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Abstract: In this paper we discuss a natural extension of in�nite discrete partition-of-unity copulas which
were recently introduced in the literature to continuous partition of copulas with possible applications in
risk management and other �elds. We present a general simple algorithm to generate such copulas on the
basis of the empirical copula from high-dimensional data sets. In particular, our constructions also allow for
an implementation of positive tail dependence which sometimes is a desirable property of copula modelling,
in particular for internal models under Solvency II.
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1 Introduction
General discrete in�nite partition-of-unity copulas have been introduced recently in a series of papers by
Pfeifer et al. [6, 7]. Such copula constructions comprise, in particular, Bernstein copulas and allow, among
other advantages, for simple Monte Carlo studies in risk management on the basis of observed data without
speci�c �tting procedures to parametric copulamodels. In particular, various kinds of tail dependence can be
implemented into the copula construction if this seems to be appropriate for estimates of the riskmeasure for
a portfolio of risks under consideration. Thepresent paper completes our previous approaches by considering
continuous in�nite partition-of-unity copulas which have not yet been investigated before. We conclude the
paper with a new study of a high dimensional data set from the insurance branchwherewe compare classical
and partition-of-unity copulas with and without tail dependence.

2 Continuous partition-of-unity copulas
Assume that φk(s, u) for k = 1, . . . , d ∈ N represent Lebesgue densities of distributions overRwith a param-
eter u ∈ (0, 1), i.e.

φk(s, u) ≥ 0 and
∞∫

−∞

φk(s, u) ds = 1 for u ∈ (0, 1), (1)
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and let

αk(s) :=
1∫

0

φk(s, u) du ∈ (0,∞), Ak(s) :=
s∫

−∞

αk(w) dw for s ∈ R. (2)

Then by normalizing the φk(s, u) w.r.t. u ∈ (0, 1), we obtain new densities

fk(s, u) :=
φk(s, u)
αk(s)

, u ∈ (0, 1), for s ∈ R. (3)

Theorem 1. Let p(s1, . . . , sd) denote the density of an arbitrary absolutely continuous d-dimensional ran-
dom vector S = (S1, . . . , Sd) over Rd with marginal densities αk(•) for Sk. Then

c(u) :=
∞∫

−∞

· · ·
∞∫

−∞

p(s1, . . . , sd)
d∏
k=1

fk(sk , uk) ds1 . . . dsd , u = (u1, . . . , ud) ∈ (0, 1)d , (4)

de�nes the density of a d-variate copula, which is called continuous partition-of-unity copula (CPU-copula for
short).

The proof of Theorem 1 is completely analogous to the proofs of the corresponding theorems in Pfeifer et al.
[6, 7] and is therefore omitted.

Note that relation (4) also remains valid if the distribution induced by p is singular, i.e. ifP is a probability
measure with marginal distributions that possess the densities α1, . . ., αd without having a density w.r.t. the
d-dimensional Lebesgue measure. In this case, c(u) is a singular mixture of product densities given by

c(u) :=
∫ d∏

k=1
fk(•, uk) dP, u = (u1, . . . , ud) ∈ (0, 1)d . (5)

For instance, if P corresponds to the upper Fréchet bound and all φk are identical — hence also all fk are
identical, say to f —we have

c(u) :=
∞∫

−∞

α(s)
d∏
k=1

f (s, uk) ds, u = (u1, . . . , ud) ∈ (0, 1)d . (6)

We call this situation the case of diagonal dominance.
Note that it is extremely easy to perform a Monte Carlo simulation for a CPU-copula. We describe the

procedure in the following steps.
Step 1: Let (U1, . . . , Ud) be a vector of random variables with a given copula C̃ as joint distribution func-

tion, which we call copula driver for our construction. Let Qk(u) := A−1k (u), 0 < u < 1, k = 1, . . . , d, denote
the quantile function pertaining to αk. De�ne Sk := Qk(Uk) for k = 1, . . . , d. Then (S1, . . . , Sd) possesses
the joint (possibly degenerated) distribution P with the desired marginal distributions (in fact, C̃ here is the
copula pertaining to P).

Step 2: Let (s1, . . . , sd) be a realization of (S1, . . . , Sd) according to Step 1. Let further v1, . . ., vd be inde-
pendent realizations of the distributions with marginal densities fk(sk , •) for k = 1, . . . , d. Then (v1, . . . , vd)
is a realization of a random vector (V1, . . . , Vd)whose distribution is given by the CPU-copula with the den-
sity c as given by (4) or (5).

A particularly interesting choice of a data-driven C̃ is a copula that is derived from the empirical copula
in the sense of Deheuvels [2]. Such an approach was discussed in Pfeifer et al. [7]. In particular, the following
type of a driver is of importance, which is constructed as a patchwork copula with a local Gaussian copula.
Suppose that n independent observations (z1, . . . , zn) of a multivariate random vector Z = (Z1, . . . , Zd)with
an absolutely continuous distribution are given. Without loss of generality, we can identify the pertaining
empirical copula with the empirical rank vectors (r1, . . . , rn), where rik, i = 1, . . . , n, k = 1, . . . , d, is the
rank of zik among z1k, . . ., znk. Let CGi for i = 1, . . . , n denote a d-dimensional Gaussian copulawith variance-
covariancematrix Σi, and Y1, . . ., Yn be independent random vectors with joint distribution CGi , i = 1, . . . , n.
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Let further J denote a random variable which is uniformly distributed over the set {1, . . . , n}, independent
of the Y1, . . ., Yn. Then the random vector W := 1

n (YJ + rJ − I) with I = (1, . . . , 1) (d times) possesses a
patchwork copula C̃ as joint distribution, which is concentrated around the relative ranks of the data. C̃ can
be considered as a kind of natural extension of the empirical copula to a true copula, which is close to the
original dependence structure of the data. For the choice of Σi = diag(1, . . . , 1), which corresponds to the

independent case, we obtain a rook copula (cf. Cottin and Pfeifer [1]). For the choice of Σi =
( 1 ... 1

... . . .
...

1 ... 1

)
, we

obtain the upper Fréchet bound as a driver. In two dimensions, Σi =
$ 1 −1
−1 1

)
gives the lower Fréchet bound

as a driver. We call the resulting copula drivers UF and LF copula drivers, respectively. The independent case
(i.e. with zero correlations) is called rook copula driver.

3 Particular cases
Firstly, we introduce what we call the Gamma copula model. To start with, denote L(u) := − ln u, 0 < u < 1,
and de�ne φk(s, u) :=

Lak (u)
Γ(ak)

sak−1us, 0 < u < 1, s > 0, k = 1, . . . , d, with given parameters a1, . . . , ad > 0.
Hence the φk(•, u) are densities of Gamma distributions with parameters ak and 1/L(u)with the notation of
Klugman et al. [3, A.3.2.1]. Substituting x = L(u) or u = e−x, i.e. du = −e−x dx, we get

αk(s) : =
1∫

0

φk(s, u) du =
∞∫
0

xak
Γ(ak)

sak−1e−(1+s)x dx

= aksak−1
(1 + s)ak+1

∞∫
0

xak
Γ(ak + 1)

(1 + s)ak+1e−(1+s)x dx = aksak−1
(1 + s)ak+1 , s > 0.

(7)

Note that the αk are the densities of inverse Pareto distributionswith parameters ak and 1 (in the notation
of Klugman et al. [3, A.2.3.2]). With

fk(s, u) :=
φk(s, u)
αk(s)

= (1 + s)ak+1
Γ(ak + 1)

Lak (u)us (8)

we obtain from (4) the density of a Gamma copula:

cΓa(u) :=
∞∫
0

· · ·
∞∫
0

p(s1, . . . , sd)
d∏
k=1

fk(sk , uk) ds1 . . . dsd , 0 < u1, . . . , ud < 1, (9)

with the fk given in (8). Here p is the density of an absolutely continuous multivariate distribution with
marginal densities αk, k = 1, . . . , d, and a := (a1, . . . , ad) denotes the vector of parameters. A corresponding
modi�cation for the singular case discussed above is obvious.

Note that in the singular case of two-dimensional diagonal dominance, we get, with a = (a, a):

cΓa,sing(u, v) : =
∞∫
0

α(s)f (s, u)f (s, v) ds =
∞∫
0

asa−1
(1 + s)a+1

[
(1 + s)a+1
Γ(a + 1)

]2
La(u)usLa(v)vs ds

=
$
(− ln u)(− ln v)

)a
Γ(a)Γ(a + 1)

∞∫
0

sa−1(1 + s)a+1(uv)s ds, 0 < u, v < 1.

(10)

Lemma 1. For integer values of a, (10) can be simpli�ed to

cΓa,sing(u, v) =
$
ln u · ln v

)a$
− ln(uv)

)2a+1 a+1∑
i=0

(
a + 1
i

)
(a + i − 1)!
a!(a − 1)!

$
− ln(uv)

)a+1−i , 0 < u, v < 1. (11)
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Proof. We have
∞∫
0

sa−1(1 + s)a+1(uv)s ds =
a+1∑
k=0

(
a + 1
k

) ∞∫
0

sa−1+k(uv)s ds.

The �nal result follows from the observation
∞∫
0

smzs ds =
∞∫
0

sme−ys ds = 1
ym+1

∞∫
0

ym+1sme−ys ds = 1
ym+1

∞∫
0

tme−t dt = Γ(m + 1)
(− ln z)m+1

for every m > 0, z ∈ (0, 1) with the substitution y = − ln z.

Note also that the fk(s, •) =
φk(s, •)
αk(s)

are densities of exponentially transformed Gamma distributions. To
be more precise, let Xk be a Gamma distributed random variable with parameter ak + 1 and 1/(sk + 1). The
corresponding density is thus given by

fXk (x) =
(1 + sk)ak+1
Γ(ak + 1)

xak e−(1+sk)x , x > 0, (12)

and the random variable Uk := e−Xk possesses the density fk(sk , •). This follows from the observation that
FUk (u) := P

$
Uk ≤ u

)
= P
$
Xk ≥ − ln u

)
= 1 − FXk (− ln u), 0 < u < 1, hence

fUk (u) : =
d
du FUk (u) =

d
du
$
1 − FXk (− ln u)

)
= fXk (− ln u)u

= (1 + sk)ak+1
Γ(ak + 1)

Lak (u)usk = f (sk , u), 0 < u < 1.
(13)

A Monte Carlo simulation for a random vector (V1, . . . , Vd) with a general Gamma copula density cΓa
(singular or not) is straightforward since here Qak (u) :=

u1/ak
1 − u1/ak , 0 < u < 1, k = 1, . . . , d.

Secondly, we introduce what we call the Power copulamodel. Here we de�ne

φk(s, u) :=


βk
( s
u

)βk−1
, s ≤ u,

βk
(
1 − s
1 − u

)βk−1
, s > u,

0, otherwise,

(14)

where 0 < u, s < 1 and k = 1, . . . , d, with given parameters β1, . . . , βd > 2. It is straightforward to see that

αk(s) =
1∫

0

φk(s, u) du =
βk

βk − 2
(
1 − sβk−1 − (1 − s)βk−1

)
, 0 ≤ s ≤ 1, (15)

and

Ak(s) =
s∫

0

αk(t) dt =
(1 − s)βk − sβk + βks − 1

βk − 2
, 0 ≤ s ≤ 1. (16)

With

fk(s, u) :=
φk(s, u)
αk(s)

=



(βk − 2)
(
1 − s
1 − u

)βk−1
1 − sβk−1 − (1 − s)βk−1 , u ≤ s,

(βk − 2)
( s
u

)βk−1
1 − sβk−1 − (1 − s)βk−1 , u > s,

0, otherwise,

(17)
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we obtain the density of a Power copula:

cPβ (u) :=
1∫

0

· · ·
1∫

0

p(s1, . . . , sd)
d∏
k=1

fk(sk , uk) ds1 . . . dsd , 0 < u1, . . . , ud < 1, (18)

where the fk are given in (17). Here p again is the density of an absolutely continuousmultivariate distribution
withmarginal densities αk, k = 1, . . . , d. A correspondingmodi�cation for the singular case discussed above
is obvious.

The graphs in Figures 1–3 show the densities fk(s, u) for di�erent values β, for s =
k
10 , k = 1, . . . , 9.

Figure 1: Density fk(s, u), β = 3 Figure 2: Density fk(s, u), β = 9 Figure 3: Density fk(s, u), β = 22

Note that in the case of two-dimensional diagonal dominance, we do not obtain a closed form representa-
tion of the corresponding copula density. However, a Monte Carlo simulation of the Power copula in arbitrary
dimensions is easy since an elementary integration shows that there holds

Fk(s, u) :=
s∫

0

fk(t, u) dt =



0, s < 0,
(1 − s)βk−1

$
(1 − u)2−βk − 1

)
1 − sβk−1 − (1 − s)βk−1 , u ≤ s,

1 − (1 − s)βk−1 − sβk−1u2−βk
1 − sβk−1 − (1 − s)βk−1 , s < u ≤ 1,

1, s > 1,

(19)

with the corresponding quantile functions Qk(s, •) = F−1k (s, •) given by

Qk(s, u) :=


1 −
(

(1 − s)βk−1
(1 − s)βk−1 + u

$
1 − sβk−1 − (1 − s)βk−1

))1/(βk−2)

, u ≤ Fk(s, βk , s),(
sβk−1

1 − (1 − s)βk−1 − u
$
1 − sβk−1 − (1 − s)βk−1

))1/(βk−2)

, u > Fk(s, βk , s),
(20)

for 0 < u < 1, where
Fk(s, βk , s) =

1 − (1 − s)βk−1 − s
1 − sβk−1 − (1 − s)βk−1 , 0 ≤ s ≤ 1. (21)

For the simulation of a random variable following the distributionwith cdf Ak, a simple tabular inversion
method is appropriate.

4 Tail dependence
The Gamma copula shows an upper tail dependence that coincides precisely with that of the negative bino-
mial copula cNB, a particular discrete partition-of-unity copula (see Pfeifer et al. [6, 7]):

cNBa,sing(u, v) :=
(a + 1)

$
(1 − u)(1 − v)

)a
(1 − uv)2a+1

a−1∑
i=0

(
a − 1
i

)(
a + 1
i

)
(uv)i , u, v ∈ (0, 1), a ∈ N. (22)
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The graphs in Figures 4–7 show the ratios of negative binomial and Gamma copula densities, for various
values of a, which also suggest that these copula types are tail-equivalent. In fact, since − ln(1 − h)h = 1+O(h)
for h ↓ 0, we see by a comparison of (11) and (22) that

lim
u→1
v→1

cNBa,sing(u, v)
cΓa,sing(u, v)

=
(a + 1)

a−1∑
i=0

(
a − 1
i

)(
a + 1
i

)
(2a)!

a!(a − 1)!

=

a−1∑
i=0

(
a + 1
i

)(
a − 1
a − 1 − i

)
(

2a
a − 1

) = 1 (23)

(cf. Stanley [8, Example 1.1.17, p. 12]). The main di�erence between both copulas obviously lies in the lower
south-west corner of the unit square.

Figure 4: Ratio
cNBa,sing(u,v)
cΓa,sing(u,v)

, a = 1 Figure 5: Ratio
cNBa,sing(u,v)
cΓa,sing(u,v)

, a = 3

In what follows we consider the usual upper and lower tails dependence coe�cients λU and λL as de-
scribed e.g. in McNeil et al. [4, Chapter 7.2.4]. For the proof of Theorem 2, the following result will be needed.

Lemma 2. For m ∈ N, there holds
m∑
k=0

(
m + k − 1

k

)
1
2k = 1

2m+1

((
2m
m

)
+ 4m

)
.

Proof. In Stanley [9, 5.53, p. 144], the following relation can be found:

m−1∑
j=0

(
m + j − 1

j

)
1
2j = 2m−1, (24)

which directly implies
m∑
j=0

(
m + j − 1

j

)
1
2j = 2m−1 + 1

2m

(
2m − 1
m

)
= 2m−1 + 1

2m+1

(
2m
m

)
= 1
2m+1

((
2m
m

)
+ 4m

)
. (25)
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Figure 6: Ratio
cNBa,sing(u,v)
cΓa,sing(u,v)

, a = 7 Figure 7: Ratio
cNBa,sing(u,v)
cΓa,sing(u,v)

, a = 10

Theorem 2. The upper tail dependence coe�cient λU(a) of the diagonal dominant Gamma copula is iden-
tical to that of a diagonal dominant negative binomial copula cNB for a ∈ N, given by

λU(a) : = lim
t→1

1∫
t

1∫
t

cΓa,sing(u, v) du dv

1 − t = a
∞∫
0

1 − e−z
∑a

k=0
zk
k!

z


2

dz

= 1 − 1
4a

(
2a
a

)
∼ 1 − 1√

πa
as a →∞.

(26)

Proof. Let Fa(x) := 1 − e−x
a−1∑
k=0

xk
k! , x > 0, denote the distribution function of the standardGammadistribution

with shape parameter a ∈ N. It holds

Ja(t) : =
1∫
t

1∫
t

cΓa,sing(u, v) du dv = a
∞∫
0

sa−1(1 + s)a+1
Γ2(a + 1)

1∫
t

1∫
t

$
ln u · ln v

)ausvs du dv ds
= a

∞∫
0

sa−1(1 + s)a+1
 1∫

t

(− lnw)a
Γ(a + 1) w

s dw

2

ds.

(27)

Now by the substitution − lnw = x or w = e−x with dw = −e−x dx we get the expression

1∫
t

(− lnw)a
Γ(a + 1) w

s dw =
− ln t∫
0

xa
Γ(a + 1) e

−(1+s)x dx = 1
(1 + s)a+1

− ln t∫
0

(1 + s)a+1 xa
Γ(a + 1) e

−(1+s)x dx

= 1
(1 + s)a+1 Fa+1

$
(1 + s)(− ln t)

)
,

and hence

Ja(t) = a
∞∫
0

sa−1
(1 + s)a+1 F

2
a+1
$
(1 + s)(− ln t)

)
ds.
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Substituting again (1 + s)(− ln t) = z, we obtain

Ja(t) = a(− ln t)
∞∫

− ln t

(z + ln t)a−1
za+1 F2a+1(z) dz. (28)

This implies

λU(a) = lim
t↑1

Ja(t)
1 − t = a limt↑1

− ln t
1 − t · limt↑1

∞∫
− ln t

(z + ln t)a−1
za+1 F2a+1(z) dz = a

∞∫
0

F2a+1(z)
z2 dz, (29)

which proves the �rst equality above. For the remainder, we proceed by induction on a.
The case a = 1 is evident because of

∞∫
0

F22(z)
z2 dz = −

[$
1 − e−x

)2
x + e

−2x

2

]∞
0
= 1
2 = 1 − 1

4

(
2
1

)
. (30)

For a ≥ 2, assume that the equality

(a − 1)
∞∫
0

F2a(z)
z2 dz = 1 − 1

4a−1

(
2a − 2
a − 1

)

holds. Since

F2a+1(z) =
((

1 − e−z
a−1∑
k=0

zk
k!

)
− z

a

a! e
−z
)2

= F2a(z) +
(
za
a! e

−z
)2
− 2Fa(z) z

a

a! e
−z

= F2a(z) +
z2a
(a!)2 e

−2z − 2 z
a

a! e
−z + 2 z

a

a! e
−2z

a−1∑
k=0

zk
k! ,

we obtain

a
∞∫
0

F2a+1(z)
z2 dz = a

( ∞∫
0

F2a(z)
z2 dz + 1

(a!)2

∞∫
0

z2a−2e−2z dz

− 2
a!

∞∫
0

za−2e−z dz + 2
a!

∞∫
0

za−2e−2z
a−1∑
k=0

zk
k! dz

)
.

An easy computation shows that
∞∫
0

z2a−2e−2z dz = (2a − 2)!
22a−1

∞∫
0

22a−1
(2a − 2)! z

2a−2e−2z dz = (2a − 2)!
22a−1 ,

∞∫
0

za−2e−z dz = (a − 2)!
∞∫
0

1
(a − 2)! z

a−2e−z dz = (a − 2)!

and, likewise,
∞∫
0

za−2e−2z
a−1∑
k=0

zk
k! dz =

a−1∑
k=0

1
k!

∞∫
0

za+k−2e−2z dz =
a−1∑
k=0

(a + k − 2)!
k! 2a+k−1 .
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Substituting this in the expression above, we get, with Lemma 2,

a
∞∫
0

F2a+1(z)
z2 dz = a

a − 1

(
1 − 1

4a−1

(
2a − 2
a − 1

))
+ (2a − 2)!
a!(a − 1)! 22a−1 −

2(a − 2)!
(a − 1)!

+ 1
(a − 1)!

a−1∑
k=0

(a + k − 2)!
k! 2a+k−2 = a

a − 1

(
1 − 1

4a−1

(
2a − 2
a − 1

))

+ 1
2a · 4a−1

(
2a − 2
a − 1

)
− 2
a − 1 + 1

(a − 1)2a−2 · 2a
((

2a − 2
a − 1

)
+ 4a−1

)

= 1 − 2a − 1
2a · 1

4a−1

(
2a − 2
a − 1

)
= 1 − 1

4a

(
2a
a

)
,

i.e. the statement is also true for a + 1. This proves the assertion.

The graphs in Figures 8–11 show some symmetric Gamma copula densities cΓa,sing(u, v) for di�erent values of
a.

Figure 8: Symmetric Gamma copula density cΓa,sing(u, v),
a = 1

Figure 9: Symmetric Gamma copula density cΓa,sing(u, v),
a = 3

In contrast, the Power copula does not show a tail dependence, no matter what the parameters are.

Theorem 3. The upper and lower tail dependence coe�cients λU(β) and λL(β) of the diagonal dominant
Power copula are zero for all β > 2.

Proof. Due to symmetry, it su�ces to prove the theorem for λU(β) alone. Like in the proof of Theorem 2 (see
relations (27) and (29)), we have

λU(β) := lim
t→1

1
1 − t

1∫
0

1
α(s)

( 1∫
t

φ(s, u) du
)2

ds =: lim
t→1

1∫
0

K(s, t) ds (31)
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Figure 10: Symmetric Gamma copula density cΓa,sing(u, v),
a = 8

Figure 11: Symmetric Gamma copula density cΓa,sing(u, v),
a = 9

with

K(s, t) := 1
α(s)(1 − t)

( 1∫
t

φ(s, u) du
)2

,

where
1∫
t

φ(s, u) du =


β

β − 2 ·
sβ−1

tβ−2
$
1 − tβ−2

)
, s ≤ t,

β
β − 2

(
1 − sβ−1 − (1 − s)β−1

(1 − t)β−2
)
, s > t,

(32)

for 0 < s, t < 1.
It is easy to see that K(s, t) as a function of s attains its maximum at s = t with

K(t, t) = β
β − 2 ·

t2
$
1 − tβ−2

)2
t2(β−2)

$
1 − tβ−1 − (1 − t)β−1

)
(1 − t)

≤ β
β − 2 · limt→1

t2
$
1 − tβ−2

)2$
1 − tβ−1 − (1 − t)β−1

)
(1 − t)

= β
β − 2 ·

(β − 2)2
β − 1 = β(β − 2)β − 1

(33)

for β ≥ 3, from where we get

lim
t→1

1∫
t

K(s, t) ds ≤ lim
t→1

1∫
t

β(β − 2)
β − 1 ds = 0. (34)

A simple analysis shows that for 2 < β < 3, K(t, t) is also bounded, by the constant 1/2, so that the limit

relation (31) is valid for all β > 2. It remains to show that lim
t→1

1∫
0
K(s, t) ds = 0. For this purpose, we use the

elementary estimate

1
1 − sβ−1 − (1 − s)β−1 ≤

1
2 − 1

2β−3
·max

(
1
s ,

1
1 − s

)
for 0 < s < 1. (35)
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We thus obtain, for t > 1/2,

t∫
0

K(s, t) ds =
1/2∫
0

K(s, t) ds +
t∫

1/2

K(s, t) ds

≤ β
β − 2 ·

1
2 − 1

2β−3
·
$
1 − tβ−2

)2
t2(β−2)(1 − t)

( 1/2∫
0

s2β−3 ds +
t∫

1/2

s2β−2
1 − s ds

)

≤ β
β − 2 ·

1
2 − 1

2β−3
·
$
1 − tβ−2

)2
t2(β−2)(1 − t)

(
1

22β−1(β − 1) − t
2β−2 ln

(
1 − t
2

))
.

(36)

The �nal result now follows by the observation

lim
t→1

$
1 − tβ−2

)2
1 − t ln(1 − t) = g′(1) = 0 (37)

for the function g(t) =
$
1 − tβ−2

)2 ln(1 − t), 0 < t < 1.

The graphs in Figures 12–13 show the Power copula densities cPβ (u, v) in the diagonal dominant case for dif-
ferent values of β.

Figure 12: Power copula density cP3(u, v), diagonal
dominant case

Figure 13: Power copula density cP5(u, v), diagonal
dominant case

5 Case study A
Firstly, we extend the example data set given in Cottin and Pfeifer [1] (see Table 1) because it was also used as
a data basis in several former papers on partition-of-unity-copulas (Pfeifer et al. [6, 7]). Here r1 and r2 denote
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the correspondig rank vectors which are the basis for the empirical copula and di�erent copula drivers, as
described in Section 2 above.

Table 1: The data from Cottin and Pfeifer [1]

No. Risk X1 Risk X2 r1 r2
1 0.468 0.966 4 9
2 9.951 2.679 20 20
3 0.866 0.897 8 4
4 6.731 2.249 19 19
5 1.421 0.956 13 8
6 2.040 1.141 17 15
7 2.967 1.707 18 18
8 1.200 1.008 11 10
9 0.426 1.065 3 12
10 1.946 1.162 15 16
11 0.676 0.918 5 6
12 1.184 1.336 10 17
13 0.960 0.933 9 7
14 1.972 1.077 16 13
15 1.549 1.041 14 11
16 0.819 0.899 6 5
17 0.063 0.710 1 1
18 1.280 1.118 12 14
19 0.824 0.894 7 3
20 0.227 0.837 2 2

The graphs in Figures 14–19 show some simulated examples for a selection of copula drivers based on
the multivariate normal distribution, with di�erent choices of the correlation parameter ρ ∈ [−1, 1].

Figure 14: LF copula driver,
ρ = −1

Figure 15: Normal copula driver,
ρ = −0.8

Figure 16: Rook copula driver,
ρ = 0

The graphs in Figures 20–25 show some Monte Carlo realizations for the Gamma copula on the basis of
the data set together with the empirical copula (relative rank vectors are marked with circular points).

For the Power copula, the graphs in Figures 26–31 show the results of the corresponding Monte Carlo
study.
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Figure 17: Normal copula driver,
ρ = 0.6

Figure 18: Normal copula driver,
ρ = 0.9

Figure 19: UF copula driver,
ρ = 1

Figure 20: Gamma copula with rook copula driver,
a1 = a2 = 7

Figure 21: Gamma copula with rook copula driver,
a1 = a2 = 15

Figure 22: Gamma copula with UF copula driver,
a1 = a2 = 7

Figure 23: Gamma copula with UF copula driver,
a1 = a2 = 15
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Figure 24: Gamma copula with LF copula driver,
a1 = a2 = 7

Figure 25: Gamma copula with LF copula driver,
a1 = a2 = 15

Figure 26: Power copula with rook copula driver,
β1 = β2 = 8

Figure 27: Power copula with rook copula driver,
β1 = β2 = 12
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Figure 28: Power copula with UF copula driver,
β1 = β2 = 8

Figure 29: Power copula with UF copula driver,
β1 = β2 = 12

Figure 30: Power copula with LF copula driver,
β1 = β2 = 8

Figure 31: Power copula with LF copula driver,
β1 = β2 = 12
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A comparison of the graphs in Figures 22–23 with those in Figures 28–29 indicates also visually that the
Power copula possesses no tail dependence.

6 Case study B
In order to show the powerfulness of continuous PUC approaches in higher dimensions we conclude the
applied section with a discussion of the 19-dimensional data set presented in Neumann et al. [5], listed in
Tables 2 and 3, containing insurance losses from a non-life portfolio of natural perils in 19 areas in central
Europe over a time period of 20 years. The monetary unit is 1 million €. For simplicity, we will consider only
the Gamma copula in this section.

Table 2: Loss data, part I

Year Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 Area 8 Area 9 Area 10
1 23.664 154.664 40.569 14.504 10.468 7.464 22.202 17.682 12.395 18.551
2 1.080 59.545 3.297 1.344 1.859 0.477 6.107 7.196 1.436 3.720
3 21.731 31.049 55.973 5.816 14.869 20.771 3.580 14.509 17.175 87.307
4 28.990 31.052 30.328 4.709 0.717 3.530 6.032 6.512 0.682 3.115
5 53.616 62.027 57.639 1.804 2.073 4.361 46.018 22.612 1.581 11.179
6 29.950 41.722 12.964 1.127 1.063 4.873 6.571 11.966 15.676 24.263
7 3.474 14.429 10.869 0.945 2.198 1.484 4.547 2.556 0.456 1.137
8 10.020 31.283 21.116 1.663 2.153 0.932 25.163 3.222 1.581 5.477
9 5.816 14.804 128.072 0.523 0.324 0.477 3.049 7.791 4.079 7.002
10 170.725 576.767 108.361 41.599 20.253 35.412 126.698 71.079 21.762 64.582
11 21.423 50.595 4.360 0.327 1.566 64.621 5.650 1.258 0.626 3.556
12 6.380 28.316 3.740 0.442 0.736 0.470 3.406 7.859 0.894 3.591
13 124.665 33.359 14.712 0.321 0.975 2.005 3.981 4.769 2.006 1.973
14 20.165 49.948 17.658 0.595 0.548 29.350 6.782 4.873 2.921 6.394
15 78.106 41.681 13.753 0.585 0.259 0.765 7.013 9.426 2.180 3.769
16 11.067 444.712 365.351 99.366 8.856 28.654 10.589 13.621 9.589 19.485
17 6.704 81.895 14.266 0.972 0.519 0.644 8.057 18.071 5.515 13.163
18 15.550 277.643 26.564 0.788 0.225 1.230 26.800 64.538 2.637 80.711
19 10.099 18.815 9.352 2.051 1.089 6.102 2.678 4.064 2.373 2.057
20 8.492 138.708 46.708 3.680 1.132 1.698 165.600 7.926 2.972 5.237

As is to be expected, insurance losses in locally adjacent areas show a high degree of stochastic depen-
dence, which can also be seen from the empirical correlation tables (Tables 4 and 5). For a better readability,
only two decimal places are displayed. Correlation coe�cients above 90% are highlighted.

For a comparison of copula models, we have used classical approaches with a Gaussian and a t-copula
(with twodegrees of freedom formodelling a high degree of tail dependence), aswell aswith aGamma copula
for di�erent choices of the copula drivers (rook and UF) with ak = 10 for k = 1, . . . , 19. The graphs displayed
in Figures 32–39 show a selection of the 171 possible pairwise two-dimensional projections of corresponding
Monte Carlo simulations Uk where the highest pairwise correlations have been observed, together with the
empirical copulas (relative rank vectors are marked with circular points). The parameter matrices for the
Gaussian and t-copulas were calculated from the empirical correlations of log data.
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Table 3: Loss data, part II

Year Area 11 Area 12 Area 13 Area 14 Area 15 Area 16 Area 17 Area 18 Area 19
1 1.842 4.100 46.135 14.698 44.441 7.981 35.833 10.689 7.299
2 0.429 1.026 7.469 7.058 4.512 0.762 14.474 9.337 0.740
3 0.209 2.344 22.651 4.117 26.586 3.920 13.804 2.683 3.026
4 0.521 0.696 31.126 1.878 29.423 6.394 18.064 1.201 0.894
5 2.715 1.327 40.156 4.655 104.691 28.579 17.832 1.618 3.402
6 4.832 0.701 16.712 11.852 29.234 7.098 17.866 5.206 5.664
7 0.268 0.580 11.851 2.057 11.605 0.282 16.925 2.082 1.008
8 0.741 0.369 3.814 1.869 8.126 1.032 14.985 1.390 1.703
9 0.524 6.554 5.459 3.007 8.528 1.920 5.638 2.149 2.908
10 9.882 6.401 106.197 44.912 191.809 90.559 154.492 36.626 36.276
11 1.052 8.277 22.564 8.961 19.817 16.437 25.990 2.364 6.434
12 0.136 0.364 28.000 7.574 3.213 1.749 12.735 1.744 0.558
13 1.990 15.176 57.235 23.686 110.035 17.373 7.276 2.494 0.525
14 0.630 0.762 25.897 3.439 8.161 3.327 24.733 2.807 1.618
15 0.770 15.024 36.068 1.613 6.127 8.103 12.596 4.894 0.822
16 0.287 0.464 24.211 38.616 51.889 1.316 173.080 3.557 11.627
17 0.590 2.745 16.124 2.398 20.997 2.515 5.161 2.840 3.002
18 0.245 0.217 12.416 4.972 59.417 3.762 24.603 7.404 19.107
19 0.415 0.351 10.707 2.468 10.673 1.743 27.266 1.368 0.644
20 0.566 0.708 22.646 6.652 14.437 63.692 113.231 7.218 2.548

Table 4: Empirical correlations between original losses in adjacent areas, part I

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
A1 1 0.46 0.03 0.16 0.47 0.20 0.35 0.49 0.41 0.24
A2 0.46 1 0.64 0.78 0.67 0.36 0.51 0.76 0.57 0.51
A3 0.03 0.64 1 0.93 0.41 0.26 0.11 0.16 0.33 0.16
A4 0.16 0.78 0.93 1 0.54 0.36 0.16 0.25 0.43 0.19
A5 0.47 0.67 0.41 0.54 1 0.41 0.35 0.51 0.84 0.63
A6 0.20 0.36 0.26 0.36 0.41 1 0.07 0.11 0.28 0.19
A7 0.35 0.51 0.11 0.16 0.35 0.07 1 0.44 0.27 0.19
A8 0.49 0.76 0.16 0.25 0.51 0.11 0.44 1 0.50 0.75
A9 0.41 0.57 0.33 0.43 0.84 0.28 0.27 0.50 1 0.66
A10 0.24 0.51 0.16 0.19 0.63 0.19 0.19 0.75 0.66 1
A11 0.78 0.58 0.08 0.22 0.59 0.28 0.48 0.61 0.68 0.33
A12 0.64 −0.04 −0.09 −0.10 0.02 0.14 −0.07 −0.03 −0.01 −0.12
A13 0.91 0.59 0.13 0.30 0.64 0.31 0.46 0.54 0.52 0.27
A14 0.63 0.84 0.64 0.79 0.67 0.42 0.35 0.47 0.60 0.28
A15 0.85 0.68 0.25 0.36 0.59 0.24 0.45 0.71 0.50 0.43
A16 0.66 0.58 0.10 0.19 0.50 0.27 0.91 0.53 0.41 0.24
A17 0.30 0.87 0.74 0.84 0.58 0.39 0.64 0.40 0.46 0.23
A18 0.67 0.77 0.14 0.32 0.71 0.27 0.61 0.75 0.65 0.45
A19 0.56 0.90 0.35 0.49 0.67 0.40 0.49 0.90 0.63 0.65
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Table 5: Empirical correlations between original losses in adjacent areas, part II

A11 A12 A13 A14 A15 A16 A17 A18 A19
A1 0.78 0.64 0.91 0.63 0.85 0.66 0.30 0.67 0.56
A2 0.58 −0.04 0.59 0.84 0.68 0.58 0.87 0.77 0.90
A3 0.08 −0.09 0.13 0.64 0.25 0.10 0.74 0.14 0.35
A4 0.22 −0.10 0.30 0.79 0.36 0.19 0.84 0.32 0.49
A5 0.59 0.02 0.64 0.67 0.59 0.50 0.58 0.71 0.67
A6 0.28 0.14 0.31 0.42 0.24 0.27 0.39 0.27 0.40
A7 0.48 −0.07 0.46 0.35 0.45 0.91 0.64 0.61 0.49
A8 0.61 −0.03 0.54 0.47 0.71 0.53 0.40 0.75 0.90
A9 0.68 −0.01 0.52 0.60 0.50 0.41 0.46 0.65 0.63
A10 0.33 −0.12 0.27 0.28 0.43 0.24 0.23 0.45 0.65
A11 1 0.19 0.79 0.65 0.80 0.73 0.43 0.84 0.74
A12 0.19 1 0.44 0.21 0.28 0.17 −0.12 0.13 0.03
A13 0.79 0.44 1 0.71 0.86 0.74 0.47 0.76 0.65
A14 0.65 0.21 0.71 1 0.74 0.54 0.79 0.68 0.72
A15 0.80 0.28 0.86 0.74 1 0.69 0.47 0.71 0.75
A16 0.73 0.17 0.74 0.54 0.69 1 0.63 0.77 0.64
A17 0.43 −0.12 0.47 0.79 0.47 0.63 1 0.59 0.64
A18 0.84 0.13 0.76 0.68 0.71 0.77 0.59 1 0.86
A19 0.74 0.03 0.65 0.72 0.75 0.64 0.64 0.86 1

Obviously, the Gamma copula approach follows the particular asymmetries in the data much better than
the Gaussian or t-copula constructions. Also, the upper tail dependence seems stronger under the Gamma
copula than under the t-copula for certain two-dimensional projections.

Figure 32: Gaussian copula, I
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Figure 33: Gaussian copula, II

Figure 34: t-copula with two degrees of freedom, I

Figure 35: t-copula with two degrees of freedom, II
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Figure 36: Gamma copula with the rook copula driver, I

Figure 37: Gamma copula with the rook copula driver, II

Figure 38: Gamma copula with UF copula driver, I
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Figure 39: Gamma copula with UF copula driver, II

7 Final remarks
We close this paper by the remark that the continuous and discrete �nite or in�nite partition-of-unity copula
approach is absolutely �exible, i.e. it is even possible to choose dimension-wise di�erent distribution fami-
lies (binomial, negative binomial, Poisson, Gamma, etc.) for the copula estimation and also di�erent copula
drivers which can be any reasonable simple patchwork copula based on the observations. Further, it is pos-
sible to choose copula drivers which allow for an implementation of tail dependence, even if this feature can
in general not be concluded from a �nite data set. However, in the light of Solvency II, it might be desirable to
compare VaR estimates for aggregate losses with and without a tail dependent copula, and under competing
dependence models.

Another advantage is the easy implementation of the simulation algorithm even in ordinary spreadsheet
software for arbitrary large dimensions. We have worked in practice with 114-dimensional data sets from the
insurance sector without any problems.

Acknowledgement:Wewould like to thank the referees for a constructive criticismwhich led to an improve-
ment in the presentation of the paper.
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