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Abstract We consider a canonical construction principle for multivariate copula models on 
the basis of independent standard random variables which is in particular well suited for 
Monte Carlo Studies. 
 
1. Introduction. There are many approaches to copula modelling in the literature, cf. e.g. the 

papers listed in the References below. Now for our investigations, let { } Î
=

k k
UU  be a 

sequence of independent standard random variables, i.e. each kU  has a continuous uniform 

distribution over the interval [ ]0,1 .  Let further 1, , , n Î nT T  be real continuous functions 

over   and ( )=i iV T U  for 1, ,= i n  with a continuous uniform distribution over [ ]0,1  

each. Then ( )1, ,=  nV VV  is a representative of an n-dimensional copula. 

 

Note that if ( )=i iW T U  is not immediately uniformly distributed then ( )=i i iV F W  is so if iF  

denotes the c.d.f. of .iW  

 

2. Particular Cases. Consider the following special cases of a construction as indicated in the 
Introduction. 
 

Case 1. Let 2=n  and 1 1 2 1 2

1
( ) , ( ) (1 ) , 0 .

2
T U T U Ua a a= = + - < £U U  it can easily be 

shown that the c.d.f. 2F  is given by  
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The following graphs show 5.000 simulations of V each, for various values of .a   
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Case 2. Let 2=n  and 1 1 2 2 1 2( ) , ( ) .= + = ⋅T U U T U UU U  It is easy to see that the c.d.f. 2F  is 

given by  
 

( )2 ( ) 1 ln( ) , 0 1F x x x x= - ⋅ < £  and 
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(cf. Case 1 for 
1

2
a= ).  

 
This follows from the observation that ( )2ln ( )- T U  represents the sum of two independent 

standard exponentally distributed random variables, hence is gamma-distributed. The 
following graph shows 5.000 simulations of V. 
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Scatterplot of V  
 
 
Case 3. Let 2=n  and ( )1 1 2 2 1 2( ) , ( ) max ,= ⋅ =T U U T U UU U  with the c.d.f. 2F  given by  

 
2

2 ( ) ,0 1= £ £F x x x  and ( )1( ) 1 ln( ) , 0 1= - ⋅ < £F x x x x (cf. Case 2). 

 
The following graph shows 5.000 simulations of V. 
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Scatterplot of V 
 
 

Case 4. Let 3=n  and ( ) 3

1 1 2 1 2( ) , ( ) .
U

T U T U U= = ⋅U U  Note that 2 2 ( )V T= U  is already 

uniformly distributed over [ ]0,1  since for 0 1< <x   

 

( ) ( )( ) ( ) ( )3 3 1 2
3

1
11/ 1/w

0
0

ln( )
ln ln( ) ln ln

ln( )
1

=

=

æ ö- ÷ç ÷£ = - ³- = - - ³ç ÷ç ÷çè ø

æ ö÷ç= - ⋅ = ⋅ =÷ç ÷çè øò
ww

w

x
P V x P V x P U U

U

x
x dw w x x

w

  

 
(note that ( ) ( )1 2ln ln- -U U  is gamma-distributed). 

 
The following graph shows 5.000 simulations of V. 
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Case 5. Let 3=n  and ( ) 31
1 2 1 2

2
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= = ⋅U U  Note that the c.d.f. 1F  of  1( )T U  is 

given by 
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  while 2 ( )T U  is continuous uniformly distributed over [ ]0,1 ,  cf. Case 

4. 
 
 
The following graph shows 5.000 simulations of V. 
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Case 6. Let 2=n  and 1
1 2 1 2

2

( ) , ( ) .
U

T T U U
U

= = +U U  For the corresponding c.d.f.s, see 

Cases 5 and 2.  
 
The following graph shows 5.000 simulations of V. 
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