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Abstract: The central idea of the paper is to present a general simple patchwork construction 

principle for multivariate copulas that create unfavourable VaR (i.e. Value at Risk) scenarios 

while maintaining given marginal distributions. This is of particular interest for the 

construction of Internal Models in the insurance industry under Solvency II in the European 

Union. Besides this, the Delegated Regulation by the European Commission requires all 

insurance companies under supervision to consider different risk scenarios in their risk 

management system for the company’s own risk assessment. Since it is unreasonable to 

assume that the potential worst case scenario will materialize in the company we think that a 

modelling of various unfavourable scenarios as described in this paper is likewise appropriate. 

Our explicit copula approach can be considered as a special case of ordinal sums which in two 

dimensions even leads to the technically worst VaR scenario. 
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1. Introduction 
 
Reasonable VaR-estimates from original data or suitable scenarios for risk management 

within so-called Internal Models are of particular interest in the insurance industry under 

Solvency II (see, e.g., Cadoni (2014); Cruz (2009); Doff (2011,2014); McNeil et al. (2015); 

Arbenz et al. (2012) or Sandström (2011)). In this paper, we propose a simple stochastic 

Monte Carlo algorithm on patchwork copulas for the generation of VaR scenarios that are 

suitable for comparison purposes in Internal Models for the calculation of Solvency Capital 

Requirements (SCR), in particular for the Non-Life Module. Note that in the Standard 

Formula of Solvency II, there is a formula for the calculation of the non-life premium and 

reserve risk SCR given by the volume factor 
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applied to the volume measure (i.e. premium income) of the year considered (see e.g. 

Sandström (2011), relation (21.9b), p. 324; cf. also Hürliman (2009), p. 329 ff.). Here a  

denotes the risk level (i.e. 0.5% in Solvency II) and 1k a-  the corresponding 1 a-  quantile of 
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the standard normal distribution. Further, s  denotes the standard deviation of the underlying 

risk, i.e. the ultimate combined loss ratio which is assumed to be lognormally distributed with 

expectation 1 100%=   (which is the limit towards certain ruin according to the law of large 

numbers). However, this formula is questionable from a scientific point of view (see Pfeifer 

and Hampel (2011)). Note also that this formula was simplified in the Commission Delegated 

Regulation of the EU (2015), Article 115:  
 

1 VaR( ) 3ar s s- » for 0.005.a=   
 

This is a reasonable conservative approximation as long as 0.15,s<  see Fig. 1. 
 

 
 

Figure 1. Plot of the Non-Life SCR volume factor 1 VaR( )ar s-  vs. its simplification 3s  

 

Another questionable point here is the aggregation to the overall SCR from different module 

SCR’s by correlations in Solvency II, see e.g. Sandström (2011). This has been discussed in 

detail e.g. in Pfeifer and Straßburger (2008) and Pfeifer (2013). 

Note that no official legislative paper on Solvency II contains a strict mathematical definition 

of the underlying risk measure Value at Risk, cf. EU (2009), Article 104, No. 4, L335/52 or  

EU (2015), “Commission Delegated Regulation”, L12/10, (53). The wording used in these 

documents, however, suggests that “the Value-at-Risk measure with a 99.5% confidence 

level” is the corresponding lower quantile of the risk distribution.  

Note that the above-mentioned Commission Delegated Regulation (EU 2015) concerning the 

implementation of Solvency II in the EU requires the consideration of risk scenarios in 

several Articles, in particular in Article 259, L12/161 on Risk Management Systems saying 

that insurance and reinsurance undertakings shall, where appropriate, include performance of 

stress tests and scenario analyses with regard to all relevant risks faced by the undertaking, in 

their risk-management system. The results of such analyses also have to be reported in the 

ORSA (Own Risk and Solvency Assessment, see e.g. Ozdemir (2015)) as described in Article 

306 of the Commission Delegated Regulation (EU 2015). In the light of the outlined structural 

problems with the standard formula above, the ORSA is probably a better instrument to rate 

the enterprise’s risks in a more reliable way. The problem is, however, that the Commission 
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Delegated Regulation does not make any clear statements on how such stress tests or scenario 

analyses have to be performed. 

Article 1 of the Commission Delegated Regulation (EU 2015), L 12/20, No. 2 defines a 

“scenario analysis” as an analysis of the impact of a combination of adverse events. The 

Monte Carlo simulation algorithm developed in this paper allows for a mathematically 

rigorous description how such scenarios can be generated, being flexible enough to cover also 

extreme situations. 

In what follows, we shall focus mainly on the Non-Life Modules under Solvency II. 

Therefore we only consider continuous risk distributions. In this case, VaR is simply a lower 

quantile of the cumulative risk distribution function. 

For corresponding considerations for the Life and Capital Asset Modules under Solvency II, 

we refer to Boonen (2017) or Varnell (2011). 

Besides Solvency II aspects, the method proposed in this paper might also be of interest for 

reinsurance companies for the risk assessment of statistically dependent natural perils like 

windstorm, hail or flooding triggered by adverse climate conditions. 

 

2. Unfavourable patchwork copulas  

 

Patchwork copulas in the context of risk management have been treated in detail by Arbenz et 

al. (2012), Cottin and Pfeifer (2014), Pfeifer (2013), Pfeifer et al. (2016, 2017, 2019) and 

Hummel (2018), among others. In several of the cited papers the question of an unfavourable, 

i.e. superadditive VaR estimate for a portfolio of aggregated risks was in particular 

emphasized, see also Pfeifer and Ragulina (2018). However, the construction of worst VaR 

scenarios in this context is quite complicated; note that a worst VaR is a supremum of VaR’s 

over the Fréchet class of all possible joint distributions with given marginals (see e.g. 

Embrechts et al. (2013), sections 1.1 and 1.3). the situation is more simple in the two-

dimensional case with identical margins (see Embrechts et al. (2013), chapter 2). A numerical 

approach to a constructive solution to the general problem is e.g. given by the rearrangement 

algorithm (see e.g. Arbenz et al. (2012), Embrechts et al. (2013) or Mainik (2015)). From a 

practical point of view, simpler and yet explicit constructions for unfavourable, but not 

necessarily worst VaR estimates by appropriate copula constructions seem to be a useful 

alternative. In this paper, we describe how such a construction could be performed. We start 

with an explicit approach in two dimensions that is later extended to arbitrary dimensions. For 

better readability, all proofs are shifted to the appendix. 

 

Lemma 1. Let, for 2, ,d d³ Î  ( )1, , dU U=U   and ( )1, , dV V=V   be d-dimensional 

random vectors over [ ]0,1
d

 with continuous uniform margins (i.e., U and V represent d-

dimensional copulas). Let further I denote a binomially distributed random variable, 

independent of U and V, with ( 1) (0,1).P I p= = Î  Then the random vector W with 
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components [ ]: (1 ) (1 )i i iW I p U I p p V= ⋅ ⋅ + - ⋅ + - ⋅  for 1 i d£ £  also has continuous uniform 

margins, i.e. W represents a d-dimensional copula. 

 

Note that  W  can be considered as a special case of  ordinal sums, cf. Nelsen (2006), chapter 

3.3.2 for the two-dimensional case, and for the multivariate case, Jaworski and Rychlik 

(2008), relation (4.31), Jaworski (2009),  Definition 2.1 and Durante and Sempi (2016), 

Example 2.2.10 and Chapter 3.8. 

 
Suppose now that a portfolio of d insurance risks is considered where a mutual probabilistic 

dependence structure is assumed to be described by U. If the d (for simplicity assumed 

continuous) marginal risk distribution functions are denoted by 1, , dF F  and by 1, , dQ Q  

their pseudo-inverses (quantile functions), then both random vectors ( )1 1( ), , ( )d dQ U Q U  and 

( )1 1( ), , ( )d dQ W Q W  represent a risk vector ( )1, , dX X=X   with the given marginal 

distributions. However, w.r.t. to risk aggregation, ( )1 1: ( ), , ( )d dQ W Q W=X   creates in general 

an unfavourable VaR scenario for 
1

,
d

i
i

S X
=

=å  even if p is close to 1 and therefore U and W 

differ only marginally. The following graph shows the corresponding support of W in two 

dimensions.   

 
 

 
 

 

Figure 2. Shape of the support of the underlying patchwork copula 
 
In the sequel put : 1p b= -  for 0 1.b< <  Then ( )(1 ) (1 ) 1 .I Ib b b= ⋅ - ⋅ + - ⋅ - + ⋅W U V   

 
 
We start with some further preliminary Lemmata. 
 
Lemma 2. Let 1 : (1 ) ,b= - ⋅W U  2 : 1 ,b b= - + ⋅W V  ( )1 1:i i iZ Q W=  and ( )2 2: ,i i iZ Q W=  

1, 2.i = Then there hold 
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Lemma 3. Assume that f and g are Lebesgue densities of independent random variables X and 

Y, concentrated on the same finite interval [ ]0, M  with 0.M >  Then :S X Y= +  has the 

density 1h  given by 
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If f and g are concentrated on the same infinite interval [ ),M ¥  with 0,M ³  then 

:S X Y= +  has the density 2h  given by 

 

2 ( ) ( ) ( ) , 2 .
x M

M

h x f x y g y dy x M
-

= - ³ò   

 

In particular, if F and G are the corresponding cdf’s pertaining to f and g, resp.,  then in either 

case, 
2

( ) 0,
x M

d
F G x

dx =

* =  where *  means convolution.  

 

Lemma 4. Assume that all iF Fº  being equal with quantile function Q, and that U and V 

have independent components each. Denote  
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Let further denote ( ):i iX Q W=  and 
1

: .
d

i
i

S X
=

=å  Then we can conclude that 

 

( )

(1 ) ( , ), (1 )
( , )

(1 ) (1 ), , (1 ),

d

S d

F x x dQ
F x

F x dQ x dQ

b b b
b

b b b b b

*

*

ìï - £ -ïï=íï - + - - > -ïïî
  

 

where *  again means convolution. If F has a density f, then correspondingly 
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The following examples show the effect of a risk aggregation with an unfavourable VaR 

scenario for two dimensions in detail.  

 

Example 1 (exponential distributions). Assume that 1 2
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For the corresponding densities, we obtain by differentiation 
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By Lemma 4, we obtain the following density Sf  of the aggregated risk S:  
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with the corresponding cdf :SF  
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For the following graph, let g denote the density of 1 1 2 2: ( ) ( )T Q U Q U= +  (independent 

summands, Gamma distribution). 
 
 

               

Figure 3. Plot of the densities ( , )Sf x b  for 0.1b =   and ( ),g x  Example 1 

 
In what follows, let G denote the cdf of 1 1 2 2: ( ) ( )T Q U Q U= +  (independent summands, 

Gamma distribution) and H the cdf of S under the worst VaR scenario, i.e. the distribution of 

V corresponds to the lower Fréchet bound or countermonotonicity copula (see e.g. Embrechts 

et al. (2013), Remark 3 and the comments after Fig. 3, or Pfeifer (2013)). In this case we have 

2
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Figure 4. Plots of the cdf’s ( , ),SF x b ( )G x  and ( , ),H x b for 0.005,b =  Example 1 
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Note that with the Solvency II standard 0.005,a=  we get here, for ,b a=   

VaR ( ) 2 ln( ) 10.5914 VaR ( ) 7.4301S Ta ab=- = > =  where VaR ( )Ta  is the numerical 

solution of the equation (1 ) .xx e a-+ =  For the worst VaR scenario, however, we get 

wVaR ( ) 2ln 11.9829
2

Sa

bæ ö÷ç=- =÷ç ÷çè ø
 with 1 210.5966 SVaR : VaR ( ) VaR ( )X Xa a a= = +  

VaR ( ) 10.5914.Sa> = This means that even with the construction for S with ,b a=  we still 

have a (quite small) diversification effect, but not in the worst VaR scenario. This changes, 

however, if we look at VaR ( ) 10.9630Sa =  when we replace b  by a e+  in the definition of 

W for e.g. 0.001e= . 
 

The following graph shows the cdf’s in the tails for several choices of .e   

 

 
 

Figure 5. Plots of the cdf’s ( ,0.005 )SF x e+  for { }0.001,0.002,0.003eÎ  and ( ,0.005),H x  

Example 1 

 

The following graph shows the values of 1(0.995, ) (0.995, )S SQ Fb b-=  in the range  

0.0062 0.0076.b£ £   

 
 

 

Figure 6. Plot of the parametrized quantile function 1(0.995, ) (0.995, ),S SQ Fb b-=  Example 1 
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A numerical calculation shows that for 0.005a=  the maximal VaR ( ) 10.9829Sa =  is 

attained for 0.0068,b =  i.e. 0.0018.e=   

 

The following table summarizes the results found, for 0.005.a=   

 
Table 1. Summarized results for Example 1 

 

 b   

 0.0050 0.0060 0.0068 0.0070 0.0080 

VaR ( )Sa  10.5914 10.9630 10.9829 10.9821 10.9618 

VaR ( )Ta  7.4301 7.4301 7.4301 7.4301 7.4301 

wVaR ( )Sa  11.9829 11.9829 11.9829 11.9829 11.9829 

SVaRa  10.5966 10.5966 10.5966 10.5966 10.5966 

 
 

Example 2 (uniform distributions). Assume that 1 2
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By Lemma 4, we obtain the following density Sf  of the aggregated risk S:  
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with the corresponding cdf :SF  
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In what follows g is the density of 1 1 2 2: ( ) ( )T Q U Q U= +  (independent summands, triangle 

distribution). 
 

 
 

Figure 7. Plot of the densities ( , )Sf x b  for 0.1b =  and ( ),g x  Example 2 

  
In the following graph G is the cdf for 1 1 2 2: ( ) ( )T Q U Q U= +  (independent summands, 

triangle distribution) and H the cdf for S under the worst VaR scenario, i.e. the distribution of 

V corresponds to the lower Fréchet bound. In this case we have 
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Figure 8. Plots of  the cdf’s ( , ),SF x b  ( )G x , and ( , )H x b  for 0.005,b =  Example 2 
 

 

Note that with the Solvency II standard 0.005,a=  we have here, for ,b a=   

VaR ( ) 2 2 1.9900 VaR ( ).S Ta aa= - = =  For the worst VaR scenario, however, we get here 

1 2wVaR ( ) 2 1.9950 1.9900 VaR ( ) VaR ( ) SVaR VaR ( ).S X X Sa a a a aa= - = > = + = =  This 

means that with the construction for S we have no true diversification effect, in contrast to the 

worst VaR scenario. This changes, however, if we look at VaR ( ) 1.9910Sa =  when we 

replace b  by a e+  in the definition of W for e.g. 0.001e= . 
 

The following graph shows the cdf’s in the tails for several choices of .e   
 
 

 
 

Figure 9. Plots of the cdf’s ( ,0.005 )SF x e+  for { }0.001,0.002,0.003eÎ  and ( ,0.005),H x  

Example 2 
 

The following graph shows the values of 1(0.995, ) (0.995, )S SQ Fb b-=  in the range  

0.0054 0.007.b£ £    
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Figure 10. Plot of the parametrized quantile function 1(0.995, ) (0.995, ),S SQ Fb b-=   

Example 2 
 
 

A numerical calculation shows that for 0.005a=  the maximal VaR ( ) 1.9915Sa =  is attained 

for 0.0060,b =  i.e. 0.0010.e=  

 
Note that in this example a closed-form representation for ( , )SQ u b  is given by 

 

( , ) 2 2 2 ( 1),1 1 .
2SQ u u u
b

b b b b b= - + + - - £ £ -  This implies 

 

(1 , ) 2 2 2 ( ), 2SQ a b b b b a a b a- = - + - £ £  
 

with its maximum being attained for 0

1 2

2
b a

+
=  with value  

 

0

2
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Note that in contrast the worst VaR here is wVaR ( ) 2 .Sa a= -   

 

The following table summarizes the results found, for 0.005.a=   
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Table 2. Summarized results for Example 2 
 

 b   

 0.0050 0.0055 0.0060 0.0065 0.0070 

VaR ( )Sa  1.9900 1.9130 1.9915 1.9914 1.9913 

VaR ( )Ta  1.9900 1.9900 1.9900 1.9900 1.9900 

wVaR ( )Sa  1.9950 1.9950 1.9950 1.9950 1.9950 

SVaRa  1.9900 1.9900 1.9900 1.9900 1.9900 

 
 

Example 3 (Pareto distributions). Assume that 1 2
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For the corresponding densities, we obtain by differentiation 
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In order to calculate the density Sf  of the aggregated risk S, we need a suitable partial fraction 

representation of ( ) ( )f x y f y-  and ( ) ( ).f x y f y-  Note that in general, we have 
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from which we obtain, by Lemma 4, 
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The density ( )Sf x  follows by differentiation. 

 
In the following  g denotes the density of 1 1 2 2: ( ) ( )T Q U Q U= +  (independent summands). 

 

 
 

Figure 11. Plots of densities ( , )Sf x b  for 0.1b =  and ( ),g x  Example 3 
 

 
In the following graph G is the cdf of 1 1 2 2: ( ) ( )T Q U Q U= +  (independent summands) and H 

the cdf of S under the worst VaR scenario, i.e. the distribution of V corresponds again to the 

lower Fréchet bound. In this case we have 
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Figure 12. Plots of the cdf’s ( , ),SF x b  ( )G x  and ( , )H x b  for 0.005,b =  Example 3 
 

 

Note that with the Solvency II standard 0.005,a=  we have here, for ,b a=  

VaR ( ) 397.3168 VaR ( ) 403.9161.S Ta a= < =  For the worst VaR scenario, however, we get 

1 2

4
wVaR ( ) 2 798 398 VaR ( ) VaR ( ) SVaR > VaR ( ) 397.3168.S X X Sa a a a ab

= - = > = + = =

 This means that even with the construction for S  we still have a (quite small) diversification 

effect, but not in the worst VaR scenario, as expected. This changes, however, if we look at 

VaR ( ) 488.2116Sa =  when we replace b  by b e+  in the definition of W for e.g. 0.001e= . 

 

The following graph shows the cdf’s in the tail for several choices of .e   
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Figure 13. Plots of the cdf’s ( ,0.005 )SF x e+  for { }0.001,0.002,0.003eÎ  and ( ,0.005),H x  

Example 3 
 

 
The following graph shows the values of 1(0.995, ) (0.995, )S SQ Fb b-=  in the range  

0.007 0.012.b£ £   

 
 

Figure 14. Plot of the parametrized quantile function 1(0.995, ) (0.995, ),S SQ Fb b-=   

Example 3 
 

 
A numerical calculation shows that for 0.005a=  the maximum VaR ( ) 509.3804Sa =  is 

attained for 0.0089,b =  i.e. 0.0039.e=  
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Table 3. Summarized results for Example 3 
 

 b   

 0.0050 0.0070 0.0089 0.0100 0.0110 

VaR ( )Sa  397.3168 503.2848 509.3804 508.6489 507.0076 

VaR ( )Ta  403.9161 403.9161 403.9161 403.9161 403.9161 

wVaR ( )Sa  798.0000 798.0000 798.0000 798.0000 798.0000 

SVaRa  398.0000 398.0000 398.0000 398.0000 398.0000 

 

These examples show that it is generally possible to obtain unfavourable VaR scenarios by a 

suitable choice of b a e= +  in the definition of W, i.e. scenarios which lead to an opposite 

diversification effect in the portfolio and which are sometimes close to the worst VaR 

scenario. 

 

We continue with a particular construction of W which allows in general for an unfavourable 

VaR scenario. 

 
 
Lemma 5. For , 1d dÎ >  let dI  denote the d-dimensional unit matrix, ( )1, ,1d =e   the d-

dimensional row vector consisting of just ones, and tr
d d d=E e e  the d d´  matrix with all 

entries equal to unity. Then (1 )d d dr rS = - +I E  is a correlation matrix iff 
1

1.
1

r
d

- £ £
-

 In 

the general case, the latent roots il  of dS  are given by 1 1 ( 1)d rl = + -  and 

1 , 2, , .i r i dl = - =   An orthonormal basis 1, , dT T  of corresponding latent vectors is given 

by 1

1 tr
dT

d
= e  and ( )1 , ,

tr

j j djT t t=   for 2 j d£ £  where 

 

1
, 1

( 1)

1
,

0, .

ij

i j
j j

j
t j i

j

i j

ìïï- £ <ïï -ïïïï -ï= =íïïïï >ïïïïïî

    

Hence dS  possesses the spectral decomposition tr
dS = AA with = DA T  where 

[ ]1, , dT T=T   and ( )1diag , , .dl lD=    
 

Note that there is also an alternative possibility to represent latent roots *
jl  and normalized 

latent vectors ( )* * *
1 , , , 1, ,

tr

j j djT t t j d= =   of dS  since dS  is a particular symmetric 
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Toeplitz matrix for which the latent roots and normalized latent vectors can be expressed via 

trigonometric functions, see e.g. Basilevsky (1983), relations (5.89) and (5.90). In particular, 

we can choose 
 

1
*

1

1 , 1, , 12
1 cos

1 ( 1) ,

d

j
i

r j dij
r

d r j dd

p
l

-

=

ì - = -æ ö ïï÷ç= + =÷ íç ÷ç ïè ø + - =ïî
å


    

and 

*

2 2
cos sin

, 1 , .ij

ij ij
d d

t i j d
d

p pæ ö æ ö÷ ÷ç ç+÷ ÷ç ç÷ ÷ç çè ø è ø
= £ £  

 

This is due to the fact that the latent roots have multiplicities, hence the linear space spanned 

by the corresponding latent vectors is 1d - -dimensional, allowing for different 

representations of the corresponding linear basis. However, for our purposes, the 

representation in Lemma 5 is more suited. 

 

In what follows we will call a Gaussian copula derived from the correlation matrix 

1

1 1d d d

d

d d
S = -

- -
I E  for 

1

1
r

d
=-

-
 a minimal correlation Gaussian copula. Note that 

the corresponding multivariate normal distribution is degenerated since dS  is singular, i.e. a 

random vector X with zero mean and correlation matrix dS  has the representation A=X Y  

where Y has a standard multivariate normal distribution with mean zero and variance-

covariance matrix .dI  For 2,d =  the minimal correlation Gaussian copula is identical to the 

lower Fréchet bound or countermonotonicity copula. 

 

3. A case study 

 

The following example shows the effects of such an approach for the 19-dimensional data set 

discussed in Pfeifer et al. (2019). It contains insurance losses from a non-life portfolio of 

natural perils in 19d =  areas in central Europe over a time period of 20 years. The losses are 

given in million monetary units (MMU). 
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Table 4. Insurance losses from a Nat-Cat portfolio in central Europe 
 

Year Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 Area 8 Area 9 Area 10 

1 23.664 154.664 40.569 14.504 10.468 7.464 22.202 17.682 12.395 18.551 
2 1.080 59.545 3.297 1.344 1.859 0.477 6.107 7.196 1.436 3.720 
3 21.731 31.049 55.973 5.816 14.869 20.771 3.580 14.509 17.175 87.307 
4 28.99 31.052 30.328 4.709 0.717 3.530 6.032 6.512 0.682 3.115 
5 53.616 62.027 57.639 1.804 2.073 4.361 46.018 22.612 1.581 11.179 
6 29.95 41.722 12.964 1.127 1.063 4.873 6.571 11.966 15.676 24.263 
7 3.474 14.429 10.869 0.945 2.198 1.484 4.547 2.556 0.456 1.137 
8 10.020 31.283 21.116 1.663 2.153 0.932 25.163 3.222 1.581 5.477 
9 5.816 14.804 128.072 0.523 0.324 0.477 3.049 7.791 4.079 7.002 

10 170.725 576.767 108.361 41.599 20.253 35.412 126.698 71.079 21.762 64.582 
11 21.423 50.595 4.360 0.327 1.566 64.621 5.650 1.258 0.626 3.556 
12 6.380 28.316 3.740 0.442 0.736 0.470 3.406 7.859 0.894 3.591 
13 124.665 33.359 14.712 0.321 0.975 2.005 3.981 4.769 2.006 1.973 
14 20.165 49.948 17.658 0.595 0.548 29.350 6.782 4.873 2.921 6.394 
15 78.106 41.681 13.753 0.585 0.259 0.765 7.013 9.426 2.180 3.769 
16 11.067 444.712 365.351 99.366 8.856 28.654 10.589 13.621 9.589 19.485 
17 6.704 81.895 14.266 0.972 0.519 0.644 8.057 18.071 5.515 13.163 
18 15.550 277.643 26.564 0.788 0.225 1.230 26.800 64.538 2.637 80.711 
19 10.099 18.815 9.352 2.051 1.089 6.102 2.678 4.064 2.373 2.057 
20 8.492 138.708 46.708 3.680 1.132 1.698 165.600 7.926 2.972 5.237 

 

 
Year Area 11 Area 12 Area 13 Area 14 Area 15 Area 16 Area 17 Area 18 Area 19 

1 1.842 4.100 46.135 14.698 44.441 7.981 35.833 10.689 7.299 
2 0.429 1.026 7.469 7.058 4.512 0.762 14.474 9.337 0.740 
3 0.209 2.344 22.651 4.117 26.586 3.920 13.804 2.683 3.026 
4 0.521 0.696 31.126 1.878 29.423 6.394 18.064 1.201 0.894 
5 2.715 1.327 40.156 4.655 104.691 28.579 17.832 1.618 3.402 
6 4.832 0.701 16.712 11.852 29.234 7.098 17.866 5.206 5.664 
7 0.268 0.580 11.851 2.057 11.605 0.282 16.925 2.082 1.008 
8 0.741 0.369 3.814 1.869 8.126 1.032 14.985 1.390 1.703 
9 0.524 6.554 5.459 3.007 8.528 1.920 5.638 2.149 2.908 

10 9.882 6.401 106.197 44.912 191.809 90.559 154.492 36.626 36.276 
11 1.052 8.277 22.564 8.961 19.817 16.437 25.990 2.364 6.434 
12 0.136 0.364 28.000 7.574 3.213 1.749 12.735 1.744 0.558 
13 1.990 15.176 57.235 23.686 110.035 17.373 7.276 2.494 0.525 
14 0.630 0.762 25.897 3.439 8.161 3.327 24.733 2.807 1.618 
15 0.770 15.024 36.068 1.613 6.127 8.103 12.596 4.894 0.822 
16 0.287 0.464 24.211 38.616 51.889 1.316 173.080 3.557 11.627 
17 0.590 2.745 16.124 2.398 20.997 2.515 5.161 2.840 3.002 
18 0.245 0.217 12.416 4.972 59.417 3.762 24.603 7.404 19.107 
19 0.415 0.351 10.707 2.468 10.673 1.743 27.266 1.368 0.644 
20 0.566 0.708 22.646 6.652 14.437 63.692 113.231 7.218 2.548 
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A statistical analysis of the data shows a good fit to lognormal ( , )m s -distributions for the 

losses per Area , 1, ,19.k k =   The parameters mk  and sk  for Area k were hence estimated 

from the log data by calculating means and standard deviations.  
 

Table 5.  Distributional parameters for fitted lognormal loss distributions 
 

Parameter Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 Area 8 Area 9 Area 10 

mk  2.806 4.072 3.141 0.638 0.398 1.223 2.321 2.212 1.078 2.106 

sk  1.216 1.052 1.211 1.569 1.300 1.599 1.198 0.988 1.145 1.253 
 

 

Parameter Area 11 Area 12 Area 13 Area 14 Area 15 Area 16 Area 17 Area 18 Area 19 

mk  –0.323 0.382 3.020 1.749 3.041 1.550 3.070 1.244 0.938 

sk  1.088 1.335 0.803 1.003 1.122 1.477 0.962 0.858 1.214 
 

 

As is to be expected, insurance losses in locally adjacent areas show a high degree of 

stochastic dependence, which can also be seen from the following correlation tables. For a 

better readability, only two decimal places are displayed. 
 

Table 6. Empirical correlations between original losses in adjacent areas 
 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 
A1 1 0.46 0.03 0.16 0.47 0.20 0.35 0.49 0.41 0.24 0.78 0.64 0.91 0.63 0.85 0.66 0.30 0.67 0.56 
A2 0.46 1 0.64 0.78 0.67 0.36 0.51 0.76 0.57 0.51 0.58 -0.04 0.59 0.84 0.68 0.58 0.87 0.77 0.90 
A3 0.03 0.64 1 0.93 0.41 0.26 0.11 0.16 0.33 0.16 0.08 -0.09 0.13 0.64 0.25 0.10 0.74 0.14 0.35 
A4 0.16 0.78 0.93 1 0.54 0.36 0.16 0.25 0.43 0.19 0.22 -0.10 0.30 0.79 0.36 0.19 0.84 0.32 0.49 
A5 0.47 0.67 0.41 0.54 1 0.41 0.35 0.51 0.84 0.63 0.59 0.02 0.64 0.67 0.59 0.50 0.58 0.71 0.67 
A6 0.20 0.36 0.26 0.36 0.41 1 0.07 0.11 0.28 0.19 0.28 0.14 0.31 0.42 0.24 0.27 0.39 0.27 0.40 
A7 0.35 0.51 0.11 0.16 0.35 0.07 1 0.44 0.27 0.19 0.48 -0.07 0.46 0.35 0.45 0.91 0.64 0.61 0.49 
A8 0.49 0.76 0.16 0.25 0.51 0.11 0.44 1 0.50 0.75 0.61 -0.03 0.54 0.47 0.71 0.53 0.40 0.75 0.90 
A9 0.41 0.57 0.33 0.43 0.84 0.28 0.27 0.50 1 0.66 0.68 -0.01 0.52 0.60 0.50 0.41 0.46 0.65 0.63 

A10 0.24 0.51 0.16 0.19 0.63 0.19 0.19 0.75 0.66 1 0.33 -0.12 0.27 0.28 0.43 0.24 0.23 0.45 0.65 
A11 0.78 0.58 0.08 0.22 0.59 0.28 0.48 0.61 0.68 0.33 1 0.19 0.79 0.65 0.80 0.73 0.43 0.84 0.74 
A12 0.64 -0.04 -0.09 -0.10 0.02 0.14 -0.07 -0.03 -0.01 -0.12 0.19 1 0.44 0.21 0.28 0.17 -0.12 0.13 0.03 
A13 0.91 0.59 0.13 0.30 0.64 0.31 0.46 0.54 0.52 0.27 0.79 0.44 1 0.71 0.86 0.74 0.47 0.76 0.65 
A14 0.63 0.84 0.64 0.79 0.67 0.42 0.35 0.47 0.60 0.28 0.65 0.21 0.71 1 0.74 0.54 0.79 0.68 0.72 
A15 0.85 0.68 0.25 0.36 0.59 0.24 0.45 0.71 0.50 0.43 0.80 0.28 0.86 0.74 1 0.69 0.47 0.71 0.75 
A16 0.66 0.58 0.10 0.19 0.50 0.27 0.91 0.53 0.41 0.24 0.73 0.17 0.74 0.54 0.69 1 0.63 0.77 0.64 
A17 0.30 0.87 0.74 0.84 0.58 0.39 0.64 0.40 0.46 0.23 0.43 -0.12 0.47 0.79 0.47 0.63 1 0.59 0.64 
A18 0.67 0.77 0.14 0.32 0.71 0.27 0.61 0.75 0.65 0.45 0.84 0.13 0.76 0.68 0.71 0.77 0.59 1 0.86 
A19 0.56 0.90 0.35 0.49 0.67 0.40 0.49 0.90 0.63 0.65 0.74 0.03 0.65 0.72 0.75 0.64 0.64 0.86 1 
 

 

Table 7. Empirical correlations between log losses in adjacent areas 
 

 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 
A1 1 0.27 0.30 0.16 0.17 0.45 0.28 0.32 0.32 0.29 0.67 0.51 0.76 0.34 0.67 0.74 0.18 0.21 0.29 
A2 0.27 1 0.48 0.66 0.39 0.37 0.71 0.69 0.52 0.64 0.30 -0.02 0.45 0.66 0.58 0.45 0.73 0.74 0.78 
A3 0.30 0.48 1 0.70 0.40 0.31 0.42 0.51 0.58 0.53 0.18 0.07 0.21 0.32 0.54 0.26 0.47 0.21 0.57 
A4 0.16 0.66 0.70 1 0.77 0.47 0.46 0.47 0.59 0.49 0.18 -0.13 0.33 0.50 0.47 0.18 0.76 0.43 0.54 
A5 0.17 0.39 0.40 0.77 1 0.59 0.30 0.20 0.49 0.39 0.28 0.08 0.35 0.56 0.44 0.16 0.55 0.36 0.41 
A6 0.45 0.37 0.31 0.47 0.59 1 0.14 0.01 0.36 0.34 0.33 0.12 0.48 0.46 0.48 0.37 0.59 0.17 0.50 
A7 0.28 0.71 0.42 0.46 0.30 0.14 1 0.52 0.27 0.40 0.45 -0.07 0.31 0.31 0.46 0.62 0.63 0.58 0.57 
A8 0.32 0.69 0.51 0.47 0.20 0.01 0.52 1 0.64 0.81 0.27 -0.02 0.38 0.35 0.56 0.35 0.28 0.62 0.63 
A9 0.32 0.52 0.58 0.59 0.49 0.36 0.27 0.64 1 0.78 0.40 0.19 0.27 0.50 0.44 0.30 0.33 0.57 0.61 

A10 0.29 0.64 0.53 0.49 0.39 0.34 0.40 0.81 0.78 1 0.21 -0.02 0.21 0.37 0.52 0.30 0.31 0.53 0.81 
A11 0.67 0.30 0.18 0.18 0.28 0.33 0.45 0.27 0.40 0.21 1 0.47 0.49 0.45 0.60 0.67 0.20 0.45 0.39 
A12 0.51 -0.02 0.07 -0.13 0.08 0.12 -0.07 -0.02 0.19 -0.02 0.47 1 0.44 0.21 0.24 0.46 -0.23 0.25 0.05 
A13 0.76 0.45 0.21 0.33 0.35 0.48 0.31 0.38 0.27 0.21 0.49 0.44 1 0.55 0.60 0.71 0.37 0.39 0.24 
A14 0.34 0.66 0.32 0.50 0.56 0.46 0.31 0.35 0.50 0.37 0.45 0.21 0.55 1 0.59 0.43 0.57 0.58 0.53 
A15 0.67 0.58 0.54 0.47 0.44 0.48 0.46 0.56 0.44 0.52 0.60 0.24 0.60 0.59 1 0.59 0.36 0.35 0.63 
A16 0.74 0.45 0.26 0.18 0.16 0.37 0.62 0.35 0.30 0.30 0.67 0.46 0.71 0.43 0.59 1 0.38 0.43 0.39 
A17 0.18 0.73 0.47 0.76 0.55 0.59 0.63 0.28 0.33 0.31 0.20 -0.23 0.37 0.57 0.36 0.38 1 0.52 0.56 
A18 0.21 0.74 0.21 0.43 0.36 0.17 0.58 0.62 0.57 0.53 0.45 0.25 0.39 0.58 0.35 0.43 0.52 1 0.60 
A19 0.29 0.78 0.57 0.54 0.41 0.50 0.57 0.63 0.61 0.81 0.39 0.05 0.24 0.53 0.63 0.39 0.56 0.60 1 
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The following graph shows estimated cdf’s on a basis of 100,000 Monte Carlo simulations for 

the aggregated loss using lognormal margins with the parameters from Table 5 with a 

Bernstein copula representing U and a minimal correlation Gaussian copula representing V, 

for various values of p. For comparison purposes, we have also added an estimated cdf for the 

aggregated loss for a Bernstein copula representing U and an upper Fréchet (or 

comonotonicity) copula representing V. Note that the Bernstein copula is here constructed 

according to Cottin and Pfeifer (2014) on the basis of the ranks of the risk vectors, see also 

Pfeifer and Ragulina (2020), Chapter 3. 
 

The following graphs for the tail cdf’s correspond to a Bernstein copula U with a minimal 

correlation Gaussian copula V: [ ]11 ( ) ;p F x=  [ ]20.99 ( ) ;p F x=  [ ]30.994 ( )p F x=   and a 

Bernstein copula U with 0.994p =  but different copulas V: upper Fréchet bound or 

comonotonicity copula [ ]4 ( ) ;F x   independence copula [ ]5 ( ) .F x   

 

 
 

Figure 15. Plots of estimated cdf’s ( ), 1, ,5iF x i =   in the tail 

 

The following table shows the estimated risk measures VaRa  for 0.005a=  (Solvency II-

standard) for the various values of p and different types of V. 

 

Table 8. Survey over VaR-estimates under different copula models with lognormal margins 
 

p 0.990 0.994 0.994 0.994 1 

V min corr Gauss min corr Gauss upper Fréchet independence --- 

VaRa  4,647 MMU 5,272 MMU 3,976 MMU 5,018 MMU 2,229 MMU
 

 
As can clearly be seen, the patchwork construction with the minimal correlation Gaussian 

copula representing V with no tail dependence gives the largest VaR estimate here and is 

typically larger than the construction with the upper Fréchet bound which has a positive tail 



 22

dependence. Note that the sum of individual VaR’s is given by 3,976 MMU which means that 

using the Bernstein copula alone would lead to a diversified portfolio while all other copula 

models do not.  

 

Finally, it should be pointed out that the effects described here are independent of the 

particular copula chosen for U, i.e. the magnitude of the estimated VaR’s under the patchwork 

construction would remain roughly equal also under an elliptical, an Archimedean, a vine or 

an adapted Bernstein copula approach for U (Pfeifer and Ragulina (2020)), cf. also the 

comments after Fig. 3 in Embrechts et al. (2013). 

 

4. Concluding remarks. 

 

The patchwork copula construction presented in this paper allows for a simple but yet 

effective and well-defined way to generate unfavourable VaR scenarios, i.e. scenarios with 

opposite diversification effects in particular for applications in Solvency II. Such scenario 

considerations are prescribed by legislative guidelines as e.g. specified in the Commission 

Delegated Regulation of the EU (2015), p. L12/6 (16), L12/9 (49), L12/12 (75) or (77), just to 

mention some. Besides Solvency II, such unfavourable VaR scenario generations could also 

be of interest in the Basel III framework (e.g. economic scenario generators) or in the 

reinsurance industry, in particular w.r.t. extreme natural perils.   

 

Although there is theoretically also a method to create worst VaR scenarios by means of the 

rearrangement algorithm, the latter approach easily becomes numerically cumbersome in 

high-dimensional portfolios as in our case study, especially, if the risk distributions are not 

identical, see Embrechts et al. (2013), section 2.2. Hence a sub-optimal, but easy to 

implement alternative is of value, in particular, since it seems unlikely that the worst VaR 

scenario would actually occur in real life portfolios. 

 

The approach discussed in this paper seems, at a first glance, to be related to the recent paper 

by Pfeifer and Ragulina (2018). The essential difference is, however, that the latter paper is 

not based on an observation-free copula construction for the tails as in the present paper. The 

algorithm proposed there leads only to stochastic approximations of the underlying 

distributions by a marginal-wise backwards transformation of the simulated multivariate 

distribution with the quantile functions of the originally estimated marginal cdf’s. This 

emphasizes the fact that unfavourable VaR estimates cannot perhaps be characterized by the 

copula structure alone but that the interplay between the dependence structure and the 

marginal distributions is also essential, see the discussion in Ibragimov and Prokhorov (2017). 

Such a kind of interplay could potentially also be considered in the present approach, allowing 

non-constant negative pairwise correlations in the matrix dS  for the Gaussian copula in 

Lemma 5. 
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Note that Value at Risk is not the only risk measure that is used for calculating capital 

requirements in Europe. For instance, the Swiss Solvency Test uses the Expected Shortfall 

ES ( )Xa  of risks X (ES) as the underlying risk measure, cf. the Federal Office of Private 

Insurance, FINMA, Switzerland (2006). In accordance with our terminology and under the 

assumption of a continuous risk distribution, it is defined as  
 

( )ES ( ) | VaR ( ) , 0 1.X E X X Xa a a= > < <  
 

Unfortunately it is impossible to generate true unfavourable ES scenarios since ES is a 

coherent (i.e. subadditive) risk measure which in the worst case generates additive risk 

scenarios if the risks involved follow a comonotone dependence structure (see e.g. McNeill et 

al. (2015), Chapter 7.2). Note however, that it is sufficient for the generation of  additive ES 

scenarios to use a dependence structure as in Lemma 1 with the upper Fréchet bound for V 

which is a copula in any dimension. 
 

 

Appendix: Proof of Lemmata. 

 

Proof of Lemma 2. We have 
 

( )( ) ( )
1

( ) ( )
( , ) (1 ) (1 ) ( )

1 1i

i i
Z i i i i i

F x F x
F x P Q U x P U F x P Ub b b

b b

æ ö÷ç= - ⋅ £ = - ⋅ £ = £ =÷ç ÷÷ç - -è ø
 

 

for 0 (1 )ix Q b£ £ -  and 
 

( )( ) ( )
2

( ) 1
( , ) 1 1 ( )

i

i
Z i i i i

F x
F x P Q V x P V F x

b
b b b b b

b
+ -

= - + ⋅ £ = - + ⋅ £ =  

 

for (1 ), 1, 2.ix Q ib³ - = ·  

 
Proof of Lemma 3. In the finite interval case, we have, by the usual convolution formula,   
 

1

0 max(0, ) min( , )
0

( ) ( ) ( ) ( ) ( ) .
y M x M y x M
x y M

h x f x y g y dy f x y g y dy
£ £ - £ £
£ - £

= - = -ò ò   

 

Now for 0 ,x M£ £  we have max(0, ) 0, min( , ) ,x M x M x- = =  from which the upper 

formula in brackets for 1( )h x  follows. For 2 ,M x M£ £  we have max(0, ) ,x M x M- = -  

min( , ) ,x M M=  from which the lower formula in brackets for 1( )h x  follows. 
 

The proof for the infinite interval case is analogous, observing that for 2 ,x M³  we have  
 

2 ( ) ( ) ( ) ( ) ( ) .
M y x M y x M
M x y

h x f x y g y dy f x y g y dy
£ £ £ £ -
£ -

= - = -ò ò   

 

Further, under the conditions made, we have, in either case, 
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1 2
2

( ) (2 ) (2 ) ( ) ( ) 0,
M

x M M

d
F G x h M h M f x y g y dy

dx =

* = = = - =ò  

 

as stated.  ·   

 
Proof of Lemma 4. Let ix  and iz  be independent random variables with the cdf’s ( , )F b  

and ( , ),F b  resp. Then ( )(1 ) (1 )i iI I Qx b z⋅ + - ⋅ - +  is a stochastic representation of 

, 1, , ,iX i d=   where again I is a binomial random variable with ( 1) 1P I b= = -  and 

( 0) ,P I b= =  independent of ( , ),U V  according to Lemma 2. Hence  
 

( )
1 1 1 1

(1 ) (1 ) (1 ) (1 )
d d d d

i i i i
i i i i

I I Q I I dQx b z x b z
= = = =

æ ö÷ç⋅ + - ⋅ - + = ⋅ + - ⋅ - + ÷ç ÷ç ÷è øå å å å   

is a stochastic representation of S. Note that the cdf of 
1

d

i
i

x
=
å  is *( , )dF b  and that of 

1

d

i
i

z
=
å  is 

*
( , ),

d
F b  from which the assertion follows.  ·  

 
Proof of Lemma 5. The proof relies on the following two relations: 
 

a)  
2

1 1

( 1)

d

k

d

k k d=

-
=

-å   for 2,d ³   

 

b) 
1

1 1 1

( )( 1)

d i

k

i d

i i k i k d

-

=

- -
+ =

+ + -å  for 2, 1 .d i d³ £ £   

 

Clearly a) follows easily by induction. Relation b) follows immediately from a) since  
 

2

1 1

( 1)

i

k

i

i k k=

-
=

-å  and 
1 1

1 1
.

( )( 1) ( 1)

d i d

k k ii k i k k k

-

= = +

=
+ + - -å å   

 

To prove Lemma 5, we first show that .tr tr
d= =TT I T T  Let 

, 1, ,
.tr

ij i j d
b

=
é ù= ê úë ûTT


 For 

1 i d£ £  we obtain, by relation b) above, 
1

1 1 1
1.

( )( 1)

d i

ii
k

i
b

d i i k i k

-

=

-
= + + =

+ + -å  For 

1 ,i j d£ £  with i j¹  we get, with : max( , ),i j i j =  following again relation b), 

1 1

1 1 1 1 1 1

( 1) ( )( 1)

1 1 1 1
1 1 0.

d i jd

ij
k i j k

b
d i j k k d i j k i j k i j

d i j

d i j d i j

- 

=  + =

= - + = - +
 -  +  +  -

-  -
= - + - = - =

 

å å
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This proves .tr
d=TT I  On the other hand, let 

, 1, ,
.tr

ij i j d
c

=
é ù= ê úë ûT T


 It is obvious that 

11

1
1c d

d
= ⋅ =  and for all 2 ,i d£ £  

1 1
( 1) 1.

( 1)ii

i
c i

i i i

-
= ⋅ - + =

-
  

Next, for all 2 ,j d£ £ we obtain 1

1 1 1
( 1) 0,

( 1)
j

j
c j

jd j j

æ ö- ÷ç ÷ç= - ⋅ - + =÷ç ÷÷ç -è ø
 and for all 

2 ,i d£ £  we get 1

1 1 1
( 1) 0.

( 1)
i

i
c i

id i i

æ ö- ÷ç ÷ç= - ⋅ - + =÷ç ÷÷ç -è ø
 Finally, for 2 ,i j d£ £  with 

,i j¹  we get 
1 1 1

( 1) 0.
( ) ( 1) ( ) ( 1)

ij

i j
c i j

i ji j i j i j i j

æ ö - ÷ç ÷ç=- ⋅ - ⋅  - + =÷ç ÷÷ç  ⋅  -  ⋅  -è ø
 

This proves .tr
d=T T I  Now let 1 1 ( 1) ,d rl = + -  1 , 2, ,i r i dl = - =   and 

( )1diag , , .t dt tl lD = - -  A standard computation yields, for ,t Î  
, 1, ,t ij i j d

s
=

é ùD = ê úë ûT


 

where 

 

1 ( 1)
, 1

1
, 1

( 1)

1
(1 ), 1

0, otherwise.

ij

d r t
j

d
r t

i j
j js

j
r t i j

j

ì + - -ïï =ïïïïï - -ï - £ <ïïï -=íïïï -ï - - < =ïïïïïïïî

  

 

Let 
, 1, ,

.tr
t ij i j d

d
=

é ùD = ê úë ûT T


 From relation a) above it follows that 

11
2

1 ( 1) 1 1 ( 1) 1
(1 ) (1 ) 1 ,

( 1)

d

k

d r t d r t d
d r t r t t

d k k d d=

+ - - + - - -
= + - - = + - - ⋅ = -

-å   

and for 2 ,i d£ £  relation b) gives 
 

1

1 ( 1) 1 1
(1 )

( )( 1)

1 ( 1) 1
(1 ) 1 .

d i

ii
k

d r t i
d r t

d i i k i k

d r t d
r t t

d d

-

=

æ ö+ - - - ÷ç= + - - + ÷ç ÷ç ÷ç + + -è ø

+ - - -
= + - - = -

å
  

 

Next, for 2 ,i j d£ £  with i j¹  we obtain from relation b) above, 
 

1

1 ( 1) 1 1
(1 )

( )( 1)

1 (d 1) 1 1 1
(1 ) .

d i j

ij
k

d r t r t
d r t

d i j i j k i j k

r t r t d i j
r t r

d i j d i j

- 

=

æ ö+ - - - - ÷ç ÷= - + - - ç ÷ç ÷ç  +  + -è ø
æ ö+ - - - - -  - ÷ç= - + - - - ÷=ç ÷ç ÷ç è ø

å
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This in turn means .tr
t d dtD =S -T T I  Consequently, the characteristic polynomial for dS  is 

given by  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1

1

( ) det det det( ) det det det( ) det det

det .

d

tr tr
d d t t t

d

t i
i

t t

t

j

l

-
S

=

= S - = D = ⋅ D ⋅ = ⋅ D ⋅

= D = -

I T T T T T T

  

Hence , 1 ,i i dl £ £  are the latent roots of .dS  Therefore, dS  is a correlation matrix, i.e. 

positive semidefinite iff 0il ³  for all 1 ,i d£ £  i.e. 
1

1.
1

r
d

- £ £
-

 

Thus Lemma 5 is proved.  ·   
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