
Some Extensions of Singular
Mixture Copulas

Dominic Lauterbach and Dietmar Pfeifer

Abstract In Lauterbach (ZVersWiss, 101(5), 605–619, 2012) and Lauterbach and
Pfeifer (Copulae in mathematical and quantitative finance, Springer, Dordrecht,
2013) the family of Singular Mixture Copulas was introduced. We present and dis-
cuss two extensions of these copulas. Both extensions are based on an approach
introduced by Khoudraji (Contributions à l’étude des copules et à la modélisation
des valeurs extrêmes bivariées. Ph.D. thesis, 1995).We study the dependence proper-
ties of the constructed copulas and show that the resulting copulas possess differing
upper and lower tail dependence coefficients.

1 Introduction

Copulas are an effective and versatile tool for studying and modeling multivariate
dependence. The term copula was first used in a mathematical sense by Sklar (1959),
although the history of copulas can be traced back to Fréchet (1951) and Hoeffding
(1940). In the 1970s, several authors rediscovered copulas under different names,
among them Deheuvels (1978) who refered to them as dependence functions. Since
then copulas have gained popularity in theory as well as in applications, see, e.g.,
Cherubini et al. (2004); Embrechts et al. (2003); Genest and MacKay (1986); Joe
(1997); McNeil et al. (2005); Nelsen (2006); Wolff (1977).

In Durante and Sempi (2010) it was suggested that the “search for families of
copulas having properties desirable for specific applications” should be one of the
directions of future investigation in copula theory. It was also mentioned that these
families of copulas should exhibit “different asymmetries, non-exchangeable cop-
ulas, copulas with different tail behavior, etc.” As a contribution to this field of
research, Lauterbach (2012) and Lauterbach and Pfeifer (2013) introduced a fam-
ily of copulas—Singular Mixture Copulas. These copulas were constructed via a
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convex sum1 of certain singular copulas. It was also shown in Lauterbach (2012)
that these copulas can be used to model the dependence between the flood levels of
gauging stations along the German North Sea coast. In this paper, we want to present
an extension of Singular Mixture Copulas and thus overcome some drawbacks of
the aforementioned construction, such as the restricted support of Singular Mixture
Copulas. To this end, we make use of an approach that was first studied by Khoudraji
(1995) (see also Genest et al. (1998); McNeil et al. (2005)): Let C be an arbitrary
copula, then C can be extended to a parametric family of copulas Cα,β by setting

Cα,β(u, v) = u1−αv1−βC(uα, vβ),

where 0 ≤ α, β ≤ 1. We study the resulting copulas and take a look at their mathe-
matical properties, especially with respect to dependence.

This paper is organized as follows. In Sects. 2 and 3, we summarize the construc-
tion and some important properties of Singular Mixture Copulas. In Sects. 4 and 5,
we present two extensions of SingularMixture Copulas that are based onKhoudraji’s
device mentioned above.

2 Singular Copulas

In Lauterbach (2012); Lauterbach and Pfeifer (2013) we introduced a method of
constructing singular copulas. This construction uses two distribution functions F
and G on [0, 1] which fulfill the equation

αF(x) + (1 − α)G(x) = x (1)

for all x ∈ [0, 1], where α is a constant in (0, 1). The function G is given by

G(x) = x − αF(x)

1 − α
. (2)

Let X be a random variable with a continuous uniform distribution over [0, 1], and
let I be a random variable, independent of X , with a binomial B(1, α)-distribution.
Define the random variable Y via

Y := I · F−1(X) + (1 − I ) · G−1(X). (3)

Then the random variable Y also follows a continuous uniform distribution over
[0, 1]. The distribution function of (X, Y ) is the singular copula given by

CXY (x, y) = αmin(x, F(y)) + (1 − α)min(x, G(y)).

1 See Nelsen (2006), Sect. 3.2.
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The following lemma gives necessary and sufficient conditions for F to guarantee
that G is also a distribution function.

Lemma 2.1 Let F be an absolutely continuous distribution function on [0, 1]. Then
G given by (2) is an absolutely continuous distribution function on [0, 1] if and only
if F ′(x) ≤ 1

α
for all x ∈ [0, 1].

Proof From F(0) = 0 and F(1) = 1, it follows immediately that G(0) = 0 and
G(1) = 1. From Eq. (2), we have

G ′(x) = 1 − αF ′(x)

1 − α
, (4)

so that G ′(x) ≥ 0 ⇔ F ′(x) ≤ 1
α
, which completes the proof. �

The assumption of absolute continuity of F is essential, as the following example
shows.

Example 2.1 Let F be the distribution function of the Cantor distribution. This
function is also known as the Cantor function.2 Then F is an almost everywhere
differentiable distribution function on [0, 1] with F ′(x) = 0 ≤ 1

α
for all x ∈ [0, 1]

and any α ∈ (0, 1). However, F is not absolutely continuous. It holds that F(x) = 1
2

for all x ∈ [ 13 , 2
3 ]. For α = 3

4 , we can conclude that,

G

(
1

3

)
=

1
3 − 3

4 · 1
2

1
4

= 4

3
− 3

2
= −1

6
< 0.

Consequently, the function G is not a distribution function on [0, 1].
We denote the class of functions that fulfill the properties in Lemma 2.1 byFα , i.e.,

Fα := {F : [0, 1] → [0, 1] | F is abs. cont., F(0) = 0, F(1) = 1, 0 ≤ F ′(x) ≤ 1
α
}.

Remark 2.1 The copula CXY is a special case of the construction presented in
Durante (2009) for the choice of f1 = f2 = id[0,1], g1 = F , g2 = G,
A(u, v) = B(u, v) = min(u, v) and H(x, y) = αx + (1 − α)y. In this setting
Eq. (1) corresponds to the assumptions in Theorems 1 and 2 of Durante (2009).

The following statements show some properties of the copula CXY which we will
use later.

Proposition 2.1 If α goes to zero then CXY converges to the Fréchet-Hoeffding
upper bound M2.

Proof For α = 0 the function G is given by G(x) = x and therefore CXY is given
by CXY (x, y) = min(x, G(y)) = min(x, y) = M2(x, y). �

2 See Dovgoshey et al. (2006) for more information about the Cantor function.
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Theorem 2.1 For any α ∈ (0, 1) and any F ∈ Fα the copula CXY is positively
quadrant dependent.

Proof We have to show that CXY (x, y) ≥ xy holds for all (x, y) ∈ [0, 1]2. Due to
the representation of CXY we consider four cases.

Case 1:

CXY (x, y) = αx + (1 − α)x = x ≥ xy.

Case 2:

CXY (x, y) = αF(y) + (1 − α)G(y) = αF(y) + y − αF(y) = y ≥ xy.

Case 3:

CXY (x, y) = αx + (1 − α)G(y) = y + α(x − F(y)).

It is easily seen that y + α(x − F(y)) ≥ xy is equivalent to

αx − xy

α
≥ F(y) − y

α
. (5)

For y ≤ α the left-hand side of (5) is positive and the right-hand side is
negative, since F ′(y) ≤ 1

α
for all y ∈ [0, 1]. For y > α the following holds

αx − xy + y

α
= αx + y(1 − x)

α
>

αx + α(1 − x)

α
= 1 ≥ F(y).

Case 4:
CXY (x, y) = αF(y) + (1 − α)x = x + α(F(y) − x).

It is easily seen that x + α(F(y) − x) ≥ xy is equivalent to

F(y) ≥ x · y − (1 − α)

α
. (6)

For y ≤ 1 − α the right-hand side of (6) is negative, therefore the desired
inequality holds. For y > 1 − α we can conclude from F ′(y) ≤ 1

α
for all

y ∈ [0, 1] that

F(y) ≥ y − (1 − α)

α
≥ x · y − (1 − α)

α
. �
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3 Singular Mixture Copulas

Consider a family {Fω} ⊂ Fα of distribution functions, then—using the construction
above—for a fixed ω we can construct the singular copula Čω given by

Čω(x, y) = αmin(x, Fω(y)) + (1 − α)min(x, Gω(y)).

IfΩ is a real-valued random variable and Fω ∈ Fα for all observations ω ofΩ , then
the convex sum of {Čω} is given by

Ċ(x, y) =
∫

Čω(x, y)PΩ(dω)

= α

∫
min(x, Fω(y))PΩ(dω) + (1 − α)

∫
min(x, Gω(y))PΩ(dω).

These copulas were introduced in Lauterbach (2012), Lauterbach and Pfeifer
(2013) as Singular Mixture Copulas. A special case considered the family of distri-
bution functions Fω given by

Fω(y) = ωy2 + (1 − ω)y (7)

with ω ∈ [−1, 1]. Let 0 < α ≤ 1
2 then Fω is an element of Fα for all ω ∈ [−1, 1].

Let Ω be a random variable with values in [−1, 1] then the Singular Mixture Copula
resulting from the family {Fω}ω∈[−1,1] is given by

Cα(x, y) = P(X ≤ x, Y ≤ y)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, (x, y) ∈ A1,

x + α
(
(x − y) (FΩ(β) − 1) + (y2 − y)

∫ 1
β

ωPΩ(dω)
)

, (x, y) ∈ A2,

α
(
(x − y)FΩ(β) + y + (y2 − y)

∫ 1
β

ωPΩ(dω)
)

+(1 − α) (x + (y − x)FΩ(b)) + α(y − y2)
∫ b
−1 ωPΩ(dω), (x, y) ∈ A3,

α(x − y)FΩ(β) + y + α(y − y2)
∫ β

−1 ωPΩ(dω), (x, y) ∈ A4,

y, (x, y) ∈ A5,

(8)

where β = x−y
y2−y

, b = β α−1
α

and

A1 =
{
(x, y) ∈ [0, 1]2 |x < y2

}
,

A2 =
{
(x, y) ∈ [0, 1]2 |y2 ≤ x <

−α

1 − α
(y − y2) + y

}
,
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A3 =
{
(x, y) ∈ [0, 1]2 | −α

1 − α
(y − y2) + y ≤ x <

α

1 − α
(y − y2) + y

}
,

A4 =
{
(x, y) ∈ [0, 1]2 | α

1 − α
(y − y2) + y ≤ x < 2y − y2

}
,

A5 =
{
(x, y) ∈ [0, 1]2 |2y − y2 ≤ x

}
.

The density of the copula is given by

cα(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, (x, y) ∈ A1,

α fΩ(β)
y2−2xy+x
(y2−y)2

, (x, y) ∈ A2,

y2−2xy+x
(y2−y)2

(
α fΩ(β) + (1−α)2

α
fΩ(b)

)
, (x, y) ∈ A3,

α fΩ(β)
y2−2xy+x
(y2−y)2

, (x, y) ∈ A4,

0, (x, y) ∈ A5.

Depending on the choice of the family of distribution functions, the resulting
Singular Mixture Copula can be absolutely continuous, singular, or can possess
an absolutely continuous part and a singular part. An example of an absolutely
continuous Singular Mixture Copula was given above. If Fω = F for all ω, then the
resulting Singular Mixture Copula is singular and it is equal to the singular copula
presented in Sect. 2. As another example, consider a family of distribution functions
given by

F̃ω(x) =
{

1
2 Fω(2x), 0 ≤ x ≤ 1

2 ,

x, 1
2 ≤ x ≤ 1,

where Fω is given by (7). Then obviously F̃ω ∈ Fα for all ω ∈ [−1, 1]. Figure1
shows a scatter plot of simulated points from this copula, which we denote with C̃ ,
with a uniform mixing distribution and α = 1

2 .

Fig. 1 Scatter plot of
simulated points from the
copula C̃
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The copula C̃ clearly has a singular part and an absolutely continuous part. More-
over, it is the ordinal sumof the (absolutely continuous) SingularMixtureCopula pre-
sented above and the Fréchet-Hoeffding upper bound with respect to {[0, 1

2 ], [ 12 , 1]}.
The following propositions show some properties of Singular Mixture Copulas.

Proposition 3.1 If α goes to zero then Ċ converges to M2.

Proof The statement follows immediately from Proposition 2.1 and the construction
of the copula Ċ . �
Proposition 3.2 The Singular Mixture Copula Ċ is positively quadrant dependent.

Proof In order to proof the statement, we have to show that

Ċ(x, y) ≥ xy for all x, y ∈ [0, 1].

By construction of Ċ we have

Ċ(x, y) =
∫

Čω(x, y)PΩ(dω) ≥
∫

xyPΩ(dω) = xy for all x, y ∈ [0, 1],

because all copulas Čω are positively quadrant dependent (see Theorem 2.1). �
Proposition 3.3 The copula Cα has upper and lower tail dependence given by

λU = 1 − αE(|Ω|) = λL .

Proof The proof is straightforward. �

4 First Extension

Figure2 shows that the support of the copula Cα is very restricted. To overcome this
problem of Singular Mixture Copulas, we now want to investigate an extension of
the copula Cα that is based on the construction presented in Khoudraji (1995). Let a1
and a2 be two constants in (0, 1] and let Cα be the Singular Mixture Copula defined
in Sect. 3, then C∗

α given by

C∗
α(u, v) = u1−a1v1−a2Cα(ua1, va2)

is a copula. Of course, for a1 = a2 = 1 it holds that C∗
α = Cα , so we omit this case.

Remark 4.1 The above construction also works for a1 = 0 and a2 = 0, respectively.
However in both cases, the resulting copula is the independence copula. Exemplary
for a1 = 0, we receive

C∗
α(u, v) = uv1−a2Cα(u0, va2) = uv1−a2va2 = uv.
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Fig. 2 Scatter plots of simulated points from a Singular Mixture Copula as in (8) for α = 0.3 and
with generalized beta mixing distribution (with shape parameters p and q)

The tail behavior of the C∗
α copulas differs from that of Singular Mixture Copulas,

as the following theorems show.

Theorem 4.1 For any (a1, a2) ∈ (0, 1]2\{1, 1}, the tail dependence coefficient of
the copula C∗

α (as defined above) equals 0.

Proof By definiton,

λL(C∗
α) = lim

u↘0

C∗
α(u, u)

u
= lim

u↘0
u1−a1−a2Cα(ua1 , ua2).

Due to the piecewise representation ofCα , there are several cases to consider depend-
ing on the choice of a1 and a2. Instead of determining the choices of a1 and a2 that
lead to a specific case, we will simply to calculate the above limit for all cases. This
approach is more convenient, because—as we will see—most of the limits are the
same—so there is no need for a distinction. We will denote the different cases by
A1, . . . , A5, as in the representation of Cα in Sect. 3.
A1:

C∗
α(u, u)

u
= u1−a1−a2 · ua1 = u1−a2 −→ 0 for a2 < 1.
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For a2 = 1 it would hold that ua1 ≥ u2 for all u ∈ [0, 1]. Consequently, case A1
cannot occur when a2 = 1.
A2:

C∗
α(u, u)

u
= u1−a1−a2

(
ua1 + α

(
(ua1 − ua2)

(
FΩ(β) − 1

)

+ (u2a2 − ua2)

∫ 1

β

ωPΩ(dω)

))

= u1−a2 + α

(
(u1−a2 − u1−a1)(FΩ(β) − 1)

+ (u1−a1+a2 − u1−a1)

∫ 1

β

ωPΩ(dω)

)
−→ 0 for a2 < 1.

When a1 = 1, notice thatβ = (u−ua2)/(u2a2−ua2) = (u1−a2−1)/(ua2−1) −→ 1.
For a2 = 1 case A2 cannot occur: The right-hand derivative of ua1 at u = 0 equals
infinity, therefore ua1 > −α

1−α
(u − u2) + u for sufficient small (positive) u.

A3:

C∗
α(u, u)

u
= u1−a1−a2

(
α

(
(ua1 − ua2)FΩ(β) + ua2

+ (u2a2 − ua2)

∫ 1

β

ωPΩ(dω)

)

+ (1 − α)

(
ua1 + (ua2 − ua1)FΩ(b))

+ α(ua2 − u2a2)

∫ b

−1
ωPΩ(dω)

)

= α

(
(u1−a2 − u1−a1)FΩ(β) + u1−a1

+ (u1−a1+a2 − u1−a1)

∫ 1

β

ωPΩ(dω)

)

+ (1 − α)(u1−a2 + (u1−a1 − u1−a2)FΩ(b)

)

+ α(u1−a1 − u1−a1+a2)

∫ b

−1
ωPΩ(dω)

−→ 0 for a1, a2 < 1.

For a1 = 1 or a2 = 1 case A3 cannot occur: For a1 = 1 the right-hand derivative of
−α
1−α

(ua2 −u2a2)+ua2 at u = 0 equals infinity, therefore −α
1−α

(ua2 −u2a2)+ua2 > u
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for sufficient small (positive) u. For a2 = 1 the right-hand derivative of ua1 at u = 0
equals infinity, therefore ua1 > u + α

1−α
(u − u2) for sufficient small (positive) u.

A4:

C∗
α(u, u)

u
= u1−a1−a2

(
α(ua1 − ua2)FΩ(β) + ua2

+ α(ua2 − u2a2)

∫ β

−1
ωPΩ(dω)

)
= α(u1−a2 − u1−a1)FΩ(β) + u1−a1 + α(u1−a1 − u1−a1+a2)

×
∫ β

−1
ωPΩ(dω)

−→ 0 for a1 < 1,

for a2 = 1 notice that β = (ua1 −u)/(u2 −u) = (ua1−1 −1)/(u −1) −→ −∞. For
a1 = 1 case A4 cannot occur: The right-hand derivative of α

1−α
(ua2 − u2a2) + ua2

at u = 0 equals infinity, therefore α
1−α

(ua2 − u2a2) + ua2 > u for sufficient small
(positive) u.
A5:

C∗
α(u, u)

u
= u1−a1−a2 · ua2 = u1−a1 −→ 0 for a1 < 1.

For a1 = 1 case A5 cannot occur: The right-hand derivative of 2ua2 − u2a2 at u = 0
equals infinity, therefore 2ua2 − u2a2 > u for sufficient small (positive) u.

Since all limits exist and are equal to zero, the proof is complete. �

Theorem 4.2 The upper tail dependence coefficient of the copula C∗
α (as defined

above) is given by

λU (C∗
α) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a2, (a1, a2) ∈ B1,

a2 + α(a2 − a1)(FΩ (γ ) − 1) − αa2
∫ 1
γ

ωPΩ(dω), (a1, a2) ∈ B2,

a2 + (a1 − a2) (α(1 − FΩ(γ )) + (1 − α)FΩ(δ))

+αa2
(∫ δ

−1 ωPΩ(dω) − ∫ 1
γ

ωPΩ(dω)
)

, (a1, a2) ∈ B3,

a1 + α(a2 − a1)FΩ (γ ) + αa2
∫ γ

−1 ωPΩ(dω), (a1, a2) ∈ B4,

where γ := a1−a2
a2

, δ := γ · α−1
α

and

B1 = {(a1, a2) ∈ (0, 1]2 | a1 > 2a2},
B2 =

{
(a1, a2) ∈ (0, 1]2 | a2

1 − α
< a1 ≤ 2a2

}
,
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B3 =
{
(a1, a2) ∈ (0, 1]2 | a2

1 − 2α

1 − α
< a1 ≤ a2

1 − α

}
,

B4 =
{
(a1, a2) ∈ (0, 1]2 | a2

1 − 2α

1 − α
≥ a1

}
.

Proof The upper tail dependence coefficient of C∗
α is given by

λU (C∗
α) = 2 − lim

u↗1

1 − C∗
α(u, u)

1 − u
= 2 − lim

u↗1

1 − u2−a1−a2Cα(ua1 , ua2)

1 − u
.

Due to the piecewise representation ofCα (see Sect. 3), we have to distinguish several
cases. It is easily seen that ua1 < u2a2 for u ∈ [0, 1) if and only if a1 > 2a2.
Therefore, if (a1, a2) ∈ B1 then Cα(ua1, ua2) = ua1 , and consequently

λU (C∗
α) = 2 − lim

u↗1

1 − u2−a1−a2ua1

1 − u
= a2.

As a next step, we have to determine (a1, a2) such that ua1 < − α
1−α

(ua2 − u2a2) +
ua2 holds for u ∈ (1 − ε, 1) for some ε > 0. Since both ua1 and − α

1−α
(ua2 −

u2a2) + ua2 are equal to 1 for u = 1 this can be done by comparing their derivatives
at u = 1. It is (ua1)′(1) = a1 and (− α

1−α
(ua2 − u2a2) + ua2)′(1) = a2

1−α
, and

consequently ua1 < − α
1−α

(ua2 − u2a2) + ua2 holds for u ∈ (1 − ε, 1) for some
ε > 0 if and only if a2

1−α
< a1. Hence, if (a1, a2) ∈ B2 then Cα(ua1, ua2) = ua1 +

α
(
(ua1 − ua2)(FΩ(β) − 1) + (u2a2 − ua2)

∫ 1
β

ωPΩ(dω)
)
where β is given by

β = ua1 − ua2

u2a2 − ua2
with lim

u↗1

ua1 − ua2

u2a2 − ua2
= a1 − a2

a2
= γ.

Consequently,

λU (C∗
α) = 2 − lim

u↗1

1−u2−a1−a2
(

ua1 +α
(
(ua1 −ua2 )(FΩ(β)−1)+(u2a2 −ua2 )

∫ 1
β ωPΩ(dω)

))
1 − u

= 2 − (2 − a2) + α(a2 − a1) lim
u↗1

(FΩ(β) − 1) − αa2 lim
u↗1

∫ 1

β
ωPΩ(dω)

= a2 + α

(
(a2 − a1)(FΩ(γ ) − 1) − a2

∫ 1

γ
ωPΩ(dω)

)
.

With analogous arguments, we can conclude that ua1 < α
1−α

(ua2 − u2a2) + ua2

holds for u ∈ (1 − ε, 1) for some ε > 0 if and only if a2
1−2α
1−α

< a1. Therefore, if
(a1, a2) ∈ B3 then
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λU (C∗
α) = 2 − (2 − a2) + α(a1 − a2) + α(a2 − a1) lim

u↗1
FΩ(β)

− αa2 lim
u↗1

∫ 1

β

ωPΩ(dω) + (1 − α)(a1 − a2) lim
u↗1

FΩ(b)

+ αa2 lim
u↗1

∫ b

−1
ωPΩ(dω)

= a2 + (a1 − a2) (α(1 − FΩ(γ )) + (1 − α)FΩ(δ))

+ αa2

( ∫ δ

−1
ωPΩ(dω) −

∫ 1

γ

ωPΩ(dω)

)
,

where b = β · α−1
α

with β as above and δ := limu↗1 b = γ · α−1
α

.
By comparing derivatives, we can conclude that 2ua2 − u2a2 ≤ ua1 holds for

u ∈ (1 − ε, 1) for some ε > 0 if and only if a1 ≤ 0 which would violate the
aforementioned assumptions. Hence, if (a1, a2) ∈ B4 then

λU (C∗
α) = 2 − (2 − a1) + α(a2 − a1) lim

u↗1
FΩ(β) + αa2 lim

u↗1

∫ β

−1
ωPΩ(dω)

= a1 + α(a2 − a1)FΩ (γ ) + αa2

∫ γ

−1
ωPΩ(dω). �

Corollary 4.1 If a1 = a2 = a, then the copula C∗
α has upper tail dependence

given by

λU (C∗
α) = a (1 − αE(|Ω|)) = aλU (Cα).

Proof From Theorem 4.2 we can conclude

λU (C∗
α) = a + αa

(∫ 0

−1
ωPΩ(dω) −

∫ 1

0
ωPΩ(dω)

)
= a (1 − αE(|Ω|)) . �

Proposition 4.1 The copula C∗
α is positively quadrant dependent.

Proof By the fact that Cα is positively quadrant dependent, (see Proposition 3.2),

C∗
α(u, v) = u1−a1v1−a2Cα(ua1, va2) ≥ u1−a1v1−a2ua1va2

= uv for all u, v ∈ [0, 1]. �

Figure3 shows that the C∗
α copulas exhibit even more asymmetry than Singular

Mixture Copulas. This is not surprising since the construction used was introduced
by Khoudraji (1995) to construct asymmetric copulas from exchangeable copulas.
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Fig. 3 Scatter plots of simulated points from the copula C∗
α for α = 0.3 and different values for

ak . The underlying mixture distribution is a U (−1, 1)-distribution

Moreover, this construction overcomes the drawback of a very restricted support
(compare Fig. 2 with Fig. 3) which was a major disadvantage of Singular Mixture
Copulas. Consequently, the copulas described in this section should find broader
application.

The increased flexibility of the C∗
α copulas is also emphasized by the following

proposition which shows that C∗
α copulas include both the Fréchet-Hoeffding upper

bound and the independence copula as a limiting case.

Proposition 4.2 The Fréchet-Hoeffding upper bound M2 and the independence cop-
ula Π2 are limiting cases of a series of C∗

α copulas.

Proof Let C∗
α,a1,a2 denote the copula given by C∗

α,a1,a2(u, v) = u1−a1v1−a2Cα(ua1 ,

va2), then clearly

lim
a1→0

lim
a2→0

C∗
α,a1,a2(u, v) = uvCα(1, 1) = uv = Π2(u, v).

On the other hand,

lim
a1→1

lim
a2→1

C∗
α,a1,a2(u, v) = Cα(u, v),

and Proposition 3.1 showed that limα→0 Cα(u, v) = M2(u, v). �
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5 Second Extension

Following the approach of Khoudraji (1995), it is also possible to construct a new
copula using two Singular Mixture Copulas Cα and Cβ via

C�(u, v) = Cα(u1−a1, v1−a2)Cβ(ua1, va2)

with a1, a2 ∈ [0, 1].
Proposition 5.1 The copula C� is positively quadrant dependent.

Proof By the fact that both Cα andCβ are positively quadrant dependent (see Propo-
sition 3.2),

C�(u, v) = Cα(u1−a1 , v1−a2)Cβ(ua1 , va2) ≥ u1−a1v1−a2ua1va2

= uv for all u, v ∈ [0, 1]. �

Like the C∗
α copulas, the C� copulas include both the Fréchet-Hoeffding upper

bound and the independence copula as a limiting case as the following proposition
shows.

Proposition 5.2 The Fréchet-Hoeffding upper bound M2 and the independence cop-
ula Π2 are limiting cases of a series of C� copulas.

Proof Let C�
α,β,a1,a2

(u, v) = Cα(u1−a1, v1−a2)Cβ(ua1, va2), then clearly

lim
a1→0

lim
a2→1

C�
α,β,a1,a2(u, v) = Cα(u, 1)Cβ(1, v) = uv = Π2(u, v).

On the other hand,

lim
a1→0

lim
a2→0

C�
α,β,a1,a2(u, v) = Cα(u, v),

and Proposition 3.1 showed that limα→0 Cα(u, v) = M2(u, v). �

As Fig. 4 shows, C� copulas possess quite asymmetric shapes. This copula con-
struction also overcomes—to some extent—the drawback of the restricted support.
In contrast to the C∗

α construction, it is possible to create copulas which distribute
probability mass only on a restricted area, but this area is much less restricted than
the corresponding area in the Singular Mixture Copula approach.

At first glance, Fig. 4 might seem to show that C� can possess a singular com-
ponent. Nevertheless, this is not true. Since Cα and Cβ are absolutely continuous
copulas, it is apparent from its construction that C� is absolutely continuous, too.
What seems to be a singular component is in fact a very narrow band in which
probability mass is distributed.
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Fig. 4 Scatter plots of simulated points from the copula C� for α = 0.3, β = 0.1 and different
values of ak . The underlying mixture distributions are two U (−1, 1)-distributions

6 Concluding Remarks

In this paper, we presented and discussed two extensions of Singular Mixture
Copulas. These extensions are based on the approach introduced inKhoudraji (1995).
We showed that the constructed copulas can overcome some drawbacks of Singular
Mixture Copulas, and thus offer a more flexible tool for modeling stochastic depen-
dence. We also showed that the copula C∗

α possesses a form of asymmetry in the way
that it exhibits no lower tail dependence yet upper tail dependence.
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