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1 Exterior algebra for a vector space

Let V be an n-dimensional real vector space. Whenever needed, we let e1, . . . , en be a basis of V
and e1, . . . , en its dual basis.
At first reading you may leave out the parts on Hodge ∗ and non-positive definite metrics.

1.1 Alternating forms, wedge and interior product

1. Let k ∈ N0. A k-multilinear form on V is a map ω : V k → R which is linear in each entry,
i.e.

ω(av1 + bv′1, v2, . . . , vk) = aω(v1, v2, . . . , vk) + b ω(v′1, v2, . . . , vk)

for all v1, v
′
1, v2, . . . , vk ∈ V and a, b ∈ R, and similarly for the other entries. The form is

called alternating if it changes sign under interchange of any two vectors:

ω(v1, . . . , vi, . . . , vj , . . . , vk) = −ω(v1, . . . , vj , . . . , vi, . . . , vk)

Equivalent conditions (to alternating) are: ω(v1, . . . , vk) = 0 if any two of the vi are the same.
Or:

ω(vσ(1), . . . , vσ(k)) = sign(σ)ω(v1, v2, . . . , vk)

for all permutations σ of {1, . . . , k}.
The space of alternating k-multilinear forms on V is denoted ΛkV ∗. This is a vector space
with basis {eI : |I| = k}, where I runs over subsets of {1, . . . , n} with k elements and

eI := ei1 ∧ · · · ∧ eik for I = {i1 < i2 < · · · < ik},

with ∧ defined below, or explicitly:

eI(ej1 , . . . , ejk) = δIJ for J = {j1 < · · · < jk}

For example, e{1,2} = e1 ∧ e2 satisfies (e1 ∧ e2)(e1, e2) = 1, and this implies that (e1 ∧
e2)(e2, e1) = −1 and all other (e1 ∧ e2)(ej1 , ej2) are zero, hence for v =

∑
viei, w =

∑
wjej

we get (e1 ∧ e2)(v, w) = v1w2 − v2w1.
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It follows that ΛkV ∗ has dimension
(
n
k

)
, in particular dim ΛnV ∗ = 1, and ΛkV ∗ = {0} if

k > n. Also Λ1V ∗ = V ∗ and Λ0V ∗ = R.1 We also write

k = degω if ω ∈ ΛkV ∗

and call k the degree of the form ω.

2. Wedge (or exterior) product: For ω ∈ ΛkV ∗, ν ∈ ΛlV ∗ define ω ∧ ν ∈ Λk+lV ∗ by

(ω ∧ ν)(v1, . . . , vk+l) =
∑
σ

sign(σ)ω(vσ(1), . . . , vσ(k))ν(vσ(k+1), . . . , vσ(k+l))

where the sum runs over all permutations σ of {1, . . . , k+ l} preserving the order in the first
and second ’block’, i.e. satisfying σ(1) < · · · < σ(k), σ(k + 1) < · · · < σ(k + l).

For example, for k = l = 1

(ω ∧ ν)(v, w) = ω(v)ν(w)− ω(w)ν(v)

Rule:

ω ∧ ν = (−1)degω·deg νν ∧ ω

For this property one says that ∧ is ’graded commutative’ (in the physics literature also
’super commutative’). Also, ∧ is bilinear and associative.

Remark (Relation to cross product in R3):
The wedge product generalizes the cross product in the following sense. If V = R3 then
dim Λ1R3 = dim Λ2R3 = 3. So we have identifications (isomorphisms)

Λ1R3 → R3, ω = ω1e
1 + ω2e

2 + ω3e
3 7→ (ω1, ω2, ω3)

Λ2R3 → R3, µ = µ1e
2 ∧ e3 + µ2e

3 ∧ e1 + µ3e
1 ∧ e2 7→ (µ1, µ2, µ3)

Now for ω, ν ∈ Λ1R3 with ω =
∑
ωie

i, ν =
∑
νje

j we have

ω ∧ ν = (ω2ν3 − ω3ν2)e2 ∧ e3 + (ω3ν1 − ω1ν3)e3 ∧ e1 + (ω1ν2 − ω2ν1)e1 ∧ e2

so if ω, ν are identified with vectors as in the first line, then ω ∧ ν corresponds (as in the
second line) to the cross product of these vectors.

3. Let v ∈ V . The interior product with v is the linear operator

ιv : ΛkV ∗ → Λk−1V ∗, ω 7→ ω(v, . . . )

that is, (ιvω)(v2, . . . , vk) = ω(v, v2, . . . , vk) (’plug in v in the first slot’). Here k ∈ N, but we
also define ιv = 0 on Λ0V ∗.

Clearly, ιv depends linearly on v. With wedge products it behaves as follows (as a ’super
derivation’):

ιv(ω ∧ ν) = (ιvω) ∧ ν + (−1)degωω ∧ (ιvν) (1)

For example, in R3, if v =
∑
i v
iei then

ιv(e
1 ∧ e2 ∧ e3) = v1e2 ∧ e3 + v2e3 ∧ e1 + v3e1 ∧ e2 (2)

(of course one could write −v2e1 ∧ e3 for the middle term)

4. Behavior under maps: A linear map A : V →W defines the pull-back map

A∗ : ΛkW ∗ → ΛkV ∗, (A∗ω)(v1, . . . , vk) := ω(Av1, . . . , Avk) (3)

1By definition, V 0 = R, and a linear map R→ R is determined by its value at 1.
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where ω ∈ ΛkW ∗, v1, . . . , vk ∈ V . For k = 1 this is also called the dual (or transpose) map
A∗ : W ∗ → V ∗.

Pullback behaves naturally with wedge product

A∗(ω ∧ ν) = A∗ω ∧A∗ν

and with interior product: ιv(A
∗ω) = A∗(ιA(v)ω), as follows directly from the definitions.

For V = W and k = n pullback relates to the determinant as follows: A∗ = (detA) Id on
ΛnV ∗. Explicitly, this means

ω(Av1, . . . , Avn) = (detA)ω(v1, . . . , vn)

which follows directly from the facts that ω is multilinear and alternating, and the Leibniz
formula for the determinant.

1.2 A scalar product enters the stage

From now on assume that a scalar product is given on V , that is, a bilinear, symmetric, positive
definite2 form g : V × V → R. We also write 〈v, w〉 instead of g(v, w). This defines some more
structures:

1. Basic geometry: The scalar product allows us to talk about lenghts of vectors and angles
between non-zero vectors:

|v| =
√
g(v, v), ∠(v, w) = arccos

g(v, w)

|v| · |w|

2. Using the scalar product on V we get a map

g# : V → V ∗, v 7→ g(v, ·)

Since g is non-degenerate, this map is injective, hence bijective (since dimV = dimV ∗ <∞).
The inverse of g# is called

g[ : V ∗ → V

Therefore, we may identify vectors and linear forms (but we do this only when necessary).3

3. Using this identification, we get a scalar product on V ∗, which we also denote by 〈 , 〉:

〈α, β〉 := 〈g[(α), g[(β)〉

for α, β ∈ V ∗.

4. More generally, we get a scalar product on ΛkV ∗ for each k. It is easiest to define it by the
property:

If e1, . . . , en are orthonormal then the basis {eI : |I| = k} of ΛkV ∗ is orthonormal.

In other words, 〈
∑
I aIe

I ,
∑
J bJe

J〉 :=
∑
I aIbI . Then for arbitrary v1, . . . vk, w1, . . . , wk ∈

V ∗ one has4

〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉 = det(〈vi, wj〉) (4)

This formula also shows that one obtains the same scalar product if one uses a different
orthonormal basis in the definition.

2Everything can be done in the more general case that g is only non-degenerate, but one needs to be careful with
the signs, see Section 1.5.

3The fact that g# is surjective, i.e. that every linear form on V can be represented by a vector using the scalar
product, is sometimes called the Riesz lemma. It holds more generally when (V, g) is a Hilbert space, that is, if V
is allowed to be infinite-dimensional but required to be complete with the norm defined by g.

4Proof: By definition this holds if all vi, wj are taken from the basis vectors e1, . . . , en. Then it holds in general
since both sides are multilinear in the 2k entries v1, . . . vk, w1, . . . , wk.
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1.3 Now add an orientation: Volume element, Hodge ∗
Now assume that on V a scalar product and an orientation is given.

1. The Hodge ∗ operator is the unique linear map (for each k)

∗ : ΛkV ∗ → Λn−kV ∗

with the property that5

∗ (e1 ∧ · · · ∧ ek) = ek+1 ∧ · · · ∧ en for any oONB, (5)

that is, for any oriented orthonormal basis (oONB) e1, . . . , en with dual basis e1, . . . , en.

Intuition: k-forms e1 ∧ · · · ∧ ek correspond to k-dimensional subspaces W = span{e1, . . . , ek}
of V ∗. Then ∗(e1 ∧ · · · ∧ ek) corresponds to the orthogonal complement of W .

Of course not every form can be written in this way, but using linearity ∗ is defined when it
is defined on forms of this type.

So one can say:6

• Alternating multilinear forms are a ’linear extension’ of the notion of vector subspace.

• Then ∗ corresponds to orthogonal complement.

2. Define the volume element (or volume form) of V as

dvol = ∗1, dvol ∈ ΛnV ∗.

Why is this reasonable? Because for any oONB e1, . . . , en we have, by definition of ∗, dvol =
e1 ∧ · · · ∧ en and therefore

dvol(e1, . . . , en) = 1 for any oONB. (6)

So the volume of a ’unit cube’ is one, as it should be.

3. Properties of ∗:
ω ∧ ∗ν = 〈ω, ν〉dvol for ω, ν ∈ ΛkV ∗ (7)

Also, if ν is fixed then the validity of (7) for all ω defines ∗ν.

(7) can easily be checked on basis elements, and then extends by linearity.7

∗ (ei1 ∧ · · · ∧ eik) = sign(σ)ej1 ∧ · · · ∧ ejn−k for oONB (8)

where {j1, . . . , jn−k} = {1, . . . , n}\{i1, . . . , ik} and σ is the permutation sending (1, . . . , n) 7→
(i1, . . . , ik, j1, . . . , jn−k). From this one gets easily8

∗ ∗ = (−1)k(n−k) on ΛkV ∗ (9)

That is, if ω ∈ ΛkV ∗ then ∗ω ∈ Λn−kV ∗, and ∗(∗ω) ∈ ΛkV ∗ equals (−1)k(n−k)ω.

5Uniqueness of such a linear map is clear, existence is less obvious. See footnote 7.
6As an exercise, you might try to make these somewhat vague ideas more precise. For example: To what extent

does a subspace of dimension k determine a ’pure’ form of degree k (i.e. one which can be written as wedge product
of one-forms) uniquely?

7This assumes we know the existence of the linear map ∗. A logically more sound way of introducing ∗ is this:

(a) Define dvol ∈ ΛnV ∗ by equation (6) for a fixed oriented ONB, and check that (6) must then hold for any
oriented ONB (this follows from (11)). Since dim ΛnV ∗ = 1, {dvol} is a basis of dim ΛnV ∗.

(b) Consider the map P : ΛkV ∗ × Λn−kV ∗ → R, (ω, µ) 7→ (the coefficient a in ω ∧ µ = a dvol). This is easily
seen to be bilinear and (e.g. using a basis) non-degenerate. Therefore, by Riesz’ lemma, for any linear form
q : ΛkV ∗ → R there is a unique element µ ∈ Λn−kV ∗ so that P (ω, µ) = q(ω) for all ω ∈ ΛkV ∗.

(c) Now given ν ∈ ΛkV ∗, apply the Riesz lemma to the form q(ω) = 〈ω, ν〉. This determines an element µ ∈
Λn−kV ∗. Define ∗ν := µ. Then (7) holds by definition, and from this (5) follows.

8From sign(k + 1, . . . , n, 1, . . . , k) = (−1)k(n−k)
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4. As an exercise, use the previous properties to prove: If v ∈ V then

∗ g#(v) = ιvdvol (10)

Also check this in the example (2), where e1, e2, e3 is the standard basis und g the standard
scalar product.9

1.4 Formulas in an arbitrary basis

For the application in the manifold setting we need formulas in terms of any basis e1, . . . , en of V
(not necessarily orthonormal), for the objects defined by a scalar product.

1. The scalar product determines (and is determined by) the n× n matrix (gij) where

gij := 〈ei, ej〉

2. The maps g#, g[ are given as follows: Suppose v ∈ V , α ∈ V ∗ satisfy α = g#(v), or
equivalently v = g[(α). Then

αj =
∑
i

gijv
i, vi =

∑
j

gijαj

Here (gij) is the inverse matrix of (gij). These operations (going from the coefficients vi to
the αj , and vice versa) are called lowering and raising indices using the scalar product
g.10

3. From this it easily follows that the scalar product on V ∗ is given by the matrix (gij):

〈ei, ej〉 = gij

More generally, (4) gives for k-forms

〈eI , eJ〉 = det(gij)i∈I,j∈J

(where the indices on the right are listed in increasing order).

4. Now assume that V is oriented with oriented basis e1, . . . , en (still not necessarily orthonor-
mal). Then11

dvol =
√

det(gij)e
1 ∧ · · · ∧ en (11)

9Hint for (10): By the statement after (7) this follows if we show that for all ω ∈ Λ1V

ω ∧ (ιvdvol) = 〈ω, g#(v)〉dvol

Now by definition of g#, we have 〈ω, g#(v)〉 = ω(v) = ιvω. Now use the product rule (1) for ιv .
Alternative proof of (10): By linearity it suffices to prove this for unit vectors v. Set e1 = v and extend to an

oONB e1, . . . , en. Then check equality of both sides when applied to any (n− 1)-tuple out of e1, . . . , en.

Explicitly in an oONB, both sides are
∑
vi(−1)i−1e1 ∧ · · · ∧ êi ∧ · · · ∧ en, where the hat means omission.

10Conventions often used in physics:

• A vector is denoted by its compoents: (vi), or simply vi (rather than
∑
viei). Similarly a covector (element

of V ∗) is denoted vi (instead of
∑
vie

i).

• The summation sign is omitted (Einstein summation convention).

• The same letter is used for a vector and the corresponding covector (i.e. element of V ∗). Thus, one writes
vi = gijv

j .

11Proof: Choose an oONB E1, . . . En and write ei =
∑
k a

k
i Ek. Then, using 〈Ek, El〉 = δkl we get

gij = 〈
∑
k

aki Ek,
∑
l

aljEl〉 =
∑
k,l

aki a
l
j〈Ek, El〉 =

∑
k

aki a
k
j

which is the ij entry of the matrix AtA, where A is the matrix (aki ). Therefore det(gij) = (detA)2, so detA =√
det(gij) since detA > 0 (both bases e1, . . . , en and E1, . . . , En are oriented). Therefore, dvol(e1, . . . , en) =

detA dvol(E1, . . . , En) = detA, and dvol = dvol(e1, . . . , en)e1 ∧ · · · ∧ en gives the claim.
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5. For the Hodge ∗ operator we have: Let ω =
∑
I ωIe

I , then ∗ω =
∑
J(∗ω)Je

J with

(∗ω)J = ωI
√

det(gij) sign(σ)

where σ is the permutation (1, . . . , n) 7→ (I, J) with I, J listed in increasing order. Here, ωI

is obtained by raising indices from the ωI , that is

ωi1,...,ik =
∑

gi1l1 · · · giklkωl1,...,lk

where ωl1,...,lk := ω(el1 , . . . , elk).

1.5 Modifications for not positive definite inner product

If the bilinear form g on V is not positive definite (but still symmetric and non-degenerate) then
we need to modify some of the formulas slightly.

Define the index of g as the dimension of a maximal subspace on which g is negative definite.
Equivalently12, it is the number of negative eigenvalues of the matrix of g with respect to any
basis. We denote the index of g by ν.

1. First, g(v, v) may be negative, so the length of a vector is defined as

|v| :=
√
|g(v, v)|

2. A standard basis of V is a basis e1, . . . , en for which

〈ei, ej〉 = εiδij

where13

ε1 = · · · = εν = −1, εν+1 = · · · = εn = 1

Standard bases replace orthonormal bases in this context.

3. The scalar product on ΛkV ∗ is still characterized by property (4).

4. The volume form is still defined by the property (6) (for an oriented standard basis), so
that14

dvol =
√
|det(gij)| e1 ∧ · · · ∧ en (any oriented basis)

5. The Hodge ∗ operator is defined by property (7). Then in (5) and (8) there is an extra factor
(−1)ν

′
on the right, where ν′ is the number of vectors ei, i ∈ {i1, . . . , ik}, with 〈ei, ei〉 = −1.

Then (9) gets replaced by
∗∗ = (−1)k(n−k)+ν on ΛkV ∗

Example: Minkowski space is R4 with the standard scalar product of index 1 and standard
orientation. Coordinates are usually denoted t, x, y, z (in this order), so15

〈∂t, ∂t〉 = −1, 〈∂x, ∂x〉 = 〈∂y, ∂y〉 = 〈∂z, ∂z〉 = 1.

Then dvol = dt ∧ dx ∧ dy ∧ dz and

∗dt = −dx ∧ dy ∧ dz ∗(dx ∧ dy ∧ dz) = −dt
∗dx = −dt ∧ dy ∧ dz ∗(dt ∧ dy ∧ dz) = −dx

∗(dt ∧ dx) = −dy ∧ dz ∗(dy ∧ dz) = dt ∧ dx

etc. (cyclically permute x, y, z). Note ∗∗ = 1 on Ω1 and Ω3 and ∗∗ = −1 on Ω2.

12This fact is called Sylvester’s law of inertia.
13Sometimes a different convention is used, where the last ν elements are negative.
14Sometimes a different convention is used, where dvol gets an extra factor (−1)ν , so that dvol =

(−1)ν
√

det(gij) e
1 ∧ · · · ∧ en.

15This is one of the common conventions, mostly used by mathematicians and graviational physicists. Particle
physicists mostly use a different convention, where all the signs are turned around.
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2 Differential forms

Let M be a manifold of dimension n.

2.1 Pointwise (’tensorial’) constructions

The constructions of the previous section can be done on each tangent space V = TpM . In this
way we obtain, for example:

• A differential form ω of degree k (or differential k-form, or k-form) is given by ωp ∈ ΛkT ∗pM
for each p, smoothly depending on p. The space of differential forms of degree k is denoted
Ωk(M). In particular, 0-forms are functions, Ω0(M) = C∞(M,R).

• Wedge product defines a bilinear map ∧ : Ωk(M) × Ωl(M) → Ωk+l(M). (For k = 0 this is
simply multiplying a form by a function.)

• Interior product with a vector field X ∈ X (M) defines a linear map ιX : Ωk(M) →
Ωk−1(M),16 more precisely a C∞(M,R)-bilinear map ι : X (M)× Ωk(M)→ Ωk−1(M).

• Any smooth map F : M → N defines a pullback map

F ∗ : Ωk(N)→ Ωk(M), (F ∗ω)p(v1, . . . , vk) := ωF (p)(dF|p(v1), . . . dF|p(vk))

for ω ∈ Ωk(N), p ∈M and any vectors v1, . . . , vk ∈ TpM (apply (3) with A = dF|p).

• A Riemannian metric on M is given by a scalar product gp on TpM for each p. It defines
linear maps g# : X (M)→ Ω1(M), g[ : Ω1(M)→ X (M) and a scalar product on ΛkT ∗pM for
each p.

• An orientation of M is given by an orientation on each TpM , varying continuously with p.
Given a scalar product and an orientation, we get the Hodge ∗ operator

∗ : Ωk(M)→ Ωn−k(M)

and the volume form dvol ∈ Ωn(M). 17

All the rules from before still hold since they hold pointwise at each p.

Formulas in local coordinates

Given local coordinates x1, . . . , xn on a coordinate patch U ⊂M , one can express all these concepts
and operations in terms of the basis ∂1, . . . , ∂n of TpM and its dual basis dx1, . . . , dxn of TpM

∗,
for p ∈ U . That is, in the formulas of Section 1 (especially 1.4)18 one sets19

ei = ∂i, e
i = dxi, i = 1, . . . , n

Some examples of this are:

16For the case k = 0, i.e. functions f , we define ιXf = 0. In this way the iddi formula below, see (18), holds on
forms of any degree, including functions. Also Ω−1(M) := {0}.

17Note that dvol is not d applied to an (n−1)-form – at least not globally. Locally it is (by the Poincaré Lemma).
18Note that when considering (semi-)RIemannian manifolds, one should use the formulas for an arbitrary basis,

not for an ON basis. Why? Because usually one cannot choose local coordinates for which the ∂i form an ONB at
each p ∈ U . To be precise:

• Fix p ∈M . Then local coordinates can be chosen near p so that ∂1, . . . , ∂n form an ONB at p.

• Local coordinates can be chosen with ∂1, . . . , ∂n an ONB for each p ∈ U if and only if (U, g) is locally isometric
to Rn with the Euclidean metric (or, equivalently, if the curvature of g is identically zero on U).

Proof as exercise. (The statement about curvature is harder, will be proved in lecture.)
19More precise notation would be ∂i|p, dx

i
|p, but often the p is left out for better readability.
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• A differential k-form in local coordinates is of the form

ω =
∑
I

aI(x) dxI , dxI := dxi1 ∧ · · · ∧ dxik if I = {i1 < · · · < ik}

with smooth functions aI : U → R.

• Pull-back is just plugging in: Let F : M → N be a smooth map. Suppose F is given
in local coordinates x1, . . . , xn for M and y1, . . . , ym for N as y(x) = (y1(x), . . . , ym(x)).20

Then for ω =
∑
aI(y) dyI ∈ Ωk(N), we have

F ∗ω =
∑

I={i1<···<ik}

aI(y(x)) dyi1 ∧ · · · ∧ dyik

where each yij is considered as function of x, so one should write dyij =
∑
l
∂yij

∂xl dx
l and then

multiply out.

• The volume form on an oriented Riemannian manifold is

dvol =
√

det(gij) dx
1 . . . dxn (12)

in oriented local coordinates, where gij = g(∂i, ∂j).

2.2 Integration

One of the motivations for considering differential forms is that they are the objects that can
be integrated invariantly over a manifold. More precisely, if (M,O) is an oriented manifold and
ω ∈ Ωn0 (M),21 where n = dimM , then ∫

(M,O)

ω (13)

is well-defined22. Instead of (13) one usually writes
∫
M

ω, if O is fixed in the context. The definition

proceeds in two steps:

1. First assume suppω ⊂ U for an orientation preserving local chart ϕ : Ũ → U . The local
coordinate representation ϕ∗ω can be written as ϕ∗ω = a(x) dx1∧· · ·∧dxn for some function
a on Ũ . Define ∫

M

ω =

∫
Ũ

a(x) dx (14)

Note that dx here stands for n-dimensional Lebesgue measure.

One then checks that the result is independent of the choice of coordinates. This is due to
the way that differential forms transform under coordinate transformations: A det dκ factor
appears, and this corresponds precisely to the |det dκ| factor in the transformation formula
for integrals – if the determinant is positive, which is true if both charts are orientation
preserving.

2. Any ω ∈ Ωn0 (M) can be integrated by summing over coordinate patches and applying the
first part. In practice, often one or two coordinate systems suffice23. For theoretical purposes

20That is, for any p ∈M , if p has coordinates x0 and F (p) has coordinates y0 then y0 = y(x0).
21The 0 in Ωn0 (M) means compact support, i.e. elements of Ωn0 (M) are zero outside of some compact set. This is

assumed for simplicity to avoid problems with integrability. Of course weaker conditions would suffice.
22In contrast,

∫
M f would not be well-defined for a function f . Naively, one might try to define this, if f is

supported in a coordinate patch U ⊂ M with coordinates x : U → Ũ , as
∫
Ũ f̃(x)dx, where f̃ is f in coordinates

x; however, this would depend on the choice of coordinates: If y : V → Ṽ is a different coordinate system then∫
Ṽ

˜̃
f(y) dy =

∫
Ũ f̃(x) | det dκ|dx with κ = y ◦ x−1 the coordinate change.

A different way to overcome this difficulty is to choose a measure µ on M and consider
∫
M f µ. The advantage of

n-forms over measures is that they are part of the exterior calculus (i.e. ∧, d etc.).
23However, the restriction to the patch will usually not be compactly supported, and one possibly misses a set of

measure zero, which does not affect the integral
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(for example the proof of Stokes’ theorem) it is better to use a partition of unity, which means
splitting up ω smoothly into pieces which are compactly supported in coordinate patches.
That is, choose a cover of M by orientation preserving charts (Ui)i∈I and a corresponding
partition of unity (ρi)i∈I . Then set∫

M

ω :=
∑∫

Ui

ωi, ωi := ρiω

This makes sense since
∑
i ρi = 1, so

∑
i ωi = ω. Also ωi ∈ Ωn0 (Ui).

One then checks that the result is independent of the choice of the Ui and of the ρi.

2.3 Derivative operations

There are several different operations in which derivatives are taken: Exterior derivative and Lie
derivative (and later also covariant derivative).

The exterior derivative is defined only on differential forms (alternating T 0
k -tensors). Lie deri-

vative and covariant derivative are defined for all tensors.
Both d and Lie derivative are defined for a manifold, without scalar product.

1. The exterior derivative d : Ωk(M)→ Ωk+1(M) is defined for k = 0 (functions) as the usual
differential d : f 7→ df (in coordinates df =

∑
i
∂f
∂xi dx

i) and for any k in local coordinates by
the formula

d

(∑
I

aI dx
I

)
=
∑
I

daI ∧ dxI

Rules for d: d is linear, obeys the product rule24

(ω ∧ ν) = (dω) ∧ ν + (−1)degωω ∧ (dν)

commutes with pullback by a smooth map F : M → N :

F ∗ ◦ d = d ◦ F ∗

(this implies that d is well-defined on a manifold, independent of the choice of coordinates)
and

d2 = 0 (15)

(this will be essential for cohomology).

One of the main reasons to consider the exterior derivative is that the general Stokes’
theorem holds (see below for more on this): If M is an oriented manifold with boundary
and ∂M is equipped with the induced orientation and ω ∈ Ωn−10 (M) where n = dimM then∫

M

dω =

∫
∂M

ω (16)

2. The Lie derivative along a vector field X ∈ X (M). As for general tensors this is defined as

LX : Ωk(M)→ Ωk(M), LXω =
d

dt |t=0
Φ∗tω

where Φ is the flow of X. So LX measures how ω changes (’deforms’) under the flow of X.
In particular,

LXω = 0 ⇐⇒ Φ∗tω = ω ∀t (17)

24So d is a ’graded derivation’, just like the interior product ιv , see (1). The (−1)degω factor comes from ’pulling
d past ω’ in the second summand, and similarly for ιv . If ω is a product of 1-forms, then pulling d past each 1-form
produces a −1 factor. A general ω is a sum of such products.
Note that both d and ιv change the degree of a form by one. The Lie derivative does not, and its product rule has
no ± in front of the second term.
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The right side expresses a symmetry (invariance) property of ω.

Rules for the Lie derivative: Most importantly the ’iddi-formula’:

L = ιd+ dι (18)

that is, LX = ιXd+dιX , that is LXω = ιX(dω)+d(ιXω). This makes calculating LXω much
easier than the original definition.25

Also there is a product rule2627

LX(ω ∧ ν) = (LXω) ∧ ν + ω ∧ (LXν) (19)

and LX commutes with d:28

LX ◦ d = d ◦ LX

3. Comparison of Lie derivative and exterior derivative.

Recall that Lie derivative and exterior derivative agree on functions, in the sense that

LXf = df(X) (20)

For forms of higher degree this is no longer true29.

Lie derivative and exterior derivative generalize two different ideas connected to the derivative
of a function. To see this, consider for simplicity a function of one variable f : R→ R.

• Derivative as rate of change  Lie derivative:

The formula f ′(x) = lim
t→0

f(x+t)−f(x)
t can be written f ′(x) = d

dt |t=0
(Φ∗t f)(x) for Φt(x) =

x+ t the flow of the unit vector field ∂x.

• Derivative as inverse of integration  exterior derivative:
The fundamental theorem of calculus∫ b

a

f ′(x) dx = f(b)− f(a)

is the special case M = [a, b] (where ∂M = {a, b} and standard orientation is used) of
Stokes’ theorem since the left side is

∫
M
df and the right is

∫
∂M

f . The exterior derivative
is defined in such a way that this generalizes to higher dimensions. More precisely: There
is a unique way to define linear maps d : Ωk−1(M) → Ωk(M) for any k ∈ N and any
manifold M which is natural (i.e. commutes with pull-back by smooth maps) and so
that Stokes’ theorem (16) holds for all oriented manifolds M with boundary and all
compactly supported forms ω ∈ ΩdimM−1

0 (M).3031

4. grad, div, rot. These are really special cases of the exterior derivative d. But to define them
on a manifold, one needs a (semi-)Riemannian metric (for d one doesn’t). In this sense d is
the more basic (and more general) operation.

25The formula is also the central piece in proving homotopy invariance of de Rham cohomology.
26So LX is a ’derivation’. Note that this is different from the product rule for d because there is no ± sign in front

of the second summand.
27Proof: Use Φ∗t (ω ∧ ν) = (Φ∗tω) ∧ (Φ∗t ν) and differentiate both sides in t.
28Follows directly from the definition of LX and Φ∗t ◦ d = d ◦ Φ∗t .
29More precisely, one could write df(X) = ιXf and then ask if LXf = ιXdf holds with f replaced by a k-form.

The iddi formula LXω = ιXdω + d(ιXω) shows that this is not the case, and shows that the correction term is
d(ιXω). Recall that ιXf = 0 by definition, so this term disappears for functions.

30Proof of uniqueness: Let ω ∈ Ωk−1(M). First, if dimM = k then dω is uniquely determined since (16) must also
hold for any open subset of M with smooth boundary – then use (14) and the corresponding fact for the Lebesgue
integral. Next, if dimM = n with n > k arbitrary then apply this argument for any k-dimensional submanifold N
of M . It shows that d(i∗Nω), with iN : N ↪→M the inclusion, is uniquely determined. By naturality d(i∗Nω) = i∗Ndω.
Finally, a k-form is uniquely determined by its pull-backs to arbitrary k-dimensional submanifolds (use coordinate
subspaces in a local coordinate system), so dω is determined.

31As an exercise, try to derive the formula for dω from this condition!
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grad : C∞(M) → X (M) and div : X (M) → C∞(M) are defined on semi-Riemannian
manifolds of any dimension, but rot : X (M)→ X (M) is defined only in three dimensions.

Let g be a (semi-)Riemannian metric on M .

grad: The map g# : X (M) → Ω1(M) identifies vector fields with one-forms. We define the
gradient of a function f to be the vector field corresponding to the one-form df . That is,
g#(grad f) = df ,32 or explicitly, for p ∈M ,

〈grad f(p), w〉 = df|p(w) for all w ∈ TpM (21)

div: On the other hand, a vector field can also be identified with an (n − 1)-form, by first
applying g# and then ∗. A function, i.e. 0-form, can be identified with an n-form using ∗.
Explicitly, the function f corresponds to the n-form f dvol. Then the divergence of a vector
field is defined by first transforming the vector field to an (n − 1)-form, applying d, then
transforming the resulting n-form to a function. That is

divX = ∗−1d(∗g#(X)) or equivalently (divX) dvol = d(∗g#(X))

rot: If n = 3 then n−1 = 2, so using the identifications above we can translate d : Ω1(M)→
Ω2(M) into a map X (M)→ X (M). This is the ’rotation’ rot.33

It is easiest to understand and remember this if we put it all in a diagram:

Ω0(M)
d // Ω1(M)

d // Ωn−1(M)
d // Ωn(M)

C∞(M)
grad //

=

OO

X (M)
rot //

g#

OO

X (M)
div //

∗◦g#
OO

C∞(M)

∗

OO
(22)

(the dashed arrows only make sense if n = 3). The identity d2 = 0 then translates into

div rot = 0, rot grad = 0 (n = 3)

There are two useful identities for the divergence. First34

(divX) dvol = d(ιXdvol) (23)

The geometric meaning of the divergence is ’volume change under the flow’

LXdvol = (divX) dvol

(proof: use iddi-formula and (23)). The meaning of this may become clearer after integration
over any open set U35

d

dt |t=0
vol Φt(U) =

∫
U

divX dvol

Then (17) says in this context

divX = 0 ⇐⇒ the flow of X preserves volume

i.e. vol Φt(U) = volU ∀t ∀U .

The geometric meaning of the gradient is (for df|p 6= 0):

• grad f(p) points in the direction of steepest increase of f

• | grad f(p)| is the rate of that increase

This follows easily from (21).

32Sometimes we write ∇f = grad f .
33Sometimes this is called curl.
34Use (10).
35Use

∫
U Φ∗t (dvol) =

∫
Φt(U) dvol = vol Φt(U).
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Local coordinate formulas for grad,div

Since g[ is pulling up indices, we have

grad f =
∑

(grad f)i∂i with (grad f)i =
∑

gij
∂f

∂xj
(24)

Also, using (23) and (12) one gets

divX =
1√

det(gjk)

∑
i

∂
(
Xi
√

det(gjk)
)

∂xi
for X =

∑
Xi∂i (25)
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