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1 Polyhomogeneous functions

Roughly speaking, a function u of a single variable x > 0 is polyhomogeneous if it has an
asymptotic expansion as x→ 0 of the form

u(x) ∼
∑
z,k

az,k x
z logkx, az,k ∈ C (1)

Here z ∈ C, k ∈ N0, and for each z only finitely many az,k are non-zero. We write logkx =
(log x)k. Functions of this sort arise in various ways:

• As solutions of differential equations.

• As results of integrating smooth functions (see the push-forward theorem).

∗Preliminary notes for Seminar Singuläre Analysis, SS 2013 and WS 2016/17 and SS 2019
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• etc.

We will do the following:

1. Make precise the meaning of the asymptotic expansion; this includes fixing the sets of (z, k)
which may occur in the expansion (index sets). We will also want to be able to ’differentiate
the asymptotics’1, so we make this requirement part of the definition of (1).

2. Allow dependence of u and the az,k on additional variables (parameters); geometrically
this means considering functions on a half space rather than a half line

3. Characterize polyhomogeneity in terms of differential equations

4. Extend this to asymptotics in terms of several variables approaching a limit. That is,
consider functions on quadrants/octants etc. instead of a half line; or more generally
quadrants/octants... times Euclidean spaces if parameters are present.

5. Think about coordinate invariance. This leads to generalization to manifolds with corners.

1.1 Preliminaries, polyhomogeneous functions on the half line

First note that (all asymptotics are meant as x→ 0)

xz logkx = o(xz
′
logk

′
x) iff

{
Re z > Re z′ or

Re z = Re z′, k < k′

For example, the sequence of functions

log2x, log x, xi log x, 1, x log x, x, x2, xπ log10x

is decreasing with respect to the order g � f :⇐⇒ f = o(g).
Therefore, the asymptotic series in (1) makes sense if the sum runs over (z, k) ∈ E where E

satisfies condition (a) in the following definition.

Definition 1.1. An index set is a subset E ⊂ C× N0 satisfying

(a) For each s ∈ R the set
E≤s := {(z, k) ∈ E : Re z ≤ s}

is finite.

(b) (z, k) ∈ E, 0 ≤ l ≤ k ⇒ (z, l) ∈ E.

E is a C∞-index set if in addition

(c) (z, k) ∈ E ⇒ (z + 1, k).

We also denote
inf E := min{Re z : (z, k) ∈ E for some k}

1since we want to use asymptotics in solving differential equations
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Condition (b) means that with any log x power also all the lesser powers may appear (with
the same xz). We will see presently why this is useful. Condition (c) will be important when
considering invariance under coordinate changes.

In the sequel the differential expression (operator) x∂x := x ∂
∂x will occur frequently. One

reason for this is that it behaves very nicely (much better than ∂x) with functions of the form
xz logkx:

x∂x(xz) = z xz, x∂x(logkx) = k logk−1x

and therefore
x∂x(xz logkx) = z xz logkx+ k xz logk−1x (2)

so the vector space spanned by xz logjx, j = 0, . . . , k, is invariant under the operator x∂x, for
any z ∈ C and k ∈ N0. This would be false for the operator ∂x.

In the following definitions we write

R+ = [0,∞), int(R+) = (0,∞)

Definition 1.2. Let E be an index set. A polyhomogeneous function on R+ with index
set E is a smooth function u : int(R+)→ C for which there are az,k ∈ C, (z, k) ∈ E, so that for
all j ∈ N0 and s ∈ R we have

(x∂x)j

u(x)−
∑

(z,k)∈E≤s

az,k x
z logkx

 = O(xs) (3)

In this case we write
u(x) ∼

∑
z,k

az,k x
z logkx

The space of polyhomogeneous functions on R+ with index set E is denoted

AE(R+)

Here we use the

Convention: All O estimates are to be understood as locally uniform
on the spaces in question.

That is, f(x) = O(xs) means that for any compact set K ⊂ R+ there is a constant C so that
|f(x)| ≤ Cxs for all x ∈ K at which f is defined. The main point is that we have a statement
about behavior of f(x) as x → 0 (since K may contain zero), but none about its behavior as
x→∞.

Remarks 1.3 (on Definition 1.2).

1. u(x) is only defined for x > 0, but we say that u is polyhomogeneous on [0,∞) since there
is a condition on the behavior of u in arbitrarily small pointed neighborhoods of 0.

2. If we required (3) only for j = 0 then we would get the standard notion of asymptotic series
(no derivatives).

Requiring (3) for j = 1 means that ’the asymptotics can be formally differentiated’: Con-
dition (3) for ∂xu and the formally differentiated series

∑
z,k az,k ∂x(xz logkx), with j = 0,

is
∂xu(x)−

∑
(z,k)∈E≤s

az,k ∂x(xz logkx) = O(xs−1)
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since xs−1 is the last power of x subtracted on the left. Multiplying this by x one sees that
this is equivalent to condition (3) for u and j = 1.

This is another (if not the main) reason why x∂x appears all over the place.

3. We would obtain the same space of functions if we required

(x∂x)j

u(x)−
∑

(z,k)∈E
Re z<s

az,k x
z logkx

 = O(xs−ε) (3′)

for all j, s and ε > 0. This is the definition used in [?].

It is slightly less obvious that one also gets the same space of functions if one replaces the
right hand side of (3) or (3′) by O(xs−N ) and requires that there exists an N so that the
estimate holds for all j, s. (exercise)

Proposition 1.4. Let E be an index set. Then AE(R+) is a vector space, and is mapped by
x∂x to itself.

This is obvious from (2). Note that for the last statement one needs condition (b) in Definition
1.1 and all j in Definition 1.2.

Definition 1.2 may be made more digestible by introducing some notation. We will do this in
the more general case of a half space in Lemma 1.9.

Examples 1.5.

1. A function is smooth on R+ if and only if it is polyhomogeneous with index set N0 × {0}.
One implication in this equivalence follows directly from Taylor’s theorem, applied to the
function and its derivatives. The other direction is an exercise. (refer to mani-

folds with cor-
ners chapter)2. Clearly, x−2, xe, log x are polyhomogeneous on R+ with suitable index sets.

3. The function sin 1
x is not polyhomogeneous on R+ for any index set: Its fast oscillation

as x → 0 cannot be modelled using functions of the form xz logkx. If we used the Taylor
series sin 1

x = 1
x −

1
6

1
x3 ± . . . then arbitrarily large negative powers of x would appear. This

is not allowed for an index set.

1.2 Polyhomogeneous functions on the half space

We now consider functions on the half space

Hn := R+ × Rn−1

It is standard to denote the variables

x ∈ R+, y = (y1, . . . , yn−1) ∈ Rn−1

The definition of polyhomogeneity extends in a straightforward way, where we want to assume
smooth dependence on y and also the possibility to differentiate the asymptotic series in y.

Definition 1.6. Let E be an index set. A polyhomogeneous function on Hn with index
set E is a smooth function u : int(Hn) → C for which there are az,k ∈ C∞(Rn−1), (z, k) ∈ E,
so that for all j ∈ N0, α ∈ Nn−10 and s ∈ R we have
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(x∂x)j∂αy

u(x, y)−
∑

(z,k)∈E≤s

az,k(y)xz logkx

 = O(xs) (4)

In this case we write
u(x, y) ∼

∑
(z,k)∈E

az,k(y)xz(log x)k

The space of polyhomogeneous functions on Hn with index set E is denoted

AE(Hn)

Recall the convention that O estimates are meant to be uniform on compact subsets. Here
this means compact subsets of Hn.

The following definitions are designed to focus attention on various aspects of this definition.
First, it is useful to give a name to combinations of derivatives as they occur in (4).

Definition 1.7. A b-differential operator on Hn is an operator of the form∑
j,α

bj,α(x, y)(x∂x)j∂αy

where bj,α ∈ C∞(Hn) for all j ∈ N0, α ∈ Nn−10 and only finitely many terms of the sum are
non-zero. The space of b-differential operators on Hn is denoted Diff∗b(H

n).

As usual the order of P ∈ Diff∗b(H
n) is defined as the largest j + |α| for which bj,α is not

identially zero, and by Diffmb (Hn) we denote the set of b-operators of order at most m. Clearly
this is a vector space, and the composition of two b-operators is a b-operator.

We now introduce spaces in which the remainders – the expressions in parantheses in (4) – lie.

Definition 1.8. For s ∈ R let

As(Hn) = {u ∈ C∞(int(Hn)) : Pu = O(xs) for all P ∈ Diff∗b(H
n)}

Equivalently, (x∂x)j∂αy u = O(xs) for all j, α. Functions in As(Hn) are sometimes called
conormal with respect to the boundary ∂Hn. The definition of polyhomogeneity translates
directly as:

Lemma 1.9. A function u ∈ C∞(int(Hn)) is polyhomogeneous, u(x, y) ∼
∑

(z,k)∈E
az,k(y)xz(log x)k

if and only if for each s ∈ R we can write

u =
∑

(z,k)∈E≤s

az,k x
z logkx + rs, rs ∈ As(Hn) (5)

Remark 1.10. Equivalently, instead of rs ∈ As(Hn) ∀s we may require the seemingly weaker
condition that rs ∈ As

′
(Hn) ∀s, for some s′ which tends to infinity as s → ∞. (For example

s′ = s− 1 or s′ = s/2.) (Proof as exercise.)

As before, we have

Proposition 1.11. Let E be an index set. Then AE(Hn) and As(Hn) are vector spaces, and
are mapped by Diff∗b(H

n) to themselves.
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1.3 Characterization by differential operators

In order to prove some basic properties of polyhomogeneous functions, it is useful to characterize
them in a different way.

The starting point is the observation that (x∂x − z)xz = 0, and more generally

(x∂x − z)xz logkx = kxz logk−1x (6)

which implies (x∂x − z)k+1xz logkx = 0. A neat way to understand this is by noticing that
x∂x − z = xz(x∂x)x−z (conjugation of x∂x by the operator of multiplication by xz), which
reduces the claims to the case z = 0.

More precisely and more generally, we have for any finite subset S ⊂ C and numbers pz ∈ N0

ker
∏
z∈S

(x∂x − z)pz+1 = {
∑
z∈S

pz∑
k=0

az,k x
z logkx, az,k ∈ C} (7)

as functions on int(R+): Clearly the functions on the right are in the kernel, and then the
equality follows from a dimension argument, using that the set of functions xz logkx, (z, k) ∈ E,
is linearly independent.

The right side of (7) is simply a ’piece’ of a polyhomogeneous expansion! This makes the
following theorem plausible.

Theorem 1.12. For each s ∈ R define the differential operator

BE,s =
∏

(z,k)∈E≤s

(x∂x − z)

Then
AE(Hn) = {u ∈ C∞(int(Hn)) : BE,su ∈ As(Hn) for all s ∈ R} (8)

In this characterization of polyhomogeneity the coefficients az,k do not appear explicitly!
Note that the factor x∂x − z appears p + 1 times in BE,s if p = max{k : (z, k) ∈ E}. This

implies

{v ∈ C∞(int(Hn) : BE,sv = 0} = {
∑

(z,k)∈E≤s

az,k(y)xz logkx : az,k ∈ C∞(Rn−1)} (9)

by the remarks before the theorem (applied for any fixed y; the az,k must be smooth in y by
smoothness of u).

Proof. First, let u ∈ AE(Hn). For any s ∈ R, write u as in (5). Then (9) implies BE,su = BE,srs,
and by Proposition 1.11 this lies in As(Hn) since BE,s ∈ Diff∗b(H

n).
We have proved the inclusion ’⊂’ of (8). To prove the converse, we use the following lemma.

Lemma 1.13. Let s ∈ R, z ∈ C.

1. u ∈ As ⇒ xzu ∈ As+Re z

2. If u ∈ As then there is w ∈ As such that (x∂x − z)w = u.
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Proof. Note that x∂xx
z = xz(x∂x + z). Applying this repeatedly, we see that for any P ∈

Diff∗b(H
n) there is P ′ ∈ Diff∗b(H

n) satisfying Pxz = xzP ′. This implies (1) since |xz| = xRe z.
Using conjugation by xz and (1) we may assume z = 0 in (2). Set

w(x, y) =

{∫ x
0
u(t, y)dtt if s > 0∫ x

1
u(t, y)dtt if s ≤ 0

Then x∂xw = u, and u = O(xs) implies w = O(xs) if s > 0, and w = O(1 + xs) = O(xs) if
s ≤ 0, and similarly for the ∂αy w estimates. The estimates of (x∂x)j∂αy w for j ≥ 1 follow from
x∂xw = u and the estimates for u.

To finish the proof of Theorem 1.12 assume u ∈ C∞(int(Hn)) satisfiesBE,su ∈ As(Hn) for all s ∈
R. Fix s and let ũ = BE,su. Applying the lemma iteratively find w ∈ As with ũ = BE,sw. Then
BE,s(u − w) = 0, hence by (9) there are az,k ∈ C∞(Rn−1) for Re z ≤ s so that u − w =∑

(z,k)∈E≤s
az,k x

z logkx. It is easy to check that when the same procedure is done for s′ > s,

producing coefficients a′z,k, then one must have a′z,k = az,k for Re z ≤ s. It follows that

u ∼
∑

(z,k)∈E az,k(y)xz logkx, so u ∈ AE(Hn).

1.4 Polyhomogeneous functions on a quadrant

We will first discuss polyhomogeneous functions on the simplest manifold with corners, the
quadrant R2

+. This will guide us how to proceed for general manifolds with corners.
What’s the idea? Polyhomogeneity of a smooth function u on int(R2

+) should involve three
things:

1. u(x, y) should be polyhomogeneous as x→ 0, smoothly in y > 0.

2. u(x, y) should be polyhomogeneous as y → 0, smoothly in x > 0.

3. These expansions should be uniform, in a suitable sense, at the corner, i.e. for x→ 0 and
y → 0.

The smooth dependence in 1. and 2. should be as in the case of the half space, but it is less
clear how to make 3. precise. There are different ways to do this. First, we should fix index sets
for both side faces.

Definition 1.14. Let M be a manifold with corners. An index family E for M is an assignment
of an index set E(H) to each boundary hypersurface H of M .

For M = R2
+ we denote an index family simply by (E,F ), where E is considered as index set

for {x = 0} and F is an index set for {y = 0}.2
Next, we extend the definitions of b-differential operators and conormal spaces to this case.

Definition 1.15. A b-differential operator on R2
+ is an operator of the form∑

j,l

bj,l(x, y)(x∂x)j(y∂y)l

where bj,l ∈ C∞(R2
+) for all j, l ∈ N0 and only finitely many terms of the sum are non-zero. The

space of b-differential operators on R2
+ is denoted Diff∗b(R2

+).

2This is opposite to the notation used in [?].
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Definition 1.16. For s, t ∈ R let

A(s,t)(R2
+) = {u ∈ C∞(int(R2

+)) : Pu = O(xsyt) for all P ∈ Diff∗b(R2
+)}

Here the local uniformity implicit in the O is for compact subsets of R2
+.

Definition 1.17. Let (E,F ) be an index family for R2
+. A polyhomogeneous function on

R2
+ with index family (E,F ) is a smooth function u : int(R2

+)→ C for which there are

az,k ∈ AF (R+), (z, k) ∈ E and bw,l ∈ AE(R+), (w, l) ∈ F

and N ∈ R so that for all s ∈ R we have

u =
∑

(z,k)∈E≤s

az,k(y)xz logkx+ rs, rs ∈ A(s,−N)(R2
+) (10)

u =
∑

(w,l)∈F≤s

bw,l(x)yw logly + r′s, r′s ∈ A(−N,s)(R2
+) (11)

The −N should be thought of as any number smaller than inf E and inf F . It is needed since
both u and the sum on the right in (10) will behave like yinf E times logarithms, and similarly
for (11).

Examples 1.18.

1. u is smooth on R2
+ if and only if it is polyhomogeneous with index sets E = F = N0 ×{0}.

2. The function u(x, y) =
√
x2 + y2 is smooth on R2 \ {(0, 0)}, so it has polyhomogeneous ex-

pansions in the interior of each boundary hypersurface. However, u is not polyhomogeneous
on R2

+. To see this, we find the expansion at the face x = 0 by writing, for y > 0,

√
x2 + y2 = y

√
1 + (x/y)2 = y

∞∑
0

ci(
x

y
)2i (12)

= y +
1

2

x2

y
− 1

8

x4

y3
+ . . . (13)

with the Taylor series
√

1 + t =
∑∞

0 cit
i = 1 + t/2− t2/8 + . . . (for |t| < 1). Thus, in the

expansion u(x, y) ∼
∑∞
i=0 a2i(y)x2i the coefficients are a2i(y) = ciy

1−2i. Although each a2i
is polyhomogeneous as y → 0, there is no index set F so that each a2i has the same index
set F . Therefore, polyhomogeneity at the corner fails.

Remark 1.19. Equations (10) and (11) imply that the coefficient functions az,k, bw,l must
satisfy compatibility conditions at the corner: When we write

az,k(y) ∼
∑

(w,l)∈F

cz,k,w,l y
w logly, b2,l(x) ∼

∑
(z,k)∈E

c′z,k,w,l x
z logkx

then necessarily cz,k,w,l = c′z,k,w,l for all z, k, w, l. (Exercise!)

Remark 1.20. It may seem more natural to require that the remainder rs in (10) vanish to
order s in x and be polyhomogeneous in y: rs ∈ As,F , and similarly for (11).
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In this approach we would need to define the space As,F first. This can be done, and then this
stronger condition follows from the one given above. (exercise) (CHECK DETAILS) This will
then imply (expand each az,k and rs in y, up to order t) that for all s, t ∈ R one has

u = u12 + u1 + u2 + r

u12(x, y) =
∑

Re z≤s,Rew≤t

cc,k,w,l x
z logkx yw logly

u1(x, y) =
∑

Re z≤s

rz,k(y)xz logkx , u2(x, y) =
∑

Rew≤t

r′w,l(x)yw logly

rz,k ∈ At(R+), r′w,l ∈ As(R+), r ∈ A(s,t)(R2
+)

where always (z, k) ∈ E and (w, l) ∈ F . The index in u12 etc. indicates at which face the
function does not vanish to higher order. So u12 is a corner term, u1 is an x-axis-term and u2
is a y-axis-term.

This representation, and its straightforward generalization to higher dimensions, allows for a
simple direct proof of the push-forward theorem (as indicated in footnote 17 of (BBC) for smooth
functions).

Exercise 1.21. Check that the y−N (resp. x−N ) bound for the remainders in (10), (11) is
essential. That is, if we just require that u has asymptotics u(x, y) ∼

∑
(z,k)∈E az,k(y)xz(log x)k,

locally uniformly in y ∈ (0,∞) analogous to Definition 1.6, and similarly with x, y interchanged,
then we cannot conclude that u is polyhomogeneous.

Hint: Choose ϕ ∈ C∞((0,∞)) having polyhomogeneous expansions a 0 and at ∞, and consider
u(x, y) = ϕ( yx ).

Again we have a characterization of polyhomogeneity by differential operators, which avoids
explicit appearance of the coefficient functions.

Theorem 1.22. For each s ∈ R define the differential operators

BxE,s =
∏

(z,k)∈E≤s

(x∂x − z)

ByF,s =
∏

(w,l)∈F≤s

(y∂y − w)

Then u ∈ A(E,F )(R2
+) iff u is smooth in the interior and there is N ∈ R so that for all s ∈ R

BxE,su ∈ A(s,−N)(R2
+), ByF,su ∈ A

(−N,s)(R2
+) (14)

See [?].

Proof. Analogous to the proof of Theorem 1.12.

(14) implies that

BxE,sB
y
F,su ∈ A

(t,t)(R2
+), t =

s−N
2

since the spacesA(s,t)(R2
+) are invariant under b-differential operators andA(s,−N)(R2

+)∩A−N.s(R2
+) ⊂

A(t,t)(R2
+). The proof of this inclusion is left as an exercise.

TODO (not essential but interesting): (10) (with quantifiers) implies (11).
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1.5 Polyhomogeneous functions on general model spaces

Next we consider the spaces
Rnk := Rk+ × Rn−k

which are the local models for general manifolds with corners. The extension of the previous dis-
cussion to this case is straightforward: The Rn−k variables are treated like (smooth) parameters
as in the case of a halfspace, and having a codimension k corner is analogous to a codimension 2
corner. This should really be worked out by the reader as an exercise, but we provide the main
steps.

By convention, we denote the coordinates as x1, . . . , xk ∈ R+, y1, . . . , yn−k ∈ R and also x =
(x1, . . . , xk), y = (y1, . . . , yn−k). Then b-differential operators are, by definition, operators of
the form ∑

α∈Nk
0 ,β∈N

n−k
0

bα,β(x, y)(x1∂x1
)α1 . . . (xk∂xk

)αk∂βy (15)

with all bα,β smooth on Rnk . For s1, . . . , sk ∈ R we define the conormal spaces

A(s1,...,sk)(Rnk ) = {u ∈ C∞(int(Rnk )) : Pu = O(xs11 . . . xskk ) for all P ∈ Diff∗b(Rnk )}

As always, the O is to be understood as being locally uniform on Rnk .
An index family for Rnk is given by k index sets E1, . . . , Ek, with Ej associated to the boundary

hypersurface {xj = 0} for each j. We want to define the space

A(E1,...,Ek)(Rnk )

of polyhomogeneous functions on Rnk with index family (E1, . . . , Ek). The definition of poly-
homogeneity works by induction over k. Suppose we have defined polyhomogeneous functions
on spaces Rnk−1 for any n, then a polyhomogeneous function on Rnk with index family
(E1, . . . , Ek) is a smooth function u : int(Rnk ) → C so that there are N ∈ R and functions for
each j = 1, . . . , k

a
(j)
z,k ∈ A

(E1,...,Êj ,...,Ek)(Rn−1k−1) , (z, k) ∈ Ej
with the hat denoting omission, such that for all s ∈ R and for each j we have

u =
∑

(z,k)∈(Ej)≤s

a
(j)
z,k(x 6=j , y)xzj logkxj + r(j)s , r(j)s ∈ A(−N,...,s,...,−N)(Rnk ) (16)

where x 6=j = (x1, . . . , x̂j , . . . , xk) and the s is at the jth spot.
As for R2

+ this implies (multiple) compatibility relations for the expansion coefficients for
different j, and also we have a characterization by differential operators analogous to Theorem
1.22.

Note that if we allow the functions a
(j)
z,k in (16) to depend on all variables (including xj) then

by expanding them in Taylor series around xj = 0 we get an expansion of the type (16), but

with additional terms involving xz+mj logkxj for m ∈ N0. This is where part (c) of Definition 1.1
matters, and we get:

Lemma 1.23. Suppose each Ej is a C∞ index set. Then A(E1,...,Ek)(Rnk ) is equal to the space

of functions having expansions as in (16) but with the a
(j)
z,k depending on all variables x, y.

Note that allowing these more general coefficients has the disadvantage that they are not
uniquely determined by u (while those in (16) are). However, the lemma will be needed when
discussing coordinate invariance.

10



1.6 The invariant perspective: Manifolds with corners.

The only additional issue which arises when we consider manifolds with corners is invariance
under coordinate changes. We first discuss this for R+. The standard coordinate x on R+ is
a boundary defining function for the boundary hypersurface {0}. A general boundary defining
function is a function on R+ which vanishes at 0, has non-vanishing derivative there, and is
positive on (0,∞). By Taylor’s theorem, it can be written as

x′ = xρ(x), ρ ∈ C∞(R+), ρ > 0 on R+

Then
(x′)z logkx′ = xzρ(x)z(log x+ log ρ(x))k

Now ρ is smooth and positive, hence log ρ and ρz are smooth. Expanding these functions in
Taylor series around x = 0 and multiplying out, we see that

(x′)z logkx′ ∼
∞∑
m=0

k∑
l=0

γm,l x
z+m loglx

for certain coefficients γm,l. The fact that also the powers xz+m appear on the right is another
reason, besides Lemma 1.23, for the condition (c) in Definition (1.1).

Now consider coordinate changes on Rnk . A general boundary defining function for the bound-
ary hypersurface {xj = 0} is of the form

x′j = xjρ(x, y), ρ ∈ C∞(Rnk ), ρ > 0

A simple inductive argument together with Lemma 1.23 shows that:

Proposition 1.24. Let E be an index family for Rnk . If each index set in E is a C∞-index set
then the space AE(Rnk ) is invariant under changes of coordinates.

Also, it is clear that the definitions of these spaces are local in the sense that u ∈ AE(Rnk ) if
and only if ρu ∈ AE(Rnk ) for every ρ ∈ C∞(Rnk ). Therefore, if we define, for any open subset
U ⊂ Rnk ,

AE(U) = {u ∈ C∞(U ∩ int(Rnk )) : ρu ∈ AE(Rnk ) for all ρ ∈ C∞0 (U)}

then this is compatible with the previous definition in case U = Rnk . This allows us to define:

Definition 1.25. Let M be a manifold with corners and E a C∞ index set for M . A polyho-
mogeneous function on M with index family E is a smooth function u : int(M)→ C which
is polyhomogeneous with corresponding index family in any local chart.

Explicitly, this means that for any chart ϕ : Ũ → U , Ũ ⊂ Rnk open, we have ϕ∗u ∈ AE′(Ũ),
where E ′(φ−1(H ∩ U)) := E(H) for every boundary hypersurface H of M which intersects U .

We can also generalize the remaining discussion to the manifold case. We start by reformulating
the definition of b-differential operators on Rnk , (15), in an invariant way. First, consider first
order operators annihilating constants, i.e. vector fields. Note that any smooth vector field on
Rnk can be written

k∑
j=1

aj∂xj
+

n−k∑
l=1

bl∂yl

11



with smooth functions aj , bl. Such a vector field is tangent to the boundary hypersurface {xj = 0}
if and only if aj = 0 at xj = 0, which is equivalent to aj = xja

′
j for some smooth function a′j .

This shows that

{smooth vector fields on Rnk which are tangent to all boundary hypersurfaces}
= spanC∞(Rn

k )
{x1∂x1 , . . . , xk∂xk

, ∂y1 , . . . , ∂yn−k
} :=

{
k∑
j=1

aj xj∂xj +

n−k∑
l=1

bl∂yl , aj , bl ∈ C∞(Rnk )∀j, l}

Then clearly, for m ∈ N0,

Diffmb (Rnk ) = {a+

m∑
r=1

∑
V1,...,Vr∈Vb(Rn

k )

V1 . . . Vr : a ∈ C∞(Rnk )}

This generalizes naturally to manifolds:

Definition 1.26. Let M be a manifold with corners. Then define

Vb(M) = {smooth vector fields on M which are tangent to all boundary hypersurfaces}

and for m ∈ N0

Diffmb (M) = {a+

m∑
r=1

∑
V1,...,Vr∈Vb(M)

V1 . . . Vr : a ∈ C∞(M)}

This leads directly to conormal spaces:

Definition 1.27. Let M be a manifold with corners. A weight family for M is a map
M1(M)→ R, where M1(M) is the set of boundary hypersurfaces of M .

For a set of boundary defining functions ρH for each H ∈ M1(M) and for a weight family s

define ρs =
∏
H∈M1(M) ρ

s(H)
H . Finally, define the conormal space

As(M) = {u ∈ C∞(int(M)) : Pu = O(ρs) for all P ∈ Diff∗b(M)}

As always, the O is understood locally uniformly on M . This is a reasonable definition since
clearly the set of functions which are O(ρs) is independent of the choice of the ρH . Also, we see
that in the case of M = Rnk we get back the previous definition.

Now we have generalizations of all previous results:

• C∞(M) = AE0(M) where E0(H) = N0 × {0} for all H.

• As(M) and AE(M) are vector spaces and invariant under Diff∗b(M).

• There is also a characterization of AE(M) using vector fields. This is a little subtle since
we need to think carefully about an invariant generalization of the vector fields xi∂xi

in Theorem 1.22. The main observation is that, for M = Rnk , the vector field xi∂xi

(i ∈ {1, . . . , k}) turns under any coordinate change into a vector field of the form

xi∂xi
+ xiV, V ∈ Vb(Rnk ) (17)

12



and that the space of these vector fields is invariant under coordinate changes. We call a
b-vector field on M radial with respect to the boundary hypersurface H if it has the form
(17) in any coordinate system, with xi defining H.

Also, it is easily checked that (14) remains true if x∂x, y∂y are replaced by any radial vector
fields for the respective boundary hypersurfaces. In light of this, the following theorem is
natural, and we leave the details of the proof to the reader.

Theorem 1.28. Let M be a manifold with corners and E a C∞ index family for M . For
each H ∈M1(M) choose a radial vector field VH and define

BHE,s =
∏

(z,k)∈E(H)≤s

(VH − z)

Then a smooth function u on int(M) is in AE(M) if and only if there is N ∈ R so that for
all s ∈ R and all H ∈M1(M)

BHE,su ∈ AsH (M), sH(H ′) :=

{
s H ′ = H

−N H ′ 6= H

2 Push-forward theorem and coefficient formulas (preliminary)

A classic problem which occurs in many applications is to find the asymptotic expansion of an
integral

I(t) =

∫
u(x, t) dx

under various assumptions on u. Often, such an expansion can be found, even if the integral
cannot be evaluated explicitly. Or at least the qualitative behavior of I can be determined.

A simple case is that u is smooth in both variables x, t, and compactly supported. Then I is
also smooth. However, it is not obvious at all what happens for an integral of the form

I(t) =

∫
u(x,

t

x
) dx

where, say, u ∈ C∞0 (R+
2 ). Clearly, I is smooth for t > 0, but is it also smooth at t = 0? It

turns out that the answer is NO: I has a polyhomogeneous expansion, but there will also be
terms involving log t. This is one reason why we need to allow logarithms in the definition of
polyhomogeneity! More generally, if u is polyhomogeneous then I(t) will also be, but with higher
log powers.

Integrals of this kind occur often in singular analysis. They are a special case of a very general
operation called push-forward under a b-fibration.

We will analyze the integral above in Section 2.2 and the general push-forward theorem in
??. In the formulas for the coefficients of the asymptotics of I we will encounter ’integrals of
non-integrable functions’, so we discuss these first.

2.1 Regularized integrals

Often the need arises to integrate functions that are not integrable. For example, this will occur
in the solution of the problem mentioned above; also, such integrals arise frequently in global
analysis and in quantum field theory. How can such a notion be reasonably defined?

13



2.1.1 Introducing the ideas in the case of smooth functions

We formulate the problem more precisely, in a special case. The discussion is summarized in
Theorem 2.3 and Definition 2.4, skip there for quick reading.

Consider the expression

I0(u) =

∫ ∞
0

u(x)
dx

x
, u ∈ F := C∞0 (R+). (18)

This is not defined if u(0) 6= 0. However, if u(0) = 0 then u(x) = O(x) near x = 0, so the integral
converges. By definition, a regularization of I0 is a linear extension of I0 from the subspace
F0 := {u ∈ F : u(0) = 0} to all of F . How can we find a regularization?

First, how many regularizations can there be? Since F0 is a hyperplane in F , defined by the
vanishing of the linear functional δ : u 7→ u(0), we know:

There is a one-dimensional space of regularizations, and if I1, I2 are regularizations
then I1 − I2 = cδ for some c ∈ C.

Here are three ideas how one could explicitly define regularizations:

1. Subtract u(0): If u(0) is a problem, subtract it!

Replacing u(x) by u(x) − u(0) in the integral (18) won’t help since then we get non-
integrability for x near ∞, therefore we choose a cutoff function ρ and define

Iρ(u) =

∫ ∞
0

[u(x)− u(0)ρ(x)]
dx

x
for ρ ∈ C∞0 (R+), ρ(0) = 1 . (19)

This is clearly well-defined (convergent), linear, and for u(0) = 0 yields I0(u). So Iρ is a
regularization of I0. How does it depend on the choice of ρ? Clearly

Iρ − Iρ̃ = cδ , c =

∫ ∞
0

(ρ̃(x)− ρ(x))
dx

x
. (20)

Note that the integral defining c exists although
∫∞
0
ρ(x) dxx doesn’t.

Note that Iρ is defined if ρ is C1 near x = 0 and compactly supported, for example if ρ is
the characteristic function of [0, 1].

2. Cut off near zero: If there is a problem at x = 0, cut it off!

Consider f(ε) =
∫∞
ε
u(x) dxx for ε > 0. If u(0) = 0 then f(ε)→ I0(u) as ε→ 0. How does

f(ε) behave for general u? It diverges logarithmically, more precisely:

Lemma 2.1. As ε→ 0, ∫ ∞
ε

u(x)
dx

x
= a log ε−1 + b+O(ε)

where a = u(0), b = Iχ(u), with χ = χ[0,1] the characteristic function of [0, 1].

Therefore, taking the constant term in the asymptotics of the function ε 7→
∫∞
ε
u(x) dxx as

ε→ 0 defines a regularization of I0, which coincides with Iχ[0,1]
.

The point is that this is defined for all u ∈ C∞0 (R+), and for u(0) = 0 yields the standard
integral I0.
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Proof. Replacing ε by 0 in
∫∞
ε

[u(x)− u(0)χ(x)] dx
x introduces an error of O(ε), so∫ ∞

ε

u(x)
dx

x
=

∫ ∞
ε

[u(x)− u(0)χ(x)]
dx

x
+

∫ ∞
ε

u(0)χ(x)
dx

x

= O(ε) +

∫ ∞
0

[u(x)− u(0)χ(x)]
dx

x
− u(0) log ε

3. Meromorphic extension: If integrating u(x)
x is a problem, integrate xs u(x)x instead!

If u(0) = 0 then the function

F (s) =

∫ ∞
0

u(x)xs
dx

x

is defined and holomorphic for complex numbers s near 0, and F (0) = I0(u). If u ∈ C∞0 (R+)
then F (s) is still well-defined if Re s > 0, and more precisely:

Lemma 2.2. Let u ∈ C∞0 (R+). Then the function F has a meromorphic extension from
Re s > 0 to a neighborhood of s = 0, with at most a simple pole at s = 0.

The Laurent expansion of F around s = 0 is

F (s) =
a

s
+ b+O(s)

where a = u(0) and b = Iχ(u) with χ = χ[0,1].

Therefore, taking the constant term in the Laurent series of F defines a regularization of
I0, which coincides with Iχ[0,1]

.

Proof. If Re s > 0 then we may integrate by parts, with vanishing boundary terms, and
obtain from xs−1 = 1

s
d
dxx

s

F (s) =
G(s)

s
, G(s) = −

∫ ∞
0

u′(x)xs dx .

The latter integral converges for Re s > −1 and defines a holomorphic function G(s) there.
So F extends meromorphically to this set with at most a simple pole at s = 0. The residue
is G(0) = −

∫∞
0
u′(x) dx = u(0), and the constant term is

G′(0) = −
∫ ∞
0

u′(x) log x dx = lim
ε→0
−
∫ ∞
ε

u′(x) log x dx

= lim
ε→0
−u(x) log x|∞ε +

∫ ∞
ε

u(x)
dx

x

= lim
ε→0

u(0) log ε+O(ε log ε) +

∫ ∞
ε

u(x)
dx

x

= Iχ(u)

(21)

by Lemma 2.1.

We summarize the discussion. Note that we used very few assumptions on u: it needs to be C1

in a neighborhood of x = 0 and sufficiently integrable away from zero, i.e. on any interval [ε,∞)
with ε > 0.
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Theorem 2.3. Let

F = {u : R+ → C : u is C1 near x = 0 and in L1(xa
dx

x
) away from x = 0, for some a > 0}.

The functional

u 7→
∫ ∞
0

u(x)
dx

x

defined on {u ∈ F : u(0) = 0} has a one-dimensional space of linear extensions to F . Each of
the following definitions defines the same extension.

(a) I(u) =

∫ ∞
0

[
u(x)− u(0)χ[0,1](x)

] dx
x

(b) I(u) is the constant term in the asymptotic expansion of

ε 7→
∫ ∞
ε

u(x)
dx

x
as ε→ 0.

(c) I(u) is the constant term in the Laurent expansion of

s 7→
∫ ∞
0

u(x)xs
dx

x
around s = 0.

(d) I is essentially the distributional derivative of the function

log+ : x 7→

{
log x if x > 0

0 else.

More precisely, I(u|R+
) = Ĩ(u) if Ĩ is this distributional derivative and u ∈ C∞0 (R).

Proof. The equivalence of (a), (b), (c) follows from Lemmas 2.1 and 2.2.3 The extra integrability
away from x = 0 (i.e. a > 0 in the definition of F) is needed for the meromorphic extension in
(c) only. The equivalence of (a) and (d) follows from the calculation (21).

Definition 2.4. The number I(u) given in Theorem 2.3 is called the regularized integral of
u dx

x . It is denoted by

−
∫ ∞
0

u(x)
dx

x
.

Remark 2.5. Let us consider different aspects of the characterizations (a)-(d).

Locality Defining a regularization is a local problem at x = 0. This is best captured by (b).

Naturality (a) shows most clearly which choice is involved in defining the regularization, see also
(20). The choice in (b), (c) is in the choice of coordinate x. We discuss this in Subsection
2.1.4.

3Exercise: Check that the proofs work on the bigger function space F .
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Distribution perspective For Re s > 0 define the locally integrable function xs−1+ on R by4

xs−1+ =

{
xs−1 if x > 0

0 else.

This defines a holomorphic map f : {Re s > 0} → D′(R), s 7→ xs−1+ .5 It has a meromorphic

continuation to s ∈ C, defined as follows: For Re s > 0 we have xs−1+ = 1
s (xs+)′, i.e.

f(s) = 1
sDf(s+ 1) where D = d

dx . We use this relation to define f(s) for Re s > −1, then
for Re s > −2 etc.

For example, we obtain the Laurent expansion of f around s = 0 as follows: We have
f(1) = H and f ′(1) = d

ds |s=1
xs−1+ = log+ x, so f has Taylor expansion f(s + 1) = H +

s log+ +O(s2), hence

f(s) =
1

s
Df(s+ 1) =

1

s
δ +D log+ +O(s) .

This proves (again) the equivalence of parts (c) and (d) in the theorem.

Examples 2.6. 1. −
∫ ∞
0

χ[0,c](x)
dx

x
= log c for c > 0.

2. −
∫ ∞
0

e−x
dx

x
=

∫ ∞
0

e−x log x dx = −γ where γ = 0.577 . . . is the Euler-Mascheroni con-

stant. Note that in this case the function in Theorem 2.3(c) is the Gamma function.

2.1.2 The Mellin transform

The function in Theorem 2.3(c) is called the Mellin transform of u. It is a useful tool for gen-
eralizing the previous discussion to polyhomogeneous functions and for proving the quantitative
Push-Forward Theorem, see ...

Definition 2.7. If u : (0,∞) → C is locally integrable then the Mellin transform of u is the
function Mu defined by

(Mu)(s) =

∫ ∞
0

u(x)xs
dx

x

for all s ∈ C for which the integral is defined.6

For example, if u has compact support in (0,∞) then Mu is defined and holomorphic on C.
More generally, the following is obvious:

Lemma 2.8. Let N ∈ R. Suppose

u ∈ L1
loc(0,∞) has bounded support and u(x) = O(xN ) (22)

Then Mu is defined and holomorphic on Re s > −N .

4Writing s − 1 is more natural in our context than writing s. It would be even more natural to speak of the
density xs dx

x
.

5Holomorphy means that for each test function u ∈ C∞0 (R) the map s 7→
∫
u(x)xs−1

+ dx is holomorphic.
6There are various slightly different definitions in the literature. These correspond to rotating the complex s

plane. For example, Melrose in [?] defines (Mu)(s) =
∫∞
0 u(x)x−is dx

x
, which makes the Mellin transform

more similar to the Fourier transform.
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(The bounded support assumption may be replaced by exponential decay as x → ∞. See
Exercise 2.15 for more general functions.) Henceforth we assume that condition (22) is satisfied.
Note that N may well be negative.

Important properties of the Mellin transform are (on the obvious domains)

M(x∂xu) = −sMu (23)

M(u log x) = (Mu)′ (24)

M(xzu)(s) =Mu(s+ z) (25)

obtained by integration by parts, by differentiating in s and by trivial calculation, respectively.
For (23) we assume that x∂xu also satisfies (22).

The Mellin transform is closely related to the Fourier transform (FU)(ξ) =
∫∞
−∞ e−itξU(t) dt.

The substitution x = et in the Mellin integral yields

Mu(s) = FU(is) for U(t) = u(et) (26)

The Fourier inversion formula then yields:

Theorem 2.9 (Mellin inversion formula). Suppose u is twice differentiable on (0,∞) and u,
x∂xu, (x∂x)2u satisfy (22), where N ∈ R. Let a > −N . Then Mu is integrable over the vertical
line a+ iR, and

u(x) =
1

2πi

∫ a+i∞

a−i∞
(Mu)(s)x−s ds . (27)

As a preparation for the proof, note that, if u is J times differentiable then

(x∂x)ju = O(xN ), j ≤ J =⇒ |(Mu)(s)| ≤ CRe s |s|−J . (28)

This follows directly from (23) applied J times, with Cσ =M(|(x∂x)Ju|)(σ).

Proof of Theorem 2.9. Integrability over the line a + iR follows from (28) with J = 2. In the
case N > 0 and a = 0 (27) is simply the Fourier inversion formula: With (26) we have

u(et) = U(t) =
1

2π

∫ ∞
−∞

(FU)(ξ)eitξ dξ =
1

2πi

∫ i∞

−i∞
(Mu)(s)(et)−s ds

substituting ξ = is. The general case reduces to this by considering v(x) = xau(x) instead.

Example 2.10. Let χ = χ[0,1] be the characteristic function of [0, 1]. For z ∈ C and k ∈ N0 we
have:

u(x) = xz logkxχ(x) =⇒Mu(s) =
ck

(s+ z)k+1
, ck = (−1)kk! (29)

for Re s > −Re z. This follows for k = 0 by direkt calculation and then in general by differenti-
ating in s (or z) k times.

Note that in the example, Mu has a meromorphic continuation to all of C, with a pole of
order k + 1 at s = −z. This leads to one half of the following theorem.

Notation 2.11. For a meromorphic function f and s0 ∈ C denote

ord(f, s0) = order of the pole of f at the point s0

Res−k,s=s0 f(s) = coefficient of (s− s0)−k in the Laurent

expansion of f(s) around s = s0.
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For an index set E ⊂ C× N0 let

EC := {z ∈ C : (z, 0) ∈ E}
ordE(z) := max{k ∈ N0 : (z, k) ∈ E} for z ∈ EC.

That is, z ∈ EC if terms of the form xz are permitted in an expansion of a function in AE(R+),
and ordE(z) is the maximal k so that xz logkx is permitted.

Theorem 2.12 (Main theorem on the Mellin transform). Let u satisfy condition (22) for some
N0 ∈ R. Let E be an index set. Then the following are equivalent:

(i) u is polyhomogeneous with index set E.

(ii) Mu satisfies:

(a) Mu has a meromorphic continuation to C, with poles at most at the points −z having
z ∈ EC and of order

ord(Mu,−z) ≤ 1 + ordE(z)

(b) Mu decays rapidly in the imaginary direction:

Mu(s) = O(| Im s|−J) as | Im s| → ∞, for all J

uniformly in any strip {a ≤ Re s ≤ b}.

Also, if u satisfies these conditions then

Res−(k+1),s=−z(Mu)(s) = (−1)kk! ·
[
coefficient of xz logkx in u(x) as x→ 0

]
(30)

In part (b) and in the sequel we use the notationMu also for the meromorphically continued
function. Then equations (23)-(25) continue to hold for this continuation, by the principle of
holomorphic continuation.

This characterization of polyhomogeneity in terms of meromorphy is the main use of the Mellin
transform. It is a precise version of the general (rough) principles

(lack of) decay of u as x→ 0←→ (lack of) regularity of Mu

regularity of u ←→ decay of Mu in the imaginary direction

which is analogous to similar principles for the Fourier transform. (Here regularity means interior
smoothness, plus the fact that the asymptotic expansion as x → 0 is assumed to hold with
derivatives.)

The factor i in (26) explains why we get decay in the imaginary direction for Mu.

Proof of Theorem 2.12. Choose a cut-off function ρ ∈ C∞0 (R+) which equals 1 near x = 0. Recall
that (i) means that for any N ∈ R we have

u =
∑

(z,k)∈E≤N

az,k x
z logkx ρ(x) + rN , (x∂x)jrN = O(xN ) for all j (31)

where E≤N = {(z, k) ∈ E : Re z ≤ N} and az,k ∈ C. Note that using χ[0,1] here instead of ρ we
would obtain (ii)(a) immediately from (29) and Lemma 2.8. However, smoothness is destroyed
by χ[0,1], so we have no chance of getting (ii)(b) in this way.
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Proof of (i)⇒(ii): MrN is holomorphic in {Re s > −N} and satisfies the estimate of (ii)(b) in
strips having a > −N . Since N is arbitrary, it suffices to prove (ii) for uz,k(x) := xz logkx ρ(x).
We have

Muz,k(s) =Mu0,k(s+ z) = (s+ z)−(k+1)M((x∂x)k+1u0,k)(s+ z)

by (25) and (23). Now (x∂x)k+1u0,k ∈ C∞0 ((0,∞)) by the product rule and (x∂x)k+1 logkx = 0,
so its Mellin transform is an entire function, and (28) implies that it satisfies (b). This proves
(ii).

(ii)⇒(i): We want to prove (31) for any N ∈ R. The main idea is to use the residue theorem
to shift the contour in the Mellin inversion formula: We may assume that N is not the real

part of any z ∈ EC. By Theorem 2.9 we have u(x) = 1
2πi

∫ a+i∞
a−i∞ (Mu)(s)x−s ds for a > −N0.

The meromorphy of Mu and the estimate in (ii)(b) guarantee that we can shift the contour of
integration from a+ iR to −N+ iR. Then we pick up residues at the poles ofMu which evaluate
to a sum of terms const·xz loglx over l ≤ k if k + 1 is the order of the pole at −z. This gives
(31) with

rN (x) =
1

2πi

∫ −N+i∞

−N−i∞
(Mu)(s)x−s ds .

Now |(x∂x)jrN (x)| ≤ xN
−N+i∞∫
−N−i∞

|(Mu)(s)| |s|j |ds| ≤ CxN by (ii)(b), so (31) and hence (i)

follows.
Finally, formula (30) follows from Example 2.10.

Remarks 2.13.

1. By (30) the negative powers of the Laurent expansions of Mu at its poles are determined
by the asymptotics of u. Below we will see that the constant term (at s = 0) defines a
regularization of the integral

∫∞
0
u(x) dxx .

2. As a special case, if u ∈ C∞0 (R+) then Mu has a meromorphic extension to C with simple
poles at s ∈ −N0.

3. Theorems 2.9 and 2.12 still hold, with the same proof, if u does not have bounded support
but is rapidly decaying at infinity in the sense that ∂jxu(x) = O(x−M ) for all j,M as
x→∞.

Example 2.14 (Gamma and zeta functions). For u(x) = e−x Theorem (2.12) gives the mero-
morphic continuation of the Gamma function Γ =Mu.

For u(x) = 1
ex−1 =

∑∞
n=1 e

−nx we get

(Mu)(s) =

∞∑
n=1

(Me−nx)(s) =

∞∑
n=1

n−s(Me−x)(s) = Γ(s)ζ(s)

where ζ is the Riemann zeta function, and this gives the meromorphic continuation of ζ, with
the only pole at s = 1 since the other poles of Mu cancel against those of Γ.

Exercise 2.15. Extend the previous results to the case that u has polyhomogeneous asymptotic
expansions at both x = 0 and x =∞.7 Check that Mu ≡ 0 if u(x) = xz logkx.

7Suppose the leading powers of x for x→ 0 and x→∞ have real parts A and −B, respectively. If ReA < ReB
then the integral defining Mu converges in the strip ReA < Re s < ReB. This condition can be avoided by
cutting u into two pieces, supported on [0, 1] and [1,∞) respectively, and extending each piece meromorphically.
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2.1.3 General definition and properties of the regularized integral

We will generalize the definition of −
∫∞
0
u(x) dxx to functions on R+ with an arbitrary polyhomo-

geneous expansion as x→ 0 and integrable at infinity. It turns out that (b) and (c) in Theorem
2.3 generalize nicely. We first show that they coincide in general. The following notation is
useful.

Definition 2.16. If u ∈ AE(R+) for some index set E then define the regularized limit

LIM
x→0

u(x) = the x0 term in the asymptotics of u(x) as x→ 0.

Thus, if u(x) ∼
∑

(z,k)∈E az,k x
z logkx then LIMx→0 u(x) = a0,0, which is to be understood as

zero if (0, 0) 6∈ E. Clearly, LIMx→0 is a linear functional on AE(R+) extending limx→0.
Denote

AE0 (R+) = {u ∈ AE(R+) : suppu is compact} .

Recall that Res0,s=0Mu(s) denotes the s0 term in the Laurent expansion of u around s = 0. If
M has not pole at s = 0 then this is simply Mu(0).

Proposition 2.17 (and definition). Let E be an index set and let u ∈ AE0 (R+).

(a) For x > 0 let

v(x) =

∫ ∞
x

u(y)
dy

y
.

Then v ∈ AE′0 (R+) with E′ = E ∪ {(0, 0)} ∪ {(0, k + 1) : (0, k) ∈ E}.

(b) We have
LIM
x→0

v(x) = Res0,s=0Mu(s) .

This number is called the regularized integral of u dx
x and denoted

−
∫ ∞
0

u(x)
dx

x

Clearly, the definition of the regularized integral via LIMx→0 extends to u being integrable
over [1,∞), rather than having compact support.

The definition of E′ is a special case of the extended union, defined in (39) below: E′ =
E∪{(0, 0)}.

Proof.

(a) Clearly v has compact support. To find its asymptotics, note that
∫
xz logkx dx

x is, for z 6= 0,

a linear combination of xz loglx, l = 0, . . . , k;8 and for z = 0 it equals 1
k+1 logk+1x (plus a

constant in both cases).

(b) From x∂xv = −u we get
sMv =Mu

from (23). Therefore, Res0,s=0(Mu)(s) = Res−1,s=0(Mv)(s), which equals LIMx→0 v(x) by
(30) applied with z = k = 0.

8For a simple proof, first do k = 0, then differentiate k times in z.
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Example 2.18. For z ∈ C, k ∈ N0 we have

−
∫ 1

0

xz logkx
dx

x
=

(−1)kk!
1

zk+1
if z 6= 0

0 if z = 0
(32)

If we use the Mellin transform definition then this follows from (29). Alternatively,
∫ 1

x
yz logky dyy

evaluates to
(
d
dz

)k 1−xz

z if z 6= 0 and to logk+1y|1x if z = 0. Now take the x0 coefficient in either
case.

Remark 2.19. Clearly, −
∫∞
0

defines a linear functional AE0 (R+) → C. Also, with E>0 :=
{(z, k) ∈ E : Re z > 0} we have

u ∈ AE>0

0 (R+) =⇒ −
∫ ∞
0

u(x)
dx

x
=

∫ ∞
0

u(x)
dx

x
,

so −
∫∞
0

is a linear extension of the functional
∫∞
0

from the subspace AE>0

0 (R+) to all of AE0 (R+).
What is special about this extension, why don’t we choose another one? The codimension of

AE>0

0 (R+) in AE0 (R+) is the finite number |E \ E>0|, so there are many other extensions. 9

Here are some possible answers:

• (‘Fundamental Theorem of Calculus’ for the regularized integral)

For u ∈ AE>0

0 (R+) we have by the fundamental theorem of calculus∫ ∞
0

u(x)
dx

x
= 0 ⇐⇒ ∃v : u = x∂xv and v(0) = 0.

This continues to hold for u ∈ AE0 (R+) if we use the regularized integral on the left and
replace v(0) = 0 by LIMx→0 v(x) on the right. This property characterizes the extension
−
∫∞
0

uniquely.

• The regularized integral as defined above occurs as asymptotic coefficient in the coefficient
formulas for the push-forward theorem, see ...

• Does −
∫

have naturality properties which characterize it?

For integrable u dx
x we have

∫∞
0
u(λx) dxx =

∫∞
0
u(x) dxx . This almost extends to the regularized

integral, but with an additional term from the x0 logkx terms:

Proposition 2.20 (Change of variables for regularized integrals).
Let u ∈ AE0 (R+), u(x) ∼

∑
(z,k)∈E az,k x

z logkx. Then for λ > 0

−
∫ ∞
0

u(λx)
dx

x
= −
∫ ∞
0

u(x)
dx

x
−
∑
k≥0

logk+1λ

k + 1
a0,k (33)

9 For example, for any cut-off function ρ ∈ L1
comp(R+) which equals one near x = 0 we have an extension defined

by

Iρ(u) =

∫ ∞
0

[u(x)− u0(x)ρ(x)]
dx

x

where u0(x) =
∑

(z,k)∈E≤0
az,k x

z logkx collects the non-integrable terms of u(x) ∼
∑

(z,k)∈E az,k x
z logkx.

This is analogous to (19). Note that the equivalence of Theorem 2.3(a) and (b) does not extend, more precisely
Iχ[0.1]

6= −
∫∞
0 unless Re z ≥ 0 for all (z, k) ∈ E, as follows from (32). Check this!
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That is, each term logkx in the asymptotics of u contributes an extra term − logk+1λ
k+1 . Note

that only z = 0 contributes here. For example,

u ∈ C∞0 (R+) =⇒ −
∫ ∞
0

u(λx)
dx

x
= −
∫ ∞
0

u(x)
dx

x
− u(0) log λ

Proof. By linearity it suffices to check this for integrable u(x) dxx , where it is obvious, and for

uz,k(x) = xz logkxχ[0,1](x). Now M(u(λx))(s) = λ−sMu(s) for any u, so

−
∫ ∞
0

u(λx)
dx

x
−−
∫ ∞
0

u(x)
dx

x
= Res0,s=0 (λ−s − 1)Mu(s) .

If z 6= 0 then this value is zero since λ0 = 1 andMuz,k(s) is holomorphic at s = 0. If z = 0 then

Mu0,k(s) = (−1)kk!
sk+1 by (29). Also, λ−s = e−s log λ =

∑∞
j=0

1
j! (− log λ)jsj , so

Res0,s=0 (λ−s − 1)Mu0,k(s) = (−1)kk!
1

(k + 1)!
(− log λ)k+1 = − logk+1λ

k + 1
.

Exercise 2.21. Check that the coordinate change y = xa with a > 0 works ‘as usual’:

−
∫ ∞
0

u(xa)
dx

x
=

1

a
−
∫ ∞
0

u(y)
dy

y
.

2.1.4 Invariant perspective (unfinished...)

A compactly supported density can be integrated invariantly over a manifold. An integrable
b-density can also be integrated over R+. However, the regularized integral is not defined invari-
antly, due to the extra term in Proposition 2.20.

Lemma 2.22. The regularized integral of b-density u(x) dxx with u ∈ AE0 (R+) is unchanged by
a coordinate change y(x) = x+O(xN ) if Re z > −N for all z with (z, 0) ∈ E.

For example, coordinate changes y(x) = x + O(x2) are permissible if only powers xz having
Re z > −1 occur in u(x).

Refinement: only integer powers in u are a problem (for E a smooth index set) (of course one
could consider more general coordinate changes like y = xa for any a > 0, as in D. Joyce 2016,
then this would not be the case).

Definition 2.23 (Boundary defining function to order N).

Definition 2.24. regularized integral of b-density in AE0 (M) on a manifold with corners M ,
given a choice of bdf for each bhs H of M to order NH where NH > −Re E(H).

2.2 The push-forward theorem and coefficient formula for the map
f(x, y) = xy (Sketch)

Goal of this section: State PFT for f(x, y) = xy, give four proofs:

1. Using vector fields characterization of phg
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2. first two coefficients in smooth case by direct estimates

3. Using Mellin transform

4. ’Direct’ (as in footnote 17 of BBC)

1. is the easiest, but does not give formulas for the coefficients. 2., 3. and 4. give formulas for
the coefficients. 4. is most direct (’direct calculation’, done right)

Recall that u ∈ AE,F (R2
+) means that u is smooth in (0,∞)2 and has boundary expansions

u(x, y)
x→0∼

∑
(z,k)∈E

az,k(y)xz logkx (34)

u(x, y)
y→0∼

∑
(w,l)∈F

bw,l(x)yw logly

(35)

where
az,k(y)

y→0∼
∑

(w,l)∈F

ck,lz,w y
w logly

and a similar expansion for bw,l(x) as x → 0, with the same coefficients ck,lz,w. We denote this
fact somewhat loosely by

u(x, y)
x,y→0∼

∑
(z,k)∈E

∑
(w,l)∈F

ck,lz,w x
z logkx yw logly (36)

and call this the corner expansion of u.
If u is compactly supported (we denote this by u ∈ AE,Fc (R2

+)) then we want to integrate u
over the parabola xy = t and consider the asymptotics as t → 0. Integration makes sense only
for densities (not for functions). We will write these always as b-densities, that is, we write
u(x, y)dxx

dy
y , not u(x, y)dxdy. Of course one can be rewritten as the other by changing u, but in

this way the formulas will be simplest.
Thus, for u ∈ AE,Fc (R2

+) we define v : (0,∞) → C via the push-forward under the map
f : R2

+ → R+, (x, y) 7→ xy,

v(t)
dt

t
= f∗(u(x, y)

dx

x

dy

y
),

or explicitly for t > 0

v(t) =

∫ ∞
0

u(x,
t

x
)
dx

x
. (37)

First, we have as a special case of the Push-Forward Theorem of R. Melrose:

v ∈ AE∪Fc (R+) (38)

where the extended union of index sets E,F is defined as

E∪F := E ∪ F ∪ {(z, k + l + 1) : (z, k) ∈ E, (z, l) ∈ F}. (39)

That is, v inherits from u all its asymptotic terms as x → 0 or as y → 0, and in addition gets
a tz logk+l+1 t whenever u has xz logkx and yz logly. (’same power, then multiply logs and take
one extra’)

To get a formula for the coefficients we need the notion of regularized integral, which was
introduced before. Recall that if inf E > 0 (that is, (z, k) ∈ E ⇒ Re z > 0, so v ∈ L1(R+,

dt
t ))

then the regularized integral coincides with the standard integral.
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Theorem 2.25. Let u ∈ AE,Fc (R2
+). Then v, defined in (37), has the t→ 0 expansion

v(t) ∼
∑
z,k,l:

(z,k)∈E,(z,l)∈F

k! l!

(k + l + 1)!
cklzz t

z logk+l+1 t−1

+
∑

(z,k)∈E

k∑
m=0

(
(−1)m

(
k

m

)
−
∫ ∞
0

az,k(y)
logmy

yz
dy

y

)
tz logk−m t

+ . . .

where the dots mean the same as the previous term, with E, y, a replaced by F, x, b respectively.10

Remark 2.26. This looks complicated but is really rather simple:

1. The asymptotics has a contribution from the corner x = y = 0 and contributions from each
side x = 0, y = 0.

a) Corner terms: Each ’diagonal’ (i.e. the powers of x and y coincide) term c xz logkx yz logly
in the corner expansion of u contributes −c tz logk+l+1 t (times a constant).

b) Side terms: The contribution of the term a(y)xz logkx at the side x = 0 can be
formally obtained as follows: Replace x = t

y and (reg.) integrate over y:

a(y)(
t

y
)z logk

t

y
= tz a(y)y−z(log t− log y)k

Multiplying out, we see that the coefficient of tz logk−m t is (−1)m
(
k
m

)
a(y) logmy

yz .

c) A simple special case is where u vanishes in a neighborhood of (0, 0): Say u(x, y) = 0
for (x, y) ∈ [0, c]2, then for t ≤ c2 we have

v(t) =

∫ ∞
c

u(x,
t

x
)
dx

x
+

∫ ∞
c

u(
t

y
, y)

dy

y

(for a proof make a sketch of the parabola xy = t). Now the expansion (34) holds
uniformly in x ≥ c, so we may set y = t

x there and integrate term by term to obtain
the t-expansion of the first integral, and similarly for the second.

This yields the formula of the theorem, with vanishing corner terms and regularized
integrals being standard integrals. It also explains the formula for the integrand.

d) So all that remains to prove the theorem is: explain the corner terms, and explain why
the regularization needed for the boundary terms is precisely the one introduced in the
previous section.

2. Things simplify even more if instead of logk we use logk

k! everywhere (both in the expansion
of u and of v). Then all the factorials go away!11

10see Gohar Harutyunyan, An example on asymptotic on manifolds with corners, ARMENIAN JOURNAL OF
MATHEMATICS Volume 3, Number 1, 2010, 1-13; here it is assumed that z, w ∈ Z always.

11This is most probably related to the fact that with Lk(x) = logkx
k!

we have x∂xLk = Lk−1. Probably a ’good’
proof should use this.
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3. An important special case is where u is smooth on R2
+. If

u(x, y) ∼
∞∑

z,w=0

czwx
zyw

is its Taylor expansion at zero, so czw = 1
z!w!∂

z
x∂

w
y u(0, 0), and

u(x, y)
x→0∼

∞∑
z=0

az(y)xz

u(x, y)
y→0∼

∞∑
w=0

bw(x)yw

are the side expansions, so az(y) = 1
z!∂

z
xu(0, y), bw(x) = 1

w!∂
w
y u(x, 0), then

v(t) ∼
∞∑
z=0

tz(−czz log t+Az +Bz)

Az = −
∫ ∞
0

az(y)

yz
dy

y
, Bz = −

∫ ∞
0

bz(x)

xz
dx

x
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