. Denote the number of manycoloured vertices after r steps by m. Such 
vertices are created only in Type 3, 5 and 6, hence 

m = a3 + a5 + a6. 

By (III), (IV), (V) we have 

<z-+1 a6- c+l ’ 
a,<s+l, a3%2aI-ts+1. 
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Hence 

r-l=fz,+a,+a,+a~+s= a,+: +u3+u,+u,+~ 
( > 2 2 

u3 - 1 a,-1 3 1 
~-+u,+u~+u~+- 

2 
=-m-2u,-1 

2 

and 

2 1 

2 ( .:I)+2 
mS-r+3u,,S3r 1+- 

1 
0 

3 3’ 

Now it’s easy to see that our strategy is good: Because r = [LWZ] and a < 5, we 
can choose c so large (only depending on (u) that m G (1 - 6)n for some 6 > 0. 
Hence after r questions there are at least 6n colourless or unicoloured vertices. If 
at least three of them are colourless, we can take them as t, 1, b. Otherwise by 
(II) there must be linearly many green and linearly many red vertices which was 
to be shown. 0 (Theorem 8) 

3.3. Graph properties with given complexity 

The example of an interval shows that for a fixed set T there are properties of 
subsets of T with any given complexity between 0 and ITI. By Theorem 2, an 
analogous statement is not true if we restrict ourselves to graph properties. 
Nevertheless a weaker statement can be proved. 

Theorem 9. If n 2 5 and 2n - 4 s c c (;), then there is a graph property 9’ with 

[c(P) - cl < 4n. 

Proof. Consider the graph properties Yc(“), p = 0, . . . , n - 5. By Theorems 5 
and 7 

(3 +p)n - (” l”) c c(9’cCp)) s (6 +p)n - (” l”). 

The upper and lower bound differ by 3n, the lower bound equals 3n - 6 for p = 0 

and increases by less than rz when p increases by 1. Finally, the upper bound 
exceeds (‘;) for p = n - 7. Hence there is a p such that lc(P’&“) - cl < 4n. 0 
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