### 2.4 Vector fields and b-vector fields

Vector fields are central to both analysis and geometry: in analysis they may be considered as first order partial differential operators, so they are the basic building blocks of all linear partial differential operators. In geometry they can be integrated to provide flows which are useful for many geometric constructions.

Recall that a vector field $V$ on a manifold $X$ is an assignment of an element $V_{p} \in T_{p} X$ to each $p \in X$ which is smooth in $p$. A local coordinate system $z=\left(z_{1}, \ldots, z_{n}\right)$ on $U \subset X$ defines a basis $\partial_{z_{1}}, \ldots, \partial_{z_{n}}$ of $T_{p} X$ for each $p \in U$, so we can write $V=\sum_{j=1}^{n} a_{j} \partial_{z_{j}}$ on $U$, with functions $a_{j}$ on $U$. Smoothness of $V$ means by definition that the $a_{j}$ are smooth. Also recall that the integral curve of $V$ through $p \in X$ is the curve $\gamma_{p}: I_{p} \rightarrow X$, defined on the maximal open interval $I_{p} \subset \mathbb{R}$ containing 0 , so that

$$
\gamma_{p}(0)=p, \quad \dot{\gamma}_{p}(t)=V_{\gamma_{p}(t)} \text { for all } t \in I_{p} .
$$

If $X$ is compact then $I_{p}=\mathbb{R}$ for all $p$. The flow of $V$ combines all integral curves: it is the map $\Phi: X \times I \rightarrow X,(p, t) \mapsto \gamma_{p}(t)$ (supposing $I \subset I_{p}$ for all $p$ ). We also write $\Phi_{t}(p)=\Phi(p, t)$, so $\Phi_{t}: X \rightarrow X$ for $t \in I$. ${ }^{6}$

The definition of smooth vector field extends verbatim to manifolds with corners $X$. We denote

$$
\mathcal{V}(X)=\{\text { smooth vector fields on } X\} .
$$

Recall that, by definition, a manifold with corners has local product structure near any boundary point - one of our guiding principles. It will be important to know that such a product structure exists globally near any boundary face. Vector fields are a useful tool for proving this.

Proposition 2.4.1 (Product neighborhoods of faces). Let $X$ be a manifold with corners and $F$ a compact face of $X$ of codimension $k$. Then there is a diffeomorphism

$$
U \rightarrow F \times[0,1)^{k}, \quad U \text { an open neighborhood of } F
$$

so that each $p \in F \subset U$ is mapped to $(p, 0)$.
Proof. We assume $k=1$, the general case then follows by induction. For any $p \in F$ choose local coordinates $x, y$ on a neighborhood $U_{p}$, so that $F=\left\{x_{1}=0\right\}$ in $U_{p}$. Let $V^{(p)}=\partial_{x_{1}}$ on $U_{p}$. Note that $V^{(p)}$ is pointing strictly inward with respect to $F$ and is tangent to all other boundary hypersurfaces. The open cover $\left(U_{p}\right)_{p \in F}$ of $F$ has a finite subcover, and using a partition of unity we obtain a vector field $V$ with the same properties defined in a neighborhood of $F$. The flow of $V$ starting at $F$ is defined up to some positive time $\varepsilon>0$, and then the flow of $\varepsilon V$ defines the (inverse of the) desired diffeomorphism.

Those vector fields which are tangent to the boundary play a central role in singular analysis.

[^0]Definition 2.4.2. A b-vector field on a manifold with corners $X$ is a smooth vector field on $X$ which at each $p \in \partial X$ is tangent to all boundary hypersurfaces containing $p$. We denote

$$
\mathcal{V}_{\mathrm{b}}(X)=\{b \text {-vector fields on } X\}
$$

Lemma 2.4.3. A smooth vector field $V \in \mathcal{V}(X)$ is a b-vector field if and only if in any local coordinate system $(x, y)$ it has the form

$$
\begin{equation*}
V=\sum_{i=1}^{k} a_{i} x_{i} \partial_{x_{i}}+\sum_{j=1}^{n-k} b_{j} \partial_{y_{j}}, \quad a_{i}, b_{j} \text { smooth } \tag{2.8}
\end{equation*}
$$

and the $a_{i}, b_{j}$ are uniquely determined by $V$.
Thus, the $\partial_{x_{i}}$ always occur in the combination $x_{i} \partial_{x_{i}}$.
Proof. Let $V$ be a b-vector field. Since $V$ is smooth, it can be written $V=$ $\sum_{i=1}^{k} A_{i} \partial_{x_{i}}+\sum_{j=1}^{n-k} b_{j} \partial_{y_{j}}$ with $A_{i}, b_{j}$ smooth. If $p=(x, y)$ is in the coordinate patch and its $x_{i}$-coordinate is zero then it lies on the boundary hypersurface $H_{i}=\left\{x_{i}=0\right\}$, so $V$ is tangent to $H_{i}$ at $p$, so $A_{i}(p)=0$. Therefore, we have $A_{i}(x, y)=0$ whenever $x_{i}=0$. Taylor's theorem implies that $A_{i}=x_{i} a_{i}$ with $a_{i}$ smooth, so $V$ has the form (2.8).

Conversely, each vector field of this form is clearly a b-vector field, and uniqueness is obvious.

### 2.5 Blow up

### 2.6 The b-tangent bundle

This section is a bit abstract and can be skipped at first reading. However, it will be needed when we talk about symbols of (pseudo-)differential operators, at the latest.

Recall that the tangent bundle $T X$ over a manifold with corners is the vector bundle whose fibre over $p \in X$ is $T_{p} X$, the tangent space at $p$. By definition a vector field $V$ on $X$ is a section of $T X$ :

$$
\mathcal{V}(X)=C^{\infty}(X, T X)
$$

In coordinates $(x, y)$ a local basis of $T X$ is $\partial_{x_{1}}, \ldots, \partial_{x_{k}}, \partial_{y_{1}}, \ldots, \partial_{y_{n-k}}$, that is, the smooth vector fields on the coordinate patch are the expressions

$$
\begin{equation*}
V=\sum_{i=1}^{k} a_{i} \partial_{x_{i}}+\sum_{j=1}^{n-k} b_{j} \partial_{y_{j}}, \quad a_{i}, b_{j} \text { smooth } \tag{2.9}
\end{equation*}
$$

and the $a_{i}, b_{j}$ are uniquely determined by $V$. The fact that local bases exist is expressed by saying that $\mathcal{V}(X)$ is a locally free $C^{\infty}(X)$-module (of rank $n$ ).

Rather than starting with $T X$ and defining $\mathcal{V}(X)$ from it, we can start with $\mathcal{V}(X)$ and define $T_{p} X$ by

$$
\begin{equation*}
T_{p} X=\mathcal{V}(X) / I_{p} \mathcal{V}(X), \quad I_{p}=\left\{u \in C^{\infty}(X, \mathbb{R}): u(p)=0\right\} \tag{2.10}
\end{equation*}
$$

This is analogous to thinking of the value at $p$ of a function $u \in C^{\infty}(X, \mathbb{R})$ as its equivalence class in $C^{\infty}(X, \mathbb{R}) / I_{p} \cdot{ }^{7}$ In this sense the equivalence class of 2.9) is $\sum_{i=1}^{k} a_{i}(p) \partial_{x_{i}}+\sum_{j=1}^{n-k} b_{j}(p) \partial_{y_{j}}$. The equivalence classes of the $\partial_{x_{i}}, \partial_{y_{j}}$ form a basis of $T_{p} X$.

The Serre-Swan Theorem says that if we define $T_{p} X$ by 2.10 then the $T_{p} X$ fit together naturally to form a vector bundle, whose space of sections is naturally $\mathcal{V}(X)$; also, the analogous statement holds for any locally free $C^{\infty}(X)$ module in place of $\mathcal{V}(X) \square^{8}$

We now apply this to $\mathcal{V}_{\mathrm{b}}(X)$ in place of $\mathcal{V}(X)$. By Lemma 2.4.3 $\mathcal{V}_{\mathrm{b}}(X)$ is a locally free $C^{\infty}(X)$-module, with local basis

$$
x_{1} \partial_{x_{1}}, \ldots, x_{k} \partial_{x_{k}}, \partial_{y_{1}}, \ldots, \partial_{y_{n-k}}
$$

Definition 2.6.1. Let $X$ be a manifold with corners. The b-tangent bundle of $X$, denoted ${ }^{b} T X$, is the vector bundle over $X$ whose space of sections is $\mathcal{V}_{\mathrm{b}}(X)$, in the sense of the Serre-Swan theorem as explained above.

This is a vector bundle of rank $n=\operatorname{dim} X$. In coordinates $(x, y)$

$$
x_{1} \partial_{x_{1}}, \ldots, x_{k} \partial_{x_{k}}, \partial_{y_{1}}, \ldots, \partial_{y_{n-k}} \text { are a basis of }{ }^{b} T_{p} X
$$

It is important to understand that this holds at all points $p$ in the coordinate patch, so $x_{i} \partial_{x_{i}}$ is non-zero as an element of ${ }^{b} T_{p} X$ even if $x_{i}=0$. It helps to remember ${ }^{b} T_{p} X=\mathcal{V}_{\mathrm{b}}(X) / I_{p} \mathcal{V}_{\mathrm{b}}(X)$ to understand this.

Since a b-vector field is also just a smooth vector field, there is natural map $\mathcal{V}_{\mathrm{b}}(X) \rightarrow \mathcal{V}(X)$, and taking quotients we obtain a vector bundle map

$$
\iota:{ }^{b} T X \rightarrow T X
$$

which is sometimes called the anchor map for ${ }^{b} T X$. It reinterprets a b-tangent vector as a 'usual' tangent vector. If $p$ is an interior point then $\iota_{p}:{ }^{b} T_{p} X \rightarrow T_{p} X$ is an isomorphism. However, if $p$ is a boundary point then it is not: if $(x, y)$ are coordinates centered at $p$ (so all $x_{i}=0$ at $p$ ) then

$$
\operatorname{ker} \iota_{p}=\operatorname{span}\left\{x_{1} \partial_{x_{1}}, \ldots, x_{k} \partial_{x_{k}}\right\}
$$

This space is called the $\mathbf{b}$-normal space at $p$.

[^1]
[^0]:    ${ }^{6}$ Sometimes the map $\Phi_{t}$ is denoted $e^{t V}$.

[^1]:    ${ }^{7}$ The identification of the equivalence class with the function value is given by the evaluation homomorphism $C^{\infty}(X, \mathbb{R}) \rightarrow \mathbb{R}, u \mapsto u(p)$. Since this is surjective and has kernel $I_{p}$, it defines an isomorphism $C^{\infty}(X, \mathbb{R}) / I_{p} \rightarrow \mathbb{R}$.
    ${ }^{8}$ This is actually not hard to prove. Exercise!

