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2.4 Vector fields and b-vector fields

Vector fields are central to both analysis and geometry: in analysis they may
be considered as first order partial di↵erential operators, so they are the basic
building blocks of all linear partial di↵erential operators. In geometry they can
be integrated to provide flows which are useful for many geometric constructions.

Recall that a vector field V on a manifold X is an assignment of an element
Vp 2 TpX to each p 2 X which is smooth in p. A local coordinate system
z = (z1, . . . , zn) on U ⇢ X defines a basis @z1 , . . . , @zn of TpX for each p 2 U ,
so we can write V =

P
n

j=1 aj@zj on U , with functions aj on U . Smoothness of
V means by definition that the aj are smooth. Also recall that the integral
curve of V through p 2 X is the curve �p : Ip ! X, defined on the maximal
open interval Ip ⇢ R containing 0, so that

�p(0) = p , �̇p(t) = V�p(t) for all t 2 Ip .

If X is compact then Ip = R for all p. The flow of V combines all integral
curves: it is the map � : X ⇥ I ! X, (p, t) 7! �p(t) (supposing I ⇢ Ip for all p).
We also write �t(p) = �(p, t), so �t : X ! X for t 2 I. 6

The definition of smooth vector field extends verbatim to manifolds with
corners X. We denote

V(X) = {smooth vector fields on X} .

Recall that, by definition, a manifold with corners has local product structure
near any boundary point – one of our guiding principles. It will be important
to know that such a product structure exists globally near any boundary face.
Vector fields are a useful tool for proving this.

Proposition 2.4.1 (Product neighborhoods of faces). Let X be a manifold
with corners and F a compact face of X of codimension k. Then there is a
di↵eomorphism

U ! F ⇥ [0, 1)k , U an open neighborhood of F

so that each p 2 F ⇢ U is mapped to (p, 0).

Proof. We assume k = 1, the general case then follows by induction. For any
p 2 F choose local coordinates x, y on a neighborhood Up, so that F = {x1 = 0}
in Up. Let V

(p) = @x1 on Up. Note that V
(p) is pointing strictly inward with

respect to F and is tangent to all other boundary hypersurfaces. The open cover
(Up)p2F of F has a finite subcover, and using a partition of unity we obtain a
vector field V with the same properties defined in a neighborhood of F . The
flow of V starting at F is defined up to some positive time " > 0, and then the
flow of "V defines the (inverse of the) desired di↵eomorphism.

Those vector fields which are tangent to the boundary play a central role in
singular analysis.

6Sometimes the map �t is denoted e
tV .
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Definition 2.4.2. A b-vector field on a manifold with corners X is a smooth
vector field on X which at each p 2 @X is tangent to all boundary hypersurfaces
containing p. We denote

Vb(X) = {b-vector fields on X} .

Lemma 2.4.3. A smooth vector field V 2 V(X) is a b-vector field if and only
if in any local coordinate system (x, y) it has the form

V =
kX

i=1

ai xi@xi +
n�kX

j=1

bj @yj , ai, bj smooth, (2.8)

and the ai, bj are uniquely determined by V .

Thus, the @xi always occur in the combination xi@xi .

Proof. Let V be a b-vector field. Since V is smooth, it can be written V =P
k

i=1 Ai @xi +
P

n�k

j=1 bj @yj with Ai, bj smooth. If p = (x, y) is in the coordinate
patch and its xi-coordinate is zero then it lies on the boundary hypersurface
Hi = {xi = 0}, so V is tangent to Hi at p, so Ai(p) = 0. Therefore, we have
Ai(x, y) = 0 whenever xi = 0. Taylor’s theorem implies that Ai = xiai with ai

smooth, so V has the form (2.8).
Conversely, each vector field of this form is clearly a b-vector field, and

uniqueness is obvious.

2.5 Blow up

2.6 The b-tangent bundle

This section is a bit abstract and can be skipped at first reading. However, it
will be needed when we talk about symbols of (pseudo-)di↵erential operators,
at the latest.

Recall that the tangent bundle TX over a manifold with corners is the vector
bundle whose fibre over p 2 X is TpX, the tangent space at p. By definition a
vector field V on X is a section of TX:

V(X) = C
1(X,TX) .

In coordinates (x, y) a local basis of TX is @x1 , . . . , @xk , @y1 , . . . , @yn�k , that is,
the smooth vector fields on the coordinate patch are the expressions

V =
kX

i=1

ai @xi +
n�kX

j=1

bj @yj , ai, bj smooth, (2.9)

and the ai, bj are uniquely determined by V . The fact that local bases exist is
expressed by saying that V(X) is a locally free C

1(X)-module (of rank n).



28 CHAPTER 2. BASIC NOTIONS: GEOMETRY

Rather than starting with TX and defining V(X) from it, we can start with
V(X) and define TpX by

TpX = V(X)/IpV(X) , Ip = {u 2 C
1(X,R) : u(p) = 0} . (2.10)

This is analogous to thinking of the value at p of a function u 2 C
1(X,R) as its

equivalence class in C
1(X,R)/Ip.7 In this sense the equivalence class of (2.9)

is
P

k

i=1 ai(p) @xi +
P

n�k

j=1 bj(p) @yj . The equivalence classes of the @xi , @yj form
a basis of TpX.

The Serre-Swan Theorem says that if we define TpX by (2.10) then the
TpX fit together naturally to form a vector bundle, whose space of sections is
naturally V(X); also, the analogous statement holds for any locally free C1(X)-
module in place of V(X).8

We now apply this to Vb(X) in place of V(X). By Lemma 2.4.3 Vb(X) is a
locally free C

1(X)-module, with local basis

x1@x1 , . . . , xk@xk , @y1 , . . . , @yn�k .

Definition 2.6.1. Let X be a manifold with corners. The b-tangent bundle of
X, denoted b

TX, is the vector bundle over X whose space of sections is Vb(X),
in the sense of the Serre-Swan theorem as explained above.

This is a vector bundle of rank n = dimX. In coordinates (x, y)

x1@x1 , . . . , xk@xk , @y1 , . . . , @yn�k are a basis of b
TpX .

It is important to understand that this holds at all points p in the coordinate
patch, so xi@xi is non-zero as an element of b

TpX even if xi = 0. It helps to
remember b

TpX = Vb(X)/IpVb(X) to understand this.
Since a b-vector field is also just a smooth vector field, there is natural map

Vb(X) ! V(X), and taking quotients we obtain a vector bundle map

◆ : bTX ! TX

which is sometimes called the anchor map for b
TX. It reinterprets a b-tangent

vector as a ’usual’ tangent vector. If p is an interior point then ◆p : bTpX ! TpX

is an isomorphism. However, if p is a boundary point then it is not: if (x, y) are
coordinates centered at p (so all xi = 0 at p) then

ker ◆p = span{x1@x1 , . . . , xk@xk} .

This space is called the b-normal space at p.

7The identification of the equivalence class with the function value is given by the evaluation
homomorphism C

1(X,R) ! R, u 7! u(p). Since this is surjective and has kernel Ip, it defines
an isomorphism C

1(X,R)/Ip ! R.
8This is actually not hard to prove. Exercise!


