
Chapter 8

Singular Mixture Copulas

Dominic Lauterbach and Dietmar Pfeifer

Abstract We present a new family of copulas—the Singular Mixture Copulas. We

begin with the construction of singular copulas whose supports lie on the graphs

of two given quantile functions. These copulas are then mixed with respect to a

continuous distribution resulting in a nonsingular parametric copula.

The Singular Mixture Copulas we construct have a Lebesgue density and in

special cases even a closed form representation. Moreover, they have positive lower

and upper tail dependence. Because Singular Mixture Copulas are mixtures of

“simple” singular copulas, they can be simulated easily.

8.1 Introduction

Copulas provide an effective and versatile tool for modeling multivariate stochastic

dependence. Since their introduction by Sklar in 1959 (see [11]) there have been

intense developments in both the copula theory and their applications, see, e.g.,

[1, 5–7, 9, 10, 12].

In [10] several geometric methods of constructing copulas are presented. One

approach deals with the construction of singular copulas whose supports lie in a

given set. Another approach mixes an infinite family of copulas with respect to

a mixing distribution. We present a new family of copulas—the Singular Mixture

Copulas. These copulas result from a combination of the above-mentioned methods.

In Sect. 8.2 we construct singular copulas whose supports lie on the graphs of two

given quantile functions. These copulas are then mixed with respect to a continuous

distribution resulting in an absolutely continuous parametric copula (Sect. 8.3).
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As mixing distribution we particularly use a generalized beta distribution, i.e., a

linear transformation of a beta distribution. Section 8.4 summarizes the results and

gives an outlook on some extensions of this approach.

8.2 Singular Copulas

Let F be a continuous distribution function on Œ0; 1� and let ˛ be some constant in

�0; 1Œ. Then there exists a continuous function G such that

˛F.x/ C .1 � ˛/G.x/ D x (8.1)

for all x 2 Œ0; 1�. The function G is given by

G.x/ D
x � ˛F.x/

1 � ˛
: (8.2)

In general, G is not necessarily a distribution function. However, we are interested

in exactly this case.

Let us assume for a moment that G is also a distribution function. Let X be

a random variable with a continuous uniform distribution on Œ0; 1�, and let I be a

random variable, independent of X , with a binomial B.1; ˛/-distribution. Define the

random variable Y via

Y WD I � F �1.X/ C .1 � I / � G�1.X/: (8.3)

Easy calculations show that Y follows a continuous uniform distribution on Œ0; 1�.

As a consequence the distribution function of .X; Y / is a certain singular copula. So

with two distribution functions F and G satisfying (8.1) we can construct singular

copulas. Those copulas are given by

CXY.x; y/ D P.X � x; Y � y/ D P.X � x; I �F �1.X/ C .1 � I /�G�1.X/ � y/

D P.I D 1/P.X � x; X � F.y// C P.I D 0/P.X � x; X � G.y//

D ˛ min.x; F.y// C .1 � ˛/ min.x; G.y//:

As mentioned above, G is not necessarily a distribution function, so we have to

make assumptions on F to guarantee that G is also a distribution function.

Lemma 8.1. Let F be a differentiable distribution function on Œ0; 1�. Then the

function G given by (8.2) is a differentiable distribution function on Œ0; 1� if and

only if F 0.x/ � 1
˛

for all x 2 Œ0; 1�.

Proof. From F.0/ D 0 and F.1/ D 1 it follows immediately that G.0/ D 0 and

G.1/ D 1. From (8.2) we have
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G0.x/ D
1 � ˛F 0.x/

1 � ˛
; (8.4)

so that G0.x/ � 0 , F 0.x/ � 1
˛

, which completes the proof. ut

In a more general approach we can formulate the following theorem which

follows from Lemma 8.1 and the construction discussed above.

Theorem 8.1. Let F be a differentiable function on Œ0; 1� and let X be a random

variable with a continuous uniform distribution on Œ0; 1�. Then the distribution

function of .X; Y / with Y given by (8.3) and G given by (8.2) is a copula if and

only if

(i) F.0/ D 0 and F.1/ D 1,

(ii) 0 � F 0.x/ � 1
˛

for all x 2 Œ0; 1�.

We denote the class of functions that fulfill the properties (i) and (ii) in

Theorem 8.1 by F˛ , i.e.,

F˛ WD fF W Œ0; 1� ! Œ0; 1� j F.0/ D 0; F.1/ D 1; 0 � F 0.x/ � 1
˛
g:

Lemma 8.2.

1. Let F and G be two functions in F˛ , then F � G is in F ˛
2
.

2. Let F and G be two functions in F˛ and � 2 Œ0; 1�, then �F C.1��/G is in F˛ .

3. Let F1; F2; : : : be functions in F˛ with limn!1 Fn D F , where the convergence

is uniform, then F is in F˛ .

4. Let ˛ and ˇ be some constants in Œ0; 1� with ˛ � ˇ, then Fˇ � F˛ .

5. Let F be a function in F˛ , then G given by (8.2) is an element of F1�˛ .

Proof. The proof is straightforward. ut

Example 8.1. Let F be a rational function given by F.x/ D .axCb/=.cxCd/. For

which coefficients is F an element of F˛? From F.0/
Š

D 0 it follows that b D 0 and

from F.1/
Š

D 1 it follows that a D c C d . Consequently, without loss of generality

F can be written as F.x/ D ..c C 1/x/=.cx C 1/. From the conditions on F 0 it

follows that F is in F˛ if and only if c 2 Œ˛ � 1; 1
˛

� 1�.

Example 8.2. Let F be a quadratic function given by F.x/ D a2x2 C a1x C a0.

For which coefficients is F an element of F˛? From F.0/
Š

D 0 it follows that

a0 D 0 and from F.1/
Š

D 1 it follows that a2 C a1 D 1. As a consequence we

have F 0.x/ D 2a2x C 1 � a2. In order to satisfy F 0.x/ � 0 the coefficient a2

has to be in Œ�1; 1�. To fulfill the condition F 0.x/ � 1
˛

easy calculations show that

a2 has to be an element of Œ1 � 1
˛
; 1

˛
� 1�. Altogether we can conclude that the

quadratic function F given by F.x/ D ax2 C .1 � a/x is in F˛ if and only if

a 2 Œmax.�1; 1 � 1
˛
/; min.1; 1

˛
� 1/�. Figure 8.1 shows the functions F given by

F.x/ D x2 and G given by (8.2) for different values of ˛.
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Fig. 8.1 F (solid), given by F.x/ D x2 and G, given by (8.2) for different values of ˛. (a) ˛ D 1
2
.

(b) ˛ D 1
3

Remark 8.1. The copula CXY is a special case of the construction presented in [2]

for the choice of f1 D f2 D idŒ0;1�, g1 D F , g2 D G, A.u; v/ D B.u; v/ D

min.u; v/ and H.x; y/ D ˛x C .1 � ˛/y. In this setting (8.1) can be obtained from

Theorems 1 and 2 of [2].

In [3, 4] a copula Kı;� is presented that is given as follows

Kı;�.x; y/ D minfx; y; �ı.x/ C .1 � �/ı.y/g; (8.5)

where ı is the diagonal section of a copula and � is a constant that lies in an interval

that is dependent on ı. They also show that Kı;� has a diagonal section equal to ı.

Although the definitions of the copula Kı;� and CXY might seem similar, they are

not identical.

Remark 8.2. The copula Kı;� and the copula CXY are essentially different.

Proof. Without loss of generality let F.y/ � y for all y 2 Œ0; 1�, then G.y/ � y

for all y 2 Œ0; 1�. Choose x; y in a way that y < x < G.y/ holds. If Kı;� were

equal to CXY , then the diagonal ı of Kı;� would be given by ı.x/ D CXY.x; x/ D

˛F.x/ C .1 � ˛/x. Consequently, the following equations would hold

CXY.x; y/ D ˛F.y/ C .1 � ˛/x;

Kı;�.x; y/ D minfy; ˛�F.x/ C �.1 � ˛/x C .1 � �/˛F.y/ C .1 � ˛/.1 � �/yg:

Obviously, the equation y D ˛F.y/C.1�˛/x does not hold for arbitrary x; y with

y < x < G.y/, so it must hold

˛F.x/ C .1 � ˛/x D ˛�F.x/ C �.1 � ˛/x C .1 � �/˛F.y/ C .1 � ˛/.1 � �/y

(8.6)

in order to satisfy Kı;� D CXY . Equation 8.6 is equivalent to
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Fig. 8.2 (a) Borders for F and G. (b) Borders for the copula

˛�.F.y/ � F.x// C .1 � �/.1 � ˛/.x � y/ D 0; (8.7)

which can be written as

�

�

1 C
.1 � ˛/.x � y/

˛.F.x/ � F.y//

�

D
.1 � ˛/.x � y/

˛.F.x/ � F.y//
; (8.8)

since F.x/ ¤ F.y/ due to (8.7) and y < x. From (8.8) we can conclude1 that

� D
1

1 C ˛.F.x/�F.y//

.1�˛/.x�y/

: (8.9)

Since the right-hand side of the last equation is not constant for any nonlinear

function F the statement follows. ut

The support of the constructed copula CXY always lies on the graphs of the

functions F �1 and G�1. Given a fixed ˛ due to the restrictions on F (and G) there

are points in Œ0; 1�2 which cannot be part of the support of the copula, regardless of

which function F 2 F˛ is chosen. Part (a) of Fig. 8.2 shows the borders in which

the graphs of F (dashed line) and G (dotted line) have to lie. Having the borders of

F and G it is easy to calculate the borders in which the support of the copula has to

lie (see part (b) of Fig. 8.2). The function F has to fulfill the condition F 0.x/ � 1
˛

for all x 2 Œ0; 1�, as a consequence points in the triangle .1 � ˛; 0/.1; 1/.1; 0/ or the

triangle .0; 0/.0; 1/.˛; 1/ cannot lie on the graph of F . Analogously, the borders for

G can be obtained.

1The term in brackets on the left-hand side of (8.8) is unequal to zero because otherwise it would

follow that 0 D �1.
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8.3 Singular Mixture Copulas

In this section we construct the convex sums (see [10]) of the singular copulas

presented in Sect. 8.2. We start with a description of the general construction and

subsequently consider specific mixing distributions.

8.3.1 General Construction

Consider a family fF!g � F˛ of distribution functions, then for a fixed ! we can

construct a singular copula LC! using F! and G! given by

G!.y/ D
y � ˛F!.y/

1 � ˛
:

The copula LC! is the distribution function of the random vector .X; Y / where X is

uniformly distributed on Œ0; 1� and Y is given by

Y WD I � F �1
! .X/ C .1 � I / � G�1

! .X/;

with I � B.1; ˛/. If ˝ is a real-valued random variable and F! 2 F˛ for all

observations ! of ˝ , then the convex sum of f LC!g is given by

PC.x; y/ D

Z

LC!.x; y/P˝.d!/

D ˛

Z

min.x; F!.y//P˝.d!/ C .1 � ˛/

Z

min.x; G!.y//P˝.d!/:

Especially, consider the family of distribution functions F! given by F!.y/ D

!y2 C .1 � !/y with ! 2 Œ�1; 1�. Let 0 < ˛ � 1
2
, then F! is an element of F˛

for all ! 2 Œ�1; 1� (see Example 8.2). Let ˝ be a random variable with values in

Œ�1; 1�, then the Singular Mixture Copula resulting from the family fF!g!2Œ�1;1� is

given by

C˛.x; y/ D P.X � x; Y � y/

D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

x ; .x; y/ 2 A1;

x C ˛
�

.x � y/ .F˝.ˇ/ � 1/ C .y2 � y/
R 1

ˇ
!P

˝.d!/
�

; .x; y/ 2 A2;

˛
�

.x � y/F˝.ˇ/ C y C .y2 � y/
R 1

ˇ !P
˝.d!/

�

C.1 � ˛/ .x C .y � x/F˝.b// C ˛.y � y2/
R b

�1
!P

˝.d!/ ; .x; y/ 2 A3;

˛.x � y/F˝.ˇ/ C y C ˛.y � y2/
R ˇ

�1
!P

˝.d!/ ; .x; y/ 2 A4;

y ; .x; y/ 2 A5;
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where ˇ D x�y

y2�y
, b D ˇ ˛�1

˛
and

A1 D
˚

.x; y/ 2 Œ0; 1�2 jx < y2
�

;

A2 D
n

.x; y/ 2 Œ0; 1�2 jy2 � x <
�˛

1 � ˛
.y � y2/ C y

o

;

A3 D
n

.x; y/ 2 Œ0; 1�2 j
�˛

1 � ˛
.y � y2/ C y � x <

˛

1 � ˛
.y � y2/ C y

o

;

A4 D
n

.x; y/ 2 Œ0; 1�2 j
˛

1 � ˛
.y � y2/ C y � x < 2y � y2

o

;

A5 D
˚

.x; y/ 2 Œ0; 1�2 j2y � y2 � x
�

:

The density of the copula is given by

c˛.x; y/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0 ; .x; y/ 2 A1;

f̨˝.ˇ/
y2�2xyCx

.y2�y/2 ; .x; y/ 2 A2;

y2�2xyCx

.y2�y/2

�

f̨˝.ˇ/ C .1�˛/2

˛
f˝.b/

�

; .x; y/ 2 A3;

f̨˝.ˇ/
y2�2xyCx

.y2�y/2 ; .x; y/ 2 A4;

0 ; .x; y/ 2 A5:

Remark 8.3. For ˛ > 1
2

it is possible to change the distribution of ˝ in such a way

that one receives the same copulas as for ˛ < 1
2
, so we restrict our investigation to

the case ˛ � 1
2
.

Theorem 8.2. The copula C˛ has upper and lower tail dependence given by

�U D 1 � ˛

�Z 1

0

!P
˝.d!/ �

Z 0

�1

!P
˝.d!/

�

D �L:

Proof. The proof is straightforward. ut

Since Singular Mixture Copulas are convex sums of the singular copulas

mentioned in Sect. 8.2 the borders described in part (b) of Fig. 8.2 are also valid

for Singular Mixture Copulas. Moreover, because Singular Mixture Copulas are

absolutely continuous we are able to compare the area of the copula’s support with

the area of the unit square. From the discussion in Sect. 8.2 we know that the support

cannot lie in the triangles .0; 0/.0; 1/.˛; 1/ and .1 � ˛; 0/.1; 0/.1; 1/. Consequently,

the parallelogram in which the support of the Singular Mixture Copula can lie has

an area of max.˛; 1 � ˛/.

In the special case where F! is a quadratic function for every ! the support of

the Singular Mixture Copula is bounded by the inverses of the functions F�1.x/ D

2x � x2 and F1.x/ D x2, respectively. Here the support has an area of 1
3
.
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8.3.2 Special Cases

In the above-mentioned construction the mixing distribution has to be concentrated

on a finite interval. Therefore a generalized beta distribution, viz. a linear transfor-

mation of a beta distribution, provides a reasonable choice as a mixing distribution.

Moreover, the beta distribution is very flexible so the resulting Singular Mixture

Copulas should also show this flexibility.

Figures 8.3 and 8.4 show scatter plots of simulated Singular Mixture Copulas

with a generalized beta distribution as mixing distribution.

Theorem 8.3. Let C˛;p;q denote a Singular Mixture Copula with a Beta.�1; 1; p; q/

mixing distribution. Then the survival copula of C˛;p;q is given by OC˛;p;q D C˛;q;p .

Proof. The proof is straightforward. ut

Another possible mixing distribution is a uniform distribution on the interval

Œ��; �� with � � 1. The choice � D 1 would be a special case of the above-

mentioned generalized beta distribution. Here, the copula, which we will denote

with C˛;� , and its density have a closed form representation and the upper and

lower tail dependence coefficients can be determined. See [8] for the proofs of this

subsection. The copula C˛;� is given by

C˛;� .x; y/ D P.X � x; Y � y/

D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

x ; .x; y/ 2 A1;

˛
4�

�

.x�y/2

y2�y
C 2�.x C y/ C �2.y2 � y/

�

C .1 � ˛/x ; .x; y/ 2 A2;

1
2

�

.x�y/2

2�.y2�y/

�

.1�˛/2

˛
C ˛

�

C x C .1 � ˛�/y C ˛�y2
�

; .x; y/ 2 A3;

˛
4�

�

.x�y/2

y2�y
C 2�.x C y/ C �2.y2 � y/

�

C .1 � ˛/y ; .x; y/ 2 A4;

y ; .x; y/ 2 A5;

where

A1 D
˚

.x; y/ 2 Œ0; 1�2 jx � ��.y � y2/ C y
�

;

A2 D
n

.x; y/ 2 Œ0; 1�2 j � �.y � y2/ C y < x < ��
˛

1 � ˛
.y � y2/ C y

o

;

A3 D
n

.x; y/ 2 Œ0; 1�2 j � �
˛

1 � ˛
.y � y2/ C y < x < �

˛

1 � ˛
.y � y2/ C y

o

;

A4 D
n

.x; y/ 2 Œ0; 1�2 j�
˛

1 � ˛
.y � y2/ C y < x < �.y � y2/ C y

o

;

A5 D
˚

.x; y/ 2 Œ0; 1�2 jx � �.y � y2/ C y
�

:
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Fig. 8.3 Scatter plots of simulated points from a Singular Mixture Copula with generalized beta

mixing distribution for ˛ D 0:5 and different shape parameters
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Fig. 8.4 Scatter plots of simulated points from a Singular Mixture Copula with generalized beta

mixing distribution for ˛ D 0:3 and different shape parameters
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The density of this copula is given by

c˛;� .x; y/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

˛
2�

y2�2yxCx

.y2�y/2 ; .x; y/ 2 A2;

1
2�

�

.1�˛/2

˛
C ˛

�

y2�2yxCx

.y2�y/2 ; .x; y/ 2 A3;

˛
2�

y2�2yxCx

.y2�y/2 ; .x; y/ 2 A4;

0 ; otherwise:

Theorem 8.4. The copula C˛;� has upper and lower tail dependence given by

�U D 1 �
˛�

2
D �L:

Theorem 8.5. The copula C˛;� is radially symmetric, i.e., C˛;� D OC˛;� .

Theorem 8.6. The concordance measures Kendall’s tau and Spearman’s rho for

the copula C˛;� are given by

�˛;� D 1 � ˛�
1 C 4.˛ � 1/2

9.1 � ˛/
and �˛;� D 1 �

˛�2

15.1 � ˛/
;

respectively.

Corollary 8.1. Kendall’s tau for the copula C˛;� lies in the interval Œ 7
9
; 1�, Spear-

man’s rho for the copula C˛;� lies in the interval Œ 14
15

; 1�.

8.4 Concluding Remarks

In this paper we presented a method for the construction of nonsingular copulas by

mixing a family of singular copulas. We also showed how the constructed singular

copulas differ from similar constructions in the literature. These copulas can be used

to model strongly dependent random variables (see [8]).

In the future we want to investigate generalizations of the presented method, e.g.,

one could replace the quadratic functions in the definition of the singular copulas

with other functions or use other mixing distributions.

References

1. Cherubini, U., Luciano, E., Vecchiato, W.: Copula Methods in Finance. Wiley, Chichester

(2004)

2. Durante, F.: Construction of non-exchangeable bivariate distribution functions. Stat. Papers 50,

383–391 (2009)



8 Singular Mixture Copulas 175

3. Durante, F., Jaworski, P.: Absolutely Continuous Copulas with Given Diagonal Sections.

Comm. Statist. Theory Methods 37, 2924–2942 (2008)
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