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1. Introduction  
 
Since the pioneering paper by Serge Bernstein in 1912 [3] Bernstein polynomials have been an indispen-
sable tool in calculus and approximation theory (see e.g. [14]). Bernstein copulas, which can be consid-
ered as Bernstein polynomials for empirical and other copula functions, have a long tradition in non-
parametric modelling of dependence structures in arbitrary dimensions, in particular with applications in 
risk management, and have come into a deeper focus in the recent years. There is an extensive list of re-
search papers on this topic, in particular [2], [5], [6], [9], [10], [13], [16], [17], [22], [23], [24] and [25]. 
The monographs [8] and [11] have, in particular, devoted separate chapters to the topic of Bernstein copu-
las. 
 
A very important aspect of Bernstein copulas lies in Monte Carlo simulation techniques of dependence 
structures, in particular in higher dimensions. The structure of such procedures ranges from very complex 
(see e.g. [17]) to extremely simple (see e.g. [6]) such that Monte Carlo simulations could e.g. be per-
formed easily with ordinary spreadsheets, in particular in applications concerning quantitative risk man-
agement. 
 
From a statistical point of view, the problem of a potential overfitting of the true underlying dependence 
structure with Bernstein polynomials emerges naturally. Clearly the Bernstein copula density becomes 
more wiggly the more empirical observations are used in the analysis. In comparison with classical para-
metric dependence models such as elliptically contoured or Archimedean copulas, this is probably a non-
desirable property. This problem has in particular been tackled seemingly first in [17] by approximating 
the underlying discrete skeleton for the Bernstein copula by a least-squares approach and recently in the 
Ph.D. Thesis [1] where cluster analytic methods were used. 
 
In the present paper, we propose a simple but yet effective approach to reduce the complexity of Bern-
stein copulas in a two-step approach, namely first an augmentation step in combination with a second 
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reduction step. The reduction step is also discussed in [23], however without a possible application to a 
general complexity reduction of Bernstein copulas. 
 
 

2. Some important facts about multivariate Bernstein polynomials 
 

Let f  be an arbitrary bounded real-valued function on the unit cube [ ]: 0,1
d

d =C  with dimension .d Î  

Let further 1, , dn n  be integers. The corresponding multivariate Bernstein polynomial is defined by 
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with ( )1, , dn n=n   (see e.g. [14], p. 51). It is known that for ( )1min , , dn n ¥  multivariate Bernstein 

polynomials converge to f at any point of continuity and approximate f uniformly if f is continuous on 
.dC   

 

Another important property of multivariate Bernstein polynomials that is perhaps less known in the 
mathematical community is the fact that the multivariate Bernstein polynomial density given by 
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can be written as a linear combination of statistical product beta densities. For this purpose, consider uni-
variate beta densities 
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where B( , )a b  denotes the Euler Beta-function, i.e. 
( )
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 We need a further definition 

to proceed. 
 
Definition 1. Let g be a real-valued bounded function on .d  We call  
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the -D difference of g over the interval ( ] ( ]
1

, : ,
d

i ii
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=
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, 1 .i ia b i d< £ £  (We adopt here a notation similar as in [15], Definition 2.1, which is slightly different 

from the notation in [7], Definition 1.2.10.) 
 
Proposition 1. With the above notation, the Bernstein polynomial density b fn can be represented as 
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Proof. This follows immediately from the arguments in the proof of Theorem 2.2. in [6]; compare also 
the line of proofs in [4]. ·   
 
Example 1. We consider the polynomial 3 3 4( , ) : 2 (1 ) 3(1 ) , 0 , 1f x y x y x y x y= - - - £ £  with 1 2,n =  

2 3.n =  In this case, the two-dimensional Bernstein polynomial B fn differs from f due to smaller poly-

nomial degrees. We have 
 

2
2 3 2 3 2 2 2 3145 14 4 97 17 7

( , ) 2
9 36 9 3 18 12 9 6

y x y
B f x y x xy y y xy xy x y x y= - - - - + - + - -n                   (6) 

 

with 
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x
b f x y y y xy xy=- - + + - -n                                        (7) 

 

Note that here 
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or, in tabular form, 
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Tab. 1 
 

After a little computation it is easy to see that indeed here 
 

( )
1 1 2 2

2 1

1 22 1

0 0 1 1 2 2

(1 ) (1 )
, .

B( 1,2 ) B( 1,3 )

i i i i

i i

x x y y
b f x y f

i i i i

- -

= =

- -
= D

+ - + -åå i

i

b
n a                                               (9) 

 

 
                          Fig.1                                             Fig. 2                                               Fig. 3 
 

                       ( , )f x y                                         ( , )B f x yn                                ( , ) ( , )f x y B f x y- n  
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A direct consequence of Proposition 1 concerns the monotonicity behaviour of multivariate Bernstein 
polynomials.  
 
Definition 2. Let g be a real-valued function on .d  We call g d-monotone iff 0gD ³b

a  for all            

( )1, , ,da a=a  ( )1, , d
db b= Îb   with , 1 .i ia b i d< £ £   

 
It is obvious by the iterated mean value theorem that for a sufficiently smooth function g, d-monotonicity 
is equivalent to  
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Note that in case that g is a d-dimensional cumulative distribution function of a probability measure P on 

the d-dimensional Borel -s field ,d   then  ( ]
1
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Proposition 2. Let f  be a real-valued d-monotone function on .d  Then the corresponding multivariate 
Bernstein polynomial B fn  is also d-monotone. In particular, the Bernstein polynomial density b fn  is a 

positive-linear combination of product beta densities. 
 
Proof. By the arguments above and the notation as in Proposition 1, we have 
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which is a sufficient condition for B fn to be d-monotone. ·  

 
Note that the polynomial f from Example 1 is not 2-monotone since .00126... 0fD =- <b

a  with 

( )0.2,0.4=a  and ( )0.27,0.45 .=b  However, the slightly modified polynomial ( , ) ( , ) 6g x y f x y xy= +  is 

2-monotone since 
2

2 2 3( , ) 6 6(1 ) 36(1 ) 0g x y y x y
x y

¶
= - - + - ³

¶ ¶
 with the unique global minimum point 

( ) ( ), 1,1x y =  and 
2

(1,1) 0.g
x y

¶
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¶ ¶
 With respect to the corresponding multivariate Bernstein polynomial, 

we now have 
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Tab. 2 
 
which also explicitly shows that the Bernstein polynomial B gn is 2-monotone. 
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3. From Bernstein polynomials to Bernstein copulas 
 
Remark 1. Seemingly Proposition 2 can be usefully applied to arbitrary d-dimensional cumulative distri-

bution functions F concentrated on the unit cube [ ]: 0,1
d

d =C  (continuous or not) such that the corre-

sponding multivariate Bernstein polynomial  
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also is a cumulative distribution function since B Fn  is non-negative and d-increasing with 

( ) ( )0, ,0 0, ,0B F F=n    and ( ) ( )1, ,1 1, ,1 1.B F F= =n    In particular, the Bernstein polynomial den-

sity b Fn always is a (probabilistic) mixture of product beta densities as explicitly noted in [6] and [23] for 

Bernstein copulas. Note also that this observation was the motivation for the setup in [20]. 
 
Example 2. We consider a two-dimensional random vector ( ),X Y=X  with a discrete distribution con-

centrated on { },x y  with ( ) ( )1 2, 0.2,0.7x x= =x  and ( ) ( )1 2, 0.3,0.5y y= =y  given by 

 

( ),i iP X x Y y= =   
1x  2x   

  0.2 0.7 

1y  0.3 0.3 0.2 

2y  0.5 0.2 0.3 

 
Tab. 3 

 
The following graphs show the corresponding cumulative distribution function F as well as the corre-
sponding Bernstein polynomials B Fn  and densities b Fn  for various choices of n. 

 

 
                         Fig. 4                                               Fig. 5                                             Fig. 6 
 

                       ( , )F x y                                           ( , )B F x yn                                       ( , )b F x yn  
 

                                                                                                       1 23, 5n n= =  
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                       Fig. 7                                             Fig. 8                                              Fig. 9 
 

                     ( , )F x y                                         ( , )B F x yn                                        ( , )b F x yn  
 

                                                                                                   1 211, 7n n= =  

 

 
                       Fig. 10                                            Fig. 11                                            Fig. 12 
 

                      ( , )F x y                                         ( , )B F x yn                                         ( , )b F x yn  
 

                                                                                                     1 250, 50n n= =  

 
The above figures clearly visualize the approximation effect of multivariate Bernstein polynomials for 
discrete multivariate distributions if ( )1min , , dn n  gets large. In particular, the Bernstein polynomial 

density has spikes around the support points of the underlying discrete distribution. 
 
To simplify notation, we will use the following convention. Let 1d >  be a natural number and 

( )1, , x d
dx= Îx    be arbitrary. Then, for ,y Î  let 

 

( )
( )
( )

2

1 1 1

1 1

, , ,   1

( ) : , , , , , ,   1

, , ,   

d

k k k d

d

y x x if k

y x x y x x if k d

x x y if k d
 - +

-

ì =ïïïï= < <íïï =ïïî

x


 


                                             (13) 

 
denote the vector x where the k-th component is replaced by y. 
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Proposition 3.  Suppose that for 1d >  there is a cumulative distribution function [ ] [ ]: 0,1 0,1
d

F   with 

(0, ,0) 0F =  and (1, ,1) 1F =  such that for given natural numbers 1, , 1dn n >  we have 
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dimensional Bernstein polynomial B Fn  with ( )1, , dn n=n   associated with F is a copula. 

 
Proof: By Remark 1 above we know that B Fn  also is a cumulative distribution function with 
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for  1, ,k d=   and 0 1x£ £  ( kn x  is the expectation of the Binomial distribution with kn  trials and suc-

cess probability x). The marginal distributions induced by B hence are continuous uniform, which means 
that B is indeed a copula. ·  
 

Note that Proposition 3 was already implicitly formulated in [6] and [17], see also [8], Chapter 4.1.2. We 
reformulate the corresponding statements there in an appropriate way. 
 
Corollary 1. Let ( )1, , dU U=U   be a discrete random vector whose marginal component iU  follows a 

discrete uniform distribution over { }: 0,1, , 1i iT n= -  with integers 1, 1, , .in i d> =   Then the multi-

variate Bernstein polynomial B Fn  derived from the cumulative distribution function F for the scaled ran-

dom vector 1

1
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is a copula. The corresponding Bernstein copula density b Fn  is given by 
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Proof. For , 1, ,j ji T j dÎ =   we have ( )1 1
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Remark 2. We call B Fn  the Bernstein copula induced by U. In coincidence with [17] we also call U the 

discrete skeleton of the Bernstein copula B Fn  and the number 1 dn n´ ´  its grid size. If V is an arbitrary 

discrete random vector over 
1

: ,
d

i
i

T
=

=´T  we call V an admissible discrete skeleton if the marginal distribu-

tions are discrete uniform. So every admissible skeleton over T induces a corresponding Bernstein copula 
via the multivariate Bernstein polynomial of its rescaled cumulative distribution function. The corre-
sponding Bernstein copula density is a mixture of product beta kernels with weights given by the individ-
ual probabilities representing the admissible skeleton. 
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4. Empirical Bernstein copulas 
 
Bernstein copulas can be easily constructed from independent samples 1, , ,n nÎX X   of d-

dimensional random vectors with the same intrinsic dependence structure and the same marginal distribu-
tions. For simplicity, we assume here that the marginal distributions are continuous in order to avoid ties 
in the observations. The simplest way to construct an empirical Bernstein copula is on the basis of De-
heuvel’s empirical copula [7] in the form of a cumulative distribution function which can be represented 
by an admissible discrete skeleton derived from the individual ranks , 1 , , 1, ,ijr i d j n= =   of the 

observation vectors ( )1 , , , 1, , ,j j djx x j n= =x    given by the order statistics 
1 2, , , ,

i i ini r i r i rx x x< < <  i.e. 

ijr k=  iff ijx  is the k-largest value of the i-th observed component. The discrete skeleton U is here given 

by a random vector over { }: 0,1, , 1
d

n= -T   with a discrete uniform distribution over the n support 

points 1, , ns s  where ( )1 1, , 1 , 1, , .j j djr r j n= - - =s    Since the empirical copula converges in distri-

bution to the true underlying copula when n ¥  it follows that the corresponding empirical Bernstein 
copula does so likewise, cf. [8], Chapter 4.1.2. This provides – in the light of relation (15) – in particular a 
simple way of generating samples from an empirical Bernstein copula by Monte Carlo methods in two 
steps: 
 
Step1: Select an index N randomly and uniformly among 1, , .n   

Step2: Generate d independent beta distributed random variables 1, , dV V  (also independent of N) where 

iV  follows a beta distribution with parameters iNr  and 1 , 1, , .iNn r i d+ - =   
 

Then ( )1: , , dV V=V   is a sample point from the empirical Bernstein copula. 

 
This has also been observed in [23], but was known earlier, see e.g. [6]. In what follows we will discuss 
the data set presented in [17], Section 3 in more detail. 
 
 
Example 3. The following table contains the ranks for observed insurance data from windstorm ( 1)i =  
and flooding ( 2)i =  losses in central Europe for 34 consecutive years discussed in [17].  
 

ijr  j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i 

2 12 5 31 7 24 18 17 3 2 19 10 9 21 15 14 4 6
 

ijr  j 18 19 20 21 22 23 24 25 26 27 28 28 30 31 32 33 34

1 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
i 

2 34 1 23 11 29 33 13 8 20 32 28 22 16 26 25 30 27
 

Tab. 4 
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The following graphs show some plots for the empirical Bernstein copula. 
 

           
 
                        Fig. 13                                            Fig. 14                                               Fig. 15 
 

   support points of scaled skeleton        copula density contour plot        simulation of 5.000 copula pairs 
 
It is clearly to be seen that the empirical Bernstein copula density is quite bumpy here, e.g. in comparison 
with the Gaussian copula density fitted to the data set above. 
 

           
 
                        Fig. 16                                             Fig. 17                                              Fig. 18 
 

   support points of scaled skeleton          Gaussian copula density              simulation of 5.000 Gaussian  
                                                                           contour plot                                        copula pairs 
 
 
From a practical point of view, it might therefore be desirable to adapt the empirical Bernstein copula to a 

smaller support set 
1 1

: :
d d

i ii i
T T* *

= =
= Ì =´ ´T T  for the underlying discrete skeleton. This was the central idea 

in [17]. The disadvantage of the method proposed there is, however, that the number of support points of 
*U  gets dramatically larger and is typically of exponential order with increasing sample size. We there-

fore propose a simpler way how to find a smaller discrete approximating skeleton *U  with an arbitrary 
given grid size in the subsequent chapter. 
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 5. Adaptive Bernstein copula estimation 
 

We start with the individual ranks ijr  of the observation vectors ( )1 , , , 1, , .j j djx x j n= =x    Let U de-

note the canonical admissible discrete skeleton as described in the preceding chapter, derived from the 
empirical copula. Our aim is to find a good approximating admissible discrete skeleton *U  with a given 
grid size 1 dn n´ ´  where the in  are typically smaller than n. We proceed in two steps: 

 
1. Step: Augmentation 
 

Select an integer M such that all , 1, ,in i d=   are divisors of M, for instance their least common multi-

ple. We construct pseudo-ranks ijr+  in the following way: 
 

  
,

: 1 1 , 1, , , 1, , .ij j
i

M

j
r r M M j i d j M n

M
+

é ù
ê ú
ê úê ú

æ öé ù ÷çê ú= ⋅ + - ⋅ + - = = ⋅÷ç ÷ç ÷ê úè øê ú
                            (16) 

 

Here { }: min | ,x m x m xé ù = Î £ Îê ú    stands for “rounding up”. Let ( )1 , , dU U+ + +=U   be the uni-

formly discretly distributed random vector over { }0,1, , 1
d

M n⋅ -  with support points 1, , M n⋅s s  where 

( )1 1, , 1 , 1, , .j j djr r j n M+ += - - = ⋅s    Note that the probability mass is 
1

M n⋅
 for each support point, 

and that +U  is an admissible discrete skeleton. 
 
2. Step: Reduction 
 

Construct the final ranks ijr*  in the following way: 
 

: , 1, , , 1, , .ij i
ij

r n
r i d j M n

n M

+
*

é ù⋅ê ú= = = ⋅ê ú⋅ê úê ú
                                             (17) 

 

It follows from the above definition, that there will be replicates in the final ranks and that 1ijr* -  takes 

values in the set { }0,1, , 1 .i iT n* = -  A point ( )1, , ds s=s   will be a support point of the final admissi-

ble skeleton *U  if there exist final ranks such that ( )
11, ,, ,

dj d jr r=s    for some { }1, , 1, , .dj j M nÎ ⋅   

The probability mass attached to s is given by the number 
K

M n⋅
 where K is the number of rank combina-

tions ( )
11, ,, ,

dj d jr r  that lead to the same s. This also enables very simple Monte Carlo realisations of the 

corresponding Bernstein copula as described in chapter 4 by first selecting an index N randomly and uni-
formly among 1, , M n⋅  and then by proceeding as in step 2 there with all of the ijr* . 

 
Note that the above augmentation step creates permutations of the set { }1, , M n⋅ in each component so 

that the pseudo-ranks ijr+ actually lead to an admissible discrete skeleton, cf. [6], chapter 4.  

The mathematical correctness of the reduction step follows from the proof of Proposition 2.5 in [23]. 
 
In the augmentation step, M-wise partial permutations would not change the result but would create a 
more “random” augmentation of the original ranks. 
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Example 4. Consider the following rank table with 5 :n =   
  

ijr   i  

  1 2 probabilities ( )1 2,p r r  

1 1 3 0.2 

2 2 4 0.2 

3 3 1 0.2 

4 4 2 0.2 

j 

5 5 5 0.2 
 

Tab. 5 
 

We want to create approximate final ranks with 1 3n =  and 2 4.n =  Both numbers are not a divisor of n, 

so we choose 3 4 12.M = ⋅ =  We show a part of the resulting pseudo-ranks: 
 

ijr+   i  

  1 2 probabilities ( )1 2,p r r+ +  

1 12 36 0.016   

2 11 35 0.016  

3 10 34 0.016  

        
13 24 48 0.016  

14 23 47 0.016  

15 22 46 0.016  

        
25 36 12 0.016   

26 35 11 0.016  

27 34 10 0.016  

        
58 51 51 0.016   

59 50 50 0.016  

j 

60 49 49 0.016  
 

Tab. 6 
 
For the final ranks we obtain the following table: 
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ijr*   i  

  1 2 probabilities ( )1 2,p r r* *  

1 1 2 0.1 

2 1 3 0.23   

3 2 1 0.25 

4 2 2 0.016  

5 2 3 0.016  

6 2 4 0.05 

7 3 2 0.13  

j 

8 3 4 0.2 
 

Tab. 7 
 

From 
4

1

( , ) 0.3, 1,2,3
j

p i j i
=

= =å  and 
3

1

( , ) 0.25, 1,2,3,4
i

p i j j
=

= =å  we see that the induced skeleton is 

indeed admissible. 
 
The following graphs show the corresponding copula densities ( )1 2,c x xU  and ( )1 2,c x x*U

 induced by U 

and .*U  

                
 

                                                  Fig. 19                                                              Fig. 20 
                                                ( )1 2,c x xU                                                          ( )1 2,c x x*U

 

 
Seemingly the shape of both densities is similar, reflecting the structure of the original ranks quite well. 
However, the density c *U

 is less wiggly than the density ,cU  as was intended. 
 

Note also that a reduction of complexity for copulas in the sense discussed here is also an essential topic 
in [12], chapter 3; see in particular Fig. 2 there. However, the underlying problem of a consistent reduc-
tion of complexity is not really discussed there. 
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6. Applications to risk management 
 
In this chapter we want to investigate the data set of Example 3 in more detail. It was the basis data set in 
[17]. In particular, we want to discuss the effect of different adaptive Bernstein copula estimations on the 
estimation of risk measures like Value at Risk which is the basis for Solvency II, for instance. 
 

In [17], the number 34n =  of the original observations was first reduced to 1 2 10n n= =  by a least 

squares technique. The resulting optimal discrete skeleton with probabilities 1 2, ,ijp i T j T* *Î Î  is pre-

sented here with { }1 2 0,1, ,9 ..T T* *= =   
 

ijp   i 

  0 1 2 3 4 5 6 7 8 9

9 0.0032 0.0000 0.0022 0.0000 0.0032 0.0266 0.0320 0.0274 0.0028 0.0028

8 0.0318 0.0000 0.0014 0.0000 0.0024 0.0000 0.0312 0.0000 0.0020 0.0314

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0204 0.0251 0.0545

6 0.0032 0.0275 0.0022 0.0000 0.0032 0.0265 0.0026 0.0000 0.0322 0.0028

5 0.0003 0.0246 0.0287 0.0215 0.0003 0.0000 0.0000 0.0246 0.0000 0.0000

4 0.0034 0.0278 0.0024 0.0246 0.0034 0.0000 0.0029 0.0000 0.0324 0.0030

3 0.0266 0.0000 0.0000 0.0000 0.0266 0.0206 0.0261 0.0000 0.0000 0.0000

2 0.0034 0.0000 0.0025 0.0540 0.0034 0.0000 0.0029 0.0277 0.0031 0.0031

1 0.0252 0.0201 0.0000 0.0000 0.0546 0.0000 0.0000 0.0000 0.0000 0.0000

j 

0 0.0029 0.0000 0.0607 0.0000 0.0029 0.0263 0.0023 0.0000 0.0025 0.0025
 

Tab. 8 
 

An application of the adaptive strategy described in the preceding chapter gives alternatively the follow-
ing less complex table. Here we have chosen 5.M =   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tab. 9 
 

ijp*   i 

  0 1 2 3 4 5 6 7 8 9

9 0.0118 0.0000 0.0000 0.0000 0.0000 0.0294 0.0294 0.0294 0.0000 0.0000

8 0.0176 0.0000 0.0000 0.0000 0.0000 0.0000 0.0294 0.0000 0.0235 0.0294

7 0.0000 0.0059 0.0000 0.0000 0.0000 0.0000 0.0000 0.0059 0.0176 0.0706

6 0.0000 0.0235 0.0000 0.0176 0.0000 0.0294 0.0000 0.0000 0.0294 0.0000

5 0.0000 0.0294 0.0294 0.0118 0.0000 0.0000 0.0000 0.0294 0.0000 0.0000

4 0.0000 0.0235 0.0059 0.0176 0.0235 0.0000 0.0000 0.0000 0.0294 0.0000

3 0.0294 0.0000 0.0000 0.0000 0.0176 0.0059 0.0412 0.0059 0.0000 0.0000

2 0.0000 0.0059 0.0059 0.0529 0.0000 0.0059 0.0000 0.0294 0.0000 0.0000

1 0.0412 0.0118 0.0000 0.0000 0.0471 0.0000 0.0000 0.0000 0.0000 0.0000

j 

0 0.0000 0.0000 0.0588 0.0000 0.0118 0.0294 0.0000 0.0000 0.0000 0.0000
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Seemingly the number of support points for the adaptive probabilities ijp*  are much less than before. 
 

The following graphs show contour plots for the corresponding Bernstein copula densities. Here 1c  de-

notes the Bernstein copula density derived from Tab.8, 2c  denotes the Bernstein copula density derived 

from Tab. 9. In the first case we have chosen 5,M =  in the second case 2.M =   

         
   

                                           Fig. 21                                                                  Fig. 22 
                                         ( )1 1 2,c x x                                                               ( )2 1 2,c x x  

 
Seemingly the differences are only marginal. However, in comparison with Fig. 14, the smoothing effect 
of the adaptive procedure is clearly visible. 
 
The next graphs show contour plots for adaptive Bernstein copula densities 3c  and 4c  with the choices 

1 2 5n n= =  and 1 2 4,n n= =  respectively. 

 

          
 

                                           Fig. 23                                                                  Fig. 24 
                                         ( )3 1 2,c x x                                                               ( )4 1 2,c x x  
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In a final step, we compare estimates for the risk measure Value at Risk VaRa  with the risk level 

0.5%a=  – corresponding to a return period of 200 years – on the basis of a Monte Carlo study with 
1,000,000 repetitions each for the aggregated risk of windstorm and flooding losses. We consider the full 
Bernstein copula of Example 3 with 1 2 34n n= =  as well as the adaptive Bernstein copulas with 

1 2 10,n n= =  1 2 5n n= =  and 1 2 4.n n= =  For the sake of completeness, we also add estimates from the 

Gaussian copula, the independence as well as the co- and countermonotonicity copulas (see [8], p.11 for 
definitions).  
 
The following graphs show the support points of the underlying adaptive scaled discrete skeletons as well 
as 5,000 simulated pairs of the adapted Bernstein copulas. 
 
 

       
 

                                                    Fig. 25                                               Fig. 26 

1 2 10n n= =  

 

       
 

                                                    Fig. 27                                                Fig. 28 

1 2 5n n= =  
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                                                    Fig. 29                                              Fig. 30 

1 2 4n n= =  

 
The following table provides estimated values of the risk measures from the Monte Carlo simulations 
which are given in Mio. monetary units. For the marginal distributions, the assumptions in [17] were 
used. 
 

grid type 34 34´  10 10´  5 5´  4 4´ Gaussian independence comonotonic countermonotonic

0.005VaR  1,348 1,334 1,356 1,369 1,386 1,349 1,500 1,327
 

Tab. 10 
 
Seemingly the comonotonicity copula provides the largest 0.005VaR -estimate due to an extreme tail de-

pendence while the countermonotonicity copula provides the smallest 0.005VaR -estimate. Surprisingly, the 

0.005VaR -estimates for the adaptive Bernstein copulas do not differ very much from each other and are 

almost identical to the estimate from the independence copula here. Note that the 0.005VaR -estimate for 

the Gaussian copula is slightly larger. 
 
Significant differences are, however, visible if we look at the densities for the aggregated risk. The fol-
lowing graphs show empirical histograms for these densities under the models considered above, from 
100,000 simulations each. 
 

    
 

                                         Fig. 31                                                               Fig. 32 
 

                            Bernstein, grid type 34 34´                        Bernstein, grid type 10 10´  
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                                         Fig. 33                                                               Fig. 34 
 

                             Bernstein, grid type 5 5´                               Bernstein, grid type 4 4´  
 

    
 

                                         Fig. 35                                                               Fig. 36 
 

                                  Gaussian copula                                            independence copula 
 

     
 

                                         Fig. 37                                                               Fig. 38 
 

                          comonotonicity copula                                      countermonotonicity copula 
 

Note that the histogram for the full Bernstein copula has two peaks, whereas the other histograms show a 
more smooth behaviour. 
 
7. Conclusion 
 
Adaptive Bernstein copulas are an interesting tool for smoothing the empirical dependence structure in 
particular in risk management applications when the number of observations is moderate to large. This 
prevents in particular a kind of overfitting to dependence models. They also enable Monte Carlo studies 
for the comparison of different estimates of risk measures or the shape of the aggregate risk distribution. 
If the different estimates for the risk measure do not differ much for various adaptive strategies, this could 
be helpful for a profound sensitivity analysis under Solvency II. 
 
The method of reducing the complexity in the rank structures of the data could also be applied to parti-
tion-of-unity copulas, see [18], [19] and [21]. With such copulas, tail dependence can be introduced to the 
dependence models which cannot be obtained by Bernstein copulas due to the boundedness of the corre-
sponding densities. 
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