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copulas to highly asymmetric data in arbitrary dimensions. 
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1. Introduction  
 
Infinite partition-of-unity copulas have been introduced recently in the paper by Pfeifer et al. (2016). The 
main emphasis there was, however, on a particular symmetric case called diagonal dominance for which 
tail dependence coefficients could be explicitly calculated. The general asymmetric case was not treated 
in full detail. Our particular interest here is to complete the general setup with a suggestion how a data 
driven approach can be used to fit such copulas to highly asymmetric data in arbitrary dimensions, a ques-
tion that had remained open so far. 
 
2. A formal framework for infinite partition-of-unity copulas 
 
Assume that { }( )j +Îki i
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Let further { } +Î dpi i
 represent the distribution of an arbitrary discrete d-dimensional random vector Z 

over + d  where, for simplicity, we write ( )1, , ,=  di ii  and 
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defines the density of a d-variate copula, which is called infinite partition-of-unity copula (IPU-copula for 
short). 
 
Alternatively, we can rewrite (1) as 
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where the 
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f i k d  denote the Lebesgue densities induced by the { }( ) .j +Îki i
u   

A stochastic representation of the probability distribution induced by (1) or (2) is given by the random 

vector ( ) ( ) ( )
11 1,Z ,Z, , Z : , ,

dd dZ U U= =U Z U    (with Z as above) with stochastically independent ran-

dom variables { }| 1, , ,kiU k d i += Î   (also independent of Z) where the distribution of kiU  is induced 

by the density 
( )
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j
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  ki

ki
ki

f i k d  Z is called the driver of the IPU copula with density 

given in (1). 
 
The following two classes of IPU copulas have been investigated in detail in Pfeifer et al. (2016), among 
others: 
 
Example 1 (negative binomial copula): Let, for fixed integers 0,>ka   
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Pareto distribution. The densities NB
kif  are those of a beta distribution with parameters ( 1, 1).+ +ki a  The 

corresponding copula density is thus given by 
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Example 2 (Poisson copula): Let, for ( ) : ln(1 ) 0, (0,1)=- - > ÎL u u u  and fixed parameters 0,>ka   
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for , +Îk i  and (0,1).Îu  The corresponding copula density is thus given by 
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Note that a random variable kiX  with density P
kif  can be represented as 1 exp( ),= - -ki kiX Y  where kiY  

follows a gamma distribution with shape parameter 1+i  and scale parameter 1.+ka   

 
In Pfeifer et al. (2016), essentially the symmetrical case, i.e. the case of identical components of the 
driver Z was considered (so called diagonal dominance). This means that the copula induced by the d-

variate distribution of Z is given by the upper Fréchet bound ( )1,( ) min , , (0,1) .= Î d
dC u uu u   In the 

two-dimensional case, the above formulas simplify to a great extent. In particular, it was proved that the 
negative binomial copula for arbitrary 1 2 0= = >a a a  has a positive tail dependence coefficient given by  
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The Poisson copula, in contrast, has no tail dependence for all choices 1 2 0= = >a a a  although the den-

sity given by (6) is unbounded and has a pole in the point ( , ) (1,1).=u v   
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 density of a bivariate negative binomial copula, 5=a        density of a bivariate Poisson copula, 5=a  
 
So far the question remained open how such copulas could be fitted to highly asymmetric data in arbitrary 
dimensions. In the sequel, we shall give a constructive answer to this problem.  
 
 
3. Constructing infinite partition-of-unity copulas from given data 
 
The general idea here is to relate the { } ,+Î dpi i

which essentially determine the structure of the IPU cop-

ula, to the empirical copula given by the data observed in an appropriate way. Let, for this purpose, de-

note Ĉ  a copula that is suitably estimated from the empirical copula, like a Bernstein copula, a rook cop-
ula (cf. Cottin and Pfeifer (2014)), appropriate shuffles of M (cf. Nelsen (2006), section 3.2.3) or other 
patchwork copulas that can be easily simulated by Monte Carlo methods (cf. Durante and Fernández-
Sánchez (2010) or Durante et al. (2013)). Let further denote kF  the cumulative distribution function in-

duced by the discrete distribution ,a ·k  i.e. 
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This follows immediately from standard arguments in Monte Carlo theory: in Example 1, we have 
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for ,+Îi  as desired. 
 
The method proposed here allows for a great flexibility concerning the construction of data-driven IPU 
copulas, including cases with positive tail dependence. We discuss this here along the example given in 
Cottin and Pfeifer (2014), Example 4.2, which was also the basis for the discussion in Pfeifer et al. 
(2016), Section 4. 
 
The following table shows the original data ( )i ix y  and the corresponding rank vectors ( )1 2, .i ir r    

 

i ix  iy  1ir  2ir

1 0.468 0.966 4 9

2 9.951 2.679 20 20

3 0.866 0.897 8 4

4 6.731 2.249 19 19

5 1.421 0.956 13 8

6 2.040 1.141 17 15

7 2.967 1.707 18 18

8 1.200 1.008 11 10

9 0.426 1.065 3 12

10 1.946 1.162 15 16

11 0.676 0.918 5 6

12 1.184 1.336 10 17

13 0.960 0.933 9 7

14 1.972 1.077 16 13

15 1.549 1.041 14 11

16 0.819 0.899 6 5

17 0.063 0.710 1 1

18 1.280 1.118 12 14

19 0.824 0.894 7 3

20 0.227 0.837 2 2
 

 
 

   graph of original data 
 
 

 
 

   graph of rank vectors 
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The following graphs show 5,000 Monte Carlo simulations each from different constructions of data-
driven IPU copulas (small dots), with a superposition of the empirical copula (scaled rank vectors) as lar-
ge white points. The symmetric cases (negative binomial and Poisson copulas) were constructed accord-
ing to the suggestions in Pfeifer et al. (2016), Section 4. The asymmetric cases were constructed on the 
basis of a shuffle of M copula with local upper Fréchet bounds for the driver Z, shown first. Note that the 
location of the corresponding line sections are one to one determined by the relative rank vectors from the 
original data. 
 

         
 

                          relative ranks / 20·ir                             shuffle of M with local upper Fréchet bounds 
 

          
 

                                 Bernstein copula                           symmetric negative binomial copula, 5= =a b   
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    asymmetric negative binomial copula, 5= =a b       asymmetric negative binomial copula, 10= =a b        
 

         
 

               symmetric Poisson copula, 6= =a b                   asymmetric Poisson copula, 6= =a b  
 

          
 

              asymmetric Poisson copula, 10= =a b                 asymmetric Poisson copula, 15= =a b  
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As can be clearly seen, the asymmetric IPU copula follows the given data (empirical copula) much better 
than the symmetric IPU copulas. Also, in contrast to the Bernstein copula with no tail dependence, the 
asymmetric negative binomial IPU copulas always show a positive tail dependence. Since tail dependence 
is an asymptotic property, we can conclude that the corresponding tail dependence coefficient in the 
above constructions can be calculated from the parameter =a b  according to relation (7). Note also that 
although the pictures above might suggest a positive tail dependence for the asymmetric Poisson IPU 
copula, this is theoretically not possible. 
 
 
4. Implications for risk management 
 
The new European supervisory regulations in the financial sector (Basel III for banks, Solvency II for 
insurance companies) require the calculation of a sufficient capital adequacy based on the risk measure 
Value@Risk VaR ( ),a S  which is defined as the 1 a-  quantile of the distribution of the total portfolio 

risk 
1=

=å
d

i
i

S X  where 1, , dX X  are the individual risk positions in the portfolio. Especially in internal 

models for the calculation of the underlying aggregate risk measure, it is important to find appropriate  
models for the stochastic dependence between individual risk positions. It is well known that in the case 
of comonotonicity between risks – i.e., the underlying copula is the upper Fréchet bound – there is no 
diversification effect and the risk measure Value@Risk is additive (cf. McNeil et al. (2015), Proposition 
7.20). Also, the worst case for the total Value@Risk is not attained under comonotonicity but rather in 
cases where there is a kind of local negative dependence in the upper right corner of the underlying cop-
ula (cf. Puccetti and Rüschendorf (2012) or Embrechts et al. (2013)). A similar negative result holds for 
an assumed dependence between correlation and diversification (cf. Pfeifer (2013)), which is frequently 
stated in the common legislative papers. The following examples show how the asymmetric data-driven 
IPU copula approach can provide competing estimates for the risk measure Value@Risk on the basis of 
the same data observed. For the sake of simplicity, we use the data set from Cottin and Pfeifer (2014), 
Example 4.2, discussed above. We compare the following IPU copula approaches:  
 
 a classical Bernstein copula with grid size 20 (cf. Cottin  and Pfeifer (2014)) 
 the asymmetric negative binomial copula with parameters 5,= =a b  10= =a b  and 15= =a b  

(for short: NB5, NB 10 and NB 15)  
 the asymmetric Poisson copula with parameters 6,= =a b  10= =a b  and 15= =a b (for short:  

Po 6, Po 10 and Po15) 
 “worst case” (WC) versions of these copulas where a particular shuffle of M is used (i.e. with a local 

lower Fréchet bound in the upper right corner)  
 
The following graphs show the corresponding  “worst case” copula driver: 
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                           relative ranks / 20·ir                                         “worst case” shuffle of M  

 
The following graphs show scatterplots from 5,000 simulations each for the underlying “worst case” 
copulas: 
 

          
 

“worst case” negative binomial copula, 5= =a b         “worst case” negative binomial copula, 10= =a b  
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“worst case” negative binomial copula, 15= =a b                “worst case” Poisson copula, 6= =a b  
 
 
 

            

         “worst case” Poisson copula, 10= =a b                         “worst case” Poisson copula, 15= =a b  
 
 
The following estimates are based on 5,000,000 Monte Carlo simulations for each particular copula ap-
proach. For the marginal distributions of the two risk positions X and Y, a lognormal and a Fréchet distri-
bution were estimated from the original data. The risk level a  was chosen as 0.05.a=   

With the estimated parameters for the marginal distributions, we have  0,05VaR ( ) 6.8190,X =  


0,05VaR ( ) 2.0984Y =  and  
0,05 0,05VaR ( ) VaR ( ) 8.9174.X Y+ =  From the simulations, we obtain, with 

,S X Y= +   
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Copula type Bernstein NB 5 NB 5 WC NB 10 NB 10 WC NB 15 NB 15 WC


0,05VaR ( )S  8.9586 8.8474 9.3989 8.8834 9.5421 8.8978 9.6198 

 
0,05 0,05VaR ( ) VaR ( )X Y+ 8.9174 8.9174 8.9174 8.9174 8.9174 8.9174 8.9174 

 
 

Copula type Po 6 Po 6 WC Po 10 Po 10 WC Po 15 Po 15 WC


0,05VaR ( )S  8.8200 9.1402 8.8453 9.2412 8.8820 9.3532 

 
0,05 0,05VaR ( ) VaR ( )X Y+  8.9174 8.9174 8.9174 8.9174 8.9174 8.9174 

 
 

The following graphs show some empirical quantile functions of the simulations above: 
 

       
 

empirical quantile functions 
 
These results clearly show that the “worst case” IPU copula approaches always result in a risk concentra-
tion effect while the basic negative binomial and the Poisson copula approach show a slight diversifica-
tion effect which decreases with increasing parameters .a b=  Note that the results for the negative bino-
mial and the Poisson copula are quite close in spite of the fact that the negative binomial copula here al-
ways has a positive tail dependence. It is interesting to see that the Bernstein copula also shows a risk 
concentration effect although there is no tail dependence and also no strict “worst case” behaviour. 
 
 
5. Conclusion 
 
The IPU copula approach for asymmetric data sets is a very flexible tool to model dependencies between 
risks, also in higher dimensions. It covers cases of tail dependence and also of “worst case” scenarios on 
the basis of the same data set. It follows the shape of the data more closely than most other approaches 
and can easily be implemented in usual spreadsheets. Note that our motivation for a patchwork construc-
tion for the copula driver resembles very much the arguments in Durante et al.(2013). The difference is, 
however, that the resulting IPU copula itself is not a patchwork copula. 
 
Especially in the light of the new European supervisory regulations in the financial sector such ap-
proaches might be interesting to figure out unfavourable constellations which lead to a higher demand of 
equity or solvency capital. It should be kept in mind, however, that this is not only a problem of the as-
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sumed underlying copula, but also depends significantly on the type of the marginal risk distributions, as 
is discussed in Ibragimov and Prohorov (2017). 
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