Survey on exterior algebra and differential forms

Daniel Grieser

16. Mai 2013

Inhaltsverzeichnis

1 Exterior algebra for a vector space 1
1.1 Alternating forms, wedge and interior product 1
1.2 A scalar product enters the stage 3
1.3 Now add an orientation: Volume element, Hodge 4
1.4 Formulas in an arbitrary basis 5
1.5 Modifications for not positive definite inner product 6
2 Differential forms 7
2.1 Pointwise ('tensorial') constructions 7
2.2 Integration 8
2.3 Derivative operations 9

1 Exterior algebra for a vector space

Let V be an n-dimensional real vector space. Whenever needed, we let e_{1}, \ldots, e_{n} be a basis of V and e^{1}, \ldots, e^{n} its dual basis.
At first reading you may leave out the parts on Hodge $*$ and non-positive definite metrics.

1.1 Alternating forms, wedge and interior product

1. Let $k \in \mathbb{N}_{0}$. A k-multilinear form on V is a map $\omega: V^{k} \rightarrow \mathbb{R}$ which is linear in each entry, i.e.

$$
\omega\left(a v_{1}+b v_{1}^{\prime}, v_{2}, \ldots, v_{k}\right)=a \omega\left(v_{1}, v_{2}, \ldots, v_{k}\right)+b \omega\left(v_{1}^{\prime}, v_{2}, \ldots, v_{k}\right)
$$

for all $v_{1}, v_{1}^{\prime}, v_{2}, \ldots, v_{k} \in V$ and $a, b \in \mathbb{R}$, and similarly for the other entries. The form is called alternating if it changes sign under interchange of any two vectors:

$$
\omega\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{k}\right)=-\omega\left(v_{1}, \ldots, v_{j}, \ldots, v_{i}, \ldots, v_{k}\right)
$$

Equivalent conditions (to alternating) are: $\omega\left(v_{1}, \ldots, v_{k}\right)=0$ if any two of the v_{i} are the same. Or:

$$
\omega\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)=\operatorname{sign}(\sigma) \omega\left(v_{1}, v_{2}, \ldots, v_{k}\right)
$$

for all permutations σ of $\{1, \ldots, k\}$.
The space of alternating k-multilinear forms on V is denoted $\Lambda^{k} V^{*}$. This is a vector space with basis $\left\{e^{I}:|I|=k\right\}$, where I runs over subsets of $\{1, \ldots, n\}$ with k elements and

$$
e^{I}:=e^{i_{1}} \wedge \cdots \wedge e^{i_{k}} \text { for } I=\left\{i_{1}<i_{2}<\cdots<i_{k}\right\},
$$

with \wedge defined below, or explicitly:

$$
e^{I}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)=\delta_{J}^{I} \text { for } J=\left\{j_{1}<\cdots<j_{k}\right\}
$$

For example, $e^{\{1,2\}}=e^{1} \wedge e^{2}$ satisfies $\left(e^{1} \wedge e^{2}\right)\left(e_{1}, e_{2}\right)=1$, and this implies that $\left(e^{1} \wedge\right.$ $\left.e^{2}\right)\left(e_{2}, e_{1}\right)=-1$ and all other $\left(e^{1} \wedge e^{2}\right)\left(e_{j_{1}}, e_{j_{2}}\right)$ are zero, hence for $v=\sum v^{i} e_{i}, w=\sum w^{j} e_{j}$ we get $\left(e^{1} \wedge e^{2}\right)(v, w)=v^{1} w^{2}-v^{2} w^{1}$.

It follows that $\Lambda^{k} V^{*}$ has dimension $\binom{n}{k}$, in particular $\operatorname{dim} \Lambda^{n} V^{*}=1$, and $\Lambda^{k} V^{*}=\{0\}$ if $k>n$. Also $\Lambda^{1} V^{*}=V^{*}$ and $\Lambda^{0} V^{*}=\mathbb{R}{ }^{1}$ We also write

$$
k=\operatorname{deg} \omega \text { if } \omega \in \Lambda^{k} V^{*}
$$

and call k the degree of the form ω.
2. Wedge (or exterior) product: For $\omega \in \Lambda^{k} V^{*}, \nu \in \Lambda^{l} V^{*}$ define $\omega \wedge \nu \in \Lambda^{k+l} V^{*}$ by

$$
(\omega \wedge \nu)\left(v_{1}, \ldots, v_{k+l}\right)=\sum_{\sigma} \operatorname{sign}(\sigma) \omega\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \nu\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(k+l)}\right)
$$

where the sum runs over all permutations σ of $\{1, \ldots, k+l\}$ preserving the order in the first and second 'block', i.e. satisfying $\sigma(1)<\cdots<\sigma(k), \sigma(k+1)<\cdots<\sigma(k+l)$.
For example, for $k=l=1$

$$
(\omega \wedge \nu)(v, w)=\omega(v) \nu(w)-\omega(w) \nu(v)
$$

Rule:

$$
\omega \wedge \nu=(-1)^{\operatorname{deg} \omega \cdot \operatorname{deg} \nu} \nu \wedge \omega
$$

For this property one says that \wedge is 'graded commutative' (in the physics literature also 'super commutative'). Also, \wedge is bilinear and associative.

Remark (Relation to cross product in \mathbb{R}^{3}):

The wedge product generalizes the cross product in the following sense. If $V=\mathbb{R}^{3}$ then $\operatorname{dim} \Lambda^{1} \mathbb{R}^{3}=\operatorname{dim} \Lambda^{2} \mathbb{R}^{3}=3$. So we have identifications (isomorphisms)

$$
\begin{array}{lr}
\Lambda^{1} \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, & \omega=\omega_{1} e^{1}+\omega_{2} e^{2}+\omega_{3} e^{3} \mapsto\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \\
\Lambda^{2} \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, & \mu=\mu_{1} e^{2} \wedge e^{3}+\mu_{2} e^{3} \wedge e^{1}+\mu_{3} e^{1} \wedge e^{2} \mapsto\left(\mu_{1}, \mu_{2}, \mu_{3}\right)
\end{array}
$$

Now for $\omega, \nu \in \Lambda^{1} \mathbb{R}^{3}$ with $\omega=\sum \omega_{i} e^{i}, \nu=\sum \nu_{j} e^{j}$ we have

$$
\omega \wedge \nu=\left(\omega_{2} \nu_{3}-\omega_{3} \nu_{2}\right) e^{2} \wedge e^{3}+\left(\omega_{3} \nu_{1}-\omega_{1} \nu_{3}\right) e^{3} \wedge e^{1}+\left(\omega_{1} \nu_{2}-\omega_{2} \nu_{1}\right) e^{1} \wedge e^{2}
$$

so if ω, ν are identified with vectors as in the first line, then $\omega \wedge \nu$ corresponds (as in the second line) to the cross product of these vectors.
3. Let $v \in V$. The interior product with v is the linear operator

$$
\iota_{v}: \Lambda^{k} V^{*} \rightarrow \Lambda^{k-1} V^{*}, \quad \omega \mapsto \omega(v, \ldots)
$$

that is, $\left(\iota_{v} \omega\right)\left(v_{2}, \ldots, v_{k}\right)=\omega\left(v, v_{2}, \ldots, v_{k}\right)$ ('plug in v in the first slot'). Here $k \in \mathbb{N}$, but we also define $\iota_{v}=0$ on $\Lambda^{0} V^{*}$.
Clearly, ι_{v} depends linearly on v. With wedge products it behaves as follows (as a 'super derivation'):

$$
\begin{equation*}
\iota_{v}(\omega \wedge \nu)=\left(\iota_{v} \omega\right) \wedge \nu+(-1)^{\operatorname{deg} \omega} \omega \wedge\left(\iota_{v} \nu\right) \tag{1}
\end{equation*}
$$

For example, in \mathbb{R}^{3}, if $v=\sum_{i} v^{i} e_{i}$ then

$$
\begin{equation*}
\iota_{v}\left(e^{1} \wedge e^{2} \wedge e^{3}\right)=v^{1} e^{2} \wedge e^{3}+v^{2} e^{3} \wedge e^{1}+v^{3} e^{1} \wedge e^{2} \tag{2}
\end{equation*}
$$

(of course one could write $-v^{2} e^{1} \wedge e^{3}$ for the middle term)
4. Behavior under maps: A linear map $A: V \rightarrow W$ defines the pull-back map

$$
\begin{equation*}
A^{*}: \Lambda^{k} W^{*} \rightarrow \Lambda^{k} V^{*}, \quad\left(A^{*} \omega\right)\left(v_{1}, \ldots, v_{k}\right):=\omega\left(A v_{1}, \ldots, A v_{k}\right) \tag{3}
\end{equation*}
$$

[^0]where $\omega \in \Lambda^{k} W^{*}, v_{1}, \ldots, v_{k} \in V$. For $k=1$ this is also called the dual (or transpose) map $A^{*}: W^{*} \rightarrow V^{*}$.
Pullback behaves naturally with wedge product
$$
A^{*}(\omega \wedge \nu)=A^{*} \omega \wedge A^{*} \nu
$$
and with interior product: $\iota_{v}\left(A^{*} \omega\right)=A^{*}\left(\iota_{A(v)} \omega\right)$, as follows directly from the definitions.
For $V=W$ and $k=n$ pullback relates to the determinant as follows: $A^{*}=(\operatorname{det} A) \operatorname{Id}$ on $\Lambda^{n} V^{*}$. Explicitly, this means
$$
\omega\left(A v_{1}, \ldots, A v_{n}\right)=(\operatorname{det} A) \omega\left(v_{1}, \ldots, v_{n}\right)
$$
which follows directly from the facts that ω is multilinear and alternating, and the Leibniz formula for the determinant.

1.2 A scalar product enters the stage

From now on assume that a scalar product is given on V, that is, a bilinear, symmetric, positive definit ${ }^{2}$ form $g: V \times V \rightarrow \mathbb{R}$. We also write $\langle v, w\rangle$ instead of $g(v, w)$. This defines some more structures:

1. Basic geometry: The scalar product allows us to talk about lenghts of vectors and angles between non-zero vectors:

$$
|v|=\sqrt{g(v, v)}, \quad \angle(v, w)=\arccos \frac{g(v, w)}{|v| \cdot|w|}
$$

2. Using the scalar product on V we get a map

$$
g^{\#}: V \rightarrow V^{*}, v \mapsto g(v, \cdot)
$$

Since g is non-degenerate, this map is injective, hence bijective (since $\operatorname{dim} V=\operatorname{dim} V^{*}<\infty$). The inverse of $g^{\#}$ is called

$$
g^{b}: V^{*} \rightarrow V
$$

Therefore, we may identify vectors and linear forms (but we do this only when necessary) \bigsqcup^{3}
3. Using this identification, we get a scalar product on V^{*}, which we also denote by \langle,$\rangle :$

$$
\langle\alpha, \beta\rangle:=\left\langle g^{b}(\alpha), g^{b}(\beta)\right\rangle
$$

for $\alpha, \beta \in V^{*}$.
4. More generally, we get a scalar product on $\Lambda^{k} V^{*}$ for each k. It is easiest to define it by the property:

If e_{1}, \ldots, e_{n} are orthonormal then the basis $\left\{e^{I}:|I|=k\right\}$ of $\Lambda^{k} V^{*}$ is orthonormal.
In other words, $\left\langle\sum_{I} a_{I} e^{I}, \sum_{J} b_{J} e^{J}\right\rangle:=\sum_{I} a_{I} b_{I}$. Then for arbitrary $v^{1}, \ldots v^{k}, w^{1}, \ldots, w^{k} \in$ V^{*} one hat 4

$$
\begin{equation*}
\left\langle v^{1} \wedge \cdots \wedge v^{k}, w^{1} \wedge \cdots \wedge w^{k}\right\rangle=\operatorname{det}\left(\left\langle v^{i}, w^{j}\right\rangle\right) \tag{4}
\end{equation*}
$$

This formula also shows that one obtains the same scalar product if one uses a different orthonormal basis in the definition.

[^1]
1.3 Now add an orientation: Volume element, Hodge *

Now assume that on V a scalar product and an orientation is given.

1. The Hodge $*$ operator is the unique linear map (for each k)

$$
: \Lambda^{k} V^{} \rightarrow \Lambda^{n-k} V^{*}
$$

with the property that ${ }^{5}$

$$
\begin{equation*}
*\left(e^{1} \wedge \cdots \wedge e^{k}\right)=e^{k+1} \wedge \cdots \wedge e^{n} \quad \text { for any oONB } \tag{5}
\end{equation*}
$$

that is, for any oriented orthonormal basis (oONB) e_{1}, \ldots, e_{n} with dual basis e^{1}, \ldots, e^{n}.
Intuition: k-forms $e^{1} \wedge \cdots \wedge e^{k}$ correspond to k-dimensional subspaces $W=\operatorname{span}\left\{e^{1}, \ldots, e^{k}\right\}$ of V^{*}. Then $*\left(e^{1} \wedge \cdots \wedge e^{k}\right)$ corresponds to the orthogonal complement of W.
Of course not every form can be written in this way, but using linearity $*$ is defined when it is defined on forms of this type.
So one can say ${ }^{6}$

- Alternating multilinear forms are a 'linear extension' of the notion of vector subspace.
- Then $*$ corresponds to orthogonal complement.

2. Define the volume element (or volume form) of V as

$$
\mathrm{dvol}=* 1, \quad \text { dvol } \in \Lambda^{n} V^{*}
$$

Why is this reasonable? Because for any oONB e_{1}, \ldots, e_{n} we have, by definition of $*$, dvol $=$ $e^{1} \wedge \cdots \wedge e^{n}$ and therefore

$$
\begin{equation*}
\operatorname{dvol}\left(e_{1}, \ldots, e_{n}\right)=1 \quad \text { for any oONB } \tag{6}
\end{equation*}
$$

So the volume of a 'unit cube' is one, as it should be.
3. Properties of $*$:

$$
\begin{equation*}
\omega \wedge * \nu=\langle\omega, \nu\rangle \text { dvol } \quad \text { for } \omega, \nu \in \Lambda^{k} V^{*} \tag{7}
\end{equation*}
$$

Also, if ν is fixed then the validity of (7) for all ω defines $* \nu$.
(7) can easily be checked on basis elements, and then extends by linearity ${ }^{7}$

$$
\begin{equation*}
*\left(e^{i_{1}} \wedge \cdots \wedge e^{i_{k}}\right)=\operatorname{sign}(\sigma) e^{j_{1}} \wedge \cdots \wedge e^{j_{n-k}} \quad \text { for oONB } \tag{8}
\end{equation*}
$$

where $\left\{j_{1}, \ldots, j_{n-k}\right\}=\{1, \ldots, n\} \backslash\left\{i_{1}, \ldots, i_{k}\right\}$ and σ is the permutation sending $(1, \ldots, n) \mapsto$ $\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}\right)$. From this one gets easily $\|^{8}$

$$
\begin{equation*}
* *=(-1)^{k(n-k)} \quad \text { on } \Lambda^{k} V^{*} \tag{9}
\end{equation*}
$$

That is, if $\omega \in \Lambda^{k} V^{*}$ then $* \omega \in \Lambda^{n-k} V^{*}$, and $*(* \omega) \in \Lambda^{k} V^{*}$ equals $(-1)^{k(n-k)} \omega$.

[^2]4. As an exercise, use the previous properties to prove: If $v \in V$ then
\[

$$
\begin{equation*}
* g^{\#}(v)=\iota_{v} \mathrm{dvol} \tag{10}
\end{equation*}
$$

\]

Also check this in the example (2), where e_{1}, e_{2}, e_{3} is the standard basis und g the standard scalar product ${ }^{9}$

1.4 Formulas in an arbitrary basis

For the application in the manifold setting we need formulas in terms of any basis e_{1}, \ldots, e_{n} of V (not necessarily orthonormal), for the objects defined by a scalar product.

1. The scalar product determines (and is determined by) the $n \times n$ matrix $\left(g_{i j}\right)$ where

$$
g_{i j}:=\left\langle e_{i}, e_{j}\right\rangle
$$

2. The maps $g^{\#}, g^{b}$ are given as follows: Suppose $v \in V, \alpha \in V^{*}$ satisfy $\alpha=g^{\#}(v)$, or equivalently $v=g^{b}(\alpha)$. Then

$$
\alpha_{j}=\sum_{i} g_{i j} v^{i}, \quad v^{i}=\sum_{j} g^{i j} \alpha_{j}
$$

Here $\left(g^{i j}\right)$ is the inverse matrix of $\left(g_{i j}\right)$. These operations (going from the coefficients v^{i} to the α_{j}, and vice versa) are called lowering and raising indices using the scalar product $g{ }^{10}$
3. From this it easily follows that the scalar product on V^{*} is given by the matrix $\left(g^{i j}\right)$:

$$
\left\langle e^{i}, e^{j}\right\rangle=g^{i j}
$$

More generally, (4) gives for k-forms

$$
\left\langle e^{I}, e^{J}\right\rangle=\operatorname{det}\left(g^{i j}\right)_{i \in I, j \in J}
$$

(where the indices on the right are listed in increasing order).
4. Now assume that V is oriented with oriented basis e_{1}, \ldots, e_{n} (still not necessarily orthonormal). Then ${ }^{11}$

$$
\begin{equation*}
\mathrm{dvol}=\sqrt{\operatorname{det}\left(g_{i j}\right)} e^{1} \wedge \cdots \wedge e^{n} \tag{11}
\end{equation*}
$$

$$
{ }^{9} \text { Hint for } \sqrt{10} \text { : By the statement after } \sqrt{7} \text { this follows if we show that for all } \omega \in \Lambda^{1} V
$$

$$
\omega \wedge\left(\iota_{v} \mathrm{dvol}\right)=\left\langle\omega, g^{\#}(v)\right\rangle \mathrm{dvol}
$$

Now by definition of $g^{\#}$, we have $\left\langle\omega, g^{\#}(v)\right\rangle=\omega(v)=\iota_{v} \omega$. Now use the product rule 1 for ι_{v}.
Alternative proof of 10: By linearity it suffices to prove this for unit vectors v. Set $e_{1}=v$ and extend to an oONB e_{1}, \ldots, e_{n}. Then check equality of both sides when applied to any ($n-1$)-tuple out of e_{1}, \ldots, e_{n}.

Explicitly in an oONB, both sides are $\sum v^{i}(-1)^{i-1} e^{1} \wedge \cdots \wedge \widehat{e^{i}} \wedge \cdots \wedge e^{n}$, where the hat means omission.
${ }^{10}$ Conventions often used in physics:

- A vector is denoted by its compoents: $\left(v^{i}\right)$, or simply v^{i} (rather than $\sum v^{i} e_{i}$). Similarly a covector (element of V^{*}) is denoted v_{i} (instead of $\sum v_{i} e^{i}$).
- The summation sign is omitted (Einstein summation convention).
- The same letter is used for a vector and the corresponding covector (i.e. element of V^{*}). Thus, one writes $v_{i}=g_{i j} v^{j}$.
${ }^{11}$ Proof: Choose an oONB $E_{1}, \ldots E_{n}$ and write $e_{i}=\sum_{k} a_{i}^{k} E_{k}$. Then, using $\left\langle E_{k}, E_{l}\right\rangle=\delta_{k l}$ we get

$$
g_{i j}=\left\langle\sum_{k} a_{i}^{k} E_{k}, \sum_{l} a_{j}^{l} E_{l}\right\rangle=\sum_{k, l} a_{i}^{k} a_{j}^{l}\left\langle E_{k}, E_{l}\right\rangle=\sum_{k} a_{i}^{k} a_{j}^{k}
$$

which is the $i j$ entry of the matrix $A^{t} A$, where A is the matrix $\left(a_{i}^{k}\right)$. Therefore $\operatorname{det}\left(g_{i j}\right)=(\operatorname{det} A)^{2}$, so $\operatorname{det} A=$ $\sqrt{\operatorname{det}\left(g_{i j}\right)}$ since $\operatorname{det} A>0$ (both bases e_{1}, \ldots, e_{n} and E_{1}, \ldots, E_{n} are oriented). Therefore, dvol $\left(e_{1}, \ldots, e_{n}\right)=$ $\operatorname{det} A \operatorname{dvol}\left(E_{1}, \ldots, E_{n}\right)=\operatorname{det} A$, and dvol $=\operatorname{dvol}\left(e_{1}, \ldots, e_{n}\right) e^{1} \wedge \cdots \wedge e^{n}$ gives the claim.
5. For the Hodge $*$ operator we have: Let $\omega=\sum_{I} \omega_{I} e^{I}$, then $* \omega=\sum_{J}(* \omega)_{J} e^{J}$ with

$$
(* \omega)_{J}=\omega^{I} \sqrt{\operatorname{det}\left(g_{i j}\right)} \operatorname{sign}(\sigma)
$$

where σ is the permutation $(1, \ldots, n) \mapsto(I, J)$ with I, J listed in increasing order. Here, ω^{I} is obtained by raising indices from the ω_{I}, that is

$$
\omega^{i_{1}, \ldots, i_{k}}=\sum g^{i_{1} l_{1}} \cdots g^{i_{k} l_{k}} \omega_{l_{1}, \ldots, l_{k}}
$$

where $\omega_{l_{1}, \ldots, l_{k}}:=\omega\left(e_{l_{1}}, \ldots, e_{l_{k}}\right)$.

1.5 Modifications for not positive definite inner product

If the bilinear form g on V is not positive definite (but still symmetric and non-degenerate) then we need to modify some of the formulas slightly.

Define the index of g as the dimension of a maximal subspace on which g is negative definite. Equivalently ${ }^{12}$, it is the number of negative eigenvalues of the matrix of g with respect to any basis. We denote the index of g by ν.

1. First, $g(v, v)$ may be negative, so the length of a vector is defined as

$$
|v|:=\sqrt{|g(v, v)|}
$$

2. A standard basis of V is a basis e_{1}, \ldots, e_{n} for which

$$
\left\langle e_{i}, e_{j}\right\rangle=\varepsilon_{i} \delta_{i j}
$$

wher ${ }^{13}$

$$
\varepsilon_{1}=\cdots=\varepsilon_{\nu}=-1, \varepsilon_{\nu+1}=\cdots=\varepsilon_{n}=1
$$

Standard bases replace orthonormal bases in this context.
3. The scalar product on $\Lambda^{k} V^{*}$ is still characterized by property (4).
4. The volume form is still defined by the property (6) (for an oriented standard basis), so that 14

$$
\mathrm{dvol}=\sqrt{\left|\operatorname{det}\left(g_{i j}\right)\right|} e^{1} \wedge \cdots \wedge e^{n} \text { (any oriented basis) }
$$

5. The Hodge $*$ operator is defined by property (7). Then in (5) and (8) there is an extra factor $(-1)^{\nu^{\prime}}$ on the right, where ν^{\prime} is the number of vectors $e^{i}, i \in\left\{i_{1}, \ldots, i_{k}\right\}$, with $\left\langle e^{i}, e^{i}\right\rangle=-1$. Then (9) gets replaced by

$$
^{}=(-1)^{k(n-k)+\nu} \quad \text { on } \Lambda^{k} V^{*}
$$

Example: Minkowski space is \mathbb{R}^{4} with the standard scalar product of index 1 and standard orientation. Coordinates are usually denoted t, x, y, z (in this order), sq^{15}

$$
\left\langle\partial_{t}, \partial_{t}\right\rangle=-1,\left\langle\partial_{x}, \partial_{x}\right\rangle=\left\langle\partial_{y}, \partial_{y}\right\rangle=\left\langle\partial_{z}, \partial_{z}\right\rangle=1
$$

Then dvol $=d t \wedge d x \wedge d y \wedge d z$ and

$$
\left.\begin{array}{rlrl}
* d t & =-d x \wedge d y \wedge d z & *(d x \wedge d y \wedge d z) & =-d t \\
* d x & =-d t \wedge d y \wedge d z & *(d t \wedge d y \wedge d z) & =-d x \\
*(d t \wedge d x) & =-d y \wedge d z & & *(d y \wedge d z)
\end{array}\right)=d t \wedge d x .
$$

etc. (cyclically permute x, y, z). Note $* *=1$ on Ω^{1} and Ω^{3} and $* *=-1$ on Ω^{2}.

[^3]
2 Differential forms

Let M be a manifold of dimension n.

2.1 Pointwise ('tensorial') constructions

The constructions of the previous section can be done on each tangent space $V=T_{p} M$. In this way we obtain, for example:

- A differential form ω of degree k (or differential k-form, or k-form) is given by $\omega_{p} \in \Lambda^{k} T_{p}^{*} M$ for each p, smoothly depending on p. The space of differential forms of degree k is denoted $\Omega^{k}(M)$. In particular, 0 -forms are functions, $\Omega^{0}(M)=C^{\infty}(M, \mathbb{R})$.
- Wedge product defines a bilinear map $\wedge: \Omega^{k}(M) \times \Omega^{l}(M) \rightarrow \Omega^{k+l}(M)$. (For $k=0$ this is simply multiplying a form by a function.)
- Interior product with a vector field $X \in \mathcal{X}(M)$ defines a linear map $\iota_{X}: \Omega^{k}(M) \rightarrow$ $\Omega^{k-1}(M){ }^{16}$ more precisely a $C^{\infty}(M, \mathbb{R})$-bilinear map $\iota: \mathcal{X}(M) \times \Omega^{k}(M) \rightarrow \Omega^{k-1}(M)$.
- Any smooth map $F: M \rightarrow N$ defines a pullback map

$$
F^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M), \quad\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots, v_{k}\right):=\omega_{F(p)}\left(d F_{\mid p}\left(v_{1}\right), \ldots d F_{\mid p}\left(v_{k}\right)\right)
$$

for $\omega \in \Omega^{k}(N), p \in M$ and any vectors $v_{1}, \ldots, v_{k} \in T_{p} M$ (apply (3) with $A=d F_{\mid p}$).

- A Riemannian metric on M is given by a scalar product g_{p} on $T_{p} M$ for each p. It defines linear maps $g^{\#}: \mathcal{X}(M) \rightarrow \Omega^{1}(M), g^{b}: \Omega^{1}(M) \rightarrow \mathcal{X}(M)$ and a scalar product on $\Lambda^{k} T_{p}^{*} M$ for each p.
- An orientation of M is given by an orientation on each $T_{p} M$, varying continuously with p. Given a scalar product and an orientation, we get the Hodge $*$ operator

$$
*: \Omega^{k}(M) \rightarrow \Omega^{n-k}(M)
$$

and the volume form dvol $\in \Omega^{n}(M) \cdot{ }^{17}$
All the rules from before still hold since they hold pointwise at each p.

Formulas in local coordinates

Given local coordinates x^{1}, \ldots, x^{n} on a coordinate patch $U \subset M$, one can express all these concepts and operations in terms of the basis $\partial_{1}, \ldots, \partial_{n}$ of $T_{p} M$ and its dual basis $d x^{1}, \ldots, d x^{n}$ of $T_{p} M^{*}$, for $p \in U$. That is, in the formulas of Section 1 (especially $1.4{ }^{18}$ one sets ${ }^{19}$

$$
e_{i}=\partial_{i}, e^{i}=d x^{i}, i=1, \ldots, n
$$

Some examples of this are:

[^4]- A differential k-form in local coordinates is of the form

$$
\omega=\sum_{I} a_{I}(x) d x^{I}, \quad d x^{I}:=d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \text { if } I=\left\{i_{1}<\cdots<i_{k}\right\}
$$

with smooth functions $a_{I}: U \rightarrow \mathbb{R}$.

- Pull-back is just plugging in: Let $F: M \rightarrow N$ be a smooth map. Suppose F is given in local coordinates x^{1}, \ldots, x^{n} for M and y^{1}, \ldots, y^{m} for N as $y(x)=\left(y^{1}(x), \ldots, y^{m}(x)\right){ }^{20}$ Then for $\omega=\sum a_{I}(y) d y^{I} \in \Omega^{k}(N)$, we have

$$
F^{*} \omega=\sum_{I=\left\{i_{1}<\cdots<i_{k}\right\}} a_{I}(y(x)) d y^{i_{1}} \wedge \cdots \wedge d y^{i_{k}}
$$

where each $y^{i_{j}}$ is considered as function of x, so one should write $d y^{i_{j}}=\sum_{l} \frac{\partial y^{i}{ }^{i}}{\partial x^{l}} d x^{l}$ and then multiply out.

- The volume form on an oriented Riemannian manifold is

$$
\begin{equation*}
\mathrm{dvol}=\sqrt{\operatorname{det}\left(g_{i j}\right)} d x^{1} \ldots d x^{n} \tag{12}
\end{equation*}
$$

in oriented local coordinates, where $g_{i j}=g\left(\partial_{i}, \partial_{j}\right)$.

2.2 Integration

One of the motivations for considering differential forms is that they are the objects that can be integrated invariantly over a manifold. More precisely, if (M, \mathcal{O}) is an oriented manifold and $\omega \in \Omega_{0}^{n}(M){ }^{21}$ where $n=\operatorname{dim} M$, then

$$
\begin{equation*}
\int_{(M, \mathcal{O})} \omega \tag{13}
\end{equation*}
$$

is well-define ${ }^{22}$. Instead of 13 one usually writes $\int_{M} \omega$, if \mathcal{O} is fixed in the context. The definition
proceeds in two steps:

1. First assume $\operatorname{supp} \omega \subset U$ for an orientation preserving local chart $\varphi: \tilde{U} \rightarrow U$. The local coordinate representation $\varphi^{*} \omega$ can be written as $\varphi^{*} \omega=a(x) d x^{1} \wedge \cdots \wedge d x^{n}$ for some function a on \tilde{U}. Define

$$
\begin{equation*}
\int_{M} \omega=\int_{\tilde{U}} a(x) d x \tag{14}
\end{equation*}
$$

Note that $d x$ here stands for n-dimensional Lebesgue measure.
One then checks that the result is independent of the choice of coordinates. This is due to the way that differential forms transform under coordinate transformations: A det $d \kappa$ factor appears, and this corresponds precisely to the $|\operatorname{det} d \kappa|$ factor in the transformation formula for integrals - if the determinant is positive, which is true if both charts are orientation preserving.
2. Any $\omega \in \Omega_{0}^{n}(M)$ can be integrated by summing over coordinate patches and applying the first part. In practice, often one or two coordinate systems suffic ${ }^{23}$ For theoretical purposes

[^5](for example the proof of Stokes' theorem) it is better to use a partition of unity, which means splitting up ω smoothly into pieces which are compactly supported in coordinate patches. That is, choose a cover of M by orientation preserving charts $\left(U_{i}\right)_{i \in I}$ and a corresponding partition of unity $\left(\rho_{i}\right)_{i \in I}$. Then set
$$
\int_{M} \omega:=\sum \int_{U_{i}} \omega_{i}, \quad \omega_{i}:=\rho_{i} \omega
$$

This makes sense since $\sum_{i} \rho_{i}=1$, so $\sum_{i} \omega_{i}=\omega$. Also $\omega_{i} \in \Omega_{0}^{n}\left(U_{i}\right)$.
One then checks that the result is independent of the choice of the U_{i} and of the ρ_{i}.

2.3 Derivative operations

There are several different operations in which derivatives are taken: Exterior derivative and Lie derivative (and later also covariant derivative).

The exterior derivative is defined only on differential forms (alternating \mathcal{T}_{k}^{0}-tensors). Lie derivative and covariant derivative are defined for all tensors.

Both d and Lie derivative are defined for a manifold, without scalar product.

1. The exterior derivative $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ is defined for $k=0$ (functions) as the usual differential $d: f \mapsto d f$ (in coordinates $d f=\sum_{i} \frac{\partial f}{\partial x^{i}} d x^{i}$) and for any k in local coordinates by the formula

$$
d\left(\sum_{I} a_{I} d x^{I}\right)=\sum_{I} d a_{I} \wedge d x^{I}
$$

Rules for d : d is linear, obeys the product rule ${ }^{24}$

$$
(\omega \wedge \nu)=(d \omega) \wedge \nu+(-1)^{\operatorname{deg} \omega} \omega \wedge(d \nu)
$$

commutes with pullback by a smooth map $F: M \rightarrow N$:

$$
F^{*} \circ d=d \circ F^{*}
$$

(this implies that d is well-defined on a manifold, independent of the choice of coordinates) and

$$
\begin{equation*}
d^{2}=0 \tag{15}
\end{equation*}
$$

(this will be essential for cohomology).
One of the main reasons to consider the exterior derivative is that the general Stokes' theorem holds (see below for more on this): If M is an oriented manifold with boundary and ∂M is equipped with the induced orientation and $\omega \in \Omega_{0}^{n-1}(M)$ where $n=\operatorname{dim} M$ then

$$
\begin{equation*}
\int_{M} d \omega=\int_{\partial M} \omega \tag{16}
\end{equation*}
$$

2. The Lie derivative along a vector field $X \in \mathcal{X}(M)$. As for general tensors this is defined as

$$
L_{X}: \Omega^{k}(M) \rightarrow \Omega^{k}(M), \quad L_{X} \omega=\left.\frac{d}{d t}\right|_{t=0} \Phi_{t}^{*} \omega
$$

where Φ is the flow of X. So L_{X} measures how ω changes ('deforms') under the flow of X. In particular,

$$
\begin{equation*}
L_{X} \omega=0 \Longleftrightarrow \Phi_{t}^{*} \omega=\omega \quad \forall t \tag{17}
\end{equation*}
$$

[^6]The right side expresses a symmetry (invariance) property of ω.
Rules for the Lie derivative: Most importantly the 'iddi-formula':

$$
\begin{equation*}
L=\iota d+d \iota \tag{18}
\end{equation*}
$$

that is, $L_{X}=\iota_{X} d+d \iota_{X}$, that is $L_{X} \omega=\iota_{X}(d \omega)+d\left(\iota_{X} \omega\right)$. This makes calculating $L_{X} \omega$ much easier than the original definition ${ }^{25}$
Also there is a product rul $\sqrt[{26[]^{27}}]{ }$

$$
\begin{equation*}
L_{X}(\omega \wedge \nu)=\left(L_{X} \omega\right) \wedge \nu+\omega \wedge\left(L_{X} \nu\right) \tag{19}
\end{equation*}
$$

and L_{X} commutes with $d{ }^{28}$

$$
L_{X} \circ d=d \circ L_{X}
$$

3. Comparison of Lie derivative and exterior derivative.

Recall that Lie derivative and exterior derivative agree on functions, in the sense that

$$
\begin{equation*}
L_{X} f=d f(X) \tag{20}
\end{equation*}
$$

For forms of higher degree this is no longer tru ϵ^{29}
Lie derivative and exterior derivative generalize two different ideas connected to the derivative of a function. To see this, consider for simplicity a function of one variable $f: \mathbb{R} \rightarrow \mathbb{R}$.

- Derivative as rate of change \rightsquigarrow Lie derivative:

The formula $f^{\prime}(x)=\lim _{t \rightarrow 0} \frac{f(x+t)-f(x)}{t}$ can be written $f^{\prime}(x)=\frac{d}{d t \mid t=0}\left(\Phi_{t}^{*} f\right)(x)$ for $\Phi_{t}(x)=$ $x+t$ the flow of the unit vector field ∂_{x}.

- Derivative as inverse of integration \rightsquigarrow exterior derivative:

The fundamental theorem of calculus

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

is the special case $M=[a, b]$ (where $\partial M=\{a, b\}$ and standard orientation is used) of Stokes' theorem since the left side is $\int_{M} d f$ and the right is $\int_{\partial M} f$. The exterior derivative is defined in such a way that this generalizes to higher dimensions. More precisely: There is a unique way to define linear maps $d: \Omega^{k-1}(M) \rightarrow \Omega^{k}(M)$ for any $k \in \mathbb{N}$ and any manifold M which is natural (i.e. commutes with pull-back by smooth maps) and so that Stokes' theorem (16) holds for all oriented manifolds M with boundary and all compactly supported forms $\omega \in \Omega_{0}^{\operatorname{dim} M^{M-1}}(M){ }^{3 d}{ }^{31}$
4. grad, div, rot. These are really special cases of the exterior derivative d. But to define them on a manifold, one needs a (semi-)Riemannian metric (for d one doesn't). In this sense d is the more basic (and more general) operation.

[^7]$\operatorname{grad}: C^{\infty}(M) \rightarrow \mathcal{X}(M)$ and $\operatorname{div}: \mathcal{X}(M) \rightarrow C^{\infty}(M)$ are defined on semi-Riemannian manifolds of any dimension, but rot : $\mathcal{X}(M) \rightarrow \mathcal{X}(M)$ is defined only in three dimensions.
Let g be a (semi-)Riemannian metric on M.
grad: The map $g^{\#}: \mathcal{X}(M) \rightarrow \Omega^{1}(M)$ identifies vector fields with one-forms. We define the gradient of a function f to be the vector field corresponding to the one-form $d f$. That is, $g^{\#}(\operatorname{grad} f)=d f{ }^{32}$ or explicitly, for $p \in M$,
\[

$$
\begin{equation*}
\langle\operatorname{grad} f(p), w\rangle=d f_{\mid p}(w) \quad \text { for all } w \in T_{p} M \tag{21}
\end{equation*}
$$

\]

div: On the other hand, a vector field can also be identified with an $(n-1)$-form, by first applying $g^{\#}$ and then $*$. A function, i.e. 0 -form, can be identified with an n-form using $*$. Explicitly, the function f corresponds to the n-form f dvol. Then the divergence of a vector field is defined by first transforming the vector field to an $(n-1)$-form, applying d, then transforming the resulting n-form to a function. That is

$$
\operatorname{div} X=*^{-1} d\left(* g^{\#}(X)\right) \text { or equivalently }(\operatorname{div} X) \operatorname{dvol}=d\left(* g^{\#}(X)\right)
$$

rot: If $n=3$ then $n-1=2$, so using the identifications above we can translate $d: \Omega^{1}(M) \rightarrow$ $\Omega^{2}(M)$ into a map $\mathcal{X}(M) \rightarrow \mathcal{X}(M)$. This is the 'rotation' rot ${ }^{33}$
It is easiest to understand and remember this if we put it all in a diagram:

(the dashed arrows only make sense if $n=3$). The identity $d^{2}=0$ then translates into

$$
\operatorname{div} \text { rot }=0, \text { rot grad }=0 \quad(n=3)
$$

There are two useful identities for the divergence. First ${ }^{34}$

$$
\begin{equation*}
(\operatorname{div} X) \mathrm{dvol}=d\left(\iota_{X} \mathrm{dvol}\right) \tag{23}
\end{equation*}
$$

The geometric meaning of the divergence is 'volume change under the flow'

$$
L_{X} \operatorname{dvol}=(\operatorname{div} X) \operatorname{dvol}
$$

(proof: use iddi-formula and (23). The meaning of this may become clearer after integration over any open set $U 3$

$$
\frac{d}{d t}_{\mid t=0} \operatorname{vol} \Phi_{t}(U)=\int_{U} \operatorname{div} X \operatorname{dvol}
$$

Then (17) says in this context

$$
\operatorname{div} X=0 \Longleftrightarrow \text { the flow of } X \text { preserves volume }
$$

i.e. $\operatorname{vol} \Phi_{t}(U)=\operatorname{vol} U \forall t \forall U$.

The geometric meaning of the gradient is (for $d f_{\mid p} \neq 0$):

- $\operatorname{grad} f(p)$ points in the direction of steepest increase of f
- $|\operatorname{grad} f(p)|$ is the rate of that increase

This follows easily from 21.

[^8]Local coordinate formulas for grad, div
Since $g^{\text {b }}$ is pulling up indices, we have

$$
\begin{equation*}
\operatorname{grad} f=\sum(\operatorname{grad} f)^{i} \partial_{i} \quad \text { with } \quad(\operatorname{grad} f)^{i}=\sum g^{i j} \frac{\partial f}{\partial x^{j}} \tag{24}
\end{equation*}
$$

Also, using (23) and 42 one gets

$$
\begin{equation*}
\operatorname{div} X=\frac{1}{\sqrt{\operatorname{det}\left(g_{j k}\right)}} \sum_{i} \frac{\partial\left(X^{i} \sqrt{\operatorname{det}\left(g_{j k}\right)}\right)}{\partial x^{i}} \quad \text { for } X=\sum X^{i} \partial_{i} \tag{25}
\end{equation*}
$$

[^0]: ${ }^{1}$ By definition, $V^{0}=\mathbb{R}$, and a linear map $\mathbb{R} \rightarrow \mathbb{R}$ is determined by its value at 1 .

[^1]: ${ }^{2}$ Everything can be done in the more general case that g is only non-degenerate, but one needs to be careful with the signs, see Section 1.5
 ${ }^{3}$ The fact that $g^{\#}$ is surjective, i.e. that every linear form on V can be represented by a vector using the scalar product, is sometimes called the Riesz lemma. It holds more generally when (V, g) is a Hilbert space, that is, if V is allowed to be infinite-dimensional but required to be complete with the norm defined by g.
 ${ }^{4}$ Proof: By definition this holds if all v^{i}, w^{j} are taken from the basis vectors e^{1}, \ldots, e^{n}. Then it holds in general since both sides are multilinear in the $2 k$ entries $v^{1}, \ldots v^{k}, w^{1}, \ldots, w^{k}$.

[^2]: ${ }^{5}$ Uniqueness of such a linear map is clear, existence is less obvious. See footnote 7
 ${ }^{6}$ As an exercise, you might try to make these somewhat vague ideas more precise. For example: To what extent does a subspace of dimension k determine a 'pure' form of degree k (i.e. one which can be written as wedge product of one-forms) uniquely?
 ${ }^{7}$ This assumes we know the existence of the linear map $*$. A logically more sound way of introducing $*$ is this:
 (a) Define dvol $\in \Lambda^{n} V^{*}$ by equation (6) for a fixed oriented ONB, and check that 6 must then hold for any oriented ONB (this follows from 11). Since $\operatorname{dim} \Lambda^{n} V^{*}=1,\{d v o l\}$ is a basis of $\operatorname{dim} \Lambda^{n} V^{*}$.
 (b) Consider the map $P: \Lambda^{k} V^{*} \times \Lambda^{n-k} V^{*} \rightarrow \mathbb{R},(\omega, \mu) \mapsto$ (the coefficient a in $\omega \wedge \mu=a$ dvol). This is easily seen to be bilinear and (e.g. using a basis) non-degenerate. Therefore, by Riesz' lemma, for any linear form $q: \Lambda^{k} V^{*} \rightarrow \mathbb{R}$ there is a unique element $\mu \in \Lambda^{n-k} V^{*}$ so that $P(\omega, \mu)=q(\omega)$ for all $\omega \in \Lambda^{k} V^{*}$.
 (c) Now given $\nu \in \Lambda^{k} V^{*}$, apply the Riesz lemma to the form $q(\omega)=\langle\omega, \nu\rangle$. This determines an element $\mu \in$ $\Lambda^{n-k} V^{*}$. Define $* \nu:=\mu$. Then 7 holds by definition, and from this follows.
 ${ }^{8}$ From $\operatorname{sign}(k+1, \ldots, n, 1, \ldots, k)=(-1)^{k(n-k)}$

[^3]: ${ }^{12}$ This fact is called Sylvester's law of inertia.
 ${ }^{13}$ Sometimes a different convention is used, where the last ν elements are negative.
 ${ }^{14}$ Sometimes a different convention is used, where dvol gets an extra factor $(-1)^{\nu}$, so that dvol = $(-1)^{\nu} \sqrt{\operatorname{det}\left(g_{i j}\right)} e^{1} \wedge \cdots \wedge e^{n}$.
 ${ }^{15}$ This is one of the common conventions, mostly used by mathematicians and graviational physicists. Particle physicists mostly use a different convention, where all the signs are turned around.

[^4]: ${ }^{16}$ For the case $k=0$, i.e. functions f, we define $\iota_{X} f=0$. In this way the iddi formula below, see 18, holds on forms of any degree, including functions. Also $\Omega^{-1}(M):=\{0\}$.
 ${ }^{17}$ Note that dvol is not d applied to an $(n-1)$-form - at least not globally. Locally it is (by the Poincaré Lemma).
 ${ }^{18}$ Note that when considering (semi-)RIemannian manifolds, one should use the formulas for an arbitrary basis, not for an ON basis. Why? Because usually one cannot choose local coordinates for which the ∂_{i} form an ONB at each $p \in U$. To be precise:

 - Fix $p \in M$. Then local coordinates can be chosen near p so that $\partial_{1}, \ldots, \partial_{n}$ form an ONB at p.
 - Local coordinates can be chosen with $\partial_{1}, \ldots, \partial_{n}$ an ONB for each $p \in U$ if and only if (U, g) is locally isometric to \mathbb{R}^{n} with the Euclidean metric (or, equivalently, if the curvature of g is identically zero on U).
 Proof as exercise. (The statement about curvature is harder, will be proved in lecture.)
 ${ }^{19}$ More precise notation would be $\partial_{i \mid p}, d x_{\mid p}^{i}$, but often the p is left out for better readability.

[^5]: ${ }^{20}$ That is, for any $p \in M$, if p has coordinates x_{0} and $F(p)$ has coordinates y_{0} then $y_{0}=y\left(x_{0}\right)$.
 ${ }^{21}$ The 0 in $\Omega_{0}^{n}(M)$ means compact support, i.e. elements of $\Omega_{0}^{n}(M)$ are zero outside of some compact set. This is assumed for simplicity to avoid problems with integrability. Of course weaker conditions would suffice.
 ${ }^{22}$ In contrast, $\int_{M} f$ would not be well-defined for a function f. Naively, one might try to define this, if f is supported in a coordinate patch $U \subset M$ with coordinates $x: U \rightarrow \tilde{U}$, as $\int_{\tilde{U}} \tilde{f}(x) d x$, where \tilde{f} is f in coordinates x; however, this would depend on the choice of coordinates: If $y: V \rightarrow \tilde{V}$ is a different coordinate system then $\int_{\tilde{V}} \tilde{\tilde{f}}(y) d y=\int_{\tilde{U}} \tilde{f}(x)|\operatorname{det} d \kappa| d x$ with $\kappa=y \circ x^{-1}$ the coordinate change.

 A different way to overcome this difficulty is to choose a measure μ on M and consider $\int_{M} f \mu$. The advantage of n-forms over measures is that they are part of the exterior calculus (i.e. \wedge, d etc.).
 ${ }^{23}$ However, the restriction to the patch will usually not be compactly supported, and one possibly misses a set of measure zero, which does not affect the integral

[^6]: ${ }^{24}$ So d is a 'graded derivation', just like the interior product ι_{v}, see 11. The (-1) deg ω factor comes from 'pulling d past ω^{\prime} in the second summand, and similarly for ι_{v}. If ω is a product of 1-forms, then pulling d past each 1-form produces a -1 factor. A general ω is a sum of such products.
 Note that both d and ι_{v} change the degree of a form by one. The Lie derivative does not, and its product rule has no \pm in front of the second term.

[^7]: ${ }^{25}$ The formula is also the central piece in proving homotopy invariance of de Rham cohomology.
 ${ }^{26}$ So L_{X} is a 'derivation'. Note that this is different from the product rule for d because there is no \pm sign in front of the second summand.
 ${ }^{27}$ Proof: Use $\Phi_{t}^{*}(\omega \wedge \nu)=\left(\Phi_{t}^{*} \omega\right) \wedge\left(\Phi_{t}^{*} \nu\right)$ and differentiate both sides in t.
 ${ }^{28}$ Follows directly from the definition of L_{X} and $\Phi_{t}^{*} \circ d=d \circ \Phi_{t}^{*}$.
 ${ }^{29}$ More precisely, one could write $d f(X)=\iota_{X} f$ and then ask if $L_{X} f=\iota_{X} d f$ holds with f replaced by a k-form. The iddi formula $L_{X} \omega=\iota_{X} d \omega+d\left(\iota_{X} \omega\right)$ shows that this is not the case, and shows that the correction term is $d\left(\iota_{X} \omega\right)$. Recall that $\iota_{X} f=0$ by definition, so this term disappears for functions.
 ${ }^{30}$ Proof of uniqueness: Let $\omega \in \Omega^{k-1}(M)$. First, if $\operatorname{dim} M=k$ then $d \omega$ is uniquely determined since 16) must also hold for any open subset of M with smooth boundary - then use 14 and the corresponding fact for the Lebesgue integral. Next, if $\operatorname{dim} M=n$ with $n>k$ arbitrary then apply this argument for any k-dimensional submanifold N of M. It shows that $d\left(i_{N}^{*} \omega\right)$, with $i_{N}: N \hookrightarrow M$ the inclusion, is uniquely determined. By naturality $d\left(i_{N}^{*} \omega\right)=i_{N}^{*} d \omega$. Finally, a k-form is uniquely determined by its pull-backs to arbitrary k-dimensional submanifolds (use coordinate subspaces in a local coordinate system), so $d \omega$ is determined.
 ${ }^{31}$ As an exercise, try to derive the formula for $d \omega$ from this condition!

[^8]: ${ }^{32}$ Sometimes we write $\nabla f=\operatorname{grad} f$.
 ${ }^{33}$ Sometimes this is called curl.
 ${ }^{34}$ Use 10 .
 ${ }^{35}$ Use $\int_{U} \Phi_{t}^{*}(\mathrm{dvol})=\int_{\Phi_{t}(U)} \mathrm{dvol}=\operatorname{vol} \Phi_{t}(U)$.

